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a b s t r a c t

Switched descriptor systems characterized by a repetitive finite sequence of modes can exhibit state
discontinuities at the switching time instants. The amplitudes of these discontinuities depend on
the consistency projectors of the modes. A switched ordinary differential equations model whose
continuous state evolution approximates the state of the original system is proposed. Sufficient
conditions based on linear matrix inequalities on the modes projectors ensure that the approximation
error is of linear order of the switching period. The theoretical findings are applied to a switched
capacitor circuit and numerical results illustrate the practical usefulness of the proposed model.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Switched descriptor systems represent the dynamic behav-
or of several physical apparatus, e.g. mechanical systems (Sajja,
orless, Zeheb, & Shorten, 2019) and electronic circuits (Mostac-
iuolo, Vasca, & Baccari, 2017b). The dynamics of switched de-
criptor systems is determined by the switching among different
odes, where each mode is characterized by a set of linear
ifferential equations and algebraic constraints. A mathematical
epresentation of this class of systems can be obtained in terms
f switched linear differential algebraic equations (DAE).
Several modeling and control aspects related to switched

AE have been considered in the literature, e.g. observer de-
ign (Zhang, Zhao, Zhu, & Karimi, 2019), stability (Sajja et al.,
019; Tanwani & Trenn, 2017), initial value problems (Brenan,
ampbell, & Petzold, 1996; Geerts, 1993), switched control sys-
ems with impulsive dynamics (Bonilla, Malabre, & Azhmyakov,
015a, 2015b).
Switched DAE can exhibit specific behaviors, such as impulses

nd state discontinuities at the switching instants, which are not
ossible in switched ordinary differential equations (ODE). These
omplexities inspired studies which have investigated simpler
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ttps://doi.org/10.1016/j.automatica.2021.110082
005-1098/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
models able to approximate the behavior of the original system
and to deduce properties. Each of these approaches is restricted to
a specific class of switched descriptor systems. The reduced-order
model proposed in Zhang et al. (2019) for observer design in the
presence of unknown inputs assumes a common E matrix. Con-
tinuous ODE have been proposed for approximating the solution
of switched DAE by using averaging techniques (Mostacciuolo,
Trenn, & Vasca, 2015a, 2015b, 2017a), but the conditions to be
satisfied by the modes projectors do not hold for many prac-
tical systems (Mostacciuolo et al., 2017b). In Sajja et al. (2019)
reduced-order models of switched descriptor systems are used
for deriving exponential stability conditions about the origin, but
the results therein require nonsingular A matrices and the rank
of the E matrices to be the same.

In this paper, we propose a switched ODE model which ap-
proximates the switched DAE system under milder assumptions
with respect to those used in the previous literature. The use of
switched ODE with a continuous state evolution approximating
the dynamic behavior of a switched DAE has been shown to
be useful for the analysis of switched descriptor systems. One
of these situations is the simulation of descriptor systems with
singularities, e.g. inconsistent initial conditions (Schöps, Bartel,
Günther, Ter Maten, & Müller, 2014), where numerical issues
could be amplified by the presence of switching modes. In this
scenario switched ODE models could help to obtain numerical
results by using standard software suited for systems with a
continuous state evolution. The approximation of a switched

descriptor system with a switched ODE has also been used for

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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tability analysis (Mironchenko, Wirth, & Wulff, 2015) and ob-
erver design (Petreczky, Tanwani, & Trenn, 2015). In partic-
lar, the analysis in Mironchenko et al. (2015) is based on a
onstant switching period, but in many practical applications,
uch as for power converters, the switching among the differ-
nt modes are not repetitive in the sense that different duty
ycles and different switching periods are required for the system
perations (Mostacciuolo & Vasca, 2016).
The model proposed in this paper, by covering the situation

hen the switching period is not fixed a priori, can be considered
s an extension of the model presented in Mironchenko et al.
2015). The dynamic matrix of each mode of our switched ODE
odel depends on the switching period and we provide a design

ule for this dependence. This technique allows us to prove an
pproximation result between the solution of the proposed model
nd that of the original switched DAE, showing that the differ-
nce of the two solutions is of the same order as the switching
eriod. Moreover, we also provide operative sufficient conditions
xpressed in terms of linear matrix inequalities (LMIs) which
llow one to verify the hypotheses of our main result. The ap-
roximation result is shown to be useful for asymptotic stability
nalysis of both the switched DAE and the proposed switched
DE systems.
The paper is organized in several sections. In Section 2 the

lass of switched descriptor systems of interest is presented.
ection 3 presents the new switched ODE model. The main result
f the paper is shown in Section 4. In Section 5 a numerical
erification of the theoretical results obtained by considering a
ractical switched capacitor circuit is proposed. In Section 6 the
esults are summarized. All proofs of the lemmas and theorem
roposed in the paper are collected in the Appendix.

. Switched descriptor system

The switched descriptor system of interest can be represented
s an homogeneous switched DAE with q modes, i.e.

σ (t)ẋ = Aσ (t)x (1)

where σ : R+ → Σ , with R+ the set of positive real numbers,
is a piecewise constant right-continuous function, that selects at
each time instant the index of the active mode from the finite
index set Σ := {1, 2, . . . , q}. We assume that each mode is given
by a regular matrix pair (Ei, Ai), i.e. the polynomial det(sEi −Ai) is
not identically zero, and that the switching signal σ repeats the
sequence of modes in any switching period p > 0, i.e.,

σ (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, t ∈ [tk, sk,2),
2, t ∈ [sk,2, sk,3),
...

q, t ∈ [sk,q, tk+1)

(2)

with k ∈ N, with N the set of positive integers, i ∈ Σ , the
time instants tk being the multiple of the period p, the switching
time instants sk,i being the time instant when the ith mode starts
within the kth period. In particular, we assume sk,1 = tk for all
k ∈ N. Then we have

tk := kp, sk,i := tk +

i−1∑
j=1

dj,kp, (3)

where di,k ∈ D, D = (0, 1), is the duty cycle of the ith mode for
the kth period; in particular,

∑q
i=1 di,k = 1, see Fig. 1.

The solution of a switched DAE can also contain Dirac im-
pulses, i.e., each mode can have impulsive modes of arbitrary
degree. The impulse-free part of the solution is independent
from the impulsive part (however the opposite does not hold,
2

Fig. 1. Illustration of the switching times notation.

ee Trenn, 2012), which justifies the analysis of this paper that
oncentrates on the impulse-free part of the solution (which may
till contain jumps). The impulse free part of the solution of the
escriptor system can be obtained as the solution of a suitable
witched ODE model. This model is defined by using the consis-
ency projector and the flow matrix of each mode which can be
btained through a specific transformation. In particular, for any
egular matrix pair (Ei, Ai) there exist transformation matrices Si
nd Ti which put (Ei, Ai) into the quasi Weierstrass form, i.e.

SiEiTi, SiAiTi) =

([
I 0
0 Ni

]
,

[
Ji 0
0 I

])
, (4)

with Ti = [Vi, Wi], Si = [EiVi, AiWi]
−1 where Ni is a nilpotent

matrix, I is the identity matrix, Ji, Vi and Wi are matrices of
appropriate size. Then, for any regular matrix pair (Ei, Ai) it is
ossible to define the consistence projector Πi and the flow

matrix Fi as follows:

Πi = Ti

[
I 0
0 0

]
T−1
i , Fi = Ti

[
Ji 0
0 0

]
T−1
i . (5)

It is easy to verify that the consistency projector is an idem-
potent matrix, i.e., Π2

i = Πi, and that the projector and the flow
matrix are commutative with their product equal to the flow
matrix itself, i.e., FiΠi = Fi = ΠiFi. The consistency projectors
allow one to easily verify the impulse freeness of all distributional
solution of (1). The solution of switched system (1) is impulse free
under arbitrary switching if and only if for all i ̸= j ∈ Σ it holds
Ei(I − Πi)Πj = 0.

In Mostacciuolo et al. (2017a, Theorem 12) it is shown that
x : R+ → Rn is the impulse-free part of any (distributional)
solution of (1) if and only if it is a solution of the following
switched ODE model with jumps

ẋ(t) = Fix(t), t ∈ (sk,i, sk,i+1) (6a)

x(s+k,i) = Πix(s−k,i) (6b)

with x(0−) = x0, for k ∈ N, i ∈ Σ , where the matrices Fi are given
by (5) and sk,q+1 := tk+1 = sk+1,1.

The solution of (6) can be written by cascading the solutions of
the different modes and by considering the jumps at the switch-
ing time instants. In particular, at the switching time instants one
can write

x(s−k,i) =

k−1∏
m=1

⎛⎝ q∏
j=1

eFjdj,mpΠj

⎞⎠ i∏
j=1

eFjdj,mpΠjx0 (7)

and at the time instants internal to the mode evolution it is

x(τ ) = eFi(τ−sk,i)Πix(s−k,i) (8)

for any τ ∈ (sk,i, sk,i+1), k ∈ N and i ∈ Σ .
Note that throughout the paper the product of any q matrices

Gi ∈ Rn×n, i = 1, . . . , q is defined as (note the order)
∏q

i=1 Gi =

GqGq−1 · · · · · G2G1.

3. Proposed approximating model

The main objective of this paper consists of finding a switched
ODE model whose continuous solution approximates the discon-
tinuous solution (7)–(8) with an error of order of the switching
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eriod p, except for small time intervals after the switching time
instants.

3.1. Switched ODE model

The proposed switched model has the following modes dy-
amics

˙s(t) = F εp
i xs(t), t ∈ [sk,i, sk,i+1) (9)

with xs(0) = x0, for k ∈ N, i ∈ Σ . Each matrix F εp
i , i ∈ Σ ,

s defined as the sum of the flow matrix of that mode and a
uitable matrix Φi(p) which allows a smooth approximation of
he possible state jump:
εp
i = Fi + Φi(p) (10)

∈ Σ , where the matrix Fi is defined in (5) and

i(p) = Ti

[
0 0
0 −

1
εp
I

]
T−1
i . (11)

n Mironchenko et al. (2015) a model similar to (9)–(11) was
roposed but a constant parameter ε was considered therein. The
nterest in including a dependence on p comes from the fact that
n many practical systems the switching period is not fixed a
riori and a constant value for ε could lead to a weaker approx-
mation result when the switching period varies. Specifically, we
onsider

p = −
∆pp
log p2

(12)

here without loss of generality we assumed p < 1, and

∆p ≤ ∆p, 0 < ∆ ≪ min{di,k}i∈Σ,k∈N (13)

for all p < p̄. Since p < 1, the logarithm will be negative, so εp is
actually positive.

The solution of (9) for any τ ∈ [sk,i, sk,i+1], k ∈ N and i ∈ Σ ,
an be written as

s(τ ) = eF
εp
i (τ−sk,i)xs(sk,i) (14)

here

s(sk,i) =

k−1∏
m=1

⎛⎝ q∏
j=1

eF
εp
i dj,mp

⎞⎠ i∏
j=1

eF
εp
i dj,mpx0 (15)

s the solution at the switching time instants.

.2. Model motivation

In order to motivate the choice (12) it is useful to recall the
ollowing definition of an O(p) function

efinition 1. For any finite integer m ∈ N, a matrix function
: R+ → Rµ×ν , µ ∈ N, ν ∈ N, is said to be an O(pm) function as
→ 0 (G(p) = O(pm) for short), if there exist positive constants
and p̄ such that

G(p)∥ ≤ αpm, ∀p ∈ (0, p̄)

here ∥ · ∥ indicates the (induced) Euclidean norm.

In the following we show that the choice (12) implies that

s(sk,i + ∆pp) = Πix̄ + O(p2) (16)

here x̄ = xs(sk,i). In other words, by choosing εp as in (12), the
olution of (9) after a time interval ∆pp from the beginning of
he ith mode approximates with an error O(p2) the jump that the
solution of the switched DAE (1) would exhibit at the beginning
3

of the ith mode by starting from x̄. Let us verify (16). With simple
algebraic manipulations one can write

−εpΦi(p) =
∆pp
log p2

Φi(p) = Ti

[
0 0
0 I

]
T−1
i

= Ti

[
I 0
0 I

]
T−1
i − Ti

[
I 0
0 0

]
T−1
i = I − Πi. (17)

Therefore, by using (17) and (12) one can write:

eΦi(p)∆pp = e−
∆pp
εp (I−Πi)

= e(I−Πi) log p2

=

∞∑
n=0

(I − Πi)n logn p2

n!

= I +

∞∑
n=1

(I − Πi)n logn p2

n!

= I + (I − Πi)
∞∑
n=1

logn p2

n!

= I + (I − Πi)
∞∑
n=0

logn p2

n!
− (I − Πi)

= (I − Πi)elog p
2
+ Πi = Πi + (I − Πi)p2. (18)

By using xs(sk,i) = x̄, (14) with τ = sk,i+∆pp and (18) it follows
hat

s(sk,i + ∆pp) = e(Φi(p)+Fi)∆ppx̄
a
= eΦi(p)∆ppeFi∆ppx̄

= (Πi + (I − Πi)p2)(I + Fi∆pp + O(p3))x̄

= Πix̄ + O(p2) (19)

here in a
= has been used the commutativity property between

i and Φi(p) which follows from

i(I − Πi) = (I − Πi)Fi = Fi − FiΠi = Fi − Fi = 0.

The confirmation of (16) through (19) is a preliminary step
or proving the approximation of the solution of the switched
escriptor system (1) by the solution of the proposed switched
DE model (9). This result, which is proved in next section, is not
straightforward implication of (16) because the error between

he two solutions accumulates period by period.

. Main result

In this section we provide sufficient conditions such that the
olution (14)–(15) of the switched ODE (9) is an O(p) approxima-
tion of the solution (7)–(8) of the switched DAE (1). In particular,
we show that x(t) − xs(t) = O(p) holds uniformly for any t ∈

[0, T ] \ {(sk,i, sk,i + ∆pp)}k∈N,i∈Σ . Note that in principle it is not
ossible to approximate a discontinuous function (solution of
witched descriptor system) with a continuous function (solution
f switched ODE) uniformly for all t ∈ [0, T ] unless the jump

magnitude converges to zero, which we do not assume here.
However, with the proposed approximation method we are able
to show uniform convergence of order p outside a set (a union of
small intervals following the switchings) whose measure is also
of order p.

The proof of our main result combines some O(p) approxi-
mations of parts of the solutions (7)–(8) and (14)–(15). To do
this, it is useful to provide some preliminary expressions for
the exponential of the systems flow matrices which are proved
through the following lemma.
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emma 2. Given a set of matrices defined as in (5) and (10)–(13),
the following relations hold

eFidip = I + Fidip + O(p2) (20a)

eF
εp
i dip = Πi + Fidip + O(p2) (20b)

q∏
i=1

eF
εp
i dip =

q∏
i=1

eFidipΠi + O(p2) (20c)

or all p, di ∈ D = (0, 1), i ∈ Σ .

The solutions (7)–(8) and (14)–(15) present repetitions, period
y period, of products of exponential matrices. In order to an-
lyze these terms, let us define the Lipschitz continuous matrix
unction M : Dq

× R+ → Rn×n, with D = (0, 1), as

(δk, p) =

q∏
i=1

eFidi,kpΠi (21)

here k ∈ N and vector signal δk = [d1,k, . . . , dq,k]⊤ ∈ Dq

ndicates the duty cycles of all modes over time. The solution (7)
f the switched descriptor system at the kth switching period
nvolves the product of k matrices in the form (21). When p
oes to zero over the time interval (0, T ), one should consider
∈ {1, . . . , ℓ(p)}, where ℓ : R+ → N is the number of intervals
f length p from 0 to T :

(p) = ⌊
T
p
⌋ (22)

ith ⌊x⌋ the largest integer less than or equal to x ∈ R. Clearly,
hen p goes to zero ℓ(p) goes to infinity. In particular, it is
/ℓ(p) = O(p). Indeed it is 1/ℓ(p) ≤ p/(T − p) ≤ αp with
≥ 1/(T − p̄) where p̄ is chosen according to Definition 1. In

ur case, the proof of the approximation result between x(t) and
s(t), t ∈ [0, T ], requires some O(p) conditions on products of
(p) terms in the form (21). This result is proved in the following
emma.

emma 3. Consider a finite T ∈ R, ℓ(p) as in (22), a discrete time
ignal (δk)k∈N with values in Dq

= (0, 1)q, and generic Lipschitz
ontinuous matrix functions M : Dq

× R+ → Rn×n and G :

Dq
× R+ → Rn×n. Assume that there exists a γ1 ≥ 0 such that

∥M(δk, p)∥ ≤ 1 + γ1p (23a)

G(δk, p) = O(p2), (23b)

for all k ∈ {1, . . . , ℓ(p)}. Then
ℓ(p)∏
k=1

M(δk, p) = O(1) (24a)

ℓ(p)∏
k=1

(M(δk, p) + G(δk, p)) =

ℓ(p)∏
k=1

M(δk, p) + O(p). (24b)

It is interesting to compare the results in Lemma 3 with those
of Lemma 2 in Iannelli, Pedicini, Trenn, and Vasca (2013). Therein,
by considering constant duty cycles, i.e. δk = δ for all k ∈ N,
it is shown that if M(p)ℓ(p) = O(1) and G(p) = O(p) it is
(M(p) + G(p))ℓ(p) = O(1). The assumption (23a) in the particular
case that δk is constant, is more restrictive than M(p)ℓ(p) = O(1),
so as it can be deduced from (A.1d). On the other hand, from
Lemma 3 it follows that if (23) hold one can write the more
explicit expression (M(p) + G(p))ℓ(p) = M(p)ℓ(p) + O(p).

The condition (23a) cannot be easily checked a priori from the
structure of the model (9). The following lemma provides more
operative conditions based on linear matrix inequalities which
must be satisfied by the system projectors in order to let (23a)

be satisfied.

4

Lemma 4. Consider a set of matrices defined as in (5) and (10)–
(13). Assume that there exists a symmetric matrix P such that the
following set of linear matrix inequalities

P ≻ 0 (25a)

Π⊤

i PΠi − P ⪯ 0 (25b)

with i = 1, . . . , q, has a solution, then there exists a γ1 ≥ 0 such
that the following condition holds⏐⏐⏐⏐⏐⏐⏐⏐⏐ q∏

i=1

eFidi,kpΠi

⏐⏐⏐⏐⏐⏐⏐⏐⏐ ≤ 1 + γ1p (26)

for any k ∈ {1, . . . , ℓ(p)} and for all p with ||| · ||| being the norm
induced by the matrix P.

Conditions (25) can be relaxed under the hypothesis that
the sequence of the projectors is fixed. In particular one could
replace (25b) with the weaker condition Π⊤

∩
PΠ∩ − P ⪯ 0, where

Π∩ =
∏q

i=1 Πi. Note that if imΠ∩ ⊆ imΠi and kerΠ∩ ⊇ kerΠi
then Π∩ is a projector himself, see Mostacciuolo et al. (2017a).

By using the lemmas above, it is now possible to prove our
main result.

Theorem 5. Consider the switched DAE system (1) and the smooth
model (9) with the same initial conditions x(0−) = xs(0−) = x0.
Assume that there exists a symmetric matrix P such that the set of
LMIs (25) is satisfied. Then

x(t) − xs(t) = O(p) (27)

holds for any t ∈ [0, T ] \ {(sk,i, sk,i + ∆pp)}k∈N,i∈Σ .

Theorem 5 can be useful for providing some stability prop-
erties of (1) and (9). In order to make some considerations on
this, first note that the approximation result (27) is based on the
existence of a norm |||·||| such that (26) holds. It is easy to see that
this condition is not sufficient for having the asymptotic stability
of the switched descriptor system (1). On the other hand, if
some tighter conditions on the modes dynamics are assumed, one
can obtain a sufficient condition which ensures the asymptotic
stability of (1) and (9). In particular, from (7) it is easy to verify
that if there exists a γ2 > 0 such that⏐⏐⏐⏐⏐⏐⏐⏐⏐eFidi,kpΠi

⏐⏐⏐⏐⏐⏐⏐⏐⏐ ≤ 1 − γ2p (28)

for all i ∈ Σ , for any k ∈ {1, . . . , ℓ(p)} and for all p, than (1) is
asymptotically stable. On the other hand, if condition (28) hold,
the proposed switched ODE model (9) is asymptotically stable
either. Indeed, one can write

eF
εp
i di,kp = eFidi,kpeΦi(p)di,kp

= eFidi,kp
(

Πi + (I − Πi)p
2di,k
∆̄p

)
= eFidi,kpΠi + (I − Πi)p

2di,k
∆̄p . (29)

ow, since di,k < 1 for all i ∈ Σ and k ∈ N, from (28) and (29)
one obtains that there always exists a p̄ such that⏐⏐⏐⏐⏐⏐⏐⏐⏐eFεp

i di,kp
⏐⏐⏐⏐⏐⏐⏐⏐⏐ ≤ 1 − γ2p +

⏐⏐⏐⏐⏐⏐⏐⏐⏐I − Πi

⏐⏐⏐⏐⏐⏐⏐⏐⏐ p 2
∆̄p

≤ 1 − γ2p + γ3p ≤ 1 − γ4p (30)

or any p ∈ (0, p̄), with γ4 = γ2 − γ3 > 0, for all k ∈ N. By taking
he norm in (14)–(15) and by using (30) the asymptotic stability
f (9) directly follows.
In synthesis, if (28) hold then the switched descriptor sys-

em (1) and the proposed switched ODE system (9) with the
esign rule of ε expressed by (12), are both asymptotically
p
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Fig. 2. Elementary cell of a ladder step-up switched capacitor converter.

stable. In this scenario, one can apply to the proposed model (9)
some analysis and control design techniques which are standard
for models which do not exhibit discontinuities and, thanks to
the approximation result in Theorem 5, conclude corresponding
results for the switched descriptor system (1).

5. Example

In this section we verify the approximation (27) in Theo-
em 5 by using numerical results obtained by considering a
ractical switched capacitor electrical circuit. Let us consider the
ypical elementary cell of a ladder step-up switched capacitor
hown in Fig. 2. The circuit consists of two capacitors and four
witches that are controlled in a complementary way. The analy-
is of linear electrical circuit by means of state space models has
een extensively considered in the literature, e.g. Kalman (1963),
ewis (1986), Rosenbrock (1970) and Verghese, Lévy, and Kailath
1981). The circuit in Fig. 2 can be represented in the form (1)
ith two modes corresponding to the pair {S1, S2} turned on

together with the pair {S3, S4} turned off (σ = 1), and viceversa
(σ = 2).

By considering as input a constant voltage source u the cir-
uit can be modeled by adding a dummy state variable, say x1,
together with x2 and x3 being the state variables corresponding
to the voltages on the capacitors C1 and C2, respectively. Then the
matrices pairs and the consistence projectors of the two modes
are:

E1 =

[ 1 0 0
0 0 0
0 C2R C1R

]
A1 =

[
0 0 0
0 −1 1

−1 −1 0

]
E2 =

[ 1 0 0
0 0 0
0 C2R 0

]
A2 =

[
0 0 0
1 0 −1

−1 −1 0

]
Pi1 =

[ 1 0 0
0 C2ρ C1ρ
0 C2ρ C1ρ

]
Π2 =

[
1 0 0
0 1 0
1 0 0

]
where ρ =

1
C1+C2

. It can be easily verified that the linear matrix

nequalities (25) are satisfied, even though the projectors have
uclidean norms larger than 1.
The matrices Fi and Φi, i = 1, 2, are:

F1 =
ρ2

R

[
0 0 0

−
1
ρ −C2 −C1

−
1
ρ −C2 −C1

]
Φ1 =

ρ log p2

p∆p

[ 0 0 0
0 C1 −C1
0 −C2 C2

]
F2 =

[
0 0 0

−
1

C2R
−

1
C2R

0

0 0 0

]
Φ2 =

log p2

p∆p

[
0 0 0
0 0 0

−1 0 1

]
The simulation has been carried out by selecting the following

arameters: C1 = C2 = 120µF, R = 10 k� and ∆p = 0.9p. In
ig. 3 is shown the behavior of the state variables for different
witching periods, i.e. p = 0.1 s and p = 0.07 s respectively, over
six periods. Note that the duty cycles are different for each period.
The state variable x3 presents jumps when the system switches
from mode 1 to mode 2 and viceversa. The state evolution of the
5

Fig. 3. Time evolution of the state variables (second top, third bottom) of the
switched capacitor circuit with p = 0.1 s and p = 0.07 s: switched DAE system
(blue lines) and proposed model (red lines). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Error time evolution over six periods for the state variable x3 of the
witched capacitor circuit for p = 0.1 s (top) and p = 0.07 s (bottom) by using
he proposed method (left) and the model presented in Mironchenko et al.
2015) (right).

rror related to the second state variable together with the state
volution of the error obtained by reproposing the same scenario
ith the model presented in Mironchenko et al. (2015), where
= 0.004 are shown in Fig. 4. At the switching time instants

tate jumps occur and the error becomes quite small after few
witching periods. Clearly the amplitudes of the peak values of
he errors at the switching time instants are the same for the
wo (continuous) models. Nevertheless the error decreases much
aster with our model. Indeed, the root mean square of the state
rrors with respect to the solutions of (1) with p = 0.1 s (p =

.07 s) are 0.1178 (0.0752) for our model and 0.1983 (0.2324) for
he model proposed in Mironchenko et al. (2015) with ε = 0.004.
The integral of the error for the model in Mironchenko et al.
(2015) is 23% (165%) larger than the error obtained with our
model.

6. Conclusion

Many practical switched systems are characterized by a repeti-
tive sequence of a finite number of modes and can be represented
as descriptor systems. For switched descriptor systems which
present jumps in the state at the switching time instants it
is of practical interest to find possible smooth models which
approximate the behavior of the discontinuous system. In this
paper a switched ODE model whose state continuous solution
approximates the evolution of the switched descriptor system
solution has been proposed. Linear matrix inequalities depending
on the system projectors provide sufficient conditions for proving
that the approximation error between the two models is of order
of the switching period. The practical operating conditions of not
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onstant duty cycles and varying switching periods have been
onsidered. Numerical results obtained by considering a switched
apacitor circuit have validated the theoretical results. In this
aper we have considered homogeneous switched DAE and non-
omogeneous systems that can be represented in this form too
f inputs are such that the state can be enlarged by including a
odel of the input generator in the switched DAE model. Future
tep will extend this result for non-homogeneous switched DAE
ith more general inputs.

ppendix

.1. Properties on O(p) functions

We can state some properties of matrix functions which satisfy
efinition 1. In particular, for any finite integer m ∈ N, the
ollowing implications hold:

G(p) = O(pm) H⇒ G(p)ℓ(p) = O(pm−1) (A.1a)

G(p) = O(p) H⇒ G(p)ℓ(p) = O(pm) (A.1b)

G(p) = O(p2) H⇒ (G(p)ℓ(p))ℓ(p) = O(pm) (A.1c)

(p)ℓ(p) = O(1) H⇒ G(p) = O(1). (A.1d)

hese properties can be verified as partially done in Hardy (1967).
he implication (A.1a) follows from

G(p)ℓ(p)∥ ≤ αpm⌊
T
p
⌋ ≤ αp

T
p

= αTpm−1.

The implication (A.1b) follows from

∥G(p)ℓ(p)∥ ≤ ∥G(p)∥ℓ(p)
≤ (αp)ℓ(p)

= αmpm(αp)ℓ(p)−m
≤ αmpm

and one can choose p̂ ≤ p̄ such that αp̂ ≤ 1, for some p̂ ≤ p̄. The
implication (A.1c) follows from

∥(G(p)ℓ(p))ℓ(p)∥ ≤ ∥G(p)ℓ(p)∥ℓ(p)
≤ (αpT )ℓ(p)

= αmTmpm(αpT )ℓ(p)−m
≤ αmTmpm

and one can choose p̂ ≤ p̄ such that αp̂T ≤ 1, for some p̂ ≤ p̄.
The implication (A.1d) is a direct consequence of Definition 1.

Note that the opposite of (A.1d) do not hold, in general.
Clearly, any linear combination of functions which are O(pm)

is an O(pm) function itself.

A.2. Proof of Lemma 2

The condition (20a) is straightforward by using a Taylor ex-
pansion of the exponential matrix.

The condition (20b) is obtained as follows

eF
εp
i di,kp = eFidi,kp+Φi(p)di,kp

a
= eFidi,kpeΦi(p)di,kp

= (I + Fidi,kp + O(p2))eΦi(p)di,kp

b
= (I + Fidi,kp + O(p2))(Πi + O(p2))

= Πi + Fidi,kp + O(p2)

here in a
= has been used the commutativity property between

i and Φi(p) and in b
= has been used the following result:

Φi(p)di,kp =

∞∑
n=0

(I − Πi)n logn p2

n!
dni,k
∆n

p

= I +

∞∑ (I − Πi)n logn p2

n!
dni,k
∆n
n=1 p

6

= I + (I − Πi)
∞∑
n=1

logn p2

n!
dni,k
∆n

p

= I + (I − Πi)
∞∑
n=0

(
di,k log p2

∆p

)n 1
n!

− (I − Πi)

= (I − Πi)e
di,k
∆p log p2

+ Πi

= Πi + (I − Πi)p
2di,k
∆p = Πi + O(p2).

The condition (20c) is obtained by applying (20a) and (20b).
ndeed by using (20b) it follows that the left hand side of (20c)
an be written as
q

i=1

eF
εp
i di,kp =

q∏
i=1

(Πi + Fidi,kp + O(p2))

=

q∏
i=1

(Πi + Fidi,kp) + O(p2).

By using (20a) it follows that the first term in the right hand side
of (20c) can be written as
q∏

i=1

eFidi,kpΠi =

q∏
i=1

(I + Fidi,kp + O(p2))Πi

=

q∏
i=1

(Πi + Fidi,kp) + O(p2)

where we exploited the property FiΠi = Fi which holds for all
i ∈ Σ . By combining the last two expressions the expression (20c)
directly follows.

A.3. Proof of Lemma 3

For the sake of notation let us indicate M(δk, p) with Mk,p and
G(δk, p) with Gk,p, respectively.

Since the constant γ1 is the same for all matrices Mk,p one
has

∏ℓ(p)
k=1 Mk,p

 ≤
∏ℓ(p)

k=1

Mk,p
 ≤ (1 + γ1p)T/p

≤ eγ1T . Then
condition (24a) directly follows.

In order to obtain (24b) one can write
ℓ(p)∏
k=1

(Mk,p + Gk,p) =

ℓ(p)∏
k=1

Mk,p +

ℓ(p)∑
k=1

N(ℓ(p),k)∑
i=1

Hi,k,p (A.2)

with

N(ℓ(p), k) =
ℓ(p)!

k!(ℓ(p) − k)!
=

∏k−1
i=0 (ℓ(p) − i)

k!

and Hi,k,p suitable linear combinations of matrices where each
Hi,k,p contains a product with k matrices Gj,p with j ∈ N. Therefore
one can write

ℓ(p)∑
k=1

N(ℓ(p),k)∑
i=1

Hi,k,p

 ≤

ℓ(p)∑
k=1

N(ℓ(p),k)∑
i=1

Hi,k,p


≤

ℓ(p)∑
k=1

N(ℓ(p),k)∑
i=1

(1 + γ1p)ℓ(p)−k(αi,kp2)k

≤

ℓ(p)∑
k=1

N(ℓ(p),k)∑
i=1

(1 + γ1p)ℓ(p)(αi,kp2)k

≤

ℓ(p)∑ N(ℓ(p),k)∑
eγ1T (αi,kp2)k
k=1 i=1



E. Mostacciuolo, S. Trenn and F. Vasca Automatica 136 (2022) 110082

w
p

∑
a

A

R
q
&
s
a
a
(⏐⏐⏐
f
t
u⏐⏐⏐
≤ eγ1T
ℓ(p)∑
k=1

N(ℓ(p), k)(ᾱkp2)k

= eγ1T
ℓ(p)∑
k=1

∏k−1
i=0 (ℓ(p) − i)

k!
(ᾱkp2)k

≤ eγ1T
ℓ(p)∑
k=1

ℓ(p)k

k!
(ᾱkp2)k

= eγ1T
ℓ(p)∑
k=1

(ᾱkℓ(p)p2)k

k!
≤ eγ1T

ℓ(p)∑
k=1

(ᾱpT )k

k!

≤ eγ1Tp
ℓ(p)∑
k=1

(ᾱT )k

k!
≤ eγ1Tp

∞∑
k=1

(ᾱT )k

k!

= eγ1T
(
eᾱT

− 1
)
p (A.3)

here for all k it is ᾱk ≥ max{αi,k}
N(ℓ(p),k)
i=1 , ᾱ ≥ max{ᾱk}

ℓ(p)
k=1 and

≥ pk because without loss of generality one can assume p ≤ 1.
From (A.3) it follows that

ℓ(p)

k=1

N(ℓ(p),k)∑
i=1

Hi,k,p = O(p)

nd then by using (A.2) the condition (24b) directly follows.

.4. Proof of Lemma 4

Let us consider the following
q∏

i=1

eFidi,kpΠi =

q∏
i=1

(I + Fidi,kp + O(p2))Πi

=

q∏
i=1

Πi + O(p) (A.4)

Let us consider the difference equation ξk+1 = Fkξk with ξk ∈
n, k ∈ N0, Fk ∈ F and F = {Π1, . . . , Πq}. By using the piecewise
uadratic stability based on Lyapunov theory (Iervolino, Trenn,
Vasca, 2017) it follows that the existence of a matrix P which

olves the LMIs (25) imply that the system is absolutely stable for
ny sequence of matrices in F , see Sec. 5 in Boyd, Ghaoui, Feron,
nd Balakrishnan (1994). Then, by using Theorem 3 in Kozyakin
1990) it follows that⏐⏐⏐⏐⏐⏐Πi

⏐⏐⏐⏐⏐⏐⏐⏐⏐ ≤ 1 (A.5)

or all i = 1, . . . , q with ||| · ||| being the norm induced by
he matrix P . Therefore, by applying such norm to (A.4) and by
sing (A.5) one to write⏐⏐⏐⏐⏐⏐ q∏
i=1

eFidi,kpΠi

⏐⏐⏐⏐⏐⏐⏐⏐⏐ ≤

⏐⏐⏐⏐⏐⏐⏐⏐⏐ q∏
i=1

Πi

⏐⏐⏐⏐⏐⏐⏐⏐⏐ + γ1p

≤

q∏
i=1

⏐⏐⏐⏐⏐⏐⏐⏐⏐Πi

⏐⏐⏐⏐⏐⏐⏐⏐⏐ + γ1p ≤ 1 + γ1p (A.6)

which completes the proof.

A.5. Proof of Theorem 5

We first show that (27) holds at any switching time instant by
considering for x the value before the possible jump, i.e.

x(s−k,i) − xs(sk,i) = O(p) (A.7)
for any k ∈ {1, . . . , ℓ(p)} and i ∈ Σ .

7

By using Lemmas 3 and 4 with M(dk, p) =
∏q

j=1 e
Fjdj,kpΠj it

follows
q∏

j=1

eFjdj,kpΠj = O(1) (A.8a)

q∏
j=1

(
eFjdj,kpΠj + O(p2)

)
=

q∏
j=1

eFjdj,kpΠj + O(p) (A.8b)

for any k ∈ N0. Let us compute the solution of the smooth system:

xs(sk,i) =

k−1∏
m=1

⎛⎝ q∏
j=1

eF
εp
j dj,mp

⎞⎠ i∏
j=1

eF
εp
j dj,kpx0

a
=

⎡⎣ k−1∏
m=1

⎛⎝ q∏
j=1

eFjdj,mpΠj + O(p2)

⎞⎠
·

i∏
j=1

(Πj + Fjdj,kp + O(p2))

⎤⎦ x0

b
=

⎡⎣ k−1∏
m=1

⎛⎝ q∏
j=1

eFjdj,mpΠj

⎞⎠
·

i∏
j=1

(Πj + Fjdj,kp + O(p2)) + O(p)

⎤⎦ x0

c
=

k−1∏
m=1

⎛⎝ q∏
j=1

eFjdj,mpΠj

⎞⎠ i∏
j=1

Πjx0 + O(p) (A.9)

where in
(a)
= has been used (20b) and (20c) in Lemma 2, in

(b)
= has

been used (A.8b), in
(c)
= has been used (A.8a).

The solution of the switched DAE can be written as

x(s−k,i) =

k−1∏
m=1

⎛⎝ q∏
j=1

eFjdj,mpΠj

⎞⎠ i∏
j=1

eFjdj,mpΠjx0

=

k−1∏
m=1

⎛⎝ q∏
j=1

eFjdj,mpΠj

⎞⎠ i∏
j=1

(Πj + O(p))x0

=

k−1∏
m=1

⎛⎝ q∏
j=1

eFjdj,mpΠj

⎞⎠ i∏
j=1

Πjx0 + O(p). (A.10)

By subtracting (A.9) to (A.10) one obtains (A.7).
Now, it can be proven that x(t) − xs(t) = O(p) holds for

time instants different from switching time instants except for
the time intervals τ ∈ (sk,i, sk,i + ∆pp) for any k ∈ N and i ∈ Σ .
Let us assume that τ ∈ [sk,i + ∆pp, sk,i+1). Then the solution of
the switched DAE system is given by

x(τ ) = eFi(τ−sk,i)Πix(s−k,i).

In the same time interval, the solution of the smooth system is
given by

xs(τ ) = eF
εp
i (τ−∆pp−sk,i)xs(s−k,i)

Then one can write

x(τ ) − xs(τ )

= eFi(τ−sk,i)Πix(s−k,1) − eF
εp
i (τ−∆pp−sk,i)xs(s−k,i)

−

= (Πi + O(τ − sk,i))x(sk,1)
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− (Πi + O(τ − ∆pp − sk,i))xs(s−k,i)

= Πi(x(s−k,i) − xs(s−k,i)) + O(p) = O(p) (A.11)

or any τ ∈ [sk,i + ∆pp, sk,i+1), k ∈ N, i ∈ Σ , where in the last
anipulation we used (A.7). By combining (A.7) and (A.11) the
roof is complete.
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