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the outcome of previous interactions and the strategy choices of co-players are of great ref-
erential significance for subsequent strategy actions. It is generally recognized that there is
no single simple and overarching strategy whereby one player X can unilaterally achieve a
higher payoff than his opponent Y, irrespective of Y’s strategy and response. In this paper,
we demonstrate that such strategies do exist in diverse networked populations. More pre-

Ié\%miirg;.ary game cisely, (i) such strategies can obtain a low payoff for the focal player, however, they also
Cooperation lead to an even lower payoff for that player’s partner, in turn lowering benefits of the over-
Strategy evolution all populations; (ii) they are capable of winning with a high probability against opponents
Spatial games with an unknown strategy; and (iii) they have a survival advantage and robust fitness in
Complex network terms of evolutionary processes. We refer to these as the “self-bad, partner-worse”
Prisoner’s Dilemma (SBPW) strategies. Results presented here add to previous studies on strategy evolution

in the context of social dilemmas and hint at some insights concerning cooperation promo-
tion mechanisms among networked populations.
© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Cooperation is a ubiquitous phenomenon in nature. From the perspective of social development, cooperative behavior is
conducive to improving the overall welfare of a society. However, to some extent, cooperation tends to reduce personal ben-
efits and weaken competitive advantages of individuals. Such outcomes lead to a cooperative dilemma|24]|. Evolutionary
game theory provides an effective mathematical framework for describing and investigating this kind of problem[6,17].

The origins of evolutionary game theory can be traced back to the early 1960s, when Lewontin used game theory to study
ecological phenomena as a way of investigating the role cooperation in evolutionary processes[4]. Some paradigmatic sce-
narios of cooperative dilemmas can be abstracted into various game models, such as the two-player Hawk Dove game and
Stag Hunt game, and the n-player Public Good game|18,34]|. Among these seminal game theory models, the most famous is
the Prisoner’s Dilemma (PD) game, which constitutes a powerful metaphor for describing conflicting situations in commu-
nities consisting of self-interested individuals[2,42]. In the PD game, if two players X and Y cooperate (C), then each earns R
as a reward. If both defect (D), then each gets a scant payment P. While if one cooperates, the naive cooperator obtains T, and
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the selfish defector gets a larger payment S. To guarantee that the Nash equilibrium is mutual defection, the game must sat-
isfy T > R > P > S. In addition, 2R > T is necessary to make mutual cooperation the globally best situation. At present, evo-
lutionary game theory has been widely employed in a multitude of disciplines, such as economics, computer science, biology
and politics[5,30,41,43]. M. Port et al. presented a socioecological model to explain the transition from solitary life to social-
ity in biological evolution[27], and F. Huang et al. developed a framework incorporating the adaptive mechanism of rein-
forcement learning to investigate the evolution of cooperative behaviors in the ever-changing group interaction
environment[13].

In real biological systems and social evolutionary processes, interactions between individuals often occur more than once,
which highlights the importance of research on iterated games[29]. Compared with a one-round game, interacting players
may condition their strategies by taking into account their opponents’ previous actions[40]. It is generally assumed that an
agent with longer memory may have an advantage over a more forgetful opponent. However, it has been proved that for any
strategy of the shorter-memory player X, longer-memory player Y's reward is precisely the same as X. Longer memory gives Y
no advantage[28]. Hence, an important class of strategies called memory-one strategies is proposed. Individuals can make
their strategy decisions referring to their partners’ actions in the previous round. Label the four outcomes of the previous
move as xy € (CC,CD,DC,DD), where C and D represent cooperation and defection respectively. Player X’s strategy is
P = (p1,D2, D3, P4), corresponding to the conditional probabilities playing C under each of the four previous outcomes. From
Y's perspective, the strategy is analogously q = (¢, q,.,q3,q,4) in the order of yx € (CC,CD,DC,DD)[12,21].

The “tit-for-tat” (TFT) and “win-stay, lose-shift” (WSLS) variants are two classic examples of memory-one strategies
which are generally considered successful because they have strong fitness and can defeat other strategies with a high prob-
ability in the self-organized evolution [15,35-37]. TFT and WSLS strategies are denoted as (1,0,1,0) and (1,0,0, 1) respec-
tively. The player using the TFT strategy chooses to cooperate at the initial stage of the game, and imitates the action of its
partner in the subsequent round[25,14]. It will defect if the co-player has defected, and cooperate if the co-player has coop-
erated. For the WSLS strategy, the player chooses cooperation in the first round and decides its strategy in subsequent rounds
according to the partner’s strategy. If both players adopt the same strategy, they will continue to cooperate in the next round.
In contrast, if players choose different strategies, they will convert to defect[26,20]. In 2012, Press and Dyson putted forward
a hybrid strategy in which a player can unilaterally set its opponent’s score and moreover, can enforce an extortionate linear
relationship between their rewards. This is referred to as a zero-determinant (ZD) strategy|28]. After that, Stewart et al. iden-
tified a set of generous strategies which replace extortionists and dominate in large populations by cooperating with others
and forgiving defection[33], and further clarified that a diversity of behavioral choices could cause a population to evolve
toward lower levels of cooperation|[32]. In addition, the zero-determinant strategy can be applied to cloud computing
research. Zhang et al. showed that a trusting party can regulate the actions of betrayers through a zero-determinant strategy,
which insures the interests of honest people in the cloud computing environment[44].

In recent years, rapid developments in the study of complex networks have advanced our understanding of evolutionary
game theory. Various population structures can be abstracted into network topologies composed of multiple interacting
individuals[3,7,11]. Nodes on a complex network are equated with individuals in the real world and connections between
nodes are regarded as a certain specific relationships between them([8,16,46]. At present, research on evolutionary game
dynamics within complex networks mainly focuses on three trajectories: 1) the influence of network topology on the evo-
lution of game dynamics; 2) the effect of different updating rules on network evolution given various network structures; 3)
the co-evolution of game dynamics and network topology|[45,23]. After years of development, numerous updating rules have
been proposed based on a wide variety of assumptions, such as the “Birth-Death” updating process, the adaptive dynamics
[1] based on imitation, as well as the Moran process, etc. In addition to these examples of updating rules, it is also feasible to
refine the models discussed above through the introduction of feedback mechanisms[19,31] or other controls in order to
improve the fit between systems and desired system states[39].

In diverging from deterministic strategies, such as cooperation and defection, a memory-one strategy p = (p;,P,,P3,D4) iS
more diversified, with each item shifting between 0 to 1, leading to difficulties in terms of analysis and statistics. Machine
learning algorithms provide potentially useful approaches for dealing with this puzzle[22]. In this respect, cluster analysis is
a method for categorizing data into different groupings based on the statistical similarity between data points[38]. Data
belonging to the same cluster are relatively similar, while the data belonging to different clusters have greater statistical
divergence. In addition, the dimensionality of the data reduction algorithm can be pre-processed for data with high-
dimensional characteristics. It works by removing noise and unimportant information so as to retain the most crucial aspects
of statistical patterning, which reduces the complexity of subsequent statistical analysis. This study utilizes principal com-
ponent analysis (PCA), which is a common variety of factor analysis used for dimension reduction[10]. Given a sample set
D = {x1,Xa,...,Xn} with dimension d, we can use PCA to reduce the dimensions of these data to ds. PCA begins by centralizing
all samples: x/; — x; — %Z{”:]xi. Next, we calculate the sample covariance matrix XX'. Then, the covariance matrix XX' is
transformed by decomposition into a set of eigenvalues. Finally, we take the eigenvectors wy, w,, ..., wy, which correspond
with the maximum eigenvalues for ds, and we output a projection matrix W* = (wy, ws, ..., Wy,).

In this paper, we explore the evolution of memory-one strategies for the Iterated Prisoner’s Dilemma (IPD) game model
within complex networks. Clustering and analyzing the dominant strategies evolved from networked populations, surpris-
ingly, we find what we call a “self-bad, partner-worse” (SBPW) strategy. Such strategies work by making the profit of one’s
partner less than one’s self and this also results in the reduction of the payoff for the population as a whole. We explore if
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SBPW strategy can get the upper hand encountering a random strategy, examine the differences between SBPW and the var-
ious other dominant strategies, and as well compare the evolutionary performances of the TFT, WSLS and SBPW strategies.
Our results indicate that SBPW strategies have an obvious evolutionary advantage within the IPD game model.

The rest of this paper is organized as follows: Section 2 presents the game model and network topologies used in this
study, as well as the payoff calculation method and strategy updating rule of interactive individuals. In Section 3, we describe
the generation process of dominant strategies, based on which the SBPW strategy is found with the aid of AGNES clustering
algorithm and PCA dimension reduction method. Further explorations on the SBPW strategy and main results are provided in
Section 4. Section 5 ends this paper with discussion and concluding remarks.

2. Model and methods
2.1. Model setting

Assuming that two players, X and Y, are playing the IPD game. The game result of the previous move is denoted as
XY € (CC,CD,DC,DD), where C and D represent cooperation and defection respectively. X’s strategy in the subsequent round
is then p = (p,,p,, P3,P4), in which py, p,, p; and p, denote the cooperation probability of X in this round given the game out-
come in the previous move; and q = (q;, g, qs, q4) denotes Y’s strategy in the subsequent round.

The payoff matrix of PD game is set as shown in Table 1. The numbers in the matrix represent payoffs under the various
strategy combinations of the two interacting players. For example, the payoff for the focal player is 3 if both individuals
choose to cooperate, while if the individual cooperates but the co-player defects, then the payoff for that individual is 0.

2.2. Payoff calculation

According to the principles involved in a memory-one strategy, Player X's strategy can be represented as
p = (p1,D2,P3,Ps) and payoff matrix is Sy =(3,0,5,1). Similarly, the corresponding terms for Player Y are
q=1(¢,,9,,93,94) and Sy = (3,5,0,1) respectively. After one game interaction, the expected payoffs for Players X and Y
can be calculated as Eq. 1.

__VvSx _ D(p.q.Sx)
SX vl

D(p.q.1)
(1)
__vSy _ D(pgSy)
Sy =31+ D(P,CL‘Y) )

in which v is the stationary vector of Markov matrices p and q. Besides,

-1+pyqu -1+p; -1+¢q; fy

_ det D243 -1+p, g5 P . (2)
D39, D3 -1+q, f;
DPady D4 4 fa

In this respect, we define the expected payoff for each node of the networks as the sum of the payoffs obtained by the focal
node from the games with all its neighbors divided by its neighbors’ number.

2.3. Strategy updating rule

In this study, a Fermi function is used as a strategy updating rule. For any Player A with a neighboring set represented as
M, the payoff for A in a given game with its neighbors is s4. Following that game, Player A randomly chooses a neighbor B
from neighboring set M and compares their payoffs s, and sg. Player A will then choose the strategy of Player B with prob-
ability p,z in the next round and keep its strategy unchanged with probability 1 — p,; according to Eq. 3 as follows.

1

=TT el s/ ®

Das
in which, the parameter k satisfying 0 < k < oo represents the rationality of game players and refers to the uncertainty in the
strategy transition process. When k — oo, the player updates its strategy completely at random with the probability of 1/2
either transferring to its neighbor’s strategy or maintaining its own. When k — 0, each agent is absolutely rational, the selec-
tion is strong and the strategy which can profit more is more readily adopted. In agreement with previous works and without

Table 1
Payoff matrix of PD game.
C
C 3
D 5 1
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loss of generality, in this paper, we set k = 1. In Eq. 3, there is clearly a higher probability of the focal player adopting its
neighbor’s strategy if the focal player’s payoff in this round is lower than its neighbor’s.

2.4. Game environment setting

The randomness and heterogeneity of network structures influences evolutionary processes at the scale of the population.
In this case, in order to eliminate the particularity and contingency of game results, we take three typical varieties of com-
plex networks- lattice networks, random regular (RR) networks, and BA scale-free networks- as game environments. We
then observe and compare game results in these differently structured populations. A lattice network is characterized by reg-
ularity and, when we add some randomness to that, the result is an RR network. The third network type is a BA scale-free
network, which embodies both randomness and heterogeneity. Additionally, initial population states also affect the evolu-
tion of the system to a great extent. Here, we integrate varying frequencies of the classic strategies (1, 20, and 50 instances of
the TFT and WSLS strategies) into each network to simulate different initial population profiles. The dual changes of network
structure and initial population state result in the creation of more diverse and realistic social network topologies, so that the
evolutionary results of game interactions and the conclusions we draw are more universal.

3. The self-bad, partner-worse (SBPW) strategy
3.1. The generation and evolution of dominant strategies

This study aims to identify the dominant strategy, which succeeds more efficiently during competitions and eventually
spreads to entire networked populations as the game environment changes in terms of its network structure and its initial
population state. In doing so, we constructed lattice network with 10000 nodes, RR network with 3000 nodes, and BA net-
work with 2500 nodes. Each node on the network represents an individual player with a randomly assigned memory-one
strategy. Then variations of 1, 20, and 50 instances of the TFT and WSLS strategies were respectively placed in the networks
initially to construct different initial population states for simulating more realistic biological systems and further exploring
their impact on the self-organized evolutionary results. Neighboring nodes on these networks interacted with each other
repeatedly and the dominant strategy is the strategy with the highest proportion among the population when the system
reached steady state. The simulation process used in the determination of such dominant strategies is described in Fig. 1.

We find that, after 600 iterations, the dominant strategy almost takes up the entire networked population, independently
of its network structure and initial population state. Fig. 2 shows the spread and evolution of a dominant strategy within the
lattice network initialized with 1 instances (20 and 50 instances are provided in Supplementary material) of the TFT and
WSLS strategies. We can see that nodes with dominant strategy receive a higher payoff during the game and thus form a
dominant-strategy cluster. As the game proceeds, the dominant strategy spreads throughout the whole network and ulti-
mately prevails. The detailed evolutionary processes of the dominant strategies for RR networks and BA scale-free networks
can be found in Supplementary material.

3.2. The SBPW strategy discovered using clustering analysis

We derived 1000 dominant strategies for each simulated network. Due to the fact that the randomness of initial strategies
and differences in the connections between nodes both influence population evolution to a great extent (even in under con-
ditions of the same network topology), the dominant strategies that eventually spread to the entire population are signifi-
cantly different from one another. In this respect, the AGNES algorithm is used here to classify and cluster these dominant
strategies so as to group similar strategies together and analyze their attributes in common. AGNES is a hierarchical cluster-
ing algorithm with bottom-up aggregation mechanism[9]. It first regards each sample in the data set as its own initial cluster
and it then determines the closest two clusters to be merged. This process is iterated until the preset number of clusters is
reached. Here, the average-distance method is used to measure the distance between two clusters, which is determined by
all of the samples included in them. For example, given two strategy clusters C; and C;, the distance between them can be
calculated as Eq. 4.

1 .
davg(civ C]) = mzm € C'; € delSt(vapy)v (4)
y

where p, and p, respectively represent a memory-one strategy characterized by a probabilistic quaternion (p;,p,, p3, p4). In
order to give a more intuitive and visual description of the clustering results, the PCA dimension reduction algorithm is
applied to reduce the representation of these dominant strategies from four dimensions to three dimensions, thereby allow-
ing us to present them visually in a 3-dimensional space. Fig. 3 represents the clustering distributions of the three network
types initialized with 50 instances of the TFT and WSLS strategies. Fig. 4 shows more detailed information for these clusters,
including the cluster centers, the strategy number each center contains, and the expected payoff that the strategy associated
with each cluster center would gain in its competition with the other strategy cluster centers. We also provide a Supplemen-
tary material with the clustering results for networks initialized with 1 and 20 instances of the TFT and WSLS strategies.
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Calculate the expected payoff of each node
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v

Output the dominant strategy
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Fig. 1. The flow chart of the simulation process to generate one dominant strategy on complex networks.

round=100, proportion=18.39% round=200, proportion=54.77% round=300, proportion=82.82%

g 5 b o
: p L
LY T' N
o T B 7 3
round=400, proportion=91.96% round=500, proportion=96.32% round=600, proportion=100%

Fig. 2. Snapshots of dominant strategies (yellow) and other strategies (blue) for the lattice networks initialized with 1 instances of the TFT and WSLS
strategies. The strategy distributions are shown for the game that have reached 100, 200, 300, 400, 500 and 600 rounds. The 'proportion’ of labels refers to

the proportion of the dominant strategy among overall number of strategies.
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Fig. 3. Dimension-reduced visualization of clustering results for the 1000 dominant strategies on the 4-degree lattice network, the RR network, and the BA
scale-free network respectively. Each network is initialized with 50 instances of the TFT and WSLS strategies. Solid dots with different colors on the top
panels represent dominant strategies belonging to different clusters evolved from 1000 simulations and the size of colored circles on the bottom panels
corresponds to the number of dominant strategies contained by each cluster, with the black 'x’ showing the center of the respective clusters.
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Fig. 4. Results of the cluster analysis including 1000 dominant strategies for the lattice networks, RR networks, and BA scale-free networks initialized with
50 instances of the TFT and WSLS strategy. For each network, there is a SBPW strategy cluster, as marked by red lines, that drives down the network’s
average payoff but in which the focal player still outperforms its opponents.

In our analysis of these clustering results, we find that irrespective of the structures and initial strategy profiles of their
populations, networks will always evolve this particular kind of strategy cluster, which obtains a low payoff for itself but
which results in the payoff for its opponent being lower than its own. These results can be seen as C1 for the lattice networks,
C2 for RR networks, and C1 for the BA scale-free networks in Fig. 4. Hence, we refer to strategies with this set of character-
istics as “self-bad, partner-worse” (SBPW) strategies. We also conducted further supplementary evolutionary simulation
experiments on 8-degree lattice networks and ER networks, simulations in which SBPW strategies could similarly evolve
and survive with stability in networked populations (see the Supplementary material for more detailed analyses and results).

4. Main results
4.1. The SBPW strategy versus a random strategy

To this point, we have shown that the SBPW strategy drives down the payoff of the whole population but benefits the
focal player more than the other dominant-strategy clusters evolved within complex networks. But when the SBPW strategy
is confronted by an opponent whose strategy is unknown, can it always maintain its advantage? In this section, we inves-
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tigate whether the SBPW remains beneficial when encountering an unknown-strategy partner. From a mathematical point of
view, we aim to examine whether or with what probability SBPW will maintain higher payoffs when faced with an opponent
with a random strategy during IPD game contests.

Assuming that two players, X and Y, play with each other using a memory-one strategy, p = (p;,D,,Ds,Ds) and
q=(q;,9,,q5,q4) respectively. According to expected payoffs predicted by Eq. 1, the two players’ payoff differences can
be calculated as shown in Eq. 5. Next, provided that player X uses the SBPW strategy and player Y adopts a random strategy,
in which each element of q (namely g1, q2,¢3, g4) varies between 0 to 1. We can count the proportion Sy — Sy > 0 in Eq. 5,
corresponding with the number of cases in which the SBPW strategy defeats the random strategy with a higher payoff.

Sx =Sy =5(q4 — D4 — D294 + PaGy — P3qs + Paqs + P1P4G1 — P1Paqs — P2Paqs
—P3P4; + D2P4q4 + P3P444 — P19194 + P24344 + P3q244 + P4q41q4 — P4q2q4
—DP4q344 +P1P24144 — P1P4919> + P1P39144 — P1P49143 — P1P29344

—D1P39294 + P2P4G195 + P3Pad19o + P1P4q294 — P2P4q194 + P1P4q394 — P3P4q194)
+(Ps — P2 — G2 + G4 — P1Gy + P2Gz + P2Gs + P3Ga — P2Gs — P3G3 — PaGz + P34
D443 — P4q4 + P1P2G1 — P1P243 — P19aP1 — P2P39> + PaP343 + P1P4q4 + P3P4d> (5)
—P3P4q4 + P19192 — P19194 — P39192 — P29243 + P39293 + P29394 + P4q144
—DP49394 — P1P24149> + P1P29144 + P1P29243 + P1P3q1493 + P1P4q192 + P2DP3q14>
—D1P3q194 — P1P39293 — P1P49193 — P2P39193 — P1P249394 + P1P39294 + P2P49193
—P3P44192 — P1P4q294 — P2P39294 — P2P49194 — P2P4q2q3 + P1P4q344

+P2P39394 + D2P49294 + P3P4q194 + P3Paq92q3 — P3Paq3qs + 1).

The results of these games are shown in Fig. 5. For lattice networks, the SBPW strategy defeats a random strategy around 86%
of the time and, for RR and BA scale-free networks, SBPW wins nearly 98% of the time. In short, it is clear that the SBPW
strategy that evolves within RR and BA scale-free networks are even more dominant when gaming against an unknown-
strategy player. Fig. 6 represents the corresponding payoff profiles for the SBPW strategy and a random strategy when they
play against each other on various networks initialized with 50 instances of the TFT and WSLS strategies. Payoff comparison
for SBPW and random strategies for networks initialized with 1 and 20 instances of these classical strategies are presented in
the Supplementary material

4.2. The game within the SBPW cluster

We have now demonstrated that the SBPW strategy has an advantage over other strategies in the IPD game. However, is
there potentially a more powerful strategy that might arise from the SBPW cluster, which we have already shown is dom-
inant in comparison with the other strategy clusters? Here, the strategy variants play games among themselves within the
SBPW clusters and then we extract the common features of victorious strategies. Fig. 7 indicates that the SBPW strategies
with p; = 1 for the lattice networks and small p, for the RR and BA scale-free networks are more advantageous in compar-
ison with other strategy variants. The results shown here are those for networks initialized with 50 instances of the classic
strategies (TFT and WSLS). Game results from more diverse situations can be found in Supplementary material.

Inspired that p, values of victorious strategies among dominant strategies in SBPW clusters are all 1 for lattice networks,
here we assuming that there are two players, X and Y, whose strategies are denoted as p = [1,p,,P3,P4] and q = [1,45, 45,44,
respectively. According to Eq. 1, their expected payoffs after one-round game interaction are the same as predicted by Eq. 6.
This tells us that, no matter the strategy value of p,, p; and p,, payoffs for the two players are the same. Therefore, for the

100%

95%

%EL'L6
%99°'L6

= ® 1 TFT and WSLS
85% #20 TEFT and WSLS
50 TFT and WSLS

%EE Y8

80%

The proportion that SBPW wins

Lattice RR BA

Type of network

Fig. 5. Percentage of cases in which the SBPW strategy defeats a random strategy. Game environments are lattice networks, RR networks, and BA scale-free
networks. Bars with different color correspond to networks initialized with different numbers of TFT and WSLS strategies.
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Py (09996, 0.2700, 0.1856, 0.1932) A P ppy=(0-3991, 0.3170, 0.0554, 0.0091) ) Py =(0-3842, 0.2574, 0.0813, 0.0188)

w
w

Payoff of random strategy

Payoff of random strategy
Payoff of random strategy

0 1 3 5 0 1 3 5 0 1 3 5
Payoff of SBPW strategy Payoff of SBPW strategy Payoff of SBPW strategy
(a) Lattice network (b) RR network (¢) BA network

Fig. 6. Payoffs for SBPW and random strategies for IPD games played in complex networks initialized with 50 instances of the TFT and WSLS strategies. In
each sub-figure, the strategy p of player X is fixed to Psgpw, and the strategy q of the partner, player Y (random strategy), can vary, sampling the 4-d cube of
ZD strategies (the blue dots correspond to 10* different realizations of q). 0, 1, 3, 5 on the coordinate correspond with the payoffs for different strategy
combinations for two interacting players in the PD game, as shown in Table 1.
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Fig. 7. Boxplots depicting the distribution of 4-d strategy values for memory-one strategies in SBPW clusters and the dominant strategies emerging from
these clusters for lattice, RR, and BA scale-free networks. In each sub-figure, the top panel shows the distribution of all strategies for each SBPW cluster and
the bottom panel shows the strategy distribution of 50 most dominant strategies winning out from the above SBPW cluster. The three networks are
initialized with 50 instances of the classic strategies (TFT and WSLS). For each boxplot, the blue line represents the median, the upper and lower bounds of
the green box represent the upper and lower IQR, red lines at the top and bottom represent maximum and minimum values, and cyan dots represent
outliers.

lattice network, it is difficult for the system to evolve into a situation in which one strategy occupies the whole network,
since two players will obtain the same payoff when their p, values are both 1, corresponding to the situation that they
update their strategies completely at random.

Sx =Sy = 3(P4qs + P2Daq3 — P2P4Gs + P39294 — P24 — P2P39294
—D2P49293 + P2P3G3Gs + P2P4b204 + P3Pad293 — P3P4q394) (6)
+(D4q4 + P2Daq3 — P2P4qs + P39294 — Pad294 — P2P39294
—D2P49293 + P2P343G4 + P2Paq244 + P3Paq243 — P3P4q394)-

4.3. The contest between dominant-strategy clusters

Another issue of interest is what would happen if the game was to occur within units representing the various clusters of
dominant strategies. In this respect, we identify and label the respective belonging clusters of 1000 dominant strategies that
evolved from each network topology. We approach this problem by treating each cluster as one separate population and
observing game results between these populations in pairs. Each game between any two populations is repeated 20 times.
We then record the cluster to which each dominant strategy belongs.
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Results for each of the three kinds of complex networks initialized with instances of 50 TFT and WSLS strategies are
shown in Fig. 8, and game results for populations with other initial states can be found in the Supplementary material.
Our findings suggest that, for lattice networks, the WSLS cluster can defeat almost any other clusters and the SBPW cluster
can beat almost all clusters except the WSLS cluster. For both the RR and BA scale-free networks, the WSLS cluster can defeat
almost all clusters except the SBPW cluster and the SBPW cluster will almost always lose to every cluster except the WSLS
cluster. It is also worth noting that a common feature of dominant strategies evolved from all three network topologies is
that, in addition to the type of each strategy cluster, the size of cluster significantly affects the outcome of the game: the
cluster with more strategies has clear advantages in the game. One aspect of the evidence for this conclusion is that the WSLS
cluster loses to the C2 cluster, as Fig. 8(c) shows. This owes to the fact that the former group size (25 strategies) is much
smaller than the latter (581 strategies). Fig. 9 gives a more intuitive interpretation of the win-loss relationships between
the different strategy clusters for lattice, RR, and BA scale-free networks.

4.4. Performance comparison of TFT, WSLS and SBPW

In terms of the distinctive characteristics of the two classic IPD game strategies, TFT always imitates the action of its part-
ner in the previous round and WSLS only cooperates if both players chose the same behavior in the previous round. SBPW is a
novel strategy with which a player can always make its payoff higher than its partner’s and reduce the welfare of the whole
population at the same time. To explore the differences of the performance and survival advantage of the three strategies
mentioned above, we count the number of each that evolved among the 1000 dominant strategies for each network struc-
ture. These results are shown in Fig. 10.

It is evident that TFT always goes extinct irrespective of the network structure type and the initial number of classic
strategies added into the initial populations. For WSLS, within lattice networks, as its initial frequency increases, the prob-
ability of it becoming the dominant strategy grows rapidly. This is not true for BA scale-free networks, where larger initial
numbers do not convey a survival advantage. For RR networks, the result is intermediate that a high initial frequency of the
WSLS strategy among populations only slightly increases its ultimate level of dominance. Thus, we deduce that the random-
ness and heterogeneity of networks will weaken the survival advantage for the WSLS strategy. As for SBPW, the initial num-
ber of classic strategies has little effect on its level of dominance in any network game environment, meaning that the
survival dominance of SBPW is stable and robust in different network structures, though its fitness is stronger for the lattice
and BA scale-free networks than it is for RR networks.

5. Discussion and conclusion

The strategy that can remember the outcomes of previous rounds of competition has recently attracted considerable
attention. It can help game players make the subsequent strategy decisions based on the action of their opponents so as
to optimize their behaviors and maximize their own benefits, which is closer to the real-world situation. TFT and WSLS
are classic two-player strategies. Based on these foundational models, a novel ZD strategy has been proposed, in which
one player can unilaterally determine its opponent’s score and create an extortionate linear relation between the payoffs
for both players. In this paper, we have investigated a wide range of random memory-one strategies across numerous game
scenarios and explored what kind of strategy can be successful and eventually come to dominate the whole population.

In order to realistically recreate real-world conditions, we employed different types of complex networks to simulate var-
ious population structures and we integrated different classic strategies into our models in order to simulate a diversity of
population states. Clustering the dominant strategies evolved from these various types of complex networks, we discovered
the SBPW strategy, which is capable of unilaterally controlling an opponent’s payoff lower than that of the focal player. The
SBPW strategy also reduces benefits at the scale of the whole population, which results in the cooperative dilemma. When
confronted with an unknown-strategy partner, SBPW still has the upper hand with a win probability of about 86% within

200 200
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J— s 175 C3(WSLS) 0 6 175
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ek} o
« 125 o 125 « c2 14 125
= . =
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Fig. 8. Results of games between the dominant-strategy clusters for lattice, RR, and BA scale-free networks initialized with 50 instances of the TFT and
WSLS strategies. Each number in the colored square represents the number of times that Cluster A defeats Cluster B in their 20 simulated games. C1-C5 in
each sub-figure corresponds with C1-C5 in Fig. 4. Specifically, the clusters belonging to WSLS and S.BPW are labeled.
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Lattice RR & BA

Fig. 9. The win-loss relationships between different clusters for lattice, RR, and BA scale-free networks. Large colored circles represent different network
structures. The direction of every arrow in each circle implies a game result within in structured populations. The strategy in which the arrow begins is the
winning side, while the strategy where the arrow ends is the losing side. The intersection of two circles represents the common feature of corresponding
networks.
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Fig. 10. Comparison of the final dominant strategy counts for the TFT, WSLS and SBPW strategies among the 1000 evolved dominant strategies on lattice
networks, RR networks, and BA scale-free networks initialized with 1, 20, and 50 instances of the TFT and WSLS strategies.

lattice network and 98% within RR and BA scale-free networks. Furthermore, we found that SBPW strategies with p; = 1 on
lattice network and with lower p, on RR and BA scale-free networks are dominant within IPD games. In addition, we
explored the win-loss relationship among SBPW, WSLS and other clusters, after which we found the following: For lattice
networks, the most dominant strategy is WSLS, followed by SBPW, and both of these strategies are capable of defeating other
strategy clusters. For RR and BA scale-free networks, the three strategies can restrict each other. WSLS has an advantage over
the other strategy clusters, which can beat SBPW in most cases and, conversely, the SBPW is stronger than WSLS. Moreover, a
size advantage is obvious among the various strategy clusters. The larger the initial population, the more likely it is to win
the game. More noteworthily, unlike the TFT strategy, which will ultimately tend to die out within complex networks, and
the WSLS strategy for which its survival advantage will be weakened by the randomness and heterogeneity of populations,
the SPBW strategy has a significant survival advantage and robust fitness in game evolution over time.

In summary, our findings indicate that complex networks will evolve an SBPW strategy, which leads to the cooperative
dilemma for social networks by driving down the profits of opponents and further reducing the benefits at the scale of the
population as a whole. Based on this finding, we have made further exploration and concluded that the SBPW strategy has a
significant survival advantage and robust fitness in a wide range of game scenarios. Besides, we have characterized some of
its unique attributes. Future research might focus on the factors promoting the evolution of the SBPW as a dominant strategy
among various network conditions, as well as potential mechanisms that would be capable of regulating the SBPW strategy
and thereby improving the broader welfare of social systems.
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