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Original Investigation | Diabetes and Endocrinology

Association of Insulin Resistance and Type 2 Diabetes With Gut Microbial Diversity
A Microbiome-Wide Analysis From Population Studies
Zhangling Chen, MD, PhD; Djawad Radjabzadeh, MSc; Lianmin Chen, MSc; Alexander Kurilshikov, PhD; Maryam Kavousi, MD, PhD; Fariba Ahmadizar, MD, PhD;
M. Arfan Ikram, MD, PhD; Andre G. Uitterlinden, PhD; Alexandra Zhernakova, PhD; Jingyuan Fu, PhD; Robert Kraaij, PhD; Trudy Voortman, PhD

Abstract

IMPORTANCE Previous studies have indicated that gut microbiome may be associated with
development of type 2 diabetes. However, these studies are limited by small sample size and
insufficient for confounding. Furthermore, which specific taxa play a role in the development of type
2 diabetes remains unclear.

OBJECTIVE To examine associations of gut microbiome composition with insulin resistance and
type 2 diabetes in a large population-based setting controlling for various sociodemographic and
lifestyle factors.

DESIGN, SETTING, AND PARTICIPANTS This cross-sectional analysis included 2166 participants
from 2 Dutch population-based prospective cohorts: the Rotterdam Study and the LifeLines-
DEEP study.

EXPOSURES The 16S ribosomal RNA method was used to measure microbiome composition in stool
samples collected between January 1, 2012, and December 31, 2013. The α diversity (Shannon,
richness, and Inverse Simpson indexes), β diversity (Bray-Curtis dissimilarity matrix), and taxa (from
domain to genus level) were identified to reflect gut microbiome composition.

MAIN OUTCOMES AND MEASURES Associations among α diversity, β diversity, and taxa with the
Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and with type 2 diabetes were
examined. Glucose and insulin were measured to calculate the HOMA-IR. Type 2 diabetes cases were
identified based on glucose levels and medical records from January 2012 to December 2013.
Analyses were adjusted for technical covariates, lifestyle, sociodemographic, and medical factors.
Data analysis was performed from January 1, 2018, to December 31, 2020.

RESULTS There were 2166 participants in this study: 1418 from the Rotterdam Study (mean [SD]
age, 62.4 [5.9] years; 815 [57.5%] male) and 748 from the LifeLines-DEEP study (mean [SD] age, 44.7
[13.4] years; 431 [57.6%] male); from this total, 193 type 2 diabetes cases were identified. Lower
microbiome Shannon index and richness were associated with higher HOMA-IR (eg, Shannon index,
−0.06; 95% CI, −0.10 to −0.02), and patients with type 2 diabetes had a lower richness than
participants without diabetes (odds ratio [OR], 0.93; 95% CI, 0.88-0.99). The β diversity (Bray-Curtis
dissimilarity matrix) was associated with insulin resistance (R2 = 0.004, P = .001 in the Rotterdam
Study and R2 = 0.005, P = .002 in the LifeLines-DEEP study). A total of 12 groups of bacteria were
associated with HOMA-IR or type 2 diabetes. Specifically, a higher abundance of Christensenellaceae
(β = −0.08; 95% CI, −0.12 to −0.03: P < .001), Christensenellaceae R7 group (β = −0.07; 95% CI,
−0.12 to −0.03; P < .001), Marvinbryantia (β = −0.07; 95% CI, −0.11 to −0.03; P < .001),
Ruminococcaceae UCG005 (β = −0.09; 95% CI, −0.13 to −0.05; P < .001), Ruminococcaceae
UCG008 (β = −0.07; 95% CI, −0.11 to −0.03; P < .001), Ruminococcaceae UCG010 (β = −0.08; 95%
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Abstract (continued)

CI, −0.12 to −0.04; P < .001), or Ruminococcaceae NK4A214 group (β = −0.09; 95% CI, −0.13 to
−0.05; P < .001) was associated with lower HOMA-IR. A higher abundance of Clostridiaceae 1 (OR,
0.51; 95% CI, 0.41-0.65; P < .001), Peptostreptococcaceae (OR, 0.56; 95% CI, 0.45-0.70; P < .001), C
sensu stricto 1 (OR, 0.51; 95% CI, 0.40-0.65; P < .001), Intestinibacter (OR, 0.60; 95% CI, 0.48-0.76;
P < .001), or Romboutsia (OR, 0.55; 95% CI, 0.44-0.70; P < .001) was associated with less type 2
diabetes. These bacteria are all known to produce butyrate.

CONCLUSIONS AND RELEVANCE In this cross-sectional study, higher microbiome α diversity, along
with more butyrate-producing gut bacteria, was associated with less type 2 diabetes and with lower
insulin resistance among individuals without diabetes. These findings could help provide insight into
the etiology, pathogenesis, and treatment of type 2 diabetes.

JAMA Network Open. 2021;4(7):e2118811.

Corrected on September 3, 2021. doi:10.1001/jamanetworkopen.2021.18811

Introduction

Type 2 diabetes is a common complex metabolic disorder. Currently, more than 380 million people
live with type 2 diabetes globally, and this number is expected to increase to more than 550 million
by 2030.1 Recently, studies2-5 have indicated a role of gut microbiome in type 2 diabetes. Differences
in gut microbiome composition with type 2 diabetes status may comprise pathways on how dietary
and other environmental factors affect development of insulin resistance and type 2 diabetes.
Several studies2-4 have indicated that, compared with healthy participants, patients with type 2
diabetes have a lower overall α diversity of gut microbiome composition. More specifically, lower
abundance of certain butyrate-producing bacteria, such as class Clostridia and genus
Faecalibacterium, have been observed in patients with type 2 diabetes.2-5 For example, Larsen et al3

reported a lower abundance of Clostridia in patients with type 2 diabetes, and Qin et al5 observed
that patients with type 2 diabetes had lower abundance of Faecalibacterium. In addition, some
nonbutyrate bacteria, such as Haemophilus parainfluenzae, have also been reported to be associated
with type 2 diabetes.5 However, these associations were not very strong, and most of these specific
bacteria have not been reproduced in other cohorts.6 Furthermore, these previous studies2-6 had
several limitations. They were limited in sample sizes, ranging from 203 to 7842 participants. Larger
samples with more statistical power may be required to detect true associations. Moreover, in most
of these previous observational studies,2-5 key confounders, such as lifestyle and socioeconomic
status, that are known to be determinants of gut microbiome and type 2 diabetes7 were not
controlled for. Finally, because almost all these previous studies2-5 were conducted in patient
populations or case-control settings, it is unclear whether associations are also relevant on a
population level and whether type 2 diabetes–associated bacteria are associated to key subclinical
parameters, such as insulin resistance and fasting glucose, among groups without diabetes.
Examining associations for gut microbiome and such subclinical parameters will help investigators
infer potential pathways behind gut microbiome and type 2 diabetes risk. Acquiring and updating this
knowledge are particularly relevant, considering the increasing recognition that gut microbiome may
play an important role in the development of type 2 diabetes and could be a promising target for
prevention and treatment of type 2 diabetes. Therefore, we aimed to investigate the associations
between gut microbiome composition with insulin resistance and type 2 diabetes in 2 large
population-based cohorts, using a microbiome-wide approach and taking into account various
sociodemographic and lifestyle factors.
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Methods

Study Design
The current study was embedded within 2 ongoing, population-based, prospective cohorts in the
Netherlands: the Rotterdam Study (RS) and LifeLines-DEEP (LLD) study. The RS is a prospective
cohort study of participants 45 years or older at baseline living in the Ommoord District of
Rotterdam, the Netherlands. It consists of 3 subcohorts, and the details on its design are described
elsewhere.8 The data from the RS population that were used in the current analyses were collected
within the 2012-2014 visit of the third subcohort in which 3132 individuals participated. The RS was
approved by the Medical Ethics Committee of Erasmus Medical Center and by the review board of
The Netherlands Ministry of Health, Welfare, and Sports. All participants gave written informed
consent. The LLD study is a prospective, population-based cohort study of 1539 participants 18 years
or older living in the 3 provinces in the northern part of the Netherlands: Groningen, Friesland, and
Drenthe. More details can be found elsewhere.9 The current analyses in the LLD study population
were embedded within the baseline visit (in 2013). The LLD study was approved by the ethics
committee of the University Medical Center Groningen. All participants provided written informed
consent before enrollment. Data analysis was performed from January 1, 2018, to December 31,
2020. All data were deidentified. This current study followed the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) reporting guideline for cross-sectional studies.10

Participants in the Current Analyses
In the 2 cohorts of the 4671 participants (3132 from the RS and 1539 from the LLD study), 2607 had
data on gut microbiome composition (1427 from the RS and 1180 from the LLD study). From these
2607 participants, we excluded participants without information on type 2 diabetes, resulting in
2166 participants for analyses on gut microbiome and type 2 diabetes status (1418 from the RS and
748 from the LLD study). For analyses on insulin resistance, we additionally excluded participants
with prevalent type 2 diabetes or without data on insulin resistance, resulting in 1984 participants
(1253 for the RS and 731 for the LLD study) (eFigure 1 in the Supplement). eTable 1 in the Supplement
compares the included and excluded participants.

Collection of Gut Microbiome Data
Details on microbiome data collection in the RS11,12 and the LLD study9,13 are described elsewhere.
Briefly, for the RS, participants were requested to collect a stool sample at their home using a
Commode Specimen Collection System (Covidien) and feces collection tube (Minigrip Nederland)
and to send the sample through regular mail to the Erasmus Medical Center. On arrival, samples were
recorded and stored at −20 °C. The time each sample was in the mail was recorded14 and adjusted
for in our analyses. An automated stool DNA isolation kit (Diasorin) was used to isolate bacterial DNA.
In the RS sample, a confounding effect driven by DNA isolation batches was observed and therefore
adjusted for in analyses. The V3 and V4 hypervariable regions of the bacterial 16S ribosomal RNA
gene were amplified and sequenced on the IIIumina MiSeq platform (Illumina Inc). For the LLD study,
the stool samples were retrieved from participants’ homes by students of University Medical Center
Groningen. DNA was isolated with the AllPrep DNA/RNA Mini Kit (Qiagen). The V4 hypervariable
region of the bacterial 16S ribosomal RNA gene were amplified and sequenced on the Illumina MiSeq
platform. To decrease domain-dependent bias associated with different hypervariable regions
between the 2 cohorts, a direct classification of 16S sequencing reads using a naive bayesian classifier
from the Ribosomal Database Project and SILVA 16S database release 128 was used to reconstruct
taxonomic composition of studied communities, with binning posterior probability cutoff of 0.8.14

The eMethods in the Supplement give more details for collecting gut microbiome data. As a result, in
the RS, the microbiome data contained information on 2 domains, 8 phyla, 15 classes, 18 orders, 33
families, and 126 genera. In the LLD study, the microbiome data contained 2 domain, 12 phyla, 21
classes, 27 orders, 48 families, and 184 genera (eFigure 2 in the Supplement). We also calculated α
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diversity (Shannon, richness, and Inverse Simpson indexes), and β diversity (Bray-Curtis dissimilarity
matrix) at the genus level using the R package vegan (R Foundation for Statistical Computing) in both
cohorts separately.

Assessment of Insulin Resistance and Type 2 Diabetes
Insulin resistance and type 2 diabetes were the primary outcomes of the current analysis. In both
cohorts, fasting blood samples were collected from 2012 through 2013. In the RS, glucose levels were
examined with the glucose hexokinase method. Serum insulin was measured by
electrochemiluminescence immunoassay technology. In the LLD study, glucose levels were
measured by hydrogen 1 nuclear magnetic resonance, and serum insulin was measured on an
architect system (Abbott Laboratories). Insulin resistance in the 2 cohorts was calculated using the
Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) as follows: fasting insulin × fasting
glucose/22.5.15

Data on type 2 diabetes status in both cohorts were collected in 2013. In the RS, information
was collected from general practitioners’ records, pharmacies’ databases, structured home
interview, hospital discharge letters, and glucose levels measured in the research center. In the LLD
study, information on type 2 diabetes was collected through self-reported questionnaires and fasting
glucose measured in the research center.9 Cases of type 2 diabetes were identified according to
World Health Organization criteria16: a fasting blood glucose concentration of 126 mg/dL or higher,
nonfasting blood glucose of 200 mg/dL (when fasting samples were unavailable) (to convert glucose
to millimoles per liter, multiply by 0.0555), and/or the use of blood glucose-lowering drugs (insulin
or oral hypoglycemic agent) or prescribed dietary treatment and registration of the diagnosis
diabetes. All potential events of type 2 diabetes were independently adjudicated by 2 study
physicians. In case of disagreement, consensus was sought from an endocrinologist.17

Assessment of Covariates
In both cohorts, information on educational level, smoking status, dietary intake, and physical
activity was assessed through interviews and questionnaires. Furthermore, information on
medication use was obtained from general practitioners, pharmacies’ databases, the nationwide
medical registry, or follow-up examinations.18,19 Details on the collection of data on these covariates
aref provided in the eMethods in the Supplement.

Data Analyses
We examined associations between diversity measures representing wide gut microbiome
composition with insulin resistance (HOMA-IR, continuous variable) and type 2 diabetes (yes/no) and
of specific taxa with insulin resistance (HOMA-IR) and type 2 diabetes. We used natural
log-transformed HOMA-IR for all analyses to obtain a normal distribution. For diversity measures, we
investigated associations for Shannon index, richness, and Inverse Simpson index and insulin
resistance using linear regression and type 2 diabetes using logistic regression. We analyzed
associations of Bray-Curtis dissimilarity matrix with insulin resistance and type 2 diabetes using
permutation analysis of variance (1000 permutations). For analyses for gut microbial taxa, we first
added 1 to all taxa counts to prevent missingness derived from log zero. Subsequently, to reduce the
skewness of the distribution of microbial taxa counts, we performed natural log transformation. The
associations between microbial taxa and insulin resistance and type 2 diabetes were assessed by
linear regression and logistic regression, respectively.

For all analyses, we adjusted for age, sex, time in mail (RS only), and DNA batch effect (RS only)
in model 1. In model 2, we additionally adjusted for alcohol intake, energy intake, smoking,
educational level (RS only), and physical activity. In model 3, we additionally adjusted for body mass
index (BMI; calculated as weight in kilograms divided by height in meters squared). Last, in model 4,
we additionally adjusted for use of lipid-lowering drugs and proton pump inhibitors.
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Sensitivity Analyses
We conducted 3 sets of sensitivity analyses based on model 4. First, we examined interaction effects
of α diversity or taxa with age, sex, or BMI by including these interaction terms (eg, Shannon
index × sex) 1 at a time into model 4. In case of statically significant interaction terms, stratified
analyses by these factors would be conducted (eg, separate for men and women). Second, we
reexamined associations of α diversity, β diversity, and taxa with HOMA-IR and type 2 diabetes by
additionally adjusting for diet quality score and blood pressure in the RS. Third, because use of blood
glucose–lowering drugs, such as metformin, was a criterion of type 2 diabetes diagnosis in our study,
metformin itself may be also associated with gut microbiome composition20; therefore, we
performed a sensitivity analysis in the RS in which we reexamined associations between α diversity
and type 2 diabetes after excluding patients who used metformin (n = 1337 participants, 95 cases)
and after excluding patients who did not use metformin (n = 1323 participants, 81 cases). We did not
examine associations between taxa and type 2 diabetes after excluding these patients because
excluding these participants resulted in smaller groups and fewer cases, which combined with the
multiple tests of taxa would result in extremely low statistical power.

Because some data (eg, data on physical activity and energy intake) were collected using
different questionnaires between 2 cohorts, to better achieve control for confounding for all main
analyses, we first conducted analyses in the 2 studies separately and then combined the associations
for α diversity and for taxa available in both cohorts using fixed-effects meta-analysis. Associations
of β diversity could not be pooled and were presented for each cohort separately.

Statistical Analysis
Although we used 3 indexes in the analysis of α diversity and 1 for β diversity, cutoff values for
statistical significance were set at P < .05 for analyses of α and β diversity because a single hypothesis
was tested. For analyses of taxa, P < .0005 was set for analyses of taxa, taking into account that we
performed 103 independent tests (0.05/103) among microbial taxa as calculated based on the
method of Li and Ji.21 All analyses were conducted in R, version 3.1.2 (R Foundation for Statistical
Computing).

Results

Baseline Characteristics
A total of 193 type 2 diabetes cases were identified among 2166 participants, 1418 from the
Rotterdam Study (mean [SD] age, 62.4 [5.9] years; 815 [57.5%] male; 176 [12.4%] with type 2
diabetes) and 748 from the LLD study (mean [SD] age, 44.7 [13.4] years; 431 [57.6%] male; 17 [2.3%]
with type 2 diabetes). Characteristics of the study population are given in Table 1.

Associations Between Gut Microbial α Diversity With Insulin Resistance
and Type 2 Diabetes
Associations were similar across all 4 models (Table 2). For the main model (model 4), higher
Shannon index and richness were associated with lower HOMA-IR (Shannon index, −0.06; 95% CI,
−0.10 to −0.02; P = .02; richness, −0.07; 95% CI, −0.11 to −0.03; P = .03). For type 2 diabetes, higher
richness was associated with a lower prevalence of type 2 diabetes (odds ratio [OR], 0.93; 95% CI,
0.88-0.99; P = .04) (Table 3). A higher Shannon index was not associated with a lower prevalence of
type 2 diabetes (OR, 0.83; 95% CI, 0.66-1.03; P = .06). Inverse Simpson index was not associated
with HOMA-IR (β = −0.04; 95% CI, −0.08 to 0.002) or type 2 diabetes (OR, 0.91; 95% CI, 0.73-1.14:
P = .25) (Table 2 and Table 3).
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Associations Between Gut Microbial β Diversity With Insulin Resistance
and Type 2 Diabetes
The β diversity (Bray-Curtis dissimilarity matrix) was associated with insulin resistance (R2 = 0.004,
P = .001 in the RS and R2 = 0.005, P = .002 in the LLD study). Furthermore, the Bray-Curtis
dissimilarity matrix was significantly different between individuals with and without type 2 diabetes
in the RS, although not in the LLD study (R2 = 0.003, P = .001 in the RS and R2 = 0.001, P = .65 in
the LLD study).

Table 1. Characteristics of Participants

Characteristic

Findinga (N = 2166)

Rotterdam Study (n = 1418) LifeLines-DEEP study (n = 748)
Age, mean (SD), y 62.4 (5.9) 44.7 (13.4)

Sex

Female 815 (57.5) 431 (57.6)

Male 603 (42.5) 317 (42.4)

Smoking

Current 193 (13.6) 155 (20.7)

Nonsmoker 593 (79.3)

Ever, quit 706 (49.8)

Never 519 (36.6)

Educational level

Primary 108 (7.6)

NA
Lower 474 (33.4)

Intermediate 397 (28.0)

Higher 435 (30.7)

Physical activity, median (IQR)b 42.9 (17.7-82.8) 55.5 (25.8-57.8)

BMI, mean (SD) 27.5 (4.5) 25.2 (4.1)

Alcohol intake, median (IQR), g/d 8.1 (1.4-19.7) 2.2 (0.7-11.1)

Energy intake, median (IQR), kcal/d 2243.2 (1869.4-2733.3) 1862.0 (1526.1-2282.8)

Lipid-lowering medication usec 393 (27.7) 32 (4.3)

Proton pump inhibitor use 257 (18.1) 63 (8.4)

Abbreviations: BMI, body mass index (calculated as
weight in kilograms divided by height in meters
squared); IQR, interquartile range; NA, not available.
a Data are presented as number (percentage) of

participants unless otherwise indicated.
b Physical activity level is expressed as metabolic

equivalent of task-hours per week in the Rotterdam
Study, and is calculated as a continuous score with a
theoretical range of 1-100 in the LifeLines-
DEEP study.

c Lipid-lowering medication is defined as statin use in
the LifeLines-DEEP study.

Table 2. Association of α Diversity and Insulin Resistance

Modela

β (95% CI)

P valuec
Rotterdam Study
(n = 1253)

LifeLines-DEEP study
(n = 731)

Pooled results
(n = 1984)b

Shannon index

Model 1 −0.16 (−0.25 to −0.07) −0.09 (−0.16 to −0.02) −0.11 (−0.15 to −0.07) .01

Model 2 −0.08 (−0.14 to −0.03) −0.06 (−0.12 to 0.0004) −0.07 (−0.11 to −0.03) .01

Model 3 −0.08 (−0.14 to −0.03) −0.06 (−0.12 to −0.03) −0.07 (−0.11 to −0.03) .01

Model 4 −0.07 (−0.12 to −0.01) −0.05 (−0.11 to 0.004) −0.06 (−0.10 to −0.02) .02

Richness

Model 1 −0.12 (−0.18 to −0.07) −0.12 (−0.19 to −0.05) −0.12 (−0.16 to −0.08) .01

Model 2 −0.08 (−0.14 to −0.02) −0.06 (−0.12 to −0.01) −0.07 (−0.11 to −0.03) .03

Model 3 −0.08 (−0.14 to −0.02) −0.06 (−0.12 to −0.01) −0.07 (−0.11 to −0.03) .03

Model 4 −0.07 (−0.12 to −0.02) −0.06 (−0.12 to −0.001) −0.07 (−0.11 to −0.03) .03

Inverse Simpson index

Model 1 −0.22 (−0.40 to −0.06) −0.30 (−0.78 to 0.18) −0.23 (−0.40 to −0.06) .03

Model 2 −0.06 (−0.11 to −0.004) −0.03 (−0.09 to 0.03) −0.05 (−0.09 to −0.01) .04

Model 3 −0.06 (−0.11 to −0.004) −0.03 (−0.09 to 0.03) −0.05 (−0.09 to −0.01) .04

Model 4 −0.04 (−0.10 to 0.01) −0.03 (−0.09 to 0.03) −0.04 (−0.08 to 0.002) .05

a Model 1: age, sex, time in mail (the Rotterdam Study),
and batch (the Rotterdam Study). Model 2: model 1
plus smoking, educational level (the Rotterdam
Study), physical activity, alcohol intake, and total
energy intake. Model 3: model 2 plus body mass
index. Model 4: model 3 plus lipid-lowering
medication and proton pump inhibitor use.

b Pooled results are calculated based on an inverse
variance–weighted, mixed-effect meta-analysis. No
significant heterogeneity was observed
across cohorts.

c P < .05 was considered statistically significant.
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Associations Between Gut Microbial Taxa With Insulin Resistance and Type 2 Diabetes
After multiple adjustment (model 4), we observed 7 taxa to be associated with HOMA-IR and 5 taxa
with type 2 diabetes in the meta-analysis. Specifically, a higher abundance of Christensenellaceae
(β = −0.08; 95% CI, −0.12 to −0.03: P < .001), Christensenellaceae R7 group (β = −0.07; 95% CI,
−0.12 to −0.03; P < .001), Marvinbryantia (β = −0.07; 95% CI, −0.11 to −0.03; P < .001),
Ruminococcaceae UCG005 (β = −0.09; 95% CI, −0.13 to −0.05; P < .001), Ruminococcaceae
UCG008 (β = −0.07; 95% CI, −0.11 to −0.03; P < .001), Ruminococcaceae UCG010 (β = −0.08; 95%
CI, −0.12 to −0.04; P < .001), or Ruminococcaceae NK4A214 group (β = −0.09; 95% CI, −0.13 to
−0.05; P < .001) was associated with lower HOMA-IR (Table 4). A higher abundance of Clostridiaceae
1 (OR, 0.51; 95% CI, 0.41-0.65; P < .001), Peptostreptococcaceae (OR, 0.56; 95% CI, 0.45-0.70;
P < .001), Clostridium sensu stricto 1 (OR, 0.51; 95% CI, 0.40-0.65; P < .001), Intestinibacter (OR,

Table 3. Association of α Diversity and Type 2 Diabetes

Modela

Odds ratio (95% CI)

P valuec
Rotterdam Study
(n = 1418)

LifeLines-DEEP study
(n = 748)

Pooled results
(n = 2166)b

Shannon index

Model 1 0.80 (0.67-0.96) 0.74 (0.46-1.20) 0.79 (0.67-0.94) .03

Model 2 0.71 (0.57-0.89) 0.85 (0.53-1.38) 0.73 (0.60-0.90) .03

Model 3 0.76 (0.60-0.96) 0.84 (0.51-1.38) 0.78 (0.63-0.96) .03

Model 4 0.80 (0.63-1.02) 0.94 (0.55-1.62) 0.83 (0.66-1.03) .06

Richness

Model 1 0.74 (0.64-0.91) 0.78 (0.48-1.28) 0.76 (0.64-0.90) .04

Model 2 0.73 (0.58-0.90) 0.83 (0.50-1.36) 0.74 (0.61-0.90) .04

Model 3 0.78 (0.62-0.98) 0.86 (0.52-1.45) 0.79 (0.64-0.98) .04

Model 4 0.80 (0.63-1.02) 0.95 (0.87-1.00) 0.93 (0.88-0.99) .04

Inverse Simpson index

Model 1 0.88 (0.73-1.05) 0.91 (0.57-1.45) 0.88 (0.74-1.04) .10

Model 2 0.79 (0.64-0.99) 1.05 (0.66-1.66) 0.84 (0.68-1.02) .08

Model 3 0.84 (0.66-1.06) 1.00 (0.63-1.62) 0.87 (0.70-1.07) .23

Model 4 0.88 (0.69-1.13) 1.08 (0.64-1.82) 0.91 (0.73-1.14) .25

a Model 1: age, sex, time in mail (the Rotterdam Study),
and batch (the Rotterdam Study). Model 2: model 1
plus smoking, educational level (the Rotterdam
Study), physical activity, alcohol intake, and total
energy intake. Model 3: model 2 plus body mass
index. Model 4: model 3 plus lipid-lowering
medication use and proton pump inhibitor use.

b Pooled results are calculated based on an inverse
variance–weighted, mixed-effect meta-analysis. No
significant heterogeneity was observed
across cohorts.

c P < .05 was considered statistically significant.

Table 4. Statistically Significant Pooled Associations Between Taxa and Insulin Resistancea

Taxon

β (95% CI)

P valuec
Rotterdam Study
(n = 1253)

LifeLines-DEEP study
(n = 731)

Pooled results
(n = 1984)b

Christensenellaceae −0.09 (−0.14 to −0.03) −0.06 (−0.12 to −0.002) −0.08 (−0.12 to −0.03) <.001

Christensenellaceae
R7 group

−0.09 (−0.15 to −0.03) −0.06 (−0.12 to 0.002) −0.07 (−0.12 to −0.03) <.001

Marvinbryantia −0.07 (−0.13 to −0.02) −0.08 (−0.13 to −0.02) −0.07 (−0.11 to −0.03) <.001

Ruminococcaceae
UCG005

−0.11 (−0.16 to −0.05) −0.07 (−0.12 to −0.01) −0.09 (−0.13 to −0.05) <.001

Ruminococcaceae
UCG008

−0.10 (−0.14 to −0.04) −0.04 (−0.09 to 0.02) −0.07 (−0.11 to −0.03) <.001

Ruminococcaceae
UCG010

−0.10 (−0.16 to −0.05) −0.06 (−0.12 to 0.0001) −0.08 (−0.12 to −0.04) <.001

Ruminococcaceae
NK4A214 group

−0.09 (−0.15 to −0.04) −0.08 (−0.14 to −0.03) −0.09 (−0.13 to −0.05) <.001

a The current meta-analysis combined associations for 1 domain, 7 phyla, 14 classes, 16 orders, 30 families, and 112 genera.
This table gives only significant pooled associations. For these significant pooled associations, no significant
heterogeneity was observed across cohorts. eTable 2 in the Supplement gives the results for all overlapping taxa and
insulin resistance in separated analyses and meta-analysis of the 2 studies. Model (corresponding model 4) is adjusted for
age, sex, time in mail (the Rotterdam Study), batch (the Rotterdam Study), alcohol intake, total energy intake, smoking
status, physical activity, body mass index, proton pump inhibitor use, lipid-lowering medication use, and educational
level (the Rotterdam Study).

b Pooled results are calculated based on an inverse variance–weighted, mixed-effect meta-analysis.
c P < .001 was considered to be statistically significant.
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0.60; 95% CI, 0.48-0.76; P < .001), or Romboutsia (OR, 0.55; 95% CI, 0.44-0.70; P < .001) was
associated with less type 2 diabetes (Table 5). eTables 2 and 3 in the Supplement give all results in
models 1 to 4 in the separated analyses of the 2 cohorts (including overlapping and nonoverlapping
taxa) and the meta-analysis (overlapping taxa).

Additional Analyses
First, we observed that associations for α diversity or taxa with HOMA-IR or type 2 diabetes did not
differ by age, sex, or BMI. Second, we observed similar results after additionally adjusting for diet
quality score and blood pressure (eg, for HOMA-IR, β = −0.08; 95% CI, −0.12 to −0.03: P < .001 for
Clostridiales vadin BB60 group) (eTables 4-6 in the Supplement). We also observed that the effect
estimates for the associations between α diversity and type 2 diabetes were similar when excluding
patients using metformin (OR, 0.84; 95% CI, 0.45-1.12 for Shannon index; OR, 0.99; 95% CI, 0.98-
1.03 for richness; and OR, 1.01; 95% CI. 0.99-1.03 for Inverse Simpson index) or excluding patients
without use of metformin (OR, 0.73; 95% CI, 0.46-1.17 for Shannon index; OR, 1.00; 95% CI, 0.99-
1.02 for richness; and OR, 1.02; 95% CI, 0.98-1.05 for Inverse Simpson index), although none were
statistically significant, likely because of the strongly reduced statistical power.

Discussion

This cross-sectional study of a large, population-based sample found associations between gut
microbiome composition and type 2 diabetes prevalence and with insulin resistance among
individuals without diabetes, independent of several sociodemographic and lifestyle factors.
Specifically, the study found that higher α diversity was associated with lower insulin resistance and
lower prevalence of type 2 diabetes and that variations of gut microbial β diversity were associated
with insulin resistance. The study also found that a higher abundance of these 12 taxa may benefit
risk of insulin resistance and type 2 diabetes: Christensenellaceae, Clostridiaceae 1,
Peptostreptococcaceae, Christensenellaceae R7 group, Marvinbryantia, Ruminococcaceae UCG005,
Ruminococcaceae UCG008, Ruminococcaceae UCG010, Ruminococcaceae NK4A214 group, C sensu
stricto 1, Intestinibacter, and Romboutsia.

Several previous studies2,3,5 have examined associations with type 2 diabetes but were limited
by small sample size, restriction to patient settings, and the lack of adjustment for important
confounders, such as energy intake, physical activity, and socioeconomic factors. The current study
is the first, to our knowledge, to comprehensively investigate the associations between gut

Table 5. Statistically Significant Pooled Associations Between Taxa and Type 2 Diabetesa

Taxon

β (95% CI)

P valuec
Rotterdam Study
(n = 1418)

LifeLines-DEEP study
(n = 748)

Pooled results
(n = 2166)b

Clostridiaceae 1 0.42 (0.32-0.54) 1.07 (0.65-1.77) 0.51 (0.41-0.65) <.001

Peptostreptococcaceae 0.52 (0.41-0.66) 0.89 (0.50-1.59) 0.56 (0.45-0.70) <.001

Clostridium sensu stricto 1 0.42 (0.32-0.54) 1.08 (0.64-1.81) 0.51 (0.40-0.65) <.001

Intestinibacter 0.50 (0.38-0.65) 1.06 (0.67-1.65) 0.60 (0.48-0.76) <.001

Romboutsia 0.56 (0.44-0.71) 0.44 (0.13-1.45) 0.55 (0.44-0.70) <.001

a The current meta-analysis combined associations for 1 domain, 7 phyla, 14 classes, 16 orders, 30 families, and 112 genera.
This table gives only significant pooled associations. For these significant pooled associations, no significant
heterogeneity was observed across cohorts. eTable 2 in the Supplement gives the results for all overlapping taxa and
insulin resistance in separated analyses and meta-analysis of the 2 studies. Model (corresponding model 4) is adjusted for
age, sex, time in mail (the Rotterdam Study), batch (the Rotterdam Study), alcohol intake, total energy intake, smoking
status, physical activity, body mass index, proton pump inhibitor use, lipid-lowering medication use, and educational
level (the Rotterdam Study).

b Pooled results are calculated based on an inverse variance–weighted, mixed-effect meta-analysis.
c P < .001 was considered to be statistically significant.
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microbiome composition with type 2 diabetes in a large population-based sample for which we
adjusted for a series of key confounders.

Similar to a previous study,5 the current study found that higher α diversity was associated with
lower prevalence of type 2 diabetes. These associations were independent of energy intake, physical
activity, educational level, smoking, and medication use. Furthermore, this evidence was extended
to indicate that α and β diversity are linked to insulin resistance, further confirming that variation of
gut microbiome composition is also closely associated with earlier stages in the development of type
2 diabetes.

Furthermore, 12 taxa were associated with insulin resistance or type 2 diabetes. All 12 are known
to be butyrate-producing bacteria.22-24 These findings were in general similar to the inverse
associations between several butyrate-producing species with insulin resistance observed by
Pedersen et al25 among 277 Danish individuals without diabetes. For instance, Clostridium species
and Clostridiales species were inversely associated with insulin resistance. The current findings were
also in line with previous studies5,6 that reported that a higher abundance of the 2 butyrate-
producing bacteria, Clostridiaceae 1 and C sensu stricto 1, were associated with lower prevalence of
type 2 diabetes. However, the current study yielded 10 novel associations. These 10, also all butyrate-
producing bacteria, were all inversely associated with insulin resistance or type 2 diabetes:
Christensenellaceae, Peptostreptococcaceae, Christensenellaceae R7 group, Marvinbryantia,
Ruminococcaceae UCG005, Ruminococcaceae UCG008, Ruminococcaceae UCG010,
Ruminococcaceae NK4A214 group, Intestinibacter, and Romboutsia. These findings further extend
the evidence that higher abundance of butyrate-producing bacteria is associated with lower risk of
type 2 diabetes. Of interest, some of these newly identified bacteria associated with type 2 diabetes
have been previously reported in relation to obesity, which is closely associated with insulin
resistance and development of type 2 diabetes. For example, a previous study by Goodrich et al26

reported that higher abundance of Christensenellaceae was linked to a lower BMI. In the current
analyses, associations with insulin resistance and type 2 diabetes independent of BMI were
observed, suggesting a role in the development of type 2 diabetes beyond obesity. Furthermore, this
study found similar effect estimates for α diversity and type 2 diabetes when excluding patients using
metformin and associations with HOMA-IR among individuals who did not use metformin,
suggesting that the observed associations between gut microbiome and diabetes were not driven by
use of metformin. In addition, although the observed bacteria associated with insulin resistance and
type 2 diabetes were all butyrate-producing bacteria, the specific butyrate-producing bacteria that
were identified differed between the insulin resistance and type 2 diabetes analysis. This finding may
be explained by actual differences of gut microbiome composition among different severities of
insulin resistance, by residual confounding of medication or other treatments, or by chance and small
differences in effect sizes.

Possible explanations for the observed associations may involve potential beneficial effects of
the butyrate that are produced by these bacteria.6 Butyrate is short-chain fatty acid produced from
fermentation of dietary fiber.27 Production of butyrate in the gut and the concentrations of butyrate
in the gut and circulation can be modulated by dietary means, particularly through the content and
composition of fermentable dietary fiber. Butyrate has been suggested to induce beneficial
metabolic effects through enhancement of mitochondrial activity, improvement of energy
metabolism, activation of intestinal gluconeogenesis, and prevention of metabolic endotoxemia and
inflammation via different routes of gene expression and hormone regulation.6 Unfortunately, stool
or circulating butyrate concentrations were not measured in this study, and the study has an
observational design; therefore, the role of butyrate in the observed associations could not be
confirmed. Future research should validate the hypothesis of butyrate-producing bacteria affecting
glucose metabolism and diabetes risk via production of butyrate.
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Strengths and Limitations
This study has several strengths. First, the use of a large, population-based, microbiome-wide
association analysis (n = 2166) afforded high statistical power to pick up associations that have
previously not been identified. Second, the study adjusted for various confounders in the analyses,
such as alcohol use, physical activity, BMI, educational level, and smoking status. Most previous
studies2-4 did not adjust for these important confounders. Third, although temporality cannot be
studied in the cross-sectional design, to minimize reverse bias and potential effects of medication
use, associations between gut microbiome not only with type 2 diabetes status but also with insulin
resistance were examined among participants without diabetes, and similar results were observed,
suggesting that microbiome composition may already play a role in earlier phases of development of
type 2 diabetes.

The study also has several limitations. First, it is a cross-sectional study, and thus the ability to
assess temporality and causality is limited. Second, data on the concentrations of butyrate in stool or
blood samples were not available, which limited conclusions about a role of butyrate in the observed
associations. Third, gut microbiome composition was determined from stool samples. Because gut
microbiome composition varies throughout the gut with respect to the anatomical location along the
gut and at the given site, a more complete picture of the gut microbiome might be obtained by
obtaining samples from different locations along the intestines. Fourth, because of the use of 16S
ribosomal RNA data, associations at species and lower levels or associations of functional profiles of
gut microbiome composition could not be explored. Metagenomics approaches could overcome
these limitations. Fifth, although several covariates were adjusted for, the possibility of residual
confounding (eg, by occupation or annual income) could not be excluded. Moreover, gut microbiome
data were not available for many of the participants of the original cohorts, which might have
resulted in selection bias if associations of gut microbiome with development of type 2 diabetes
differed in those included and those not included in the current analyses. In addition, to account for
potential bias from missing data on covariates, multiple imputations were used, which should
improve the precision of the estimated associations. Sixth, the identification of type 2 diabetes cases
was based on the medical records, cases were self-reported, and/or glucose levels were measured
at the research centers, and data on glycated hemoglobin and 2-hour oral glucose tolerance test were
not available, and diabetes cases might be misidentified or missed. However, all potential events of
type 2 diabetes were independently adjudicated by 2 study physicians and disagreements resolved
by consensus with an endocrinologist. Therefore, the possibility of misidentification is extremely
limited, and even if it existed, the limited misidentification or missing data should not have largely
affected associations. In addition, a small sample of participants with type 2 diabetes in the LLD study
limited additional analysis for gut microbiome and type 2 diabetes (eg, by metformin use). In
addition, this study may be generalized to populations with similar age and races/ethnicities, but
more studies in diverse populations are needed.

Conclusions

These findings suggest that gut microbiome composition may influence the development of type 2
diabetes. An increased gut microbial diversity, along with specifically more butyrate-producing
bacteria, may benefit insulin resistance and risk of type 2 diabetes. These findings may help provide
new insight into causes, mechanisms, and prevention of, as well as therapy for, type 2 diabetes.
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