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a b s t r a c t 

Background and objective: With aging, patients with diabetic kidney disease (DKD) show progressive de- 

crease in kidney function. We investigated whether the deviation of biological age (BA) from the chrono- 

logical age (CA) due to DKD can be used (denoted as Kidney Age Index; KAI) to quantify kidney function 

using machine learning algorithms. 

Methods: Three large datasets were used in this study to develop KAI. The machine learning algorithms 

were trained on PREVEND dataset with healthy subjects ( N = 7963) using 13 clinical markers to pre- 

dict the CA. The trained model was then used to predict the BA of patients with DKD using RENAAL 

( N = 1451) and IDNT ( N = 1706). The performance of four traditional machine learning algorithms were 

evaluated and the KAI = BA-CA was estimated for each patient. 

Results: The neural network model achieved the best performance and predicted the CA of healthy sub- 

jects in PREVEND dataset with a mean absolute deviation (MAD) = 6.5 ± 3.5 years and pearson corre- 

lation = 0.62. Patients with DKD showed a significant higher KAI of 15.4 ± 11.8 years and 13.6 ± 12.3 

years in RENAAL and IDNT datasets, respectively. 

Conclusions: Our findings suggest that for a given CA, patients with DKD shows excess BA when com- 

pared to their healthy counterparts due to disease severity. With further improvement, the proposed KAI 

can be used as a complementary easy-to-interpret tool to give a more inclusive idea into disease state. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Normal aging contributes to an estimated physiological decline 

f glomerular filtration rate by 1 mL/min/year [1] . Lifestyle-related 

omplications such as hyperglycemia, hypertension, dyslipidemia, 

lbuminuria, among others, accelerate this decline at an exponen- 

ial rate which directly impacts blood biochemistry, cell counts, 

nd other molecular and cellular aspects [2] . These changes can 

ignificantly impact the biological aging of a patient with chronic 

idney disease (CKD) [3] which can be different from the chrono- 

ogical age (CA). These changes in the biological age (BA) between 

ndividuals within the same age group may provide important in- 

ormation about kidney age in patients with CKD. 

Currently, estimated glomerular filtration rate (eGFR) used to 

ssess kidney functionality, and several equations to calculate eGFR 
∗ Corresponding author. 
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ave already been developed. However, a recent study demon- 

trates large variability in all eGFR formulae to calculate overall 

enal function resulting in unreliable estimations [4] . One reason 

s that serum creatinine used for eGFR formulae varies from day 

o day, and a second reason is that the coefficients used in cur- 

ent eGFR formulae are population-based estimated using limited 

ata and are less efficient at an individual level. Hence, there is a 

eed for new biomarkers and methods to more accurately identify 

idney functionality at an individual level. 

In recent years, several methods have already been developed 

o predict the CA in healthy groups using various physiological [5] , 

maging [6] , genetic [7] , molecular and cellular biomarkers [ 8 , 9 ].

hese techniques are now being applied to unhealthy groups to 

rovide insights about how their BA is affected by the disease 

everity, which can be much larger than their CA [5] . Motivated 

y this concept, we developed a novel age-related biomarker for 

stimating kidney age using machine learning techniques. We first 

eveloped a machine learning framework to accurately predict CA 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Illustration of the machine learning model development process using PRE- 

VEND dataset. The performance of four traditional machine learning models: logis- 

tic regression with elastic net regularization (LR), random forest (RF), support vector 

machine (SVM) and feed-forward neural netrowk (FNN) were evaluated. The model 

that provided the least mean absolute deviation (MAD) between the predicted bio- 

logical age (BA) and chronological age (CA) was used as the final optimal model to 

estimate Kidney Age Index (KAI). 
f individuals from clinical measurements without any history of 

ardiovascular, neurological or chronic kidney diseases in a healthy 

ohort. After developing the model to accurately predict the CA in 

ealthy cohorts, we then predicted the BA of patients with diabetic 

idney diseases (DKD). The deviation of the BA from the CA, de- 

oted as Kidney Age Index (KAI) can serve as a potential biomarker 

o estimate kidney functionality at an individual level. We hypoth- 

sized that the BA of patients with DKD will be older when com- 

ared to their CA. KAI could reflect the functional changes in the 

idney and identify factors that make a patient’s BA older than 

heir CA. To test the generalizability of this approach, we validated 

his framework on two independent clinical trial datasets of pa- 

ients with DKD. 

. Methods 

.1. Dataset 

We used datasets from three different sources in this study: 

REVEND ( N = 8592) [10] , RENAAL ( N = 1513) [5] and IDNT

 N = 1715) [ 6 ]. The Prevention of Renal and Vascular End-stage

isease (PREVEND is a prospective cohort study, designed to in- 

estigate the impact of urinary albumin excretion (UAE) on renal 

nd cardiovascular outcomes in the general population. In 1997–

998, the participants of the PREVEND cohort were selected from 

0,856 inhabitants of the city of Groningen, the Netherlands. Se- 

ection was based on the albumin concentration in a spot morning 

rine sample to obtain a cohort enriched for the presence of ele- 

ated albuminuria levels. In total, 8592 participants completed the 

rst screening round in 1997–1998. At approximately 3 year inter- 

als, participants in this study are invited to visit an outpatient de- 

artment for measurements concerning their health status. Details 

f the study protocol have been published elsewhere [10] . 

The Reduction of endpoints in NIDDM (Non-insulin dependent 

iabetes mellitus type II) and the Angiotensin II antagonist losartan 

RENAAL) and irbesartan type II diabetic nephropathy trial (IDNT) 

nvestigated the efficacy of an ARB (irbesartan in IDNT, losartan in 

ENAAL) on renal outcomes in subjects with type 2 diabetes and 

ephropathy. The detailed design, rationale, and study outcome 

or these trials have been previously published [11–13] . The IDNT 

rial additionally included a calcium channel blocker (amlodipine) 

reatment arm. Inclusion criteria in IDNT and RENAAL were sim- 

lar with only minor differences. Patients with type 2 diabetes, 

ypertension and nephropathy aged 30–70 years were eligible for 

oth trials. Serum creatinine levels ranged between 1.0 mg/dL and 

.0 mg/dL. All subjects had proteinuria, defined as 24 h urinary 

rotein excretion of > 900 mg in the IDNT trial whereas for RE- 

AAL a urinary albumin to creatinine ratio (UACR) of > 300 mg/g 

ased on single first morning void or a 24 h urinary protein excre- 

ion > 500 mg/day was required. Exclusion criteria for both trials 

ere type 1 diabetes or non-diabetic renal disease. Patients in the 

ENAAL trial were randomly allocated to treatment with losartan 

00 mg/day or matched placebo whereas patients in the IDNT trial 

ere randomly allocated to treatment with irbesartan 300 mg/day, 

mlodipine 10 mg/day or matched placebo. The trials were de- 

igned to keep the dose of the ARBs stable during follow-up. Addi- 

ional antihypertensive agents (but not Angiotensin Converting En- 

yme inhibitors (ACEis) or Angiotensin Receptor Blockers (ARBs) in 

ENAAL and ACEis, ARBs, or calcium channel blocker in IDNT) were 

llowed during the trial to achieve the target blood pressure. 

.2. Predictive risk markers 

Multiple varying number of risk markers were present in differ- 

nt datasets and we only used 13 baseline predictive risk markers 
2 
hat were available in all three datasets to train the machine learn- 

ng models sex, body mass index (BMI), systolic blood pressure 

SBP), diastolic blood pressure (DBP), total cholesterol, albumin- 

reatinine ratio, hemoglobin, uric acid, potassium, albumin, glu- 

ose, serum creatinine and diabetes status. Supplementary Table 1 

ummarizes the baseline characteristics of these markers from all 

hree datasets used in this study. Missing samples were imputed 

sing a k -nearest neighbor algorithm. We only included subjects in 

he age group between 30 and 70 years due to insufficient number 

f samples outside this range. In addition, we excluded subjects 

ith existing cardiovascular and renal disorders in PREVEND data 

o include only healthy subjects. This resulted in a total of 7963, 

451 and 1706 subjects in PREVEND, RENAAL and IDNT datasets, 

espectively. The percentage of risk markers imputed in all three 

atasets is shown in supplementary Table 2. 

.3. Machine learning model development 

The outline of the machine learning model development pro- 

ess is shown in Fig. 1 . First, we randomly divided healthy pa- 

ients in the PREVEND dataset into a training set (80%, N = 6370) 

nd testing set (20%, N = 1593). The training set was further di- 

ided into training sub-set (80%, N = 5096) and validation (20%, 

 = 1274) sets for tuning the machine learning model hyper- 

arameters. The distribution of the CA of patients in these sub- 

ets from PREVEND dataset is shown in supplementary Fig. 1. Grid 

earch of hyper-parameters was performed to evaluate the perfor- 

ance of 4 machine learning algorithms logistic regression with 

lastic-net regularization, support vector machine, random forests 

nd neural networks summarized in supplementary Table 3. The 

yper-parameter that provided minimum mean absolute deviation 

MAD) between the predicted BA and the CA was used as the op- 

imal hyperparameter to train the machine learning model on the 

nitial training set. In this way, the model tuning and selection was 

erformed only on the training set and strictly excluded patients in 

he testing set during this process. The CA of patients in the test- 

ng set was then estimated using the tuned prediction model, and 

he KAI was estimated for each patient. We standardized markers 

n the training set to have uniform mean and standard deviation 

y subtracting the mean and dividing by the standard deviation. 

arkers in the testing set were standardized with respect to the 

ean and standard deviation of the training set before using them 

or model development. 
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Fig. 2. Scatter plot of predicted biological age (BA) versus the chronological age (CA) for each healthy subject in PREVEND dataset using feed-forward neural network. The 

mean Kidney Age Index (KAI) was 6.5 years and the Pearson’s correlation ( ρ) was 0.62. 

Table 1 

Comparison of different machine learning models to predict KAI during validation 

and testing of healthy cohorts in PREVEND data. The best performance was ob- 

tained using the neural network model. Results are presented as mean ( ± standard 

deviation). 

Testing cohort Model Validation Testing 

Logistic regression with elastic-net regularization 8.5 ( ± 5.8) 8.4 ( ± 5.5) 

Support vector machine 8.4 ( ± 6.5) 8.5 ( ± 6.6) 

Random forest 7.2 ( ± 6.1) 7.3 ( ± 6.1) 

Neural network 6.4 ( ± 3.8) 6.5 ( ± 3.5) 
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Since we used four machine learning algorithms, we identified 

 model that provided the least MAD on the testing set as the final

ptimal model. This model was then used to estimate the BA of 

atients with DKD and the KAI (KAI = BA-CA) was then obtained 

or each patient. 

. Results 

All results are reported as mean ± standard deviation unless 

tated otherwise. 

.1. Internal validation 

Table 1 summarizes the performance of machine learning mod- 

ls to predict CA of healthy cohorts in the PREVEND data using 

3 risk markers. The neural network (NN) model outperformed 

ther models and predicted the CA with MAD = 6.5 ± 3.5 years. 

ig. 2 shows the scatter plot of predicted BA using neural networks 

gainst the CA of patients in the testing set. Pearson’s correlation 

 ρ) between the predicted and actual CA was 0.62. 

Since it was not possible to estimate predictor importance from 

he NN model, we estimated feature importance using elastic-net 

egularization and random forest methods as shown in supplemen- 

ary Fig. 1. In both these methods, the level of cholesterol was the 

ost important predictor of age followed by SBP, glucose level, 

nd BMI. To assess the prediction importance of these markers, we 

emoved these four predictors from the analysis and the perfor- 

ance of the NN model dropped by 3% (from MAD = 6.5 ± 2.5 

ears to 9.6 ± 3.1 years). 
3 
.2. External validation 

Next, we predicted the KAI of patients with DKD in RENAAL 

nd IDNT datasets using the NN model, and the results are shown 

n Fig. 3 . The MAD of BA from CA was nearly similar in both

atasets: KAI = 15.4 ± 11.8 years, ρ = 0.17; KAI = 13.6 ± 12.3 

ears, ρ = 0.21 in RENAAL and IDNT, respectively. 

The population-level comparison of KAI between patients with 

KD and healthy cohorts is shown in Fig. 4 . Relative to the healthy

ohorts where the mean KAI was close to 0 (0.5 years), the mean 

AI of patients with DKD was 11.2 and 8.5 years in RENAAL and 

DNT, respectively. 

.3. Effect of cardiovascular disease 

To investigate the effect of cardio vascular disease (CVD) on the 

AI, we excluded all patients with a history of CVD in RENAAL and 

DNT and estimated the KAI for each patient. At a population level, 

he KAI for patients only with DKD (RENAAL: 13.6 ± 10.2 years, 

DNT: 11.5 ± 9.4 years) was 2 years lower when compared to pa- 

ients with both DKD and history of CVD. 

. Discussion 

In this work we developed a novel age-related biomarker, 

ermed as Kidney Age Index (KAI), using a machine learning frame- 

ork to estimate an individual’s kidney age. The machine learn- 

ng algorithms were initially trained on a dataset of healthy par- 

icipants to predict their CA, which achieved an acceptable perfor- 

ance ( ρ = 0.62, MAD = 6.5 ± 3.5 years). The trained model was 

hen used to predict the BA of patients with DKD using two clinical 

rial datasets. For a given CA, patients with DKD have a significant 

lder BA (i.e. higher KAI) when compared to their healthy coun- 

erparts at least by 10 years at the population level - suggesting 

hat the presence of diabetes-related complications (i.e. renal and 

ardiovascular diseases) significantly affects the normal aging of an 

ndividual. Among several risk markers used for estimating KAI, the 

evel of cholesterol, SBP, glucose level, and BMI had greater influ- 

nce in elevating the BA of the patients from their CA. 

The proposed machine-learning framework to estimate KAI has 

everal clinical applications. First, it combines multiple risk mark- 

rs associated with diabetic nephropathy in to a single easy-to- 

nterpret index (termed as KAI) to estimate a patient’ s deterio- 
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Fig. 3. Scatter plot of predicted biological age (BA) versus the chronological age (CA) for each patient with DKD in RENAAL and IDNT datasets using feed-forward neural 

network. The mean Kidney Age Index (KAI) = 15.4 years, Pearson’s correlation ( ρ) was 0.17; KAI = 13.6, ρ = 0.21 were obtained in RENAAL and IDNT, respectively. 

Fig. 4. Histograms of Kidney Age Index (KAI) for subjects without any diabetic kidney disease (DKD; blue) and with DKD (red). The KAI of group means is 11.2 and 8.3 years 

in (A) RENAAL and (B) IDNT datasets, respectively. 
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ation due to underlying conditions. This is not possible by ex- 

ert clinicians who should interpret individual markers separately 

o come up with an intervention strategy. In addition, it is very 

ifficult to identify the dependencies between the markers by 

linicians. Second, it can used as a personalized patient monitor- 

ng tool where the machine learning model is retrained as and 

hen the new measurements are available at different time in- 

ervals. Increase of decrease in KAI directly reflects the iterven- 

ion efficacy. Third, the proposed KAI can be used as an early 

dentification tool for patients who are a high risk of developing 

KD. 

DKD is a hetergeonious disease that does not always follow 

 predictable clinical course. Currently staging of DKD relies on 

wo established biomarkers, eGFR and albuminuria, which their 

imitations have been well defined in literature [ 4 , 14–17 ]. In ad-

ition, it is difficult to develop a tailored therapy based only 

n these two biomarkers [18] . Despite their limitations, clinical 

iagnosis and treatment guidelines are based on eGFR and al- 

uminuria staging [19] . However, missing from CKD staging is 

xpected kidney function appropriate to age [ 20 , 21 ]. It is gen-

rally accecpted that the effect of normal aging processes re- 

ults in a kidney function decrease of 1 mL/min/year, and of- 

entimes clinicians must subjectively make the age and disease 

pproriate calculation of kidney function. This ambuguity around 
4 
ge-appropriate kidney function can lead to non-optimal treat- 

ent plans and/or miscommunication with patients, among other 

ssues. 

Kidney disease includes a wide range of kidney health states 

rom commonly prevalent subclinical, asymptomatic disease to rare 

nd-stage renal disease requiring dialysis or kidney transplanta- 

ion. Early stage CKD in older patients is normal and can be man- 

ged in primary care settings [22] . However, studies have shown 

hat many patients find being informed of their CKD distressing, 

ven in its early stages [20] . KAI has the potential to help clini-

ians explain actual kidney health in context of the actual clinical 

ituation in a more easy to understand manner than CKD stage or 

enal function. Instead of focusing on only one or two biomarkers 

i.e. eGFR or albuminuria), the focus can be on the contribution of 

ultipanel biomarkers to the overall health status [18] . For exam- 

le, a health care provider could tell their patient that their kid- 

ey age is 5–10 years older than their actual age, and this identi- 

ed deviation (KAI) can lead to a discussion for further monitoring 

r preventative measures for risk of cardiovascular disease or end- 

tage renal disease. The message of kidney age is clear and eas- 

ly understood by patients, and it is not a confusing, abstract, or 

athematical concept like absolute risk [20] . Accordingly, KAI can 

e used to improve medication adherence and better communicate 

isk. 
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Expectedly, KAI was higher in patients with DKD compared to 

ealthy patients. DKD is based in part by a (more than average) 

rogressive decline in kidney function, the presence of albumin 

n urine, high blood pressure, and metabolic disturbances. Notably, 

KD remains one of the most frequent complications of diabetes, 

nd diabetes is the leading cause of end-stage renal disease (ESRD), 

ccounting for approximately 50% of cases in the developed world 

17] . Development of DKD is associated with many alterations in 

he structure of multiple kidney compartments, all of which have 

n impact on (patho) physiology and aging processes [23] . 

The machine learning model identified total cholesterol, blood 

ressure, BMI, and glucose were the strongest predictors in the 

achine learning algorithm. This comes of no surprise as these 

our markers are viewed as "traditional" risk factors in the progres- 

ion of DKD [17] . However, these four markers could be viewed 

s a proxy for lifestyle and can be viewed as modifiable. Treat- 

ent plans aimed at lowering cholesterol and blood pressure to 

ore healthy leaves, incorporating nutritional and fitness plans to 

chieve a healthy body weight, and regulating glucose levels are all 

ccepted actions be improve renal and cardiovascular risk. 

It should be noted that though many of the identified mark- 

rs are modifiable (such as BMI, BP, TC, glucose), a number of 

ther markers are not easily modifiable, or are a risk markers 

nstead of a risk factors (or both). The cumulative consequences 

f these risk factors have more wide spread endothelial (cardio- 

ascular) effects, which can cause renal dysfunction, but are not 

pecific to only kidney function as the diabetes and its compli- 

ations are multi-factorial. A person with diabetes often is over- 

eight, has high blood pressure, high cholesterol, high glucose lev- 

ls, etc. This further reiterates our conclusions that many markers 

re needed to accurately predict renal risk in diabetes and that the 

otal set of markers together is a better predictor than any single 

arker. In several cases, it is possible that individuals who have a 

ore unfavorable profile of risk factors have not developed renal 

r cardiovascular disease, or vice versa. The difficulty of renal and 

ardiovascular disease is that presence of these risk factors does 

ot necessarily imply an unconditional cause and effect for dis- 

ase. Alternatively, individuals with high risk factors may not have 

ad enough time to develop renal or cardiovascular disease (long 

nough follow-up time). Our study aims at prediction of kidney 

ge (as we include data from patients with diabetic nephropathy), 

nd is not designed to identify the causal pathways of renal and 

ardiovascular disease. 

The main strength of our study is that we used three indepen- 

ent datasets for model development and validation. Training the 

odel on a healthy cohort is important to estimate KAI in patients 

ith DKD, and we achieved this using PREVEND dataset. However, 

e could not achieve perfect age prediction (MAD = 6.5 ± 3.5 

ears). Validating the performance of the model using a large test- 

ng set is important to evaluate the robustness and stability of 

he model, and we achieved this using datasets from two large 

linical trials–RENAAL and IDNT. Another strength is that used of 

achine learning algorithms instead of traditional parametric or 

nowledge driven approach. Machine learning algorithms can di- 

ectly learn from the data and can captures interactions between 

ultiple markers which cannot be achieved using traditional ap- 

roaches. 

Despite promising results, there are several limitations of this 

tudy, and the proposed model is not yet ready for clinical deploy- 

ent. (1) We only included patients between 30 and 70 years due 

o limited number of patients beyond this range. (2) We did not 

chieve perfect age prediction in healthy subjects due to limited 

ample size (see supplementary Fig. 2). This led to higher BA esti- 

ation in younger patients (in Fig. 2 ) which we believe is due to

he poor model performance. Including additional samples and /or 

arkers can help in significantly improving the prediction perfor- 
5 
ance of the model. (3) Further improvement and external vali- 

ation of the KAI, and determining feasibility of using such a tool 

n clinical practice (in addition to eGFR and/or albuminuria) with 

ealth care providers and patients are of course necessary next 

teps for the development of KAI. In addition, since this is a proof- 

f-concept study to develop a framework, we only evaluated the 

erformance of commonly used four traditional machine learning 

lgorithms. Future work involves evaluating the performance of ad- 

itional machine learning algorithms such as boosting algorithms, 

xtreme learning machines etc. 

. Conclusions 

We developed a novel age-related biomarker, denoted as KAI, 

sing a machine learning framework to estimate an individual’s 

idney age. Our findings suggest that for a given CA, patients with 

KD shows excess BA patients by approximately 10 years than 

he population level when compared to their healthy counterparts. 

his excess is most likely due to disease severity, as the KAI’s com- 

osition of multiple clinical markers allows for a better represen- 

ation of disease state that just age or renal function alone. With 

urther improvement, the proposed machine learning based novel 

ge related biomarker can be used as a tool to discuss with pa- 

ients with DKD about their risk of renal and CV disease in a more 

asy to grasp, conceptual manner than absolute risk or laboratory 

alues. 
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