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Abstract: Many predictive models exist that predict risk of common cardiometabolic conditions.
However, a vast majority of these models do not include genetic risk scores and do not distinguish
between clinical risk requiring medical or pharmacological interventions and pre-clinical risk, where
lifestyle interventions could be first-choice therapy. In this study, we developed, validated, and
compared the performance of three decision rule algorithms including biomarkers, physical mea-
surements, and genetic risk scores for incident coronary artery disease (CAD), diabetes (T2D), and
hypertension against commonly used clinical risk scores in 60,782 UK Biobank participants. The
rules models were tested for an association with incident CAD, T2D, and hypertension, and hazard
ratios (with 95% confidence interval) were calculated from survival models. Model performance
was assessed using the area under the receiver operating characteristic curve (AUROC), and Net
Reclassification Index (NRI). The higher risk group in the decision rules model had a 40-, 40.9-, and
21.6-fold increased risk of CAD, T2D, and hypertension, respectively (p < 0.001 for all). Risk increased
significantly between the three strata for all three conditions (p < 0.05). Based on genetic risk alone,
we identified not only a high-risk group, but also a group at elevated risk for all health conditions.
These decision rule models comprising blood biomarkers, physical measurements, and polygenic
risk scores moderately improve commonly used clinical risk scores at identifying individuals likely
to benefit from lifestyle intervention for three of the most common lifestyle-related chronic health
conditions. Their utility as part of digital data or digital therapeutics platforms to support the
implementation of lifestyle interventions in preventive and primary care should be further validated.

Keywords: coronary artery disease; hypertension; diabetes; preventive medicine; risk stratification

1. Introduction

Developed countries have seen a consistent rise in life expectancy and overall im-
proving trends in chronic disease outcomes [1]. In just six decades, this has translated to a
global increase in life expectancy of over 20 years for both men and women [1]. Yet, longer
life expectancy has been accompanied by an increase in the prevalence of common chronic
diseases, such as coronary artery disease (CAD), type 2 diabetes (T2D), and hypertension,
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which pose a significant burden to societies and limit healthy life expectancy (HALE) both
with regards to morbidity and mortality [2,3]. Preventive strategies which allow for earlier
lifestyle intervention are a solution to tackle the growing burden of lifestyle-related health
conditions. Indeed, lifestyle interventions such as weight loss, limiting (saturated) fat in-
take, and 30 min of exercise per day are recommended across multiple guidelines to reduce
cardiovascular disease risk and the progression from prediabetes to T2D [4,5]. Yet, the
sustainable implementation of lifestyle interventions faces several challenges, and cannot
be achieved with one-size-fits-all approaches [6]. Rather, adherence and maintenance of
health behavior change requires personalized lifestyle recommendations.

To be able to provide such targeted lifestyle recommendations, the first step is to
adequately stratify risk in individuals in a pre-clinical state and prioritize which aspects
of their health they ought to focus on. For the three prevalent chronic health conditions
mentioned above, several risk assessment tools have been made available to primary care
physicians, including the Framingham risk scores [7–9]. These risk scores incorporate
clinical and laboratory parameters, and have been shown to perform comparably well in
European populations to other risk scores [7,10]. However, over two thirds of models for
cardiovascular risk are restricted to a mixture of demographics, medical history, blood
pressure and lipid profile, and a limited set of lifestyle factors, such as smoking [11]. Until
now, these models have not included physical measurements or genetic susceptibility,
although these health conditions are known to be multifactorial in nature, and for instance,
progression from prediabetes to T2D is accelerated by even modest increases in adiposity,
in individuals at higher genetic risk [6]. Especially when several studies have shown that
the addition of genetic risk scores, as well as scores combining physical measurements
and lifestyle factors, to demographic and biomarker data can improve risk stratification in
preventive and primary care settings [11–17].

This study aimed to evaluate decision rules models incorporating other routine
biomarkers, physical measurements, and genetic information in addition to established
risk factors and investigate whether these improve risk stratification for three prevalent
lifestyle-related health conditions in the large population-based UK Biobank cohort.

2. Materials and Methods
2.1. Study Population

The UK Biobank is a longitudinal population-based cohort of 502 503 participants
aged between 37–73 years old, collected between 2006 and 2010. For this study, we included
only participants without coronary artery disease, T2D, and hypertension diagnosed by a
physician at recruitment, in whom extensive follow-up data were available. In addition,
individuals without diagnosed disease but who at baseline crossed a “clinical threshold”
for any of the health conditions were also excluded from further analysis. These were
individuals with at least grade 1 hypertension (i.e., a systolic blood pressure equal to or
greater than 140 mmHg and/or a diastolic pressure equal to or greater than 90 mmHg) [18],
a fasting glucose value above 7.0 mmol/L for T2D [19], and individuals with significantly
impaired kidney function assessed as an age-dependent function glomerular filtration
(eGFR) and microalbuminuria according to European and international guidelines [20,21].

Individuals for whom any of the variables in Table 1 were missing were also excluded.
This study was conducted under UK Biobank application 55,495. Local Institutional Review
Board ethics approval was not necessary for this study.
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Table 1. Baseline characteristics table.

Characteristic Mean (SD), Percentage (%), or Number of
Participants (N)

Total, No. 60,782

Age, y 56.3 (7.59)

Female 51.2%

With CAD at follow-up n = 500

With diabetes at follow-up n = 1005

With hypertension at follow-up n = 2379

Blood pressure, mm Hg

Systolic 138 (19)

Diastolic 82 (10)

Smoking

Ideal (never or stopped >1 y ago) 82.7%

Intermediate (stopped <1 y ago) 0.3%

Current smoker 5.6%

Body composition

BMI 26.8 (4.35)

Waist circumference (cm) 88.7 (12.8)

Waist-to-hip ratio 0.86 (0.09)

Body fat percentage (%) 30.2 (8.3)

Blood biomarkers

Total cholesterol (mmol/L) 5.71 (1.1)

LDL cholesterol (mmol/L) 3.58 (0.84)

HDL cholesterol (mmol/L) 1.47 (0.38)

Triglycerides (mmol/L) 1.68 (0.97)

hs-CRP (mg/L) 2.17 (3.8)

Fasting glucose (mmol/L) 5.0 (1.0)

HbA1c (mmol/mmol) 35.2 (5.3)

Albumin-creatinine ratio 2.4 (8.3)

Family history

No family history of diabetes 83.2%

Family history of diabetes (1 parent) 16.8%

Family history of diabetes (both) 0.01%

No family history of CAD 58.1%

Family history of CAD (1 parent) 41.8%

Family history of CAD (both) 0.07%

No family history of hypertension 57.3%

Family history of hypertension (1 parent) 42.7%

Family history of hypertension (both) 0.08%
Continuous variables are reported as mean and standard deviation (SD), and categorical variables as %. Abbrevi-
ations: CAD = coronary artery disease, BMI = body mass index, hs-CRP = high-sensitivity C-reactive protein,
HbA1c = glycated hemoglobin.
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2.2. Biomarkers, Physical Measurements and Polygenic Risk Scores

To define the risk factors for each of the health conditions, a literature search was
conducted in accordance with the 2009 Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement [21]. We searched for meta-analyses indexed in
PubMed that were published between January 2014 and October 2021 (additional details on
the search strategy available in Table S1, and PRISMA flowcharts in Figures S1–S3). We also
searched relevant national and international clinical guidelines not originally identified
by the search. Based on the findings of the literature review, rules were defined to stratify
individuals as high, elevated, and no elevated risk. An overview of the rules models is
given in Figure 1, using T2D as an example.
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Figure 1. Schematic overview of how individuals are classified according to the rules models into four
risk categories. Those without any (bio)markers, including genetic scores and physical measurements,
are not at elevated risk; those with a specific set of literature-based risk factors as detailed in Table S2
are at high risk; others with markers outside of normal range but without decisively high risk factors,
are at elevated risk. When a marker such as glucose crosses the clinical threshold, participants would
no longer be recommended lifestyle intervention. HbA1c = glycated hemoglobin, PRS = polygenic
risk score, T2D = diabetes type 2.

These rules are then described in more detail in Table S2, and shortly below. Data
on biomarkers were retrieved from the blood biochemistry category in the UKB, physical
measurements from the body size measurements and abdominal composition categories,
and smoking status was ascertained based on the self-reported smoking status registered
at recruitment. Family and medical history were retrieved from the respective categories.

2.3. Coronary Artery Disease

For coronary artery disease, the literature and additional guideline search identified to-
tal cholesterol [22], HDL cholesterol [7,23,24], LDL cholesterol [24], triglycerides [23,25–27],
and high-sensitivity C-reactive protein (hs-CRP) [28–30] as relevant blood biomarkers. The
Framingham Risk Score for 10-year coronary heart disease risk was used, which included
information on treatment for hypertension and smoking status [7]. A polygenic risk score
for coronary artery disease was calculated as described below. Individuals were classified
as high risk for which intervention is advised if they met any of the following rules, all
weighted equally: total cholesterol above 8 mmol/L [20,21], systolic blood pressure above
180 mmHg [20], LDL cholesterol above 4.9 mmol/L [20,21], and if triglycerides and/or
hs-CRP were out of range [26–28] and either the incidence risk according to Framingham
or the genetic susceptibility score were “high”. The no elevated risk profile was defined as
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no biomarkers being out of range, the genetic susceptibility score below the eighth decile,
and negative family history. All others for which at least one risk factor was elevated were
classified as intermediate risk.

2.4. Type 2 Diabetes

Glycaemic variables (fasting glucose and HbA1c), blood lipids, markers of body
composition, blood pressure, family history, gender, and smoking were identified as risk
factors [8,31–35]. The Framingham Risk Score for diabetes was used, and a polygenic risk
score for diabetes was calculated [8]. Participants were placed in the highest stratum if
they met any of the following rules, all weighted equally: HbA1c was above 6.5% and
fasting glucose was below 6.1 mmol/L, fasting glucose was above 6.1 mmol/L, either of
the glycemic variables was elevated (HbA1c between 5.5% and 6.4% or fasting glucose
between 5.6 mmol/L and 6.1 mmol/L) and they were overweight/obese, their clinical
risk was high, their glucose was unregulated, and their genetic susceptibility was high, or
if their clinical risk was elevated, they were older than 45, had a HDL cholesterol below
0.9 mmol/L, and triglycerides above 2.8 mmol/L [19]. Participants were classified as not
being at elevated risk if all biomarkers were within normal range, the genetic susceptibility
score was below the eighth decile, and clinical risk was not elevated. All others with at
least one marker out of range were considered at intermediate risk.

2.5. Hypertension

For hypertension, the literature and additional guideline search identified age [36],
systolic and diastolic blood pressure [36–41], body mass index (BMI) [42,43], gender [44],
and smoking status as relevant markers. The Framingham Risk Score for hypertension
risk [9] was used, and a PRS for systolic blood pressure was calculated. Participants were
classified as high risk if their systolic blood pressure was high normal (130 to 139 mmHg),
and/or the diastolic pressure was between 80 and 89 mmHg [41]. Equally, those with a
high clinical risk, or an elevated clinical risk and a high PRS were stratified as high risk.
The no elevated risk profile was defined as all biomarkers being within normal range, the
genetic susceptibility score being below the eighth decile, and incidence risk according to
the clinical score not being elevated. All others with at least one marker out of range were
considered at intermediate risk.

2.6. Polygenic Risk Scores

Polygenic risk scores (PRS) were calculated using an additive model for CAD, T2D,
and hypertension. Individuals were binned into deciles based on their PRS scores and
the average disease incidence was calculated for each decile. The difference between
individuals in the tenth risk decile, those in the nineth and eighth deciles, and all other
deciles were assessed. The 1000 Genomes dataset was used as reference panel for the
linkage disequilibrium (LD) calculations [45]. Linkage disequilibrium refers to the non-
random association of alleles at different loci, and can cause associations between multiple
alleles and a given phenotype to tag the same effect in genome-wide association studies
(GWAS). When calculating a PRS, the effect of each single nucleotide polymorphisms
(SNPs) is included in the calculation despite some of the SNPs tagging the same effect. By
applying the LDpred tool when calculating PRS, the SNP weights/effects are corrected
based on the LD, which minimizes the inflation of the estimated risk through the repeated
addition of the same effect across different SNPs [46]. The genotyping data and data
containing the tested phenotype outcomes were downloaded from the UKB. All variants
with an imputation correlation (R2) below 0.4 determined with the minimac3 algorithm,
were removed from the downloaded genotyping files [47]. Imputation is a technique
which allows for the accurate evaluation of associations at genetic markers that are not
directly genotyped, thereby increasing the power of GWAS, particularly when combining
results across studies that rely on different genotyping platforms [48]. This 0.4 threshold
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is a commonly used threshold for the R2 between imputed genotype calls and the true
underlying genotypes [49].

Summary statistics files from three large GWAS conducted in other cohorts were
used to calculate PRS for CAD, T2D, and hypertension [50–52]. These publicly available
summary statistics were reformatted where necessary to be consistent with the format
required by LDpred. A rho of 1 was used, and all variants with a GWAS significance
p-value below 0.01 were selected based on previous studies showing marginal differences
between this and other stringency cutoffs (Table S3) [13]. In total, the T2D, CAD, and
hypertension PRS included 199,120, 139,885, and 400,016 SNPs, respectively. The PRS
were also computed with and without adjustment of the following variables: genotyping
array, first four principal components, age and sex. To assess the added predictive value of
PRS over sex and age alone, we also added the predictions of a logistic regression model
including only sex and age. Individuals were binned into deciles based on their PRS scores
and the average disease incidence at each age was calculated for each decile. Additional
methods are available in the Supplementary Materials.

2.7. Ascertainment of Disease Incidence

Information regarding the variables used to calculate incidence for each of the health
conditions at 8 years after study enrollment can be found in Table S4. In short, we used
International Statistical Classification of Diseases and Related Health Problems (ICD) codes,
and the self-reported diagnoses collected at recruitment and follow-up questionnaires.

2.8. Statistical Analysis

Similar to the three strata of risk for the decision rules model, three risk strata (“low”,
“intermediate”, and “high”) were defined for the Framingham scores. For the coronary
artery disease risk score, the bottom, middle, and top tertiles were used as risk categories [7].
For diabetes, categories were based on <3%, 3% to 8%, and >8% incidence risk at eight-
years [8]. For hypertension, this was <5%, 5% to 10%, and >10% incidence risk [9].

To evaluate the ability to discriminate higher risk individuals who would be suggested
lifestyle intervention from those at no elevated risk, we used the area under the receiver
operating characteristics (AUROC) curve computed from 2000 bootstrap iterations. Sensi-
tivity and specificity for each model is also presented. Additionally, the Net Reclassification
Index (NRI), with the number of individuals at low risk or recommended lifestyle interven-
tion in the initial against the updated model, and the net improvement in risk classification
in individuals who developed and did not develop the disease, were calculated to evaluate
potential additional predictive value of the suggested models compared to the Framingham
scores [53,54].

Cox proportional hazards models were used to test the association of risk strata
defined by the decision rules model and the clinical scores with incident events of CAD,
T2D, and hypertension. Hazard ratios (HRs) with 95% confidence intervals were calculated
between risk strata and the reference group (those not at elevated risk for the decision rules
model, and low risk for Framingham).

We considered a p-value < 0.01 as statistically significant for differences in AUROC
determined by DeLong’s nonparametric test and p-value < 0.05 significant for differences
in risk between strata [55]. All data analyses were performed using R software v4.0.3 and
the “survival”, “survminer”, “predictABEL”, and “ggplot2” packages were used to conduct
the survival analysis and generate graphs [56].

3. Results
3.1. Population Characteristics

In total, 60,782 unique participants had follow-up data available, of which 42,978,
36,913, and 33,541 were included in the analyses for T2D, CAD, and hypertension, respec-
tively. Table 1 shows the baseline characteristics of the study population and the cohort
selection process is illustrated in Figure S4.
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During a median follow-up of 8.8 years (5th and 95th percentile, 8.7–8.8), 500 incident
CAD cases in 300,407 person-years, 1005 incident T2D cases in 347,382 person-years, and
2379 incident hypertension cases in 274,009 person-years were ascertained. Participants
were aged 56.3 years on average, and slightly more participants were female (51.2%).
Average values for all lipid markers were above general guidelines [21]. Similarly, physical
measurements of BMI and waist circumference were above the existing thresholds for
abdominal obesity, and both average systolic and diastolic blood pressure values crossed
the stage 1 hypertension threshold [57,58].

3.2. Polygenic Risk Scores

For all three health conditions, a higher PRS was strongly associated with a higher
incidence rate (Figure 2).
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Figure 2. Cumulative incidence in different risk strata. Risk classification conducted based on the
logistic regression model of the PRS adjusted for age, sex, first four principal components, and
array type.

For the highest risk stratum compared to the rest of the population, this translated to
a hazard ratio (HR) of 4.6 (95% CI 3.8–5.6), 2.9 (2.5–3.4), and 1.9 (1.7–2.1) for CAD, T2D,
and hypertension, respectively (Table 2).

Table 2. Risk increase for the individuals at high genetic risk (10th decile), compared to individuals at
low genetic risk (1–7th decile) of population. Second and third column show hazard ratios calculated
based on a logistic regression model adjusted for the respective variables. In all cases the difference
with the remainder of the population was statistically significant (p-value < 0.01).

Health
Condition

Unadjusted
PRS

PRS Adjusted
for 4 PCs and
Array Type

PRS Adjusted for 4
PCs, Array Type,

Sex and Age
Age and Sex

CAD 1.66 (0.93–2.35) 2.25 (1.39–3.11) 4.43 (3.14–5.74) 2.55 (1.63–3.47)

T2D 1.86 (1.33–2.39) 2.61 (1.96–3.26) 2.81 (2.12–3.50) 1.47 (1.00–1.94)

HT 1.37 (1.06–1.62) 1.61 (1.30–1.92) 1.77 (1.45–2.09) 1.50 (1.21–1.79)
Abbreviations: PRS = polygenic risk scores, PC = genetic principal component, CAD = coronary artery disease,
T2D = type 2 diabetes, HT = hypertension.

When comparing the highest risk individuals to those in the first seven deciles, the
HRs were 7 (95% CI 5.7–8.7), 3.8 (3.2–4.4), and 2.2 (2.0–2.5) (Table 3). The risk for individuals
in the ninth and eighth deciles was also significantly higher compared to individuals in the
first seven deciles, with HRs of 3.4 (2.7–4.2) for CAD, 2.3 (2.0–2.7) for T2D, and 1.8 (1.7–2)
for hypertension (Table 3). These results were also seen when calculating PRS for the entire
UKB cohort, without selecting sub-populations with follow-up data (Table S5).
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Table 3. Area under the receiver operating characteristic (AUROC) curve for model discrimination of higher risk individuals
amenable to lifestyle intervention assessed for the clinical risk score(s), PRS, and decision rules model. Number of
individuals classified as low and higher risk and number of individuals who had developed disease at follow-up are
also presented.

Model/Health
Condition Low Risk (N)

Low Risk Who
Developed
Disease (N)

Advised Lifestyle
(N)

Advised Lifestyle
Who Developed

Disease (N)

AUROC
(95% CI)

CAD (n = 21,969 women, 167 cases; 14,944 men, 333 cases)

FRS women 7426 22 5680 99 0.67 (0.63–0.71)

FRS men 5171 55 4431 165 0.60 (0.58–0.63)

PRS 25,839 173 3692 165 0.62 (0.60–0.64)

Rule model 1521 0 $ 14,980 360 0.66 (0.64–0.68)

Diabetes (n = 42,978, 1005 cases)

FRS 12,305 39 12,634 726 0.72 (0.71–0.73)

PRS 30,084 467 4298 239 0.57 (0.56–0.58)

Rule model 8351 13 14,169 819 0.75 (0.74–0.76)

Hypertension (n = 33,541, 2379 cases)

FRS 3359 23 26,587 2317 0.60 (0.59–0.60)

PRS 23,479 1327 3354 391 0.54 (0.53–0.54)

Rule model 2274 17 12,506 1759 0.70 (0.69–0.71)

Abbreviations: n = number; FRS = Framingham risk score; PRS = polygenic risk score. AUROC reported with 95% confidence interval. $

computed as 1 for statistical analysis purposes.

3.3. Sensitivity Analysis

The Framingham scores achieved an AUROC of 0.67 (95% CI 0.63–0.71) for women
and 0.60 (0.58–0.63) for men, 0.72 (0.71–0.73), and 0.60 (0.59–0.60) for CAD, T2D, and
hypertension, respectively. Sensitivity and specificity for these models were 59.3% and
74.4%, 49.5% and 70.8%, 72.2% and 71.6%, and 97.4% and 22.1%. The performance of the
decision rules model was better than Framingham for CAD in men, T2D, and hypertension
with an AUROC of 0.66 (0.64–0.68) for CAD, 0.75 (0.74–0.76) for T2D, and 0.70 (0.69–0.71)
for hypertension (Table 2, p < 0.01 for all). There was no difference in performance between
the decision rules model and Framingham for CAD in women. The discriminatory power
of the decision rules model was also superior to PRS alone (Table 3). Specificity was higher
for T2D (68.2, 67.7–68.6%) and hypertension (65.5, 65–66%), with sensitivity also higher
for T2D (81.5, 79.1–84%) and lower for hypertension (73.9, 72.7–75.7%). For CAD, the
decision rules model achieved higher sensitivity (72.0, 68.0–76.0%) but lower specificity
(59.8, 59.3–60.3%) than both Framingham models. For the decision rules models, positive
predictive values were higher for T2D, hypertension and CAD in women, but lower than for
the men’s model (Table S6). Negative predictive values were extremely high for all models,
with the highest being 99.58% (99.50–99.65%) for the Framingham for CAD in women and
the lowest 97.05% (96.85–97.24%) for the decision rules for hypertension (Table S6).

3.4. Risk Stratification and Lifestyle Advice Recommendations

The observed absolute risk for each health condition differed between the high, inter-
mediate, and low risk strata for the decision rules model, but not for the Framingham risk
score (Figure 3).
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In terms of absolute risk, being classified as high risk by the clinical score translated to
a 2.6% and 1.4% difference in absolute risk compared to not being at elevated risk for CAD
in men (HR 3.8, 2.8–5.1) and in women (HR 6.8, 4.3–10.8), 2.1% for T2D (HR 3.7, 2.1–6.7),
and 7.4% for hypertension (HR 14.1, 9.36–21.3). For the intermediate risk stratum, there
was a risk difference for CAD in men and women, but not for T2D or hypertension. In
comparison, the high-risk group in the decision rules model showed a 2.34% increase in
absolute risk for CAD (HR 40, 5.6–283), 5.64% for T2D (HR 40.9, 23.7–70.8), and 12.4%
for hypertension (HR 21.6, 13.4–34.8). For the intermediate risk group, these differences
were 0.62% (HR 4, 1.5–77), 0.69% (HR 5.6, 3.2–9.9), and 2.4% (HR 4.5, 2.8–7.3), respectively.
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If all individuals in the higher risk group were recommended lifestyle intervention as a
consequence of their baseline measurements, 40.6%, 33%, and 37.2% of all individuals
would be recommended lifestyle intervention for CAD, T2D, and hypertension with the
decision rules model. For T2D and hypertension, this is 41.6% and 53% less than if the
Framingham risk scores were used, while detecting as many cases for T2D and only 561
fewer for hypertension. This translated to a NRI of 5.8 (95% CI 2.4–9.3; p < 0.001), and to
a NRI of 19.9 (18.1–21.8; p < 0.001) for hypertension (Table 4). For CAD, 14,980 (40.6%)
individuals would have been recommended intervention by the decision rules, compared
to 10,111 (27.4%) for Framingham. This represents a difference of detecting and advising
intervention to 72% of all those who eventually developed disease, as opposed to 53.2%.
In addition, 15.4% of those who ended up developing CAD were classified as low risk
by Framingham, compared to 0.2% for the decision rules model. This did, however, not
translate to significantly improved net reclassification, with a NRI of 5.6% (−1.4–12.7;
p = 0.12) and 0.8% (−7.5–9.1; p = 0.85) for men and women, respectively (Table 4).

Table 4. Reclassification table for the decision rules models against Framingham risk scores. Number of individuals moving
to new strata based on the updated models, split by events and non-events.

Model/
Health

Condition
Event Non-Event

CAD women (n = 21,969,167 cases)

Rules model Rules model

Framingham Rec.
intervention Low-risk Corr. reclass.

(%)
Rec.

intervention Low-risk Corr. reclass.
(%)

Rec.
intervention 82 17 17% 3746 1835 33%

Low risk 35 33 51% 4010 12,211 25%

CAD men (n = 14,944,333 cases)

Rules model Rules model

Framingham Rec.
intervention Low-risk Corr. reclass.

(%)
Rec.

intervention Low-risk Corr. reclass.
(%)

Rec.
intervention 125 40 24% 2558 1708 40%

Low-risk 118 50 70% 4306 6039 42%

T2D (n = 42,978, 1005 cases)

Rules model Rules model

Framingham Rec.
intervention Low-risk Corr. reclass.

(%)
Rec.

intervention Low-risk Corr. reclass.
(%)

Rec.
intervention 617 109 15% 6183 5725 48%

Low-risk 202 77 72% 7167 22,898 24%

Hypertension (n = 33,541, 2379 cases)

Rules model Rules model

Framingham Rec.
intervention Low-risk Corr. reclass.

(%)
Rec.

intervention Low-risk Corr. reclass.
(%)

Rec.
intervention 1751 566 24% 10,477 13,793 57%

Low-risk 8 54 13% 270 6622 4%

Abbreviations: CAD = coronary artery disease, Rec. intervention = number of individuals who would have been recommended lifestyle
intervention; Corr. reclass. = % of cases correctly reclassified, T2D = type 2 diabetes.
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4. Discussion

We investigated the association of different risk categories of three decision rule
models incorporating blood biomarkers, physical measurements, and genetic information,
with incident disease for three common lifestyle-related health conditions and compared
its performance to currently used clinical risk calculators in 60,782 returning participants
in the population-based UK Biobank study. Individuals classified as high risk who would
be recommended lifestyle intervention by the decision rules model had a 40-, 41-, and
22-fold higher 8-year risk of CAD, T2D, and hypertension compared to those who were
classified as not having elevated risk. All decision rules models either outperformed the
respective Framingham clinical score or showed improvement in the detection of cases
likely to benefit from lifestyle intervention.

We showed that adding other biomarkers, physical measurements, and genetic risk to
traditional clinical risk scores leads to a slight improvement in predictive performance for
all three health conditions measured by sensitivity analysis, and to a net reclassification
benefit for T2D and hypertension. From the many clinical risk scores for risk estimation
of cardiometabolic health conditions available, we chose to compare our decision rules
models to the Framingham risk scores due to their extensive validation across multiple co-
horts [10,11]. In this sub-population of the UKB cohort, the Framingham scores performed
comparably to studies in North American and Dutch populations (0.63 to 0.67), but slightly
worse than reports from other studies, including lower than in the best original validation
studies (0.66 to 0.83) [59,60]. For hypertension, specifically, the inferior performance of
the Framingham model compared to other studies likely comes from the substantially
lower number of prehypertensive individuals and mean blood pressure values in these
cohorts (below 120 mmHg systolic and 75 mmHg diastolic) compared to the UKB, leading
to as many as 79.3% of individuals being classified as high risk [61,62]. Compared to
the Framingham scores, decision rules models detected more cases likely to benefit from
lifestyle intervention for diabetes and for hypertension (5 and 20%, respectively). The slight
improvement in performance of the rules model for diabetes is not surprising, as unregu-
lated HbA1c is a risk factor for disease development in prediabetics, and specific insulin
resistance phenotypes are linked to central adiposity [63,64]. Similarly, there is growing
evidence for genetics playing a more central role in the diabetes burden than previously
thought [65,66]. For hypertension, the addition of genetic data also likely explains the
improved performance of the rules model. For CAD, despite more individuals who even-
tually developed disease having been classified into higher risk strata by the rules models,
as shown by the 51% and 70% net correct reclassifications for CAD in women and men
(Table 4), there was no significant reclassification benefit overall due to the higher number
of individuals classified as high risk. However, for a low-risk, high-benefit lifestyle-based
intervention the improvements seen with the rules model may be meaningful in practice,
as discussed below in more depth.

While modest in magnitude, the differences in performance between the different
models could have significant practical implications. Preventive health programs should
consider the health risks of individuals holistically across a spectrum of mental and physical
health. By improving the precision to detect those who eventually developed the disease
and would be recommended intervention and minimizing the number of individuals who
did not develop the disease and would have nonetheless been advised to take action,
these models have the potential to increase the impact of such programs in two ways.
On the one hand, it could increase their effectiveness, since the number of prevented
cases if the interventions were successfully implemented would be higher. On the other
hand, cardiometabolic health issues are highly prevalent. By also accurately identifying
individuals less likely to benefit from a cardiometabolic health intervention in the short-
term, these models can be combined with models for other physical and mental health
conditions and help low risk individuals to prioritize lifestyle changes in other aspects of
their health. With recent studies showing that programs as short as three to five months
can trigger diabetes remission and improve cardiovascular risk factors [67–69], the use
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of these stratification mechanisms for a periodic risk assessment across varied lifestyle
conditions would be a valuable tool for optimizing return on investment in personalized
preventive medicine programs.

With regards to the addition of genetic risk to clinical scores, our findings support
recent studies that suggested adding genetic susceptibility scores to clinical scores for
CAD and T2D, as well as stroke or cardiovascular disease led to improvements in risk
prediction [12,70,71]. Based on genetic risk alone, we identified a group of high risk
individuals with hazard ratios of 4.6-, 2.9-, and 1.9 for CAD, T2D, and hypertension.
However, we also encountered differences between the top risk decile and the ninth and
eighth deciles, and between these and the rest of the population. In comparison, Khera
et al. identified a similar risk increase only in the top 8% and 3.5% of individuals in the
UKB, for CAD and T2D respectively, and the top 5% individuals in the Finnish cohort
of Mars et al. were at 2.62-fold increased risk of CAD and 3.28-fold for T2D (Table S5,
Figure S5) [12,13]. This effectively demarcates not only a “high risk”, but also an “elevated
risk” group in these two deciles, compared to the “no elevated risk” group comprising the
rest of the population.

One of the barriers to the implementation of risk models in preventive and primary
care has been the belief that such algorithms have an actual low impact on decision-
making in apparently healthy individuals, and mostly generate demand for “unnecessary”
care [72–74]. In this study, we make two significant contributions towards overcoming this
issue. First, we showed that easily interpretable decision rules models including genetic
risk can better identify individuals at low risk unlikely to benefit from lifestyle interven-
tions in the short-term than traditional clinical scores. Models based on risk factor burden
are easy to interpret and communicate, and a simple metric such as the absence or presence
of more than one risk factor is associated with substantial differences in lifetime risk of
cardiometabolic health conditions [75]. By including genetic risk in risk factor burden cal-
culations in an additive way, we can identify individuals at genetically elevated or high risk
with normal demographic and blood risk factors. There remain substantial financial and
technical challenges in conducting GWAS, and in correctly calculating and interpretating
PRS, for different health conditions. In individuals for whom routinely collected medical
and biomarker data clearly identify a higher risk, or for monogenic conditions, the addition
of polygenic risk is unlikely to bring additional useful information. However, as the GWAS
and PGS catalogues keep expanding their—for now limited—repertoire of traits and condi-
tions, this approach could be especially meaningful for implementation in preventive care,
where risk stratification targets a younger, usually healthier populations [76,77].

Second, the large sample size of the UK Biobank even after exclusion of individuals
without follow-up, allows us to extrapolate the potential impact of these models for pre-
ventive lifestyle intervention at large scale. In the Netherlands, more than 16,000 people
enrolled themselves in a combined lifestyle intervention program between January 2019
and April 2020 alone. In a UKB population at least twice that, 9000 and 14,000 fewer people
would have been recommended lifestyle intervention by the decision rules compared to
the clinical risk scores for T2D and hypertension. With a growing number of digital medi-
cal data and digital therapeutics platforms available to support clinicians and empower
individuals to proactively act on their health, it is becoming easier to collected, process and
analyze data from different sources such as the blood, body composition, and genetic mark-
ers evaluated in this study. When integrated with such platforms, the models developed
in this study represent a viable, potentially less resource intensive framework for lifestyle
interventions in preventive and primary care. A possible criticism of the inclusion of PRS
and additional markers in the suggested models is that their improvement in prediction
comes with an increase in complexity of the model and potentially higher costs for the indi-
vidual and/or health system. While both points have received attention from the general
public and scientific community, the growing literature on the challenges and solutions for
the implementation of complex models including PRS in clinical practice contrasts with
that on its cost-effectiveness, with only few examples in cancer screening [78,79]. On the
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former, different recent studies have shown the addition of PRS to conventional risk factors
leads to improvements in prediction which, while modest, could translate into meaningful
clinical benefit if applied at scale compared to conventional risk factors alone [80], and that
PRS alone or PRS combined with age and sex across different ages performs comparably to
established clinical scores such as the pooled cohort equations model [81]. As such, we are
not suggesting these models replace screening methods which are effective, inexpensive,
and safe [82]. Instead, we see the possible applications of these models within two contexts.
In the shorter term, as an additional offer to individuals in the booming consumer health
market mentioned above which has seen widespread interest in health programs based on
genetics and biological and digital health data [83–85]. And later, as the costs for genetic
analysis keep decreasing and use of genetic information in primary and secondary care
settings grows, for example, through the adoption of pharmacogenetic passports [86,87],
targeted prevention strategies for those in possession of their genetic data from an earlier
age or in settings of unavailability or low uptake of screening programs could become
cost-effective [81].

This study also presented some limitations. Firstly, the list of risk factors included
is not exhaustive, due to both the high level of evidence required for inclusion in the
model (most studies considered were meta-analyses) as well as the non-availability of other
relevant variables in the UK Biobank data repository. Secondly, there is an inherent risk
of bias to this study, due to the selection of participants for whom voluntarily provided
follow-up data was available, as well as the known selection bias to biobank studies [88].
Thirdly, being a decision rules model, our proposed model does not provide individual
risk predictions. While this increases the interpretability and applicability of the model
(especially in a primary and preventive care setting), individuals within the same stratum
may have different actual risk. Fourthly, we conducted the analysis with the assumption
that all individuals classified as high risk who would have been recommended lifestyle
intervention would not only have started it, but also achieved some degree of success.
With a growing offer of consumer health and wellbeing programs, as well as employer-
sponsored health programs, it is easier than ever before for individuals to preventively
implement lifestyle changes [89]. However, many factors not accounted for here play a
role in determining the actual effectiveness of these programs, so prospective validation
in a study setting as well as in the market is required to assess the actual impact of these
models on the effectiveness of preventive health interventions. Fifth, both the GWAS
for the three PRS used in this study, as well as the UK Biobank cohort itself, are very
ethnically homogeneous, with more than 90% of total participants being of white ethnicity
and European descent. Therefore, the PRS results for UK Biobank participants of other
ethnicities may be sub-optimal, and PRS and model validation will be required in cohorts
with more diverse ethnical background. Lastly, this study had limited information on
prevention strategies or therapies undergone by study participants during follow-up.
Consequently, participants’ risk for any of the outcomes may have been modulated by
medication and lifestyle or other interventions which are not accounted for in the analysis.
This possible bias is especially present for CAD since pharmacological interventions do
not form part of standard preventive strategies for hypertension or diabetes, but statin
prescription is a staple of cardiovascular risk management in individuals with elevated
to high LDL cholesterol who would be classified as high risk by the model. To further
investigate this, we analyzed medication prescriptions for all three conditions during
follow-up in individuals in the low and high risk groups who had not been diagnosed
with the condition (i.e., who reported medication not present at baseline but present at
follow-up without an accompanying diagnosis). This analysis showed no difference in
medication usage between these two risk strata for T2D and that only a small fraction of
individuals classified as low risk as baseline (1% and 0.3% for hypertension and CAD)
started medication during follow-up. This was significantly less than those in the high
risk group (2.6% and 6.3%, respectively), indicating these limitations are unlikely to have
meaningfully affected the reported results.
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In conclusion, in this prospective population-based cohort study of 60,782 people,
we developed and validated three risk stratification models for three prevalent chronic
conditions. Adding other blood markers, physical measurements, and genetic susceptibility
scores to currently used clinical risk scoring tools resulted in moderate improvements
in performance and in the identification of individuals likely to benefit from lifestyle
intervention. When integrated with digital data or digital therapeutics platforms that
enable the collection and analysis of these data, these algorithms can be used to support
the successful adoption of lifestyle interventions in preventive and primary care.
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