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Abstract: Serotonin, also known as 5-hydroxytryptamine (5-HT), is a metabolite of tryptophan
and is reported to modulate the development and neurogenesis of the enteric nervous system, gut
motility, secretion, inflammation, sensation, and epithelial development. Approximately 95% of
5-HT in the body is synthesized and secreted by enterochromaffin (EC) cells, the most common
type of neuroendocrine cells in the gastrointestinal (GI) tract, through sensing signals from the
intestinal lumen and the circulatory system. Gut microbiota, nutrients, and hormones are the
main factors that play a vital role in regulating 5-HT secretion by EC cells. Apart from being an
important neurotransmitter and a paracrine signaling molecule in the gut, gut-derived 5-HT was also
shown to exert other biological functions (in autism and depression) far beyond the gut. Moreover,
studies conducted on the regulation of 5-HT in the immune system demonstrated that 5-HT exerts
anti-inflammatory and proinflammatory effects on the gut by binding to different receptors under
intestinal inflammatory conditions. Understanding the regulatory mechanisms through which 5-
HT participates in cell metabolism and physiology can provide potential therapeutic strategies
for treating intestinal diseases. Herein, we review recent evidence to recapitulate the mechanisms
of synthesis, secretion, regulation, and biofunction of 5-HT to improve the nutrition and health
of humans.

Keywords: 5-hydroxytryptamine; serotonin; secretion; metabolism

1. Introduction

Serotonin, or 5-Hydroxytryptamine (5-HT), a metabolite of tryptophan (Trp), is an
important gastrointestinal (GI) regulatory factor with a wide range of physiological effects
on humans and animals [1–4]. Approximately 95% of 5-HT in the body is synthesized
and secreted by enterochromaffin (EC) cells in the GI tract. Once 5-HT is released into
the lamina propria, it is taken up by the epithelial cells through the serotonin reuptake
transporter (SERT). Next, 5-HT diffuses into the bloodstream, where it is taken up by
platelets and transported to peripheral target tissues. The physiological effects of 5-HT
have been considerably investigated, and 5-HT has been reported to play a crucial role
in GI regulation, particularly in intestinal motility and secretion [2]. The role of 5-HT in
gut inflammation has also been widely investigated [4–7]. An increased concentration
of 5-HT in the mucosa contributes to severe colitis. Serotonin has been shown to exert
anti-inflammatory and proinflammatory effects on the gut by binding to different 5-HT
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receptors in animal models of inflammatory bowel disease (IBD) and colitis [8]. New clues
have demonstrated that 5-HT exerts an anti-inflammatory effect on the gut by regulating
the expression of the 5-HT4 receptor, with beneficial effects on intestinal epithelial cell
barrier functions [4].

EC cells, which are specialized enteroendocrine (EE) cells that reside alongside the
epithelium lining the lumen of the digestive tract, can synthesize and secrete 5-HT [9–13].
As a chemosensor, EC cells convert physiological and chemical signals from the lumen into
biochemical endocrine signals through microvilli extending into the lumen and enzymes
and transporters stored in the apical parts of the enterocytes. Importantly, 5-HT secretion
in the gut is influenced by various factors such as nutrients, microbial community, host-
derived signaling hormones, and peptides, which in turn directly or indirectly affect immune
responses, nutrient metabolism, and intestinal homeostasis [14–16].

Gut-derived 5-HT and its various biological functions are receiving great interest from
investigators. Gut-derived 5-HT possesses a range of protective effects, such as modulating
gut motility and secretion, gut inflammation, liver regeneration, metabolic homeostasis,
and bone remodeling, etc. This review aims to elucidate the functional role of 5-HT in
and beyond the gut. We also provide an in-depth review highlighting the understanding
of various factors (gut microbiota, nutrition, and hormones) in the regulation of 5-HT
secretion. We hope that this review could lay a theoretical foundation for the application of
5-HT in nutrition, clinical medicine, and health.

2. Synthesis and Secretion of Gut-Derived 5-HT
2.1. 5-HT Synthesis

Only 20 of more than 700 amino acids (AAs) in nature are building blocks for proteins
in cells and traditionally categorized as nutritionally essential or nonessential for humans
and animals on the basis of growth or nitrogen balance [17,18]. Trp is one of nine nutrition-
ally essential AAs [19]. In addition to its role as a substrate for protein synthesis, Trp is an
important precursor for many compounds such as 5-HT, melatonin, and kynurenine [20].
Correspondingly, Trp and its metabolites play a key role in nutrition, reproduction, immune
system, and anti-stress responses [21–27]. The kynurenine and 5-HT pathways are two
main metabolic routes for Trp metabolism in mammals. Approximately 95% of the ingested
Trp is degraded into kynurenine, kynurenic acid, xanthurenic acid, quinolinic acid, and
picolinic acid through the kynurenine pathway. Additionally, approximately 1–2% of the
ingested Trp is degraded into 5-HT and melatonin through the 5-HT pathway [28]. There
are two major synthetic routes of 5-HT in the brain stem and peripheral neurons. Moreover,
approximately 95% 5-HT in human body is synthesized in the peripheral system, especially
in the GI tract [3,29]. Serotonergic neurons of the enteric nervous system and EC cells are
two separate sources of gut-derived 5-HT in the GI tract mucosa, of which 90% 5-HT is
synthesized in gut-resident EC cells, a subset of EE cells in the GI tract [30,31].

Trp hydroxylase (TPH), the specific serotonin-synthesizing gene, exists in two isoforms
(TPH1 and TPH2) [32,33]. Both TPH1 and TPH2 show Trp hydroxylating activity. TPH1 is
predominantly found in EC cells in the GI tract, whereas TPH2 is mainly expressed in the
central nervous system and serotonergic neurons [34]. TPH, a rate-limiting enzyme for 5-HT
production, plays a key role in the conversion of Trp to 5-hydroxytryptophan (5-HTP) [1,35].
5-HT is rapidly converted to 5-HT by aromatic L-amino acid decarboxylase (L-AADC)
in the next enzymatic step [36]. Vesicular monoamine transporter 1 (VMAT1), which
participates in 5-HT storage, is expressed by granules/vesicles in EC cells [37]. Newly
produced 5-HT compounded with chromogranin A (CGA), an acidic protein expressed in
response to 5-HT secretion, is stored in the VMAT1 vesicles of EC cells [38] (Figure 1). 5-HT
stored in the dense granules/vesicles near the basal border or apical membrane of EC cells
is released into the lamina propria or lumen when EC cells are exposed to intraluminal
pressure or chemical and mechanical stimulation [10,15]. The biosynthesis and metabolism
of gut-derived 5-HT are illustrated in Figure 1.
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through MAO in the mitochondria. As a neurotransmitter, the synthetized 5-HT is packaged in synaptic vesicles in sero-
tonergic neurons and released into the synapse cleft. Serotonin exerts a high effect on the postsynaptic membrane through 
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nin reuptake transporter. 
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basal border of the EC cell, and small amounts of 5-HT are released into lumen through 
the apical membrane [35]. Once released by the EC cells, there are several possible routes 
that 5-HT may take. 5-HT released into the lamina propria interacts with nerve terminals, 
epithelial cells, and immune cells or may also be taken up into the enterocytes by SERT or 
may enter the general circulation [39] (Figure 1). 

5-HT is a positively charged molecule at physiological pH, which results in the failure 
of transmembrane-mediated transport. SERT relies on Na+ and Cl− to reuptake 5-HT re-
leased from serotonergic neurons. The driving force of the reuptake process is the trans-
membrane ion gradient produced by Na+/K+-ATPase [40,41]. In the gut, 5-HT is also trans-
ported into surrounding enterocytes through SERT and may then be degraded into 5-hy-

Figure 1. Schematic representation of gut-derived 5-HT biosynthesis and metabolism. Enterochromaffin (EC) cells and
serotonergic neurons convert tryptophan into 5-HTP through the rate-limiting enzymes, TPH1 and TPH2, respectively, and
the newly formed 5-HTP is rapidly degraded into 5-HT by L-AADC. The synthesized 5-HT and CGA are rapidly packaged
into vesicles through VMAT1. EC cells express sensory receptors by acting as chemosensors to continuously release 5-HT in
response to stimuli in the luminal environment, including chemical and mechanical stimulation, luminal pressure, and
nutritional and intestinal microbial metabolites and hormones. Most of the 5-HT is released into the extracellular space
from the bottom of EC cells, and a comparatively smaller amount of 5-HT is released into the lumen through the apical
membrane. The surrounding enterocytes take up 5-HT by SERT, and 5-HT is then metabolized to 5-HIAA through MAO in
the mitochondria. As a neurotransmitter, the synthetized 5-HT is packaged in synaptic vesicles in serotonergic neurons and
released into the synapse cleft. Serotonin exerts a high effect on the postsynaptic membrane through the 5-HT receptors and
reabsorbs on the presynaptic membrane through SERT. SERT is also detected in endothelial cells and platelets where 5-HT
entering into the lamina propria is taken up and then converted into 5-HIAA or transported to peripheral target tissues.
Trp, tryptophan; 5-HT, 5-hydroxytryptamine; TPH1, tryptophan hydroxylase 1; TPH2, tryptophan hydroxylase 2; 5-HTP,
5-hydroxytryptophan; 5-HIAA, 5-hydroxyindoleacetic acid; L-AADC, L-amino acid decarboxylase; CGA, chromogranin A;
VMAT1, vesicular monoamine transporter 1; MAO, monoamine oxidase; SERT, serotonin reuptake transporter.

2.2. 5-HT Release and Inactivation

In serotonergic neurons, 5-HT is packaged in synaptic vesicles and then released into
synapse cleft [31]. In the gut, 5-HT is mainly released from the granules stored near the
basal border of the EC cell, and small amounts of 5-HT are released into lumen through
the apical membrane [35]. Once released by the EC cells, there are several possible routes
that 5-HT may take. 5-HT released into the lamina propria interacts with nerve terminals,
epithelial cells, and immune cells or may also be taken up into the enterocytes by SERT or
may enter the general circulation [39] (Figure 1).

5-HT is a positively charged molecule at physiological pH, which results in the failure
of transmembrane-mediated transport. SERT relies on Na+ and Cl− to reuptake 5-HT
released from serotonergic neurons. The driving force of the reuptake process is the
transmembrane ion gradient produced by Na+/K+-ATPase [40,41]. In the gut, 5-HT is also
transported into surrounding enterocytes through SERT and may then be degraded into
5-hydroxyindole acetaldehyde (5-HIAL) by monoamine oxidase (MAO); 5-HIAL is, then,
further transformed into 5-hydroxyindoleacetic acid (5-HIAA), which is finally excreted in
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urine [42–44]. MAO is found in the mitochondria and exists in two forms: MAO-A and
MAO-B. MAO-A has a higher affinity for 5-HT [35,45,46].

5-HT released from EC cells also enter in the general circulation and are taken up
by platelets via SERT. Approximately 95% of 5-HT in the blood is stored in platelets [8]
in granules together with ATP, ADP, and Ca2+ [35]. 5-HT absorbed by platelets reaches
the liver through portal circulation and is transported to peripheral target tissues through
bloodstream to regulate bone density [47], liver regeneration [48,49], obesity and energy
metabolism [50], and allergic airway inflammation [51]. One-third of 5-HT is converted
into 5-HIAA by MAO and excreted in urine, and the remaining 5-HT is degraded into
5-HTOglucuronide through glucosidase [35].

2.3. 5-HT Receptors

5-HT acts in the lamina propria or lumen in a paracrine manner. In the intestinal
epithelial cells or the mucosal afferent nerve of the lamina propria, 5-HT promotes intestinal
motility, peristalsis, and secretion through binding to 5-HT-specific receptors (5-HTRs);
5-HTRs are classified into seven families according to structure, function, and effectiveness
(5-HTR1–5-HTR7) [52,53]. Of note, the 5-HTR3 receptor is a ligand ion channel, and the
other six receptors are G-protein-coupled receptors (GPCRs) [54]. In the gut, compelling
evidence has shown that 5-HT regulates GI function by binding to different receptors
(5-HTR1, 5-HTR2, 5-HTR3, 5-HTR4, and 5-HTR7). The conventional actions of 5-HT and
its receptors in the GI tract are summarized in Table 1.

Table 1. Conventional effects of 5-HT and its receptors in the gastrointestinal tract.

Conventional Effect Pathway Mediated Receptors References

Motility and peristaltic reflex Activate ascending and
descending interneurons 5-HT3 and 5-HT4 receptor [2,55–57]

Secretion (bicarbonate and electrolyte)
Neural mediated or through
paracrine pathway acts on
nearby enterocytes

5-HT2, 5-HT3 and 5-HT4
receptor [58,59]

Pancreatic secretion and gastric emptying
Activate vago-vagal reflex and
act in synergy with
cholecystokinin (CCK)

5-HT2 and 5-HT3 receptor [60–62]

Vasodilation
Locally regulate blood vessel
diameter through intrinsic
reflex circuits

5-HT3 and 5-HT4 receptor [2,63]

Inflammation

The pro-inflammatory actions
by promoting an
inflammatory offensive to
protect the gut from invasion
and the anti-inflammatory
actions by inducing
neurogenesis

5-HT1A, 2A, 2B, 2C, 5-HT3,
5-HT4, and 5-HT7 receptor [4–6,64–66]

Neurogenesis and enteric protection Play an important role though
Neuronal 5-HT 5-HT4 receptor [67–69]

Mucosal growth
Serotonergic neurons project
submucosal cholinergic
neurons

5-HT2A receptor [70,71]

3. 5-HT in the Gut

EC cells are considered as “sensor cells” that have the ability to sense the luminal
nutrients and non-nutrient chemicals, mechanical stimulations, and signals from the gut
microbiota to release 5-HT [12,35,72]. Additionally, EC cells are stimulated to trigger
the release of 5-HT in response to high intraluminal pressure changes in pH in the gut



Int. J. Mol. Sci. 2021, 22, 7931 5 of 16

lumen [73–75]. Over the past decade, many studies have demonstrated that the stimulation
of the intestinal cavity by gut microbiota, nutrients, and hormones could stimulate EC cells
to release 5-HT. Therefore, we have described the effect of gut microbiota, nutrients, and
host-derived hormones on the secretion of 5-HT in greater details.

3.1. Gut Microbiota and 5-HT Release

Gut microbiota are a complex and dynamic population of microorganisms that inhabit
the GI tract of humans and other mammals [76]. Over the past decade, gut microbiota
have received considerable attention because of their functional role in regulating host
physiology, metabolism, and immunity [77,78]. Emerging evidence has also shown that
the gut microbiota play a critical role in regulating host 5-HT secretion in EC cells by
interacting with various compounds produced by the host or gut microorganisms [76].
Short-chain fatty acids (SCFAs), as markers of bacterial metabolism [79], enhance colonic
TPH1 mRNA expression by interacting with EC cells [16]. This finding is consistent with
previous research that intraluminal administration of SCFAs into the proximal colon sig-
nificantly augments the release and production of 5-HT by accelerating colonic transit
through stimulating 5-HTR3, and thereby, promoting colonic contraction [80]. In contrast,
5-HT production following the stimulation of EC cells by SCFAs via triggering the en-
try of extracellular Ca2+ is unchanged [14], which indicates that the interaction between
microorganisms and the host plays an indispensable role in 5-HT secretion. A study
conducted by Yano et al. demonstrated that microbial-specific metabolites such as SC-
FAs, α-tocopherol, tyramine, and p-aminobenzoate promote TPH1 expression and 5-HT
release [81]. These results suggest an association between gut microbiota communities
and host in regulating the basic biological processes through 5-HT [81]. Many different
types of GPCR sensors of microbial metabolites are expressed in colonic EC cells, including
olfactory receptor 558 (Olfr558), free fatty acid receptor 2 (FFAR2), olfactory receptor 78
(OLF78) that senses SCFAs, G-protein-coupled receptor 35 (GPR35) that senses small aro-
matic acids, G-protein-coupled bile acid receptor 1 (GPBAR1) that senses secondary bile
acids, and G-protein-coupled receptor 132 (GPR132) that senses lactate and acyl amides.
These receptors are activated in the process of 5-HT secretion by various gut microbial
metabolites [10,13].

Most 5-HT is produced by EC cells, and a small amount of 5-HT is synthesized by
a deconjugation process of glucuronide-conjugated 5-HT by a bacterial enzyme such as
β-glucuronidase [12]. The gut microorganisms metabolize various substances through
their interaction with the host, thereby affecting the release of 5-HT. The elucidation of
the gut microbiome and host genetics in the past 10 years has helped to clarify the rela-
tionship between gut microbiota and the physiological and pathological conditions of the
host. Consequently, the mechanism of microbial dependence that affects the physiological
function of the host is likely to be elucidated, which would be beneficial to find methods
for using gut microbial intervention to improve body health. Jonathan et al. reported
that Escherichia coli Nissle 1917, one of the currently available probiotic bacteria, regulates
THP1 through the interaction between host and probiotics by enhancing 5-HT level and its
bioavailability in ileal tissues [42]. Because of the complexity of the gut microflora, bene-
ficial bacteria promote body health through the 5-HT system, while pathogenic bacteria
may cause intestinal diseases by damaging the intake of 5-HT. Enteropathogenic E. coli,
a foodborne pathogen, inhibits SERT activity by reducing protein tyrosine phosphatase,
and the damaged SERT function is associated with infectious diarrheal diseases [82]. Many
studies have confirmed that the gut microbial flora and its particular metabolites influence
the biosynthesis of 5-HT. However, it is largely unknown whether the alteration of 5-HT
level caused by host–microbiota interaction in turn affects the colonization, growth, or
adaptation of enteric microorganisms. Therefore, much work is required to investigate the
metabolic pathway and molecular mechanisms of microbial metabolites in regulating 5-HT
levels in the gut.
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3.2. Nutrients and 5-HT Release

The specialized EE cells are dispersed as single cells scattered throughout the ep-
ithelium of the GI tract from the stomach to the rectum and are considered as the largest
endocrine system of the human body [83]. EE cells regulate various physiological and
homeostatic functions both within and outside the gut by secreting various hormones
and peptides [84]. EC cells represent around 50% of all EE cells that sense diverse dietary
nutrients and metabolites to produce ~95% of total body 5-HT [14]. Studies conducted
on human primary colonic EC cells and BON cells (immortalized cell line models of EC
cells) found that 5-HT is released from EC cells in response to stimulation of luminal
nutrients [11,14,15,85]. Unlike human primary colonic EC cells, BON cells release 5-HT
following the stimulation of luminal D-glucose through sodium-glucose-linked transporter
1 (SGLT1) [86]. Additionally, the sensing of glucose in the lumen is related to the expression
of SGLT3 in EC cells, which results in the release of 5-HT [87,88]. Ingested food components
are digested by digestive enzymes into a form that can be absorbed into the bloodstream.
Glucose is the main form of carbohydrate absorbed by mammals and serves as a luminal
substance to trigger several key events in the physiological regulation of the intestinal
tract [89].

As a chemosensor in the GI mucosa, EC cells release 5-HT by sensing the presence
of glucose, thereby inhibiting gastric emptying and food intake by activating 5-HTR3 on
exogenous afferent nerves of rodents and humans [60,90]. Intriguingly, the nutrient sensing
capacity of EC cells in 5-HT secretion from the mouse duodenum and colon is region-
specific. Carbohydrate absorption is generally achieved over the entire small intestine, and
only a small amount of glucose reaches the colon. Correspondingly, EC cells in the colon
are more sensitive to glucose than those in the duodenum [14], as glucose transporter 1
(GLUT1) is highly expressed in colonic EC cells, while glucose transporter 2 (GLUT2) is
abundantly expressed in duodenal EC cells [11]. The low glucose availability leads to the
upregulation of GLUT1, which is a high-affinity and low-capacity glucose transporter. On
the other hand, GLUT2, a low-affinity and high-capacity glucose transporter, is upregulated
in a high concentration of glucose [91].

Zelkas et al. reported that 5-HT-secreting EC cells show enormous diversity in re-
sponse to acute and chronic changes in glucose availability [92]. Acute exposure to high
concentration of glucose results in 5-HT release from EC cells, which involves the entry of
Ca2+ and an increment in the number of vesicles for exocytosis. Chronic exposure to fasting-
related levels of glucose leads to the enhancement of 5-HT synthesis through transcriptional
regulation of TPH1. Consistently, food deprivation enhances gut-derived 5-HT synthesis
accompanied by enhancement of lipolysis in adipocytes and liver gluconeogenesis, as well
as prevention of glucose uptake in hepatocytes [93]. The enhancement of 5-HT synthesis
in response to the elevated level of luminal glucose after feeding promotes gut motility
and peristaltic reflex through the activation of ascending and descending interneurons to
facilitate digestion. 5-HT also plays a pivotal role in enhancing body fat degradation and
liver gluconeogenesis during fasting, which contributes to the maintenance of the blood
glucose level.

3.3. Hormonal Control of 5-HT Release

The enteroendocrine system is responsible for secreting a diverse range of gut hor-
mones, which play a highly important role in the physiological regulation of the GI tract [84].
EC cells coexist closely with other EE cells, instead of existing in “one cell type” solitarily
along the length of the GI tract. A recent discovery is that EE cells communicate with EC
cells locally through paracrine action in the gut [94]. The glucagon-like peptide 1 (GLP-1)
receptor is particularly highly expressed in EC cells. The neighboring GLP-1-storing EE
cells secrete GLP-1, and GLP-1 then stimulates EC cells to release 5-HT through the activa-
tion of GLP-1 receptors [13]. The GLP-1 receptor agonist has been reported to release 5-HT
in both small intestine and colon. Of note, the spontaneous secretion of 5-HT was higher in
the duodenum when compared with that in the colon. However, a significant enhancement
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in 5-HT release was detected with the treatment of a GLP-1 receptor agonist both in the duo-
denum and colon [13]. Moreover, it has been reported that 5-HT enhances nutrient-induced
GLP-1 release from ileal segments through a process involving interactions with 5-HT
receptors [95]. Using the intestinal secretin tumor cell line (STC-1) for further exploration
in vitro, results revealed that 5-HT (30 or 100 µM) significantly enhanced GLP-1 secretion
in STC-1 cells when compared with control group. Additionally, the non-specific 5-HT
receptor antagonist asenapine inhibited the 5-HT-promoted GLP-1 release, which supports
the 5-HT receptor-mediated mechanism [95]. Further studies are needed to investigate
the interaction and mechanisms between the secretion of 5-HT and GLP-1. EC cells are
also sensitive to endogenous regulatory molecules. Norepinephrine-mediated stimulation
of EC cells activates alpha-2A adrenergic (Adrα2A) receptors through catecholamines,
which leads to chronic visceral hypersensitivity [10]. Hormone crosstalk exists between gut
mucosal EC cells and the neighboring enterocytes within the epithelium, but its complex
effects remain unknown.

4. Physiological and Pathophysiological Role of Gut-Derived 5-HT
4.1. 5-HT and Gut Inflammation

Accumulating evidence through clinical and animal studies indicates that 5-HT, as a
signaling molecule in the intestine, plays a pivotal role in intestinal inflammation (Figure 2).
5-HT signaling has been investigated in an animal model of intestinal inflammation, in-
cluding 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis [96] and ileitis [5,97–99],
dextran sodium sulfate (DSS)-induced colitis [4,100], and trichinella spiralis infection-
induced intestinal inflammation [101]. Several studies have revealed that 5-HT is a key
proinflammatory signaling molecule in gut inflammation because of the enhanced con-
centration of intestinal 5-HT and downregulation of SERT expression under intestinal
inflammation [6,65,102,103]. Because of the knockout of TPH1, the concentration of 5-HT
in the GI tract was significantly reduced, followed by alleviation in clinical severity and
histological damage scores by pharmacological adjustment of mucosal 5-HT in DSS- or
dinitrobenzene sulfonic acid (DNBS)-induced colitis [104]. Consistently, several studies
have reported that a THP1 or TPH inhibitor alleviates the severity of colitis and plays
a protective role in colitis [105,106]. Additionally, SERT transcription is reduced during
intestinal inflammation, which contributes to impaired absorption of 5-HT [2,107].

5-HT plays an important role in the proinflammatory or anti-inflammatory process
through binding to different receptors [5,64]. The anti-inflammatory role of 5-HT is ac-
companied by the activation of epithelial 5-HTR1A and 5-HTR4. Compared to control,
the severity of experimental colitis in mice was enhanced through intraluminal adminis-
tration of a 5-HTR1A and 5-HTR4 antagonist [4,64]. Upregulation of 5-HTR4 expression
protects the large intestine from DSS- or TNBS-induced colitis by maintaining epithelial
integrity, stimulating the proliferation of crypt epithelial cells, and reducing apoptosis [64].
A study reported that treatment with a 5-HTR2A antagonist (Ketanserin) alleviates intesti-
nal inflammation by improving gut integrity, reducing the production of inflammatory
cytokines in macrophages, and inhibiting the activation of nuclear factor-κB (NF-κB) in
experimental colitis; this result further confirmed the deleterious role of 5-HTR2A on
intestinal inflammation [108]. However, the 5-HT receptors involved in the proinflamma-
tory and anti-inflammatory processes reported in the current literature are contradictory.
Spohn et al. demonstrated that chemical activation of 5-HTR4 reduced the severity of
TNBS- and DSS-induced colitis [64]. In contrast, Rapalli et al. found that the inhibition of
5-HTR4 improves the progression and pathological outcome of TNBS-induced colitis, thus
suggesting the detrimental effect of 5-HTR4 on TNBS-induced colitis [5]. Kim et al. also
reported that the inhibition of 5-HTR7 signaling reversed acute and chronic colitis induced
by DSS or TNBS [109]. In contrast, several research studies have demonstrated that the
development of colitis was not affected by 5-HTR7 [4,5]. Thus, further studies are required
to determine the role of 5-HT receptors on experimental colitis to reveal the association
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between 5-HT receptors and the downstream signaling pathways under inflammatory
conditions (Figure 2).
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Figure 2. The role of gut-derived 5-HT under inflammatory condition and inflammatory condition. THP1 and SERT
expression, as well as 5-HT release can be altered under inflammatory condition. Enhanced 5-HT promotes recruitment of
immune cells, such as natural killer cells, dendritic cell, macrophages, and neutrophil during inflammation. Subsequently,
enhanced cytokines production is released from immune cells, which can promote inflammatory response. Upwards
pointing arrows indicate an enhancement, and downwards pointing arrows indicate a decrease. 5-HT, 5-hydroxytryptamine;
TPH1, tryptophan hydroxylase 1; SERT, serotonin reuptake transporter.

The immune response to inflammation involves the extensive proliferation of immune
cells and aberrant production of immune mediators and cytokines such as tumor necrosis
factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and IL-8 and their related
signaling pathways [110,111]. 5-HT receptors have been identified in human and rodent
immune cells [44]. EC cells are in close proximity with immune cells in the gut mucosa,
suggesting the existence of interaction between EC cells and immune cells [112]. Immune
cells, including dendritic cells, macrophages, neutrophils, lymphocytes, and B lymphocytes,
proliferate in the 5-HT-mediated proinflammatory response [4,113], suggesting that 5-HT
plays a vital part in the immune response. Recent studies have shown that 5-HT signaling
is altered by proinflammatory cytokines such as TNF-α, IL-1β, IL-6, and IFN-γ, as well
as the anti-inflammatory cytokine IL-10 by regulating the expression and function of
SERT. Intriguingly, several studies have found that IFN-γ, TNF-α, and IL-6 and a low
concentration of IL-10 caused a significant decrease in the function and activity of epithelial
SERT [4,114–116].
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4.2. 5-HT and Liver Regeneration

5-HT acting on the liver is entirely derived from the gut because of the lack of 5-
HT synthesis capacity in hepatocytes [117]. 5-HT activated in platelets is released in
the liver and mediates liver regeneration after partial hepatectomy and inhibits liver
regeneration in the TPH1 gene knockout mice [48,49]. Liver regeneration was mediated
by promoting DNA synthesis and cell proliferation through acting on 5-HTR2 [118] and
5-HTR7 [119,120]. Another study revealed that SERT knockout in platelets has no effect
on liver regeneration, thus indicating that the extremely low level of 5-HT in plasma is
sufficient for liver regeneration [121].

4.3. 5-HT and Energy Homeostasis

Metabolic homeostasis is regulated by nerves and hormones. Several recent studies have
shown that 5-HT, an important endocrine substance and hormone, regulates the metabolic
function of many tissues and influences obesity and energy metabolism [1,50,122,123]. The
liver, a pivotal organ in an organism’s metabolism, plays a central role in regulating
plasma glucose metabolism and energy metabolism [124]. 5-HT cannot be produced
by hepatocytes; hence, all the peripheral 5-HT in the liver is derived from the gut. A
previous study revealed that 5-HT produced during fasting promotes gluconeogenesis
by enhancing the activity of two key gluconeogenesis rate-limiting enzymes (glucose 6-
phosphatase and fructose 1,6-bisphosphatase) through 5-HTR2B [93]. The cyclic AMP that
is the downstream of 5-HTR2B is enhanced at transcriptional level after the elevated activity
of two key enzymes; subsequently, cAMP-dependent protein kinase A (PKA) and CREB
are activated [125]. Additionally, gut-derived 5-HT in hepatocytes prevents glucose uptake
in a GLUT2-dependent manner, thereby further favoring the maintenance of blood glucose
levels [93]. Because TPH1 is expressed in adipocytes, the regulation of 5-HT in adipose
tissue is more complicated than that in the liver. TPH1-produced 5-HT in adipocytes
regulates the metabolism of adipose tissue through local autocrine signals [50,126,127]. In
white adipocytes, 5-HT synthesized in EC cells enhances the phosphorylation and activity
of hormone-sensitive lipase (HSL) through binding to the 5-HT2B receptor, therefore
elevating circulatory free fatty acids and glycerol [93]. There are two possible pathways
to promote lipolysis and inhibit lipogenesis: (1) HSL is activated indirectly by cAMP and
cAMP-dependent protein kinase A (PKA); (2) perilipin is phosphorylated by PKA and,
consequently, stimulates phosphorylation of HSL [128]. Enhanced glycerol acts as a fuel
of gluconeogenesis and is converted into acetyl-CoA by β-oxidation for the synthesis
of ketone bodies [1]. Because of the complexity of the serotonergic system in adipose
tissue, more studies are required to elucidate the underlying responsible role for 5-HT in
the future.

4.4. 5-HT and Bone Remodeling

5-HT and its role in bone metabolism are receiving great interest from researchers.
Bone remodeling and renewal is a highly integrated process, which includes bone resorp-
tion through osteoclasts and bone formation through osteoblasts. These two processes
are dynamically balanced, which contributes to the maintenance of bone [129]. Low-
density lipoprotein receptor-related protein-5 (Lrp5) is essential for Wnt signaling to form
bones [130–132]. Previous studies have reported that Lrp5 is expressed in osteoblasts
and EC cells in the GI tract [133]. However, Lrp5 could act in EC cells in the gut, not in
osteoblast, to regulate bone-mass accrual via a Wnt-independent pathway [134]. Lrp5
inhibits the expression of TPH1, thereby reducing 5-HT concentration in the blood. Less
5-HT binds to 5-HTR1B in osteoblasts and 5-HTR1B signaling is reduced in osteoblasts.
As a result, the expression and function of cyclic AMP response element binding protein
(CREB) is enhanced, which promotes cyclin expression and results in enhanced osteoblasts
differentiation and proliferation [134]. In this process, 5-HT derived from the GI tract and
transported through the circulation is detrimental to bone formation through inhibiting
osteoblast proliferation [134] (Figure 3). Consistently, some studies have supported that
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gut-derived 5-HT could suppress bone growth in rats [135,136]. Thus, pharmacological
inhibition of gut-derived 5-HT synthesis through the inhibitor of THP1 may be a potential
bone anabolic treatment for low bone mass [137,138]. Additionally, there are conflicting
results in the model where Lrp5 regulates bone mass through duodenal 5-HT. A study
conducted by Cui et al. demonstrated that gut-derived 5-HT synthesis is not associated
with Lrp5 [131]. Growing evidence has shown that 5-HT plays an important role in bone
metabolism. However, because of the different synthesis sites of 5-HT, including brain-
derived 5-HT [139], gut-derived 5-HT [134,137,140], and bone-derived 5-HT [141], 5-HT
has different roles in bone metabolism (Figure 3).
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Figure 3. The action of Lrp5 and 5-HT on the regulation of bone formation. Lrp5 inhibits the
expression of TPH1 in cells. As a result, reduced 5-HT concentration in circulation reduces 5-
HTR1B signaling in osteoblasts. Cyclic AMP response element binding protein (CREB) and cyclin
expression is enhanced, which favors osteoblasts proliferation and bone formation. Lrp5, low-density
lipoprotein receptor-related protein-5; 5-HT, 5-hydroxytryptamine; CREB, cyclic AMP response
element binding protein.

5. Conclusions

5-HT synthesized in EC cells has been recognized for decades as an important signal-
ing molecule in the gut. It is well known that 5-HT derived from neurons and EC cells is
involved in the regulation of GI peristalsis, sensation, and secretion. Approximately 95%
of 5-HT in the body is synthesized and secreted by EC cells in the GI tract. The findings of
several studies have suggested that gut microbiota, nutrients, and hormones could stim-
ulate EC cells to release 5-HT. New clues from recent studies expand our understanding
of the functional role of gut-derived 5-HT in and far beyond the gut. As an important
neurotransmitter and hormone in the GI tract, research on 5-HT is increasing, but the
underlying mechanisms of the relationship between 5-HT and physiological actions in the
body remain largely unclear. Therefore, it is essential to highlight the functional role of
5-HT and various factors (gut microbiota, nutrients, and hormones) in the regulation of
5-HT secretion in order to facilitate the application for 5-HT in nutrition, clinical medicine,
and health.
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G-protein-coupled receptors; GPR132, G-protein-coupled receptors 132; GPR35, G-protein-coupled
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