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1. Introduction

The calibration theorem of Rabin (2000) is one of the most
ited theoretical results in microeconomics of the past 25 years.
n his famous paper, Rabin considers a risk-averse expected utility
aximizer who refuses a 50–50 ‘‘gain g or lose l’’ gamble for a

ange of initial wealth levels. From this prerequisite, he derives
onditions on numbers m and k such that the same agent also
efuses a 50–50 ‘‘gain m · g or lose k · l’’ gamble. In a nut-
hell, the message of Rabin’s paper is that m can grow far more
uickly than k so that the agent will end up refusing gambles
hose potential gains outweigh the losses by far. For instance, by
onsistency considerations, an agent who refuses a 50–50 ‘‘gain
11 or lose $10’’ gamble for all initial wealth levels must also
efuse a 50–50 gamble with a possible loss of $88 regardless of
ow high the possible gain is. In Rabin’s paper, these results are
nterpreted primarily as an argument against expected utility as a
ehavioral theory — and from this perspective they have mostly
een cited. Yet, the general question which conclusions about an
gent’s utility function can be drawn from limited information
s interesting for other reasons as well, e.g. when dealing with
reference uncertainty (Armbruster and Delage, 2015) or when
valuating empirical data on choices between lotteries (Moscati,
019).
While the main body of Rabin (2000) is extremely well-

ritten, a closer look at the paper’s mathematical appendix
eveals that it was probably not written with the idea that

∗ Corresponding author.
E-mail address: n.f.f.schweizer@uvt.nl (N. Schweizer).
ttps://doi.org/10.1016/j.econlet.2021.110166
165-1765/© 2021 The Authors. Published by Elsevier B.V. This is an open access art
generations of students would carefully study it line by line —
as turned out to be the case, with the paper being a standard
reference that is taught in many educational programs around
the world.1 This is the starting point of this short paper which
revisits the theoretical results of Rabin (2000), streamlines the
arguments, simplifies the statements and exploits the standing
assumptions more fully to make the results both simpler and
stronger.2 Here are some examples:

• While the geometric series is applied once in the proof of
Rabin’s Corollary, the paper contains various further expres-
sions that can be simplified using the same trick, leading to
mathematical expressions which are easier to interpret and
evaluate.

• While Rabin’s theorem uses concavity of the utility function
to extrapolate beyond the range where preference informa-
tion is available, interpolation within that range is based
only on monotonicity. We exploit concavity more fully to
tighten the bounds.

• Extrapolating results about ‘‘gain g or lose l’’ gambles to
‘‘gain m · g or lose k · g ’’ gambles is actually easier than
proving the results about ‘‘gain m · g or lose k · l’’ gambles
Rabin presents. In order to move from ‘‘lose k · g ’’ to ‘‘lose

1 Indeed, several rounds of teaching (Rabin, 2000) were a major motivation
or writing this note.
2 In particular, while there are a few minor typos in the original results, we
o not think that anything is ‘‘wrong’’ with them. The typos include, e.g., a
issing factor 2 in the Corollary, and a flip of ≤ and ≥ in the first displayed

equation in the proof of part (ii) of the Theorem, the counterpart of our
Lemma 1.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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k · l’’, Rabin needs to introduce an extra assumption, g < 2l,
and take several additional steps. The results about ‘‘gain
m ·g or lose k ·g ’’ gambles are never mentioned even though
the resulting bounds are sharper and do not need the extra
assumption.

Since our theoretical results are tighter, we can also improve
he tables with quantitative results in Rabin (2000). Some later
rticles such as Safra and Segal (2008), Freeman (2015) and Safra
nd Segal (2020) have extended Rabin’s results from expected
tility to even broader classes of preferences. In these later
orks, Safra and Segal (2008)’s Theorem 1 has replaced Rabin’s
heorem, providing a closed-form expression that is easy to
valuate. While we stay within the more narrow scope of Rabin’s
riginal expected utility setting, we find that within that scope
ur quantitative bounds are considerably tighter than Safra and
egal (2008)’s theorem. We illustrate and discuss this further at
he end of this paper.

. Calibration theorems

We now derive utility comparisons in the spirit of Rabin’s. To
his end, we first present two results, a theorem and corollary,
hich carry the same message as their counterparts in his paper
ut are more explicit and easier to prove. We then modify these
esults to get closer to his original versions. Throughout, the goal
s to assess the consequences of the following assumption on the
references of an expected utility maximizer with utility function
.

ssumption 1. The utility function u : R → [−∞, ∞) is weakly
ncreasing and weakly concave. Moreover, there exists an interval

⊆ R and real numbers g and l, g > l > 0, such that3
(w) > −∞ for all w ∈ W and such that an agent with utility
unction u rejects a 50–50 gain g or lose l gamble for all wealth
evels w ∈ W ,
1
2
u(w − l) +

1
2
u(w + g) ≤ u(w)

or, equivalently,

u(w + g) − u(w) ≤ u(w) − u(w − l). (1)

Condition (1) is a strengthening of concavity which only im-
plies a ranking of the increments of u for adjacent intervals of
equal length,

u(w + g) − u(w) ≤ u(w) − u(w − g).

Condition (1) states that this ranking holds even when the inter-
val on the left is shorter, comparing an increment over length l
to an increment over length g > l. Intuitively, an increment over
length l should be about a factor l/g smaller than an increment
over length g . With this intuition and concavity, we can turn
(1) into a quantitative bound on the growth behavior of u over
intervals of length g .

Lemma 1. Under Assumption 1, we have for all w ∈ W

u(w + g) − u(w) ≤
l
g
(u(w) − u(w − g)). (2)

Proof. Since we can write l
g (w − g) +

(
1 −

l
g

)
w = w − l,

concavity of u implies

l
g
u(w − g) +

(
1 −

l
g

)
u(w) ≤ u(w − l)

3 By allowing u to take the value −∞ but assuming u(w) > −∞ for
∈ W , our setting is flexible enough to include, e.g., the possibility that u

s a logarithmic utility function which takes the value −∞ for w ≤ 0.
 i

2

⇒ u(w) − u(w − l) ≤
l
g
(u(w) − u(w − g)). (3)

Combining (1) and (3) yields (2). □

We next prove a version of Rabin’s Theorem, bounding the
growth of u in terms of l/g .

Theorem 1. Under Assumption 1, consider two integers m and k
and a wealth level w such that [w − kg, w + mg] ⊆ W and define
r(w) = u(w + g) − u(w). Then the utility function u satisfies the
bounds

u(w + mg) − u(w) ≤

1 −

(
l
g

)m

1 −
l
g

r(w) and

u(w) − u(w − kg) ≥

( g
l

)k
− 1

1 −
l
g

r(w).

Proof. Iterating condition (2), we find that for non-negative
integers i ≤ m

(w + (i + 1)g) − u(w + ig) ≤

(
l
g

)i

(u(w + g) − u(w)). (4)

sing the definition of r(w), we can thus deduce the first claim

(w + mg) − u(w) =

m−1∑
i=0

u(w + (i + 1)g) − u(w + ig)

≤ r(w)
m−1∑
i=0

(
l
g

)i

= r(w)
1 −

(
l
g

)m

1 −
l
g

.

For the second one, we replace w by w− ig in (4), plug in i = j+1
nd rearrange to obtain

(w − jg) − u(w − (j + 1)g) ≥

(g
l

)j+1
(u(w + g) − u(w))

=

(g
l

)j+1
r(w)

for non-negative integers j < k, using that [w−kg, w+mg] ⊆ W .4
onsequently,

(w) − u(w − kg) =

k−1∑
j=0

u(w − jg) − u(w − (j + 1)g)

≥ r(w)
g
l

k−1∑
j=0

(g
l

)j
= r(w)

( g
l

)k
− 1

1 −
l
g

. □

For W = R, the potential gain u(w + mg) − u(w) is bounded
in m while the potential loss u(w) − u(w − kg) grows exponen-
ially in k. This contrast is the essence of Rabin’s result which is
ummarized in the following version of his Corollary.

orollary 1. Suppose that Assumption 1 holds with W = R, so
hat the agent rejects a 50–50 gain g or lose l gamble regardless of
is wealth and let k,m ≥ 2 be two integers.
i) Suppose that

( g
l

)k
≥ 2, i.e., k ≥

log(2)
log(g)−log(l) . Then the agent also

rejects 50–50 gambles with a loss of k · g and a gain of m · g for all
m ∈ N.

4 Carefully inspecting this proof, one can tighten the result a little bit more:
ince only the point w needs to lie in W in Assumption 1, it suffices to assume

[w − (k− 1)g, w + (m− 1)g] ⊆ W rather than [w − kg, w +mg] ⊆ W . The same
mprovement is possible in Propositions 1 and 2.
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Fig. 1. The function U from Proposition 2 for w = 100, g = 15, l = 10 and W = R in the left panel and for w = 290,000, g = 105, l = 100 and W = [0, 300,000]
in the right panel.
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Table 1
If averse to 50–50 lose $100 or gain g bets for all wealth levels, will turn down
50–50 lose L or gain G bets; G’s entered in table.
L \ g $101 $105 $110 $125

$400 $415 $483 $601 ∞

$600 $636 $824 $1,296 ∞

$800 $866 $1,280 $6,716 ∞

$1,000 $1,107 $1,918 ∞ ∞

$2,000 $2,491 ∞ ∞ ∞

$4,000 $6,694 ∞ ∞ ∞

$6,000 $16,641 ∞ ∞ ∞

$8,000 ∞ ∞ ∞ ∞

$10,000 ∞ ∞ ∞ ∞

$20,000 ∞ ∞ ∞ ∞

(ii) Suppose that
( g

l

)k
< 2, i.e., k <

log(2)
log(g)−log(l) . Then the agent also

ejects 50–50 gambles with a loss of k · g and a gain of m · g if m
atisfies

≤ m∗
:=

log
(
2 −

( g
l

)k)
log(l) − log(g)

.

roof. We need to establish sufficient conditions for u(w)−u(w−

g) ≥ u(w + mg) − u(w). By Theorem 1, one such condition is

−

(
l
g

)m

≤

(g
l

)k
− 1. (5)

If
( g

l

)k
≥ 2, i.e., if

( g
l

)k
− 1 ≥ 1, then (5) holds regardless of m

ince the left hand side of (5) always lies in (0, 1). This settles
ase (i). If

( g
l

)k
− 1 < 1, setting m equal to the (typically non-

nteger) value m∗ from the proposition turns (5) into an equality.
Since the left hand side of (5) is increasing in m, (5) is satisfied
or m ≤ m∗. □

In the first case of the corollary, the agent rejects a gamble
with gains of m · g and losses of k · g for any m. When g is larger
han 2l, we are in this case for all k. Consider the example from
he introduction, an agent who rejects a 50–50 ‘‘gain g =$11 or
ose l =$10’’ gamble for all initial wealth levels. Solving ( gl )

k
= 2

ith these values gives k = log(2)/ log(1.1) ≈ 7.3. Rounding to
= 8, we can conclude that this agent rejects a gamble with a
ossible loss of k · g =$88 no matter what the possible gain is.
There are two main differences between our results so far

nd those in Rabin’s original paper. First, we consider lotteries
ith losses of k · g while he considers losses of k · l. Second, his
heorem does not just bound the utility function on a grid but also
nterpolates between the grid points and extrapolates outside the
ange determined by the set W . In the remainder of this section,
e extend our results into these two directions.
3

ultiples of l. To extend the results from losses that are multiples
f g to those that are multiples of l, Rabin assumes that g lies
etween l and 2l. The basic trick is to observe that we do not
nly have a contraction by a factor l/g for intervals of length g –
s shown in Lemma 1 – but also for intervals of length h > g as
his only makes the claim weaker.

emma 2. Under Assumption 1, we have for all w ∈ W and h ≥ g

(w) − u(w − h) ≥
l
g
(u(w + h) − u(w)). (6)

Proof. Since g
h (w+h)+ (1−

g
h )w = w+g , concavity of u implies

g
h
u(w + h) +

(
1 −

g
h

)
u(w) ≤ u(w + g).

earranging and applying Assumption 1, it follows that

(w + h) − u(w) ≤
h
g
(u(w + g) − u(w))

≤
h
g
(u(w) − u(w − l)). (7)

rguing like in (3) but with h in place of g , we also know that

(w) − u(w − l) ≤
l
h
(u(w) − u(w − h)). (8)

lugging (8) into (7) concludes the proof. □

Assuming g ≤ 2l and setting h = 2l, we get bounds like in
ase (i) of Rabin’s theorem:

roposition 1. Under Assumption 1, consider two integers m and
and a wealth level w such that [w − kg, w + mg] ⊆ W, define

r(w) = u(w + g) − u(w) and suppose that g ≤ 2l. Then the utility
unction u satisfies the bounds

(w) − u(w − 2kl) ≥ 2

( g
l

)k
− 1

g
l − 1

r(w).

Proof. Arguing like in Theorem 1 but with Lemma 2 in place of
Lemma 1, we find that

u(w) − u(w − kh) =

k−1∑
j=0

u(w − jh) − u(w − (j + 1)h)

≥ (u(w) − u(w − h))

( g
l

)k
− 1

g
l − 1

(9)
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Table 2
Table 1 replicated for initial wealth level w = 290,000 and W = [0, 300,000].
L \ g $101 $105 $110 $125

$400 $415 $483 $601 $1,105,440,200
$600 $636 $824 $1,296 $29,432,073,060
$800 $866 $1,280 $6,716 $74,987,862,188
$1,000 $1,107 $1,918 $2,437,547 $140,096,476,686
$2,000 $2,491 $133,200 $23,487,753 $1,185,980,444,937
$4,000 $6,694 $1,015,102 $192,453,308 $44,577,197,489,785
$6,000 $14,898 $3,248,647 $1,146,866,216 $1,586,142,900,840,091
$8,000 $25,644 $8,905,397 $6,536,601,709 $56,353,558,511,463,528
$10,000 $38,730 $23,231,799 $36,966,107,744 $2,002,083,024,435,601,152
$20,000 $161,526 $2,466,146,744 $214,467,260,409,269 $113,313,887,494,512,423,066,402,816
t
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Table 3
If averse to 50–50 lose $100 or gain g bets for all wealth levels in [a, b], will
urn down 50–50 lose L or gain G bets at wealth a; L’s entered in table.
G b − a g = $101 g = $105 g = $110 g = $125

$1,000,000 $20,000 $145,425 $2,298 $1,211 $626
$5,000,000 $30,000 $268,437 $2,210 $1,211 $626
$10,000,000 $40,000 $203,643 $2,206 $1,211 $626

for h ≥ g . Moreover, by concavity and Assumption 1

u(w) − u(w − 2l) ≥ 2(u(w) − u(w − l)) ≥ 2r(w). (10)

lugging (10) into (9) with h = 2l gives the result. □

Combining this bound with the bound on u(w + mg) − u(w)
rom above, one can prove a version of Rabin’s Corollary arguing
s in the proof of our Corollary 1. However, the result will not be
s tight as Corollary 1 as it relies on replacing Lemma 1 by the
eaker Lemma 2. Intuitively, the bounds are weakened first by
tretching the x-axis from multiples of g to multiples of 2l and
hen even more when applying (10). To obtain tight bounds, it is
referable to interpolate and extrapolate Theorem 1 directly.

nterpolation and extrapolation. With monotonicity and concavity
e have two assumptions in place that can help us in extending
ur bounds from the grid to the real line. Monotonicity implies
hat bounds on the function can be extended to intermediate
alues. Concavity implies that bounds on the slope over adjacent
ntervals give linear bounds on the function. Rabin’s theorem only
ses monotonicity when interpolating and only concavity when
xtrapolating. In our proposition, we apply both monotonicity
nd concavity in the interpolation to achieve a tighter bound on
he utility function.

roposition 2. Under Assumption 1, consider two integers m and
, m, k ≥ 2, and a wealth level w such that [w−kg, w+mg] ⊆ W.
ssume without loss of generality that u(w) = 0 and u(w + g) =

−
l
g and define the sequences (xi), (ui) and (si), i ∈ Z, through

xi = w + ig, ui = 1 −

(
l
g

)i

and si =

(
l
g

)i (
1 −

l
g

)
.

Then we have for all x ∈ R the bound u(x) ≤ U(x) where the
function U : R → R is defined piecewise as follows: For x > xm,
U(x) = um + sm x−xm

g . For x ∈ (x1, xm], there exists an integer i
and α ∈ (0, 1] such that x = xi + αg and we define U(x) =

in(ui + αsi−1, ui+1). For x ∈ (x0, x1], we define U(x) = u1. For
∈ (x−k, x0], there exists an integer j and α ∈ [0, 1) such that
= x−j −αg and we define U(x) = u−j −αs−j. Finally, for x ≤ x−k,

we define U(x) = u−k − s−k
x−k−x

g .

roof. From the proof of Theorem 1, we see that (xi), (ui) and
si) are chosen such that u(xi) ≤ ui for i = −k, . . . ,m, u(xi+1) −

(x ) ≤ s for i = 0, . . . ,m − 1 and u(x ) − u(x ) ≥ s
i i −(j−1) −j −j s

4

for j = 0, . . . , k. The interpolation is based on three ideas. First,
by monotonicity, we have for i = −k, . . . ,m − 1 and α ∈ [0, 1]
u(xi+αg) ≤ ui+1. Second, by concavity, the slope anywhere inside
he interval [xi, xi+1] is less than the slope over [xi−1, xi] and thus

u(xi + αg) ≤ u(xi) + (u(xi) − u(xi−1))α ≤ ui + si−1α

or i = 0, . . . ,m− 1 and any α > 0. Third, by a similar concavity
rgument,

(x−j − αg) ≤ u(x−j) − (u(x−(j−1)) − u(x−j))α ≤ u−j − s−jα

or α > 0 and j = 0, . . . , k. The result now follows by suitably
ombining these bounds. □

The construction of the function U is illustrated in the left
anel of Fig. 1. We can conclude that in the setting of the propo-
ition, an agent with wealth w will reject a 50–50 ‘‘lose L or gain
’’ lottery if −U(w − L) > U(w + G) since this implies

(w) − u(w − L) ≥ −U(w − L) > U(w + G) ≥ u(w + G) − u(w)

here we use u(x) ≤ U(x) and the normalization u(w) = 0.
y solving the indifference condition −U(w − L) = U(w +

), we can recreate versions of Rabin’s Tables 1 and 2, giving
xamples of lotteries that would be rejected by an agent whose
references satisfy Assumption 1.5 Throughout, our results are
harper, corresponding to larger values in the tables, sometimes
emarkably so.6 The right panel of Fig. 1 shows the function U for
he second column of Table 2. On this scale, the local deviations
rom concavity in the construction of U are not visible. To un-
erstand the global behavior of U better, note that it interpolates
he concave sequence xi ↦→ ui. Solving xi for i and plugging this
nto the expression for ui, we find that xi ↦→ ui interpolates the
unction x ↦→ ū(x) where

¯(x) = 1 −

(
l
g

) x−w
g

= 1 − C exp (−ρx) with C =

(g
l

)w
g

and

=
log(g) − log(l)

g
. (11)

The function ū is a CARA utility function with risk aversion
parameter ρ. On sufficiently coarse scales, the behavior of U and
ū is effectively the same inside W .7

Finally, we compare our bounds to Safra and Segal (2008). In
Table 3, we present a counterpart to their Table I which illustrates
their Theorem 1. Here, all of our bounds are tighter by a factor of

5 A Python code that creates the tables and figures is available in the
upplemental online material.
6 In particular, our results bind immediately. For an agent who rejects a gain
01 or lose 100 lottery, Rabin can only conclude that he would also reject a
ain 400, lose 400 lottery — which follows from risk aversion alone. We find
hat the agent would also reject a gain 415, lose 400 lottery.
7 From (11), we have an explicit formula that translates l and g into an
pproximate risk aversion level ρ. Numerically, this gives approximately the
ame values as in Rabin’s Table 3.
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pproximately 2, in some cases even more. Recall that, building
n our Lemma 1 and thus on the stronger case of Rabin’s original
heorem, our bounds exploit a contraction by a factor l/g over
intervals of length g . In contrast, Safra and Segal (2008) only
exploit this contraction over intervals of length l + g . Over an
nterval of length b − a, they thus apply the factor l/g about
b − a)/(l + g) times, while we apply it (b − a)/g times. When
≈ g , it follows that the implied rate of exponential decay behind
ur results is about twice as large. This has a considerable impact
n the quality of the bounds.

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.econlet.2021.110166.
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