

Heterodyne Array Receivers for Space and Ground Based Applications

Wiedner, Martina C.; Cooray, Asantha; Gerin, Maryvonne; Leisawitz, David; Meixner, Margaret; Baryshev, Andrey; Belitsky, Victor; Desmaris, Vincent; DiGiorgi, Anna; Gallego, Juan Daniel *DOI:*

10.5281/zenodo.5549563

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Wiedner, M. C., Cooray, A., Gerin, M., Leisawitz, D., Meixner, M., Baryshev, A., Belitsky, V., Desmaris, V., DiGiorgi, A., Gallego, J. D., Goldsmith, P., Helmich, F., Jellema, W., Laurens, A., Mehdi, I., Risacher, C., Science, O., Team, T. D., & team, HERO. (2021). *Heterodyne Array Receivers for Space and Ground Based Applications*. https://doi.org/10.5281/zenodo.5549563

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Heterodyne Array Receivers for Space and Ground Based Applications

Martina C. Wiedner Origins Team, HERO Team

Outline

- I. Motivation & Rx Requirements
- II. Previous Heterodyne Array Rx
- III. HEterodyne Receiver for the

Origins space telescope

IV. Conclusion

Motivation

Integrated [CII] map of the massive star RCW120 mapped with upGREAT/ SOFIA, Schneider et al. 2020

Requirements

- ALMA or space: small arrays
 - Efficient
 - Reliable
 - For space: low energy consumption, small vol and weight
- Single Dish (e.g. AtLAST, CCAT'): large arrays (100 to 1000 pixels)
 - Close packaging
 - Simplified structures for fabrication
 - Efficient readout

Previous Heterodyne Array Rx

Graf et al. 2015

Previous Heterodyne Array Rx

Fig. 2 Pixel count and operating frequency of heterodyne receivers above 200 GHz. The approximate period of activity is also given

30/09/21

Graf et al. 2015

CHAMP – 2x8 pixels

- 450 498 GHz, on CSO
- 1998 2005 (?)

Innovations:	Large N	space
Pixel Spacing 1.4	1	1
Martin-Puplett-Interferometer For LO and SSB	× ×	~ ~
Cold Optics 15K	×	1
Derotation by turning cryostat	×	1

SuperCam - 64 pixels

 320 – 360 GHz on HHT **Innovations:** Large space Horn Extension Block Electromagnets Ν **LNA Modules** Monolythic block of several px \sim 1 IF board LO divided in wave guide \sim Magnet DC Gilbert GPPO blind mate IF connectors **Bias DC connector** connector LO superposition by Mylar X 1 DFTS X \sim

CHAI – 2 x 64 pixels

- 455-495 GHz & 800-820 GHz
- CCAT'

Innovations:	Large N	space
Balanced SIS	1	1
LO distribution by wave guide	×	1
Modular mixer blocks	1	~
LNA separated from mixers	1	1
Miniaturization of bias circuit	1	 Image: A second s

CHAI – 2 x 64 pixels

- 455-495 GHz & 800-820 GHz

Balanced SIS Talk by Netty Honingh O distributio

Modular mixer blocks

LNA separated from mixers

Miniaturization of bias circuit

Feedhorn-Block

upGREAT – 2 x 7 pixels

- 1830 2070GHz (/2500GHz)
- SOFIA

Inovations:	Large N	space
THz	×	 Image: A second s
Wideband RF (12% - 32%)	1	1
airborne	~	 Image: A second s

30/09/21

Origins Space Telescope

Wavelength coverage: 2.8-588 µm Telescope: 5.9 m (4" @ 100 μ m) \rightarrow 25 m² (=JWST area) diffraction-limit: 30 µm temperature: 4.5 K, cryocoolers Agile Observatory for surveys: 60" per second Mission: 10 year propellant, serviceable Orbit: Sun-Farth L2

Origins Space Telescope

Wavelength coverage: 2.8-588 µm Telescope: 5.9 m (4" @ 100 μ m) \rightarrow 25 m² (=JWST area) diffraction-limit: 30 µm temperature: 4.5 K, cryocoolers Agile Observatory for surveys: 60" per second Mission: 10 year propellant, serviceable Orbit: Sun-Farth L2

Origins is 1 of 4 mission concept studies Submitted to Astro2020 Decadal Review

30/09/21

Five Instruments

OSS: Origins Survey Spectrometer -25-588 μm R~300, survey mapping -25-588 μm R~43,000, spectral surveys -100-200 μm R~325,000, kinematics

MISC-T: Mid-Infrared Spectrometer Camera Transit -Ultra-Stable Transit Spectroscopy

-2.8-20 μm R~50-295

FIP: Far-infrared Imager Polarimeter

- 50 or 250 μ m, Large area survey mapping (inst. field 2' 6 x 2' 5 12' 5 x 0')
 - (inst. field 3'.6 x 2'.5, 13'.5 x 9')
- 50 or 250 μm , polarimetry

30/09/21

5 Instruments

HERO: HEterodyne Receiver for Orgins
111 to 617 μm,
R up to 10
3 x 3 arrays
dual-polarization, dual-frequency

MISC-T: Mid-Infrared Wide Field Imager

- 3x3 arcmin
- 5-28 μm R~5-300

Science case for HERO

Trail of water during planet formation

- Water's birth in starless cores
- Supply to disk around protostars
- Early planet formation in protoplanetary disks

HERO - HEterodyne Receiver for Origins

- European led study
- 111-617 μm (486-2700 GHz)
- up to R~10⁷, Spectral imaging
- 9 pixel x 2 pol. x dual band

total 36 times 6 GHz instantaneously

Possible extension:
EHT : Earth – L2
@ 85, 230, 345 and 690 GHz
→ 10⁶ BH shadows
→ Resolving photon ring

First Heterodyne Array Receiver for Space

	Component	HERO
LO	Multiplied LO Technology	Cascaded Multipl. + On-chip. Power Combining +. 3D integ.
	DC power/pixel	2 W
	Fractional Bandwidth	45 %
Mixer	Mixer Technology	SIS, HEB
	LNA Technology	Low-power SiGe HEMT
HEMT	DC power/pixel	0.5 mW
	Mixer. Assembly	Waveguide
	IF Processing	GaAs HEMT ampl
Back	Spectrometer Tech.	CMOS based SoC
end	DC Power/pixel	2W
	IF Bandwidth	8 GHz
Fotal DC power per pixel		4 W

HERO - Mixers

- Waveguide
- OMT
- balanced
- DSB, one 2SB

(3x3) array x 2 polarizations x 2 bands

Footprint of 10 x 10 mm² SIS 5 x 5 mm² HEB On sky: 2FWHM spacing

Wideband HEB, Krause, Belitsky et al. 1

Local Oscillators

- Wideband:
 - E.g. VDI
 - 1100 -1700 GHz → 42%
 - 1400 -2200 GHz →44%

16-pixel 1.9 THz Lo system: STACKING

X3X3X3 Architecture

The LO module can be mounted with either two or four 1x4 pixel layers vertically stacked to form 8-pixels or 16-pixel configurations..

Power Consumption= 2.3 Watts/pixel or 1.25 Watts/pixel using W-band CMOS synthesizers

Jet Propulsion Laboratory California Institute of Technology

SiGe Amplifiers – Innovative technology

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 64, NO. 1, JANUARY 2016

Ultra-Low-Power Cryogenic SiGe Low-Noise Amplifiers: Theory and Demonstration

Shirin Montazeri, Student Member, IEEE, Wei-Ting Wong, Student Member, IEEE, Ahmet H. Coskun, Student Member, IEEE, and Joseph C. Bardin, Member, IEEE

Band= 1.8-3.6 GHz Pdis= 0.3 mW IBM BiCMOS8HP

InP Amplifiers

Gain and Noise

—Noise [K] 200μW—Noise [K] 380μW—Noise [K] 750μW

—Noise [K] 1.5mW—Noise [K] 6mW

Data by J. Schleeh, Low Noise Factory.

23

Warm IF chain

For many channels WIFC using IC instead of individual components

 built on one Complementary Metal-Oxide Semiconductor (CMOS) chip that is approximately 1.5mm x 1.5mm in size.

Slide by R. Plume

UCLA LIP Existing Spectrometer Comparison

	Demonstrated CMOS Spectrometer System	
Design Parameter	Spectrochip SVII Spectrometer (UCLA/JPL) 2017 [3]	Spectrochip SVIII Spectrometer (UCLA/JPL) Available Late 2018
Processor Bandwidth (MHz)	3000	6000
Channel Count (#)	4096	8192
FFT Window Type	Hanning	PFB
FFT Format	Real	Real
Bit Resolution (#)	3	3
Power (W)	1.75 W	1.65 W
Size (cm ³)	10x8x2 cm	6x8x2 cm
Packaging Technique	Ribbon-Bond	Flip Chip
Weight (Kg)	0.12 Kg	0.12 Kg
Core Technology	65nm CMOS	28nm HPC CMOS

Adrian Tang (UCLA, JPL)

e.g. Tang, A et al. 2021, "Sub-Orbital Flight Demon-stration of a 183 / 540-600 GHz Hybrid CMOS-InP and CMOS-Schottky-MEMS Limb-Sounder",

IEEE MW. 1, 2, 560

HERO

Innovations:	Large N	space
Wide RF (> 40%)	1	1
Low power LO (< 2W/ pixel)	1	1
LO and sky superposed by pol. Grid + OMT	×	1
Superposition of LO bands	×	1
LNA < 1 mW	1	1
Integrated IF circuit	1	1
Low Power Spectrometer	1	1

30/09/21

Conclusion

For space applications:

- Heterodyne array receivers become feasible
- Biggest challenge cooling and power consumption
- TRL needs to be increased

On the ground:

30/09/21

Large arrays (100 to 1000 pixels)

- # pixels increases
- Miniturization and simplifications take place (e.g. CHAI)
- Further simplification in fabrication desirable

Backup Slides

TRL of HERO

Subsystem Description	TRL	Heritage	Comments			
Multiplied LO, f <2THz	5	HERSCHEL, MIRO, STO-2, SOFIA, JUICE(SWI)	CMOS synthesizer for reduced power; higher output power for N compact assembly			
Multiplied LO, f>2 THz	4	HERSCHEL, STO-2, SOFIA	Higher power handling capability for lower stages; higher output power; CMOS synth; GaN amps			
HEB mixers	4	HERSCHEL, SOFIA, STO-2	Compact arrays; efficient IF extraction; balanced designs			
SIS mixers	5	HERSCHEL	Compact arrays with efficient IF extraction			
IF LNAs	4	HERSCHEL	InP technology mature; need to advance SiGe technology with lower DC power			
Backend	4	STO-2, SOFIA	FPGA systems are mature, however, need ASIC based solutions for large arrays			
Calibration	8	HERSCHEL, SOFIA, STO-2				
Bias electronics	5	HERSCHEL	Low power electronics, 5 if multiplexing is needed			
Optical	8	HERSCHEL				
ICU	7	Herschel		Need TRL 5 by 2025 \rightarrow Heterodyne		
Tip/Tilt mechanis	8	Herschel (one axis)	Developement Roadmap			

29

HERO fact sheet

Col.	2	3	4	5	6	7	8	9	10	11	12	13
					Max			#			T _{rms}	Line flux
Band	vmin	vmax	λmax	λmin	$\Delta\lambda/\lambda$	IF BW2	Mixer	pixels	Line	Trx	(mK)	per time
											in 1h at	
											$\lambda/\Delta\lambda$	W m ⁻² s ^{0.5} ,
	(GHz)	(GHz)	(µm)	(µm)		km/s	Туре	HERO		K (DSB)	=10 ⁶	9m, 5σ
									H ₂ 0, H ₂ ¹⁸ 0,			6.4 E-21
									HDO			
1	486	756	617	397	10 ⁷	3865	SIS	2x9	NHa	50	2.6	
									но н ¹⁸ 0			1.6 E-20
2	756	1188	397	252	107	2469		2 ₂ 0	н о+	100	12	
	/ / 50	1100	557	252	10	2403	515		1130	100	<u> </u>	4 0 F-20
									H ₂ 0, H ₂ ¹⁸ 0			4.0 L 20
3	1188	1782	252	168	10 ⁷	1616	HEB	2x9	H ₃ O ^{+,} NH ₃ N ⁺	200	6.8	
4	1782	2700	168	111	10 ⁷	1071	HEB	2x 9	HD , C⁺	300	8.4	7.3 E-20

Molecular line observations required for water trail theme

12 Receiver noise for 1h integration at 10⁶ resolution (0.3 km/s) using one polarization.

13 Detectable point source line flux at 5 sigma, for 1h pointed integration (on+off source) in two polarization, with a 5.9 m primary mirror (coll area 25m², app eff 0.8) as designed for OST Concept 2.