



# University of Groningen

# A Systematic Review and Critical Appraisal of Peri-Procedural Tissue Perfusion Techniques and their Clinical Value in Patients with Peripheral Arterial Disease

Wermelink, Bryan; Ma, Kirsten F; Haalboom, Marieke; El Moumni, Mostafa; de Vries, Jean-Paul P M; Geelkerken, Robert H

Published in:

European Journal of Vascular and Endovascular Surgery

DOI:

10.1016/j.ejvs.2021.08.017

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Wermelink, B., Ma, K. F., Haalboom, M., El Moumni, M., de Vries, J-P. P. M., & Geelkerken, R. H. (2021). A Systematic Review and Critical Appraisal of Peri-Procedural Tissue Perfusion Techniques and their Clinical Value in Patients with Peripheral Arterial Disease. *European Journal of Vascular and Endovascular Surgery*, 62(6), 896-908. https://doi.org/10.1016/j.ejvs.2021.08.017

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.



# **SYSTEMATIC REVIEW**

# A Systematic Review and Critical Appraisal of Peri-Procedural Tissue Perfusion Techniques and their Clinical Value in Patients with Peripheral Arterial Disease

Bryan Wermelink a,b,\*,f, Kirsten F. Ma c,f, Marieke Haalboom d, Mostafa El Moumni e, Jean-Paul P.M. de Vries c, Robert H. Geelkerken a,b

- <sup>a</sup> University of Twente, Multi-Modality Medical Imaging Group, TechMed Centre, Enschede, The Netherlands
- <sup>b</sup> Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, The Netherlands
- <sup>c</sup> Department of Surgery, Division of Vascular Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- <sup>d</sup> Medical School Twente, Medisch Spectrum Twente, Enschede, The Netherlands
- e Department of Surgery, Division of Trauma Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands

#### WHAT THIS PAPER ADDS

Many techniques have been introduced to enable quantification of tissue perfusion in patients with peripheral arterial disease. These techniques should guide the vascular surgeon or interventionalist in real time during the revascularisation procedure and improve clinical outcomes. An overview is given of 10 techniques, focused on study protocols, research goals, and clinical outcomes. Evidence remains low regarding the clinical accuracy of the 10 included techniques, so prospective observational studies, to correlate peri-interventional assessments with clinical outcomes, are necessary as a first step for implementation into daily practice. The technique should be non-invasive, non-operator dependent, accurate, cost effective, and fast.

**Objective:** Many techniques have been introduced to enable quantification of tissue perfusion in patients with peripheral arterial disease (PAD). Currently, none of these techniques is widely used to analyse real time tissue perfusion changes during endovascular or surgical revascularisation procedures. The aim of this systematic review was to provide an up to date overview of the peri-procedural applicability of currently available techniques, diagnostic accuracy of assessing tissue perfusion and the relationship with clinical outcomes.

Data Sources: MEDLINE, Embase, CINAHL, and the Cochrane Central Register of Controlled Trials.

Review Methods: This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) guidelines. Four electronic databases were searched up to 31 12 2020 for eligible articles: MEDLINE, Embase, CINAHL and the Cochrane Central Register of Controlled Trials. Eligible articles describing a perfusion measurement technique, used in a peri-procedural setting before and within 24 hours after the revascularisation procedure, with the aim of determining the effect of intervention in patients with PAD, were assessed for inclusion. The QUADAS-2 tool was used to assess the risk of bias and applicability of the studies. Results: An overview of 10 techniques found in 26 eligible articles focused on study protocols, research goals, and clinical outcomes is provided. Non-invasive techniques included laser speckle contrast imaging, microlightguide spectrophotometry, magnetic resonance imaging perfusion, near infrared spectroscopy, skin perfusion pressure, and plantar thermography. Invasive techniques included two dimensional perfusion angiography, contrast enhanced ultrasound, computed tomography perfusion imaging, and indocyanine green angiography. The results of the 26 eligible studies, which were mostly of poor quality according to QUADAS-2, were without exception, not sufficient to substantiate implementation in daily clinical practice.

**Conclusion:** This systematic review provides an overview of 10 tissue perfusion assessment techniques for patients with PAD. It seems too early to appoint one of them as a reference standard. The scope of future research in this domain should therefore focus on clinical accuracy, reliability, and validation of the techniques.

**Keywords:** Chronic limb threatening ischaemia, Microcirculation, Peripheral arterial disease, Tissue perfusion Article history: Received 22 March 2021, Accepted 13 August 2021, Available online 19 October 2021

© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Society for Vascular Surgery. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

<sup>&</sup>lt;sup>‡</sup> B. Wermelink and K.F. Ma participated equally should be considered joint first authors.

<sup>\*</sup> Corresponding author. Multimodality Medical Imaging (M3i), TechMed Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands. E-mail address: b.wermelink@utwente.nl (Bryan Wermelink).

 $<sup>1078-5884 @ 2021\</sup> The\ Author(s).\ Published\ by\ Elsevier\ B.V.\ on\ behalf\ of\ European\ Society\ for\ Vascular\ Surgery.\ This\ is\ an\ open\ access\ article\ under\ the\ CC\ BY\ license\ (http://creativecommons.org/licenses/by/4.0/).$ 

#### **INTRODUCTION**

In peripheral arterial disease (PAD), macrovascular stenoses or occlusions cause an inadequate blood supply to the lower limbs. Patients with PAD may therefore suffer from intermittent claudication (IC), rest pain, or nonhealing wounds, which all lead to an impaired quality of life. IC is the most common presenting symptom of PAD, which in 5% of patients progresses to chronic limb threatening ischaemia (CLTI).<sup>3</sup> To prevent major tissue loss in patients with CLTI, revascularisation is most appropriate.<sup>2</sup> Clinical outcomes after a revascularisation procedure remain unpredictable when current imaging techniques are used. These techniques mainly focus on assessment of the macrovasculature and do not include the assessment of the microvasculature, which is pivotal in patients with CLTI. Therefore, satisfactory results might be accompanied by poor clinical outcomes and early amputations. Ideally, microcirculation changes should be determined during a revascularisation procedure to guide the vascular surgeon or interventionalist on how extensive the procedure must be to improve local tissue perfusion.<sup>5,6</sup> Many invasive and non-invasive techniques have been introduced in recent years that claim to enable the visualisation and quantification of the microvasculature and tissue perfusion. Unfortunately, none of these techniques is currently widely used peri-procedurally. Non-invasive techniques include laser speckle contrast imaging (LSCI), micro-lightguide spectrophotometry (O<sub>2</sub>C), magnetic resonance imaging (MRI) perfusion (MRIp), near infrared spectroscopy (NIRS), skin perfusion pressure (SPP), and plantar thermography (PT). Invasive techniques include two dimensional perfusion angiography (2D-PA), contrast enhanced ultrasound (CEUS), computed tomography (CT) perfusion imaging, and indocyanine green angiography (ICGA).

The aim of this systematic review was to provide an up to date overview of the peri-procedural applicability of the aforementioned techniques, a brief description of the techniques, their diagnostic accuracy in assessing tissue perfusion, and their relationship to clinical outcomes.

# **METHODS**

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) guidelines. Eligible articles were included if they described a technique to determine tissue perfusion, in patients with PAD, in a peri-procedural setting. Articles had to have focused on perfusion imaging before and within 24 hours of a revascularisation procedure, to determine the effect of the intervention. Imaging techniques were compared with well known conventional techniques like ankle brachial pressure index (ABPI), toe brachial index (TBI), and clinical outcomes such

as wound status, improvement in walking distance, or Fontaine classification. Included articles were full text articles published between 1 January 2010 and 31 December 2020. Exclusion criteria were articles that involved experimental treatment with stem cell therapy, that were not performed peri-procedurally, or that were animal studies. Furthermore, studies with fewer than 10 patients, commentaries, guidelines and letters to the editor were excluded.

#### Literature search

Four electronic databases were searched for eligible articles: MEDLINE, Embase, CINAHL, and the Cochrane Central Register of Controlled Trials. The database search was performed using medical subject headings (MeSH) terms for "peripheral arterial disease", "peripheral vascular diseases", "diagnostic imaging", "diagnostic techniques, cardiovascular", "photoacoustic techniques", "microcirculation", "perfusion", "vascular surgical procedures", and "operating rooms" complemented with the keywords "endovascular technique", "revascularisation", and "PTA". Free text words were used to avoid missing recently published manuscripts without a MeSH label. The complete search strategy is available in Supplementary Appendix 1. The titles and abstracts of the studies were independently screened by two authors (B.W. and K.F.M.), who were blinded to the study authors and journal titles. Disagreements were discussed by the two authors. Articles considered for inclusion were independently reviewed by the same two authors. Disagreements were solved by discussion or by consensus after consulting a third author (R.H.G.).

# Data collection

The details of eligible articles were collected by two authors (B.W. and K.F.M.) per study and organised using a predetermined data collection form. Extracted data were grouped per technique and structured regarding characteristics, research goal, comparison with conventional techniques, and clinical outcomes. Technical properties, advantages, disadvantages, and clinical applications of the respective techniques were described. Outcomes of interest comprised clinical applicability of the technique, diagnostic accuracy in assessing tissue perfusion, and their relationship with clinical outcomes. The QUADAS-2 tool was used by two independent observers (B.W. and K.F.M.) to assess the risk of bias and applicability of the studies. This tool was used to assess the risk of bias in patient selection, blinded assessment of the index test from the reference standard, and the flow and timing of the study and its measurements. Patient selection, the index test, and reference standard were assessed for concerns regarding applicability. If there was no mention of a reference standard, the risk of bias of index test and reference standard were scored as

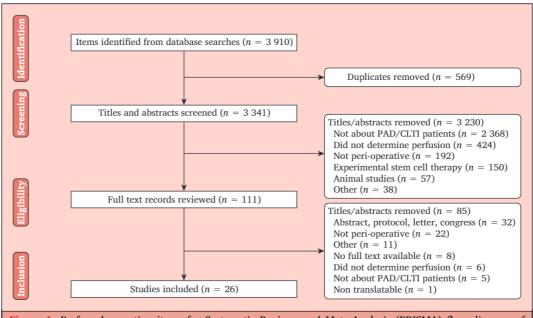
unknown.<sup>8</sup> For techniques reported in an eligible article, the technical background was described and study outcomes are presented in Table 2.

#### **RESULTS**

The database searches resulted in 3 910 identified records, of which 569 were duplicates. After title and abstract screening, 3 230 articles were excluded according to the exclusion criteria. Extensive full article review resulted in the exclusion of another 85 articles. Finally, 26 articles, describing 10 techniques, were found to be eligible for inclusion. The study flow diagram is shown in Fig. 1.

Details of the included studies are presented in Tables 1 — 3. Six non-invasive techniques were described in 11 articles including in total 523 patients (Fontaine II — IV). Four invasive techniques were described in 16 articles including in total 653 patients (Fontaine II — IV). Table 1 presents the characteristics of the included studies; Table 2 provides the research goals and clinical outcomes data. Table 3 summarises the advantages and disadvantages of the respective techniques. In two articles, 9,10 two different tissue perfusion techniques were described. The risk of bias and applicability concerns of the included studies according to QUADAS-2 tool are shown in Table 4 and Fig. 2.

# Non-invasive techniques


Laser speckle contrast imaging. LSCI uses a coherent laser light to illuminate tissue. This coherent laser light scatters on the surface of tissue, creating an interference pattern called a speckle pattern. The motion of red blood cells (RBCs) in the microcirculation changes the speckle pattern over time, resulting in blurring of the image. Blurring is

increased by a higher velocity or number of RBCs and displayed in real time blood flow maps. 10,11

Magnetic resonance imaging perfusion. MRIp uses arterial spin labelling (ASL) to measure absolute tissue perfusion. ASL uses the inversion of water molecules in blood as an endogenous contrast agent. By subtracting tagged images from a control image, a perfusion signal is obtained. Regions of interest (ROIs) are drawn in muscle groups, from where a perfusion time course is extracted. Thereafter, parameters of interest can be extracted. Other promising MRI techniques do measure tissue perfusion but did not fulfil the inclusion criteria of this review. These techniques are described in more detail in several other studies. Regions

Micro-lightguide spectrophotometry.  $O_2C$ , or "oxygen to see", uses a combination of laser Doppler flowmetry and spectroscopy.  $O_2C$  is determined using white light and laser light, with a penetration depth up to 2 mm reaching the dermis. <sup>16,17</sup> RBC movement causes a laser Doppler shift, which is detected as blood velocity. Spectroscopy is used to determine the amount of haemoglobin in a skin volume. Overall flow can be extracted into the following parameters: oxygen saturation (sO<sub>2</sub>); relative haemoglobin (rHB) amount; relative blood flow; and blood flow velocity. <sup>16</sup>

Near-infrared spectroscopy. NIRS measures single tissue oxygen saturation, continuously, with a maximum imaging depth of approximately 15-20 mm, including muscle tissue. <sup>18,19</sup> Measurements are performed using an optode, housing the light source (red and near infrared spectrum). Light is emitted through the sampled tissue and is partly absorbed and reflected, which is recorded by photodetectors. <sup>19,20</sup> Oxygenated and deoxygenated haemoglobin have



**Figure 1.** Preferred reporting items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram of screening, eligibility, and inclusion phases of the selection process for studies on peri-procedural tissue perfusion techniques for patients with peripheral arterial disease (PAD) of the lower limbs. CLTI = chronic limb threatening ischaemia.

Table 1. Overview of the 26 included studies for each diagnostic tissue perfusion technique with a focus on study year, study design, number of patients, timing of measurements, measurement protocol, and location and measurement system

| Study (year)                                                      | Study design                           | Patients / limbs — n (Fontaine)            | Timing of measurements                                                                         | Measurement location                                                                                                                                                                                                                  | Measurement system                                                                                                                   |
|-------------------------------------------------------------------|----------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Laser speckle contrast                                            | imaging                                |                                            |                                                                                                |                                                                                                                                                                                                                                       |                                                                                                                                      |
| Kikuchi                                                           | Prospective                            | 31/33 (7 IIb, 4 III,                       | Before and immediately after                                                                   | Plantar side of the foot lateral and                                                                                                                                                                                                  | LSFG-PIE (Softcare, Fukuoka, Japan                                                                                                   |
| et al. (2019) <sup>10</sup><br>MRI perfusion                      | cohort study                           | 22 IV)                                     | revascularisation                                                                              | medial and first and fifth toe                                                                                                                                                                                                        |                                                                                                                                      |
| Grözinger et al.                                                  | Prospective                            | 10/- (1 IIa, 9 IIb)                        | Before and after revascularisation                                                             | Soleus and tibialis anterior muscle                                                                                                                                                                                                   | 3 Tesla system (Magnetom Trio;                                                                                                       |
| $(2014)^{12}$                                                     | cohort study                           | , (,                                       |                                                                                                | during reactive hyperaemia                                                                                                                                                                                                            | Siemens Healthcare, Erlangen,<br>Germany)                                                                                            |
| Micro-lightguide spect                                            |                                        |                                            |                                                                                                |                                                                                                                                                                                                                                       |                                                                                                                                      |
| Rother <i>et al.</i> (2017) <sup>16</sup>                         | Prospective<br>cohort study            | 30/- (8 III, 22 IV)                        | Continuously during endovascular revascularisation                                             | Dorsal and plantar side of the foot,<br>lateral side of the ankle. Control<br>probe on the contralateral leg                                                                                                                          | The O <sub>2</sub> C (LEA Medizintechnik,<br>Giessen, Germany)                                                                       |
| Near infrared spectros                                            | scopy                                  |                                            |                                                                                                | •                                                                                                                                                                                                                                     |                                                                                                                                      |
| Boezeman<br>et <i>al.</i> (2016) <sup>19</sup>                    | Prospective<br>cohort study            | 14/- (6 III, 8 IV)                         | Continuously during endovascular<br>revascularisation and 4 weeks after<br>treatment           | Foot ulcers: 2 cm distal to the arterial ulcer (opt 1) and contralateral (opt 2). Toe ulcers: 2 cm proximal to the arterial ulcer at the distal metatarsal level. Without ulcer: dorsum of the foot (opt 1) and contralateral (opt 2) | Hamamatsu NIRO-200 system<br>(Hamamatsu Photonics K.K,<br>Hamamatsu, Japan)                                                          |
| Kundra <i>et al.</i><br>(2020) <sup>21</sup>                      | Prospective cohort study               | 30/- (Unknown)                             | Continuously during endovascular<br>revascularisation until 12 h after the<br>procedure        | The operative limb                                                                                                                                                                                                                    | Not reported                                                                                                                         |
| Plantar thermography                                              | ,                                      |                                            | Paraella                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                      |
| Chang et al. (2020) <sup>22</sup>                                 | Prospective<br>cohort study            | 124/- (124 IV)                             | Before and after revascularisation                                                             | Dorsal and plantar side of the foot<br>based on the angiosome concept                                                                                                                                                                 | Digital infrared thermal image<br>system (Spectrum 9000-MB Series;<br>United Integrated Service, Taipei<br>Hsien, Taiwan)            |
| Skin perfusion pressur<br>Ichihashi et al.                        | Prospective                            | 147/- (147 IV)                             | Before and 1, 2, 7, and 30 days after                                                          | Dorsal and plantar side of the foot                                                                                                                                                                                                   | SensiLase PAD 4000 (Kaneka                                                                                                           |
| (2020) <sup>27</sup>                                              | multicentre<br>cohort study            | 14//- (14/ IV)                             | revascularisation                                                                              | based on the angiosome concept                                                                                                                                                                                                        | Medical Products, Osaka, Japan)                                                                                                      |
| Ikeoka <i>et al.</i><br>(2018) <sup>25</sup>                      | Prospective cohort study               | 16/- (14 IIb, 2<br>III)                    | Before and after revascularisation                                                             | Dorsal and plantar side of the foot                                                                                                                                                                                                   | SPP (Nahri MV monitor; Nexis,<br>Tokyo, Japan)                                                                                       |
| Ikeoka <i>et al.</i><br>(2020) <sup>9</sup>                       | Prospective<br>cohort study            | 33/- (7 IIb, 13 III<br>and 13 IV)          | Before and the day after revascularisation                                                     | Dorsal and plantar side of the foot                                                                                                                                                                                                   | SensiLase PAD 4000 (Vasamed;<br>Eden Prairie, MN, USA)                                                                               |
| Kawarada <i>et al.</i>                                            | Retrospective                          | 44/57 (57 IV)                              | Before and one day after                                                                       | Dorsal and plantar side of the foot                                                                                                                                                                                                   | SensiLase PAD                                                                                                                        |
| $(2014)^{24}$                                                     | study                                  |                                            | revascularisation                                                                              |                                                                                                                                                                                                                                       | 3000 device (Vasamed)                                                                                                                |
| Kikuchi et al.                                                    | Prospective                            | 31/33 (7 IIb, 4 III,                       | Before and immediately, three, and                                                             | Plantar side of the foot, lateral and                                                                                                                                                                                                 | Laser doppler probe (Philips,                                                                                                        |
| (2019) <sup>10</sup> Mochizuki <i>et al.</i> (2016) <sup>23</sup> | cohort study<br>Retrospective<br>study | 22 IV)<br>44/48 (5 III, 43<br>IV)          | seven days after revascularisation<br>Before and after revascularisation                       | medial sides  Dorsal and plantar side of the foot, ankle, below and above knee                                                                                                                                                        | Amsterdam, Netherlands)  LASER DOPP PV 2000 (Vasamedic St. Paul, MN, USA)                                                            |
| 2D perfusion angiogra                                             |                                        | 17)                                        |                                                                                                | ankle, below and above knee                                                                                                                                                                                                           | ot. Fatti, Wilv, Conj                                                                                                                |
| Hinrichs <i>et al.</i> (2017) <sup>28</sup>                       | Retrospective<br>study                 | 21/— (19 IIB, 2<br>III)                    | At the start and end of the endovascular procedure                                             | Intra-arterial ROI placement, one<br>proximal and distal to the vascular<br>lesion                                                                                                                                                    | Artis Q, (Siemens Healthcare,<br>Forchheim, Germany) and syngo X<br>Workplace VD10A (Siemens<br>Healthcare).                         |
| Ikeoka <i>et al.</i> (2020) <sup>9</sup>                          | Prospective cohort study               | 33/- (7 IIb, 13 III<br>and 13 IV)          | At the start and end of the endovascular procedure                                             | ROI was below the ankle and included the arterial foot arch                                                                                                                                                                           | DSA system not described. 2D<br>perfusion software (Philips<br>Healthcare, Best, the Netherlands)                                    |
| Jens et al.                                                       | Prospective                            | 18/- (III or IV,                           | At the start and end of the                                                                    | ROI included the region between the                                                                                                                                                                                                   | Allura XperFD20 system with post                                                                                                     |
| (2015) <sup>30</sup>                                              | cohort study                           | exact numbers<br>unknown)                  | endovascular procedure                                                                         | tibiotalar joint and the mid-<br>metatarsal region Workspot R1.1 with 2D<br>(Philips Healthcare).                                                                                                                                     |                                                                                                                                      |
| Kim et al.                                                        | Prospective                            | 16/- (4 IIb, 3 III,                        | At the start and end of the                                                                    | ROI was a small circular selection                                                                                                                                                                                                    | DSA with 2D perfusion colour code                                                                                                    |
| (2017) <sup>34</sup>                                              | cohort study                           | 9 IV)                                      | endovascular procedure                                                                         | overlying the most robust tibial or<br>peroneal artery at the level of the<br>medial malleolus                                                                                                                                        | angiography system. (Philips<br>Healthcare, Andover, MA, USA). 2<br>perfusion software not described                                 |
| Murray et al.                                                     | Retrospective                          | 21/- (24 studies:                          | At the start and end of the                                                                    | ROI placed over the hindfoot and                                                                                                                                                                                                      | Allura Xper FD20 system and                                                                                                          |
| $(2016)^{29}$                                                     | study                                  | 10 III, 14 IV)                             | endovascular procedure                                                                         | over the forefoot                                                                                                                                                                                                                     | postprocessing software from Phili<br>(Interventional Workspot R1.0.1;<br>Philips Healthcare)                                        |
| Ng et al.<br>(2019) <sup>31</sup>                                 | Retrospective<br>study                 | 47/- (8 III, 39 IV)                        | At the start and end of the endovascular procedure                                             | ROI placed on the main runoff, of<br>the pedal vessel of the foot                                                                                                                                                                     | Artis zeego and postprocessing software from Siemens (syngo iFlor Siemens Healthcare)                                                |
| Pärsson <i>et al.</i> (2020) <sup>33</sup>                        | Prospective<br>cohort study            | 33/- (11 III, 22<br>IV)                    | At the start and end of the endovascular procedure                                             | ROI was manually placed between<br>the tibiotalar joint and the midtarsal<br>region including part of the<br>calcaneus                                                                                                                | Allura XperFD20 system with post processing software (Interventiona Workspot R1.0.1; (Philips Healthcare)                            |
| Reekers et al.<br>(2016) <sup>32</sup>                            | Prospective<br>cohort study            | 68/- (unknown)                             | At the start and end of the endovascular procedure                                             | ROI was placed not lower than the<br>middle cuneiform bone, where the<br>arterial foot arch is situated                                                                                                                               | Allura XperFD20 system with post<br>processing software (Interventiona<br>Workspot R1.1 with 2D perfusion<br>R1; Philips Healthcare) |
| Contrast enhanced ult                                             |                                        |                                            |                                                                                                |                                                                                                                                                                                                                                       |                                                                                                                                      |
| Duerschmied<br>et al.<br>(2010) <sup>36</sup>                     | Prospective<br>cohort study            | 34/- (IIa-IV,<br>exact numbers<br>unknown) | Before and directly after<br>revascularisation and after three and<br>five months of follow up | Area between proximal and medial<br>third of gastrocnemius and soleus<br>muscle                                                                                                                                                       | LOGIQ 9 ultrasound system with a<br>-7 MHz wide band linear transduc<br>(7L-probe; GE Healthcare<br>Technologies, Milwaukee, WI, US/ |

| Table 1-continued                             |                                                                         |                                    |                                                             |                                                                                                    |                                                                                                          |
|-----------------------------------------------|-------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Study (year)                                  | r) Study design Patients / limbs Timing of measurements $-n$ (Fontaine) |                                    | Timing of measurements                                      | Measurement location                                                                               | Measurement system                                                                                       |
| CT perfusion imaging                          | 3                                                                       |                                    |                                                             |                                                                                                    |                                                                                                          |
| Ma et al.<br>(2021) <sup>37</sup>             | Prospective<br>cohort study                                             | 27/- (7 IIb, 11<br>III, 9 IV)      | At the start and within 10 min after endovascular procedure | 3 ROIs based on the angiosome<br>concept: dorsum-ATA, plantar<br>surface-PTA, lateral malleolus-PA | Artis Zeego C arm with post-<br>processing via syngo iFlow<br>workstation (Siemens Healthcare)           |
| Indocyanine green an                          | ngiography                                                              |                                    |                                                             |                                                                                                    |                                                                                                          |
| Colvard <i>et al.</i><br>(2016) <sup>39</sup> | Prospective cohort study                                                | 93/- (54 IIb, 3<br>III, 36 IV)     | Before and immediately after revascularisation              | Plantar side of the foot                                                                           | SPY technology (Novadaq<br>Technologies, Bonita Springs, FL,<br>USA)                                     |
| Mironov et al.<br>(2019) <sup>44</sup>        | Prospective cohort study                                                | 28/- (10 III, 18<br>IV)            | Before and immediately after revascularisation              | Dorsal side of the foot                                                                            | SPY Elite System (Novadaq<br>Technologies, Mississuaga, ON,<br>Canada; LifeCell, Branchburg, NJ,<br>USA) |
| Patel <i>et al.</i><br>(2018) <sup>40</sup>   | Prospective<br>cohort study                                             | 47/- (47 IV)                       | Before and immediately after revascularisation              | ROI was the foot ulcer                                                                             | SPY fluorescent (Novadaq) imaging<br>system                                                              |
| Rother et al.<br>(2017) <sup>42</sup>         | Prospective cohort study                                                | 33/- (10 III, 23<br>IV)            | Before and immediately after revascularisation              | Dorsal and plantar side of the foot                                                                | SPY Elite system (Novadaq)                                                                               |
| Rother <i>et al.</i><br>(2018) <sup>43</sup>  | Prospective<br>cohort study                                             | 40/- (12 III, 28<br>IV)            | Before and immediately after revascularisation              | Dorsal and plantar side of the foot                                                                | SPY Elite system (IFA; Novadaq)                                                                          |
| Settembre et al.<br>(2017) <sup>45</sup>      | Prospective cohort study                                                | 101/104 (62 IIB,<br>12 III, 30 IV) | Before and immediately after revascularisation              | Dorsal and plantar side of the foot                                                                | SPY device (SP 3055; Novadaq)                                                                            |

2D = two dimensional; ROI = region of interest; DSA = digital subtraction angiography; CT = computed tomography; ATA = anterior tibial artery; Opt = optode; PTA = posterior tibial artery; PA = peroneal artery; IFA = intra-operative fluorescence angiography; LSFG = laser speckle flowgraphy; O2C = lightguide spectrophotometry; PAD = peripheral arterial disease; SPP = skin perfusion pressure.

different absorption spectra for red and near infrared light, making it possible to determine the proportion of oxygenated haemoglobin using NIRS. The single tissue oxygen saturation value in the measured tissue therefore reflects the ratio (%) between concentrations of oxygenated and deoxygenated haemoglobin. <sup>19</sup>

#### Study outcomes

Two studies, including 14 and 30 patients with Fontaine III — IV PAD, respectively, were found. The study by Boezeman *et al.* showed no significant improvement of single tissue oxygen saturation directly after revascularisation. <sup>19</sup> ABPI or TBI showed a significant improvement after four weeks; however, no correlation with single tissue oxygen saturation directly after revascularisation was determined. <sup>19</sup> The study by Kundra *et al.* showed a significant improvement in single tissue oxygen saturation after surgery, which correlated with Doppler signals. <sup>21</sup>

Plantar thermography. Thermography detects infrared radiation, typically emitted from skin, which presents regional temperature as a heat zone image. Both the plantar and dorsal foot are measured using a digital infrared thermal imaging system, with a standardised temperature range of  $17^{\circ}\text{C} - 34^{\circ}\text{C}$ . Software converts the temperature into a colour coded image. <sup>22</sup>

**Skin perfusion pressure.** SPP can be measured on the dorsal and plantar surface of the foot. A laser Doppler probe placed beneath a blood pressure cuff determines the systolic blood pressure needed to restore the blood circulation in the microcirculation.  $^{9,10,23-27}$ 

# Study outcomes

All six SPP studies, including 315 patients, had a cohort ranging from 16 to 147 patients with Fontaine IIb - IV

PAD, showed a significantly improved SPP on the dorsal or plantar side of the foot after intervention. 9,10,23–25,27 Ikeoka *et al.* also showed a significant improvement in ABPI and ankle pressure. The studies by Mochizuki *et al.* and Kawarada *et al.* were the only ones with clinical follow up, describing clinical outcomes as major amputation rate and wound healing, demonstrating no differences in SPP values between healed and nonhealed limbs. 23,24

# **Invasive techniques**

Two dimensional perfusion angiography. 2D-PA determines tissue perfusion based on digital subtraction angiography (DSA) images, acquired during endovascular treatment. P.28-33 ROIs are drawn to determine region specific time attenuation curves (TACs), also called time density curves. A TAC shows a graph comparing contrast intensification against time. TFOm this TAC, a wide range of parameters such as arrival time, time to peak (TTP) and wash in rate can be extracted. Purthermore, ratios for outflow and inflow can be determined (i.e., TTPoutflow/TTPinflow), to overcome potential limitations of standardised pump injection. These parameters are used to convert DSA images into colour coded images.

# Study outcomes

All eight 2D-PA studies, which included 257 patients, ranging from 16 to 68 patients with Fontaine IIb — IV PAD, showed that an increase in blood flow after revascularisation could be instantly measured and quantified using multiple parameters. 9,28–34 Furthermore, correlations were found between the ABPI, TBI or SPP and 2D-PA parameters. 9,28,34 Murray *et al.* were the only authors who correlated 2D-PA with improvement in Fontaine stage, which showed no significant association. 29

| Table 2. Overview of the 26 included studies for each diagnostic tissue perfusion technique with a focus on aim, main outcomes, |
|---------------------------------------------------------------------------------------------------------------------------------|
| follow up period, diagnostic reference standard, and clinical outcomes                                                          |

| Study<br>(year)                                     | Aim                                                                                                                                                                                                                                         | Main outcomes                                                                                                                                                                                                                                                                                                                       | Follow up<br>period                   | Diagnostic<br>reference<br>standard                        | Clinical outcomes                                                                                                                                                                                                                                        |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laser speckle con                                   | trast imaging                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                   |                                       |                                                            |                                                                                                                                                                                                                                                          |
| Kikuchi<br>et al.<br>(2019) <sup>10</sup>           | To evaluate whether the new LSFG<br>technology can capture dynamic changes<br>in foot blood flow following surgical<br>revascularisation for PAD                                                                                            | BSSP of the medial and lateral plantar surface significantly increased immediately after the procedure and reached a maximum on d 7 after revascularisation compared with the pre-operative value $(p<.01)$                                                                                                                         | 7 d                                   | No reference<br>standard                                   | No clinical outcomes                                                                                                                                                                                                                                     |
| MRI perfusion                                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                     |                                       |                                                            |                                                                                                                                                                                                                                                          |
| Grözinger<br>et al.<br>(2014) <sup>12</sup>         | To evaluate skeletal muscle microvascular flow in patients suffering from IC before and after successful PTA of the IA or SFA by means of ASL perfusion measurements during reactive hyperaemia                                             | Mean perfusion value increased from $74\pm52$ to $129\pm80$ ( $p=.086$ ) in the soleus muscle and from $53\pm35$ to $111\pm75$ ( $p=.041$ ) in the tibialis anterior. TTP decreased from $59\pm29$ s to $41\pm14$ s ( $p=.09$ ) in the soleus muscle and from $61\pm24$ s to $41\pm18$ s ( $p=.045$ ) in the tibialis anterior      | No follow up                          | Compared with<br>ABPI and pain<br>free walking<br>distance | Mean ABPI increased from $0.56\pm0.10$ to $0.83\pm0.15$ ( $p<.001$ ) Pain free walking distance improved from $86\pm57$ m to no limit in 8 patients; two patients reported a restriction (70 and 500 m, respectively)                                    |
| Micro-lightguide                                    | spectrophotometry                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                     |                                       |                                                            |                                                                                                                                                                                                                                                          |
| Rother<br>et al.<br>(2017) <sup>16</sup>            | To obtain further information on<br>microcirculation changes during tibial<br>revascularisation. Validate and evaluate<br>the relevance of the angiosome concept<br>by means of microcirculation<br>measurements during tibial intervention | Mean ${\rm sO}_2$ significant improvement from 45.73% (1.00–95.55%) to 62.39% (2.12 –98.04%) ( $p{<}.001$ ). Overall flow parameter increased significantly from 19.96 AU (0.00 –231.9 AU) to 32.01 AU (0.34–224.87 AU) ( $p{<}.001$ ).                                                                                             | No follow up                          | Compared with<br>ABPI                                      | Mean ABPI increased significantly from 0.50 (0.31–1.11) to 0.94 (0.50–1.14) ( $p$ <.001)                                                                                                                                                                 |
| Near infrared spe                                   | ectroscopy (NIRS)                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                     |                                       |                                                            |                                                                                                                                                                                                                                                          |
| Boezeman <i>et al.</i> (2016) <sup>19</sup>         | To examine the ability of NIRS to monitor haemodynamic changes in the foot during and after endovascular revascularisation and to investigate the correlation between single StO <sub>2</sub> values and ABPI and TBI                       | Before revascularisation the mean $StO_2$ of opt 1 and opt 2 were $51\pm11\%$ and $57\pm7\%$ , respectively, and converted to baseline values of $100\%$ . After revascularisation mean $StO_2$ of opt 1 and opt 2 were $100.4\pm11.1\%$ ( $p=.80$ ) and $101.8\pm2.3\%$ ( $p=.61$ )                                                | 4 weeks                               | Compared with<br>ABPI and TBI<br>values                    | Mean ABPI and TBI increased significantly after four weeks ( $p$ <.01). ABPI and TBI values did not significantly correlate with $StO_2$ values of opt 1 ( $p$ =.55 and $p$ =.75, respectively)                                                          |
| Kundra et al. (2020) <sup>21</sup> Plantar thermogr | patient operated for CLI                                                                                                                                                                                                                    | There was significant increase in rsO <sub>2</sub> and limb spO <sub>2</sub> from 27.27 $\pm$ 3.92 and 38.13 $\pm$ 5.25 to 41.97 $\pm$ 1.25 and 58.13 $\pm$ 1.64 ( $p$ <.001) directly after a revascularisation procedure. There was a significant improvement 6 and 12 h after treatment ( $p$ <.001 and $p$ <.001, respectively) | 12 h                                  | Compared with<br>Doppler<br>examination                    | No clinical outcomes                                                                                                                                                                                                                                     |
| Chang                                               | To investigate whether angiosome based                                                                                                                                                                                                      | Mean pre- and post-EVT temperature of the                                                                                                                                                                                                                                                                                           | 18 mo                                 | Wound healing                                              | No significant difference in the mean pre-                                                                                                                                                                                                               |
| et al. (2020) <sup>22</sup>                         | plantar thermography could predict<br>wound healing and freedom from major<br>amputation after EVT in patients with<br>CLI                                                                                                                  | feet was significantly higher in the healing group vs. the non-healing group; (30.78°C [range 28.94–32.38]) vs. 29.42°C [26.84 –31.38]), p=.015; and 32.34°C [30.48 –33.23] vs. 30.96°C [28.74–32.48]), p=.004, respectively)                                                                                                       | 13 110                                | and freedom from<br>major amputation                       | and post-EVT temperature of the whole foot between the freedom from major amputation and major amputation groups. Mean post-EVT temperature and derived thermographics were independent predictors for wound healing and freedom of major amputation     |
| Skin perfusion pr                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                     |                                       |                                                            |                                                                                                                                                                                                                                                          |
| Ichihashi<br>et al.<br>(2020) <sup>27</sup>         | To assess SPP changed after EVT and to explore pre-operative factors that affect SPP changes                                                                                                                                                | SPP significantly increased after EVT at the dorsal side from 27.2 (95% CI 25.3–29.2) to 42.5 (95% CI 38.6–46.4) and at plantar side from 27.6 (95% CI 25.7–29.6) to 37.3 (95% CI 33.9–40.8) (p<.001).                                                                                                                              | 1 mo                                  | No reference<br>standard                                   | No clinical outcomes                                                                                                                                                                                                                                     |
| Ikeoka<br>et al.<br>(2018) <sup>25</sup>            | To clarify the changes in dorsal and<br>plantar SPP of the foot after EVT in<br>patients with diseased SFA                                                                                                                                  | SPP significantly increased after EVT only on the dorsal side from $58.9\pm20.1$ to $79.2\pm21.6$ mmHg ( $p$ =.033); plantar side: from $72.2\pm15.4$ to $76.3\pm14.4$ mmHg ( $p$ =.54). The increment of dorsal SPP was significantly larger than that of plantar SPP after EVT ( $p$ =.001)                                       | No follow up                          | No reference<br>standard                                   | No clinical outcomes                                                                                                                                                                                                                                     |
| Ikeoka                                              | To assess the relationship between 2D                                                                                                                                                                                                       | Dorsal SPP increased significantly from                                                                                                                                                                                                                                                                                             | No follow up                          | Compared with                                              | Mean ABPI increased significantly from                                                                                                                                                                                                                   |
| et al.<br>(2020) <sup>9</sup>                       | perfusion analysis and SPPs before and after EVT in patients with BTK occlusive disease                                                                                                                                                     | 41.0 $\pm$ 18 mmHg to 52.2 $\pm$ 20 mmHg ( $p$ <.001) and plantar SPPs were significantly elevated from 49.8 $\pm$ 22 mmHg to 57.5 $\pm$ 23 mmHg ( $p$ =.006)                                                                                                                                                                       |                                       | ABPI and systolic ankle pressure                           | $0.87\pm0.14~to~1.03\pm0.17~(p<.001).~Mean$ systolic ankle pressure increased significantly from 120 $\pm24$ mmHg to 137 $\pm24$ mmHg ( $p=.025$ )                                                                                                       |
| Kawarada<br><i>et al.</i><br>(2014) <sup>24</sup>   | To investigate the effect of single tibial artery revascularisation on the dorsal and plantar microcirculation of the foot to clarify the validity of the recent 2D angiosome in the treatment of symptomatic infrapopliteal artery disease | With ATA revascularisation, dorsal SPP increased significantly from 33 (23–40.5) to 52 (32.5–65) mmHg ( $p$ <.001). With PTA revascularisation, plantar SPP increased significantly from 29.3±9.8 to 43.5±15.9 mmHg ( $p$ <.001)                                                                                                    | Mean follow<br>up time of<br>17±11 mo | Wound healing,<br>major amputation<br>rate                 | Wound healing rate was 52.6% and the major amputation rate was 3.5%. Healed limbs had a SPP of 50.0±18.4 (dorsal) and of 45.9±17.6 (plantar) mmHg, and non-healed limbs of 46.8±21.1 (dorsal) and 42.6±19.1 (plantar) mmHg (not significantly different) |
| Kikuchi<br>et al.<br>(2019) <sup>10</sup>           | To evaluate whether new LSFG<br>technology can capture dynamic changes<br>in foot blood flow following surgical                                                                                                                             |                                                                                                                                                                                                                                                                                                                                     | 7 d                                   | No reference<br>standard                                   | No clinical outcomes                                                                                                                                                                                                                                     |
|                                                     | revascularisation for PAD                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                     |                                       |                                                            |                                                                                                                                                                                                                                                          |

| Study<br>(year)                                               | Aim                                                                                                                                                                                                   | Main outcomes                                                                                                                                                                                                                                                                                                                                                                                       | Follow up<br>period                         | Diagnostic<br>reference<br>standard                    | Clinical outcomes                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mochizuki<br>et al.<br>(2016) <sup>23</sup>                   | To reveal the effect of blood flow supply<br>to the foot by analysing the SPP values<br>and the pedal arch connection after<br>bypass surgery                                                         | Mean SPP value increased significantly on the dorsum of the foot from 22.1 $\pm$ 10.8 to 47.3 $\pm$ 16.2 ( $p$ <.001) and from 31.6 $\pm$ 16.9 to 56.6 $\pm$ 14.7 ( $p$ <.001) on the plantar surface of the foot                                                                                                                                                                                   | up time<br>25.6±16.1                        | Limb amputation                                        | During follow up, three patients<br>underwent major amputation. All of<br>demonstrated an increase in SPP after<br>revascularisation                                                                                                                                                                                |
| D perfusion ang<br>Hinrichs<br>et al.<br>(2017) <sup>28</sup> | iography To assess a novel perfusion angiography technique, flow analysis based on two ROIs placed in the treated vessel in patients with PAD                                                         | The mean TTP <sub>OUTFLOW</sub> /TTP <sub>INFLOW</sub> significantly decreased from $1.81\pm1.37$ to $0.95\pm0.89$ ( $-52\%$ , $p<.001$ ). PD <sub>OUTFLOW</sub> /PD <sub>INFLOW</sub> (36%) significantly increased from $0.72\pm0.44$ to $0.98\pm0.43$ ( $p<.001$ ). AUC <sub>OUTFLOW</sub> /AUC <sub>INFLOW</sub> significantly increased by 69% from $0.69\pm0.5$ to $1.17\pm0.58$ ( $p<.001$ ) | No follow up                                | Compared with<br>ABPI                                  | The ABPI improved from $0.69\pm0.16$ to $0.96\pm0.19$ (+39%) following the intervention ( $p$ <.001). No correlation was found between ABPI and 2D perfusion parameters. No correlation analysis with clinical outcomes                                                                                             |
| Ikeoka<br>et al.<br>(2020) <sup>9</sup>                       | To assess the relationship between 2D perfusion analysis and SPPs before and after EVT in patients with BTK occlusive disease                                                                         | Only the AT was significantly shortened after EVT in rest from $9.13\pm3.53$ s to $7.26\pm2.19$ s $(p<.001)$ and during hyperaemia from $6.15\pm2.93$ s to $4.65\pm1.46$ s $(p=.002)$ .                                                                                                                                                                                                             | No follow up                                | Compared with<br>ABPI and systolic<br>ankle pressure   | Mean ABPI increased significantly from $0.87\pm0.14$ to $1.03\pm0.17$ ( $p<.001$ ). Me systolic ankle pressure increased significantly from $120\pm24$ mmHg to $137\pm24$ mmHg ( $p=.025$ ). No correlationallysis with clinical outcomes                                                                           |
| Jens<br>et al.<br>(2015) <sup>30</sup>                        | To study the feasibility of 2D perfusion imaging in CLI                                                                                                                                               | The AUC increased, but the basic shape<br>stayed unchanged. Density expressed in the<br>height of the peak and the plateau phase was<br>different for each patient. No values reported                                                                                                                                                                                                              | No follow up                                | No reference<br>standard                               | No clinical outcomes reported                                                                                                                                                                                                                                                                                       |
| Kim<br>et al.<br>(2017) <sup>34</sup>                         | To determine the feasibility of using the 2D perfusion colour coded angiography to measure haemodynamic changes in the lower extremities after an endovascular intervention inpatients with known PAD | AT decreased significantly from 5.35 to 3.35 s $(p=.003)$ . Wash in rate increased significantly from 82.81 to 121.9 Si/s $(p=.004)$ . Width, LTT, TTP, MTT and peak changed significantly after endovascular procedure. Values of these parameters were not described                                                                                                                              | No follow up                                | Compared with<br>ABPI                                  | Correlation between the degree of<br>change in 2D parameters (AT, TTP, AU<br>peak, wash in rate, width, MTT) and t<br>degree of change in the ABPI was not<br>significant. No correlation analysis wit<br>clinical outcomes                                                                                         |
| Murray<br>et al.<br>(2016) <sup>29</sup>                      | The study examines the clinical feasibility, technical considerations, and initial results of 2D perfusion angiography of the lower limb before and after endovascular interventions                  | The mean AUC of the hindfoot increased significantly from 4 630 $\pm$ 3 760 to 5 993 $\pm$ 3 877 ( $p$ =.03) and in the forefoot from 5 567 $\pm$ 3 754 to 7 370 $\pm$ 6 350 ( $p$ =.13). No significant change in TTP or PDV was detected following angioplasty                                                                                                                                    | Short term,<br>exact period<br>not reported | Improvement in<br>clinical stage<br>(Fontaine)         | Improvement in clinical symptoms equating to 0.56 grades of the Fontair stage ( $p$ =.024). No significant association was detected between improvement in Fontaine stage and at increase in PDV or AUC following angioplasty (Spearman $r$ =.18 [ $p$ =.41] and $r$ =.08 [ $p$ =.73], respectively)                |
| Ng<br>et al.<br>(2019) <sup>31</sup>                          | To evaluate the use of parametric colour coding and analysis of TACs as a real time quantitative measure of perfusion after EVT                                                                       | Washout phase parameters showed a significant reduction in time required for contrast to decay to a specified percentage after peak ( $T_{90\%}$ , $T_{90\%}$ , $T_{90\%}$ , $T_{90\%}$ , and $T_{50\%}$ ). Percentages of contrast decay at specified time intervals after peak ( $I_{18}$ , $I_{28}$ , $I_{38}$ , $I_{48}$ , and $I_{56}$ ) were increased significantly                          | No follow up                                | Compared with<br>ABPI and TBI<br>values                | Mean ABPI or TBI improved significant from $0.33\pm0.26$ to $0.62\pm0.28$ ( $p<.00$ ) The percentage of contrast decay 4 s alpeak demonstrated the highest correlation coefficient ( $R$ $\frac{1}{2}=.482$ ) with improvement in ABPI or TBI. No correlation analysis with clinical outcomes                       |
| Pärsson<br>et al.<br>(2020) <sup>33</sup>                     | To assess time patterns and dynamics<br>before and after endovascular<br>intervention of stenosis or occlusions in<br>the femoropopliteal and/or<br>infrapopliteal vessels                            | A significant reduction of mean AT from 3.2 (2.5–4.2) to 2.6 (1.6–3.4) (ø=.007) and mean TTP from 4.1 (2.5–4.2) to 3.1 (2.3 –3.9) (p=.009) was observed. MTT significantly reduced from 4.4 (3.8–5.1) to 3.4 (2.7–4.7) (p=.008). WI significantly increased from 18.3 (12.6–21) to 30.1 (22 –30.5) (p=.001). AUC remained unchanged                                                                 | 30 d                                        | Compared with<br>ABPI and TBI<br>values                | Both ABPI and TBI were significantly improved from 0.47 $\pm$ 0.19 and 0.21 $\pm$ 12.3 to 0.89 $\pm$ 23 (p=.002) and 0.69 $\pm$ 16.4 (p=.003)                                                                                                                                                                       |
| Reekers<br>et al.<br>(2016) <sup>32</sup>                     | To report on the first clinical experience<br>with PA of the foot in patients with<br>chronic critical limb ischaemia                                                                                 | In the majority of patients ( $n$ =59/68), PA showed an increase in volume flow, both increase in area under the curve (48%) and maximum peak density (21%)                                                                                                                                                                                                                                         | No follow up                                | No reference<br>standard                               | No clinical outcomes reported                                                                                                                                                                                                                                                                                       |
|                                                               | ad ultrasound (CEUS)  To test whether the quantification of                                                                                                                                           | PTA group: median TTP was 45 s (range 17                                                                                                                                                                                                                                                                                                                                                            | 3-5 mo                                      | Compared with                                          | Median ABPI improved significantly                                                                                                                                                                                                                                                                                  |
| et al.<br>(2010) <sup>36</sup>                                | muscle perfusion of the lower limb by<br>CEUS detects the success of<br>revascularisation and whether it<br>performs equally well in doing so as<br>standard tests                                    | 773 s) before and 24 s (12–82 s) after intervention ( $p$ =.015). At follow up, median TTP was 22 s (16–63 s). Bypass group: median TTP decreased from 30 s (17–75 s) to 27 s (16–42 s; $p$ =.041) directly, and to 21 s (12–30 s) 3–5 mo after surgery                                                                                                                                             | 5 5 MO                                      | ABPI and PVR. Improvement in clinical stage (Fontaine) | from 0.60 (0.0–1.08) to 0.85 (range 0.  –1.47) (p=.001) and to 0.94 (0.56– 1.84) at follow up. Median amplitude reduction in PVR improved significan from middle to none after PTA and from didle—high to none after bypass.  Correlation between ABPI and TTP showed no significant difference after PTA or bypass |
| T perfusion ima<br>Ma                                         | To assess whether the regional                                                                                                                                                                        | Blood volume was significantly different from                                                                                                                                                                                                                                                                                                                                                       | 1 mo                                        | Improvement in                                         | Patients in the mild group had better p                                                                                                                                                                                                                                                                             |
| et al.<br>(2021) <sup>37</sup>                                | evaluation of foot blood volume may<br>guide direct revascularisation and if it<br>will lead to better perfusion<br>improvement than indirect<br>revascularisation                                    | M8.95±33.36 mL/1 000 mL to 81.97±41.40 mL/1 000 mL ( <i>p</i> =.002)                                                                                                                                                                                                                                                                                                                                |                                             | clinical stage<br>(Rutherford<br>classification)       | operative perfusion than the severe group: $58.20\pm33.24$ vs. $30.45\pm26.28$ mL/1 000 mL ( $p$ =.039). One month at treatment, there were no differences ( $p$ =.28)                                                                                                                                              |

| Study<br>(year)                             | Aim                                                                                                                                                                                                  | Main outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                 | Follow up<br>period                                    | Diagnostic<br>reference<br>standard                                                                                             | Clinical outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ndocyanine gre                              | en (ICG) angiography (ICGA)                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Colvard<br>et al.<br>(2016) <sup>39</sup>   |                                                                                                                                                                                                      | Mean ingress, egress, and peak perfusion of the plantar side increased significantly from 7.1 to 12.4 units/s ( $p$ <.001), from 1.0 to 1.9 units/s ( $p$ =.035), and from 97.1 to 143.9 units ( $p$ <.001), respectively                                                                                                                                                                                                                     | Mean follow<br>up time of<br>13.4 mo                   | Compared with<br>ABPI.<br>Improvement in<br>walking distance<br>and decrease in<br>patient reported<br>claudication<br>symptoms | Patients with clinically successful outcomes showed significant improvements in ABPI, ingress, egress, and peak perfusion ( $p$ <.001, $p$ <.001, $p$ <.001, $p$ =.044, and $p$ <.001, respectively). Overall change in ABPI significantly correlated with post-operative changes ingress ( $r$ =.33; $p$ =.006) and peak perfusion ( $r$ =.24; $p$ =.049)                                                                                       |
| Mironov<br>et al.<br>(2019) <sup>44</sup>   | To determine the predictive value of intraprocedural real time perfusion scanning on clinical outcome (limb salvage/wound healing) in patients with critical ischaemia                               | After successful angioplasty, 39% had an initial decrease in ingress rate and 57% had a decreased total inflow. Ingress of the whole foot increased from $118\pm83$ to $125\pm85$ . Ingress rate of the whole foot from $17\pm19$ to $20\pm20$                                                                                                                                                                                                | 6 mo                                                   | Compared with<br>ABPI, Rutherford<br>stage and wound<br>healing/<br>formation<br>according to TIME<br>classification            | No significant correlation between ABF and baseline perfusion parameters. Inflow perfusion rate correlated significantly with Rutherford stage (Spearman rho=.398, p=.036). None of the perfusion variables was a significant predictor of wound healing                                                                                                                                                                                         |
| Patel et al. (2018) <sup>40</sup>           | To assess ICGA data before and after<br>revascularisation to demonstrate the<br>successes of revascularisation procedure<br>in CLI patients                                                          | In patients with a healed ulcer: maximum unit increased significantly from 22.84 $\pm$ 33.43 to 63.43 $\pm$ 46.66 ( $p$ <.001). Blush time decreased from 19.259 $\pm$ 14.833 to 18.157 $\pm$ 11.466 ( $p$ =.65). Blush rate increased from 2.287 $\pm$ 4.747 to 7.144 $\pm$ 13.1788 ( $p$ =.008)                                                                                                                                             | up time was                                            | Compared with<br>ABPI and TcPO₂                                                                                                 | ABPI increased from $0.35\pm0.24$ to $0.83\pm0.40$ ( $p<.001$ ). $\text{TcPO}_2$ increased from $30.92\pm18.69$ to $48.57\pm20.46$ ( $p<.001$ ). The ABPI showed a correlation with maximum unit ( $r=031$ , $p=.86$ ) blush time ( $r=.135$ ; $p=.44$ ), and blus rate ( $r=.067$ , $p=.69$ ). $\text{TcPO}_2$ showed correlation with maximum unit ( $r=.01$ ), p=.69), blush time ( $r=.21$ , $p=.08$ ), and blush rate ( $r=.08$ , $p=.63$ ) |
| Rother<br>et al.<br>(2017) <sup>42</sup>    | To establish IFA in the context of tibial<br>bypass surgery and to gain information<br>about the influence of macroscopic<br>revascularisation on the level of<br>microcirculation                   | Cumulated IN of the plantar and dorsal side of the foot showed significant increase from 96.0 (range 200) to 127.0 (range 227.0) ( $p$ <.001) in brightest stats and 38.0 (range 137.0) to 42.0 (range 149.0) ( $p$ =.030) in background stats. Cumulated InR showed significant increase from 3.6 (range 19.9) to 10.9 (range 42.7) ( $p$ <.001) in brightest stats and 0.8 (range 7.6) to 1.6 (range 10.7) ( $p$ <.001) in background stats | Mean follow<br>up time was<br>8.28±4.46<br>mo          | Compared with<br>ABPI. Wound<br>sizes were<br>reported                                                                          | ABPI showed a significant improvement from $0.42\pm0.260$ to $0.91\pm0.220$ ( $p$ <.001). The cumulated ingress and ingress rate correlated significantly positive with the ABPI; IN, $p$ =.005 in background stats and IN, $p$ =.011; InR, $p$ =.014 in brightest stats                                                                                                                                                                         |
| Rother<br>et al.<br>(2018) <sup>43</sup>    | To employ ICGA to investigate the actual<br>perfusion in both direct and indirectly<br>revascularised angiosomes after tibial<br>bypass surgery                                                      | The ingress of the plantar side showed improvement from 115.00 (5.00–200.00) to 135.00 (35.00–240.00) ( $p$ =.009) and the ingress rate from 5.80 (0.20–20.00) to 11.40 (0.50–35.70) ( $p$ =.001). The ingress of the dorsal side showed improvement from 86.00 (0.00–218.00) to 145.00 (23.00–250.00) ( $p$ <.001) and the ingress rate from 3.30 (0.00–18.60) to 10.00 (0.30–24.60) ( $p$ <.001).                                           | Median<br>follow up<br>was 11 mo<br>(range 4–18<br>mo) | Compared with<br>ABPI and duplex<br>ultrasound.<br>Wound status was<br>recorded                                                 | ABPI showed a significant improvement from 0.40 (range 0.00–0.93) to 0.91 (range 0.33–1.29) (p<.001). Median wound healing time was 4.25 mo                                                                                                                                                                                                                                                                                                      |
| Settembre<br>et al.<br>(2017) <sup>45</sup> | To study the usefulness of ICG imaging in<br>the immediate quality control of<br>revascularisation and the sensitivity of<br>the technique to distinguish early failures<br>in the revascularisation | Mean ingress increased from $81\pm47$ units to $120\pm5$ units; mean ingress rate values were $4.2\pm4.9$ units/s and $8.0\pm6.2$ units/s $(p=.001)$                                                                                                                                                                                                                                                                                          | No follow up                                           | Compared with<br>ABPI and TBI<br>values                                                                                         | Mean ABPI increased from $0.41\pm0.14$ $0.85\pm0.2$ ( $p{<}.001$ ), and TBI increased from $29\pm12$ to $49\pm20$ ( $p{=}.07$ )                                                                                                                                                                                                                                                                                                                  |

All values are given as mean  $\pm$  standard deviation or as median (interquartile range). LSFG = laser speckle flowgraphy; PAD = peripheral arterial disease; BSSP = beat strength of skin perfusion; MRI = magnetic resonance imaging; IC = intermittent claudication; PTA = percutaneous transluminal angioplasty; IA = iliac artery; SFA = superficial femoral artery; ASL = arterial spin labelling; TTP = time to peak; ABPI = ankle brachial pressure index;  $sO_2$  = oxygen saturation; AU = arbitrary unit;  $stO_2$  = tissue oxygen saturation; TBI = toe brachial index; CLI = critical limb ischaemia;  $rsO_2$  = regional tissue oxygen saturation;  $spO_2$  = peripheral capillary oxygen saturation;  $spO_2$  = peripheral capillary oxygen saturation;  $spO_2$  = region of interest; PD = peak density; AUC = area under the curve; AT = arrival time; LTT = leg transit time; MTT = mean transit time; PDV = peak density value; TAC = time attenuation curve; WI = wash in; PA = perfusion angiography; PVR = pulse volume recording; CT = computed tomography; TIME = tissue, infection or inflammation, moisture imbalance, and edge of wound;  $spO_2$  = transcutaneous oxygen pressure; IFA = intra-operative fluorescence angiography; IN = ingress; InR = ingress rate; CEUS = contrast enhanced ultrasound; I = Intensity; ICG = indocyanine green; ICGA = indocyanine green angiography; NIRS = near infrared spectroscopy; SPP = skin perfusion pressure.

|           | Table 3. Advantages and disadvantages of all included peri-procedural tissue perfusion techniques for patients with peripheral arterial disease of the lower limbs                                         |                                                                                                                                                                                                                                      |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Technique | Advantages                                                                                                                                                                                                 | Disadvantages                                                                                                                                                                                                                        |  |  |  |  |
| LSCI      | Short measuring times <sup>10</sup> Acquisition of time dependent blood flow images <sup>10</sup>                                                                                                          | Low penetration depth of 0.1–0.5 mm <sup>13,47</sup> Sensitivity for motion artefacts, temperature changes, and different medication <sup>13,47</sup>                                                                                |  |  |  |  |
| MRIp      | Quantitative perfusion values can be obtained with<br>low signal to noise ratio <sup>14</sup><br>No need for an exogenous contrast agent <sup>14</sup>                                                     | Underestimation of peripheral blood flow <sup>14</sup><br>Claustrophobia <sup>14</sup><br>High costs <sup>14</sup>                                                                                                                   |  |  |  |  |
| $O_2C$    | Quick and in real time <sup>47</sup>                                                                                                                                                                       | Measurements are restricted to a small tissue volume <sup>47</sup> Penetration depth cannot be exactly determined, so the actual measurement spot stays unclear <sup>48</sup>                                                        |  |  |  |  |
| NIRS      | Applicability at most locations on the lower extremity without interfering with the intervention <sup>19</sup>                                                                                             | Real time haemodynamic changes are difficult to obtain due to patient movement <sup>19</sup>                                                                                                                                         |  |  |  |  |
| РТ        | Cost effectiveness <sup>22</sup> Non-contacting technique <sup>22</sup> Able to produce multiple recordings at short time intervals <sup>22</sup> Both limbs can be assessed within one test <sup>22</sup> | Toe skin temperatures are known to be significantly affected by ambient temperatures <sup>22</sup>                                                                                                                                   |  |  |  |  |
| SPP       | Quick technique <sup>10</sup> It can be applied on several spots on the lower extremity <sup>10</sup>                                                                                                      | Cuff inflation can be painful in patients with tissue loss or infected wounds <sup>10</sup> Limited by motion artefacts <sup>49</sup>                                                                                                |  |  |  |  |
| 2D-PA     | The use of standard DSA runs so no extra ionising radiation or contrast agents are needed <sup>32</sup>                                                                                                    | Heterogeneity in DSA acquisition protocols <sup>32</sup> Impairing motion artefacts in up to 10% of the patients <sup>32</sup>                                                                                                       |  |  |  |  |
| CEUS      | Real time visualisation of perfusion in the skeletal muscles <sup>13</sup> Easily accessible <sup>13</sup>                                                                                                 | Operator dependency <sup>13</sup> Sensitivity for motion and bone artefacts <sup>13</sup>                                                                                                                                            |  |  |  |  |
| СТ-РІ     | Feasibility <sup>37</sup> Reproducibility <sup>37</sup> Excellent intra-observer and interobserver agreement <sup>37</sup>                                                                                 | Impairing motion artefacts and foot deformation between pre-<br>revascularisation and post-revascularisation images <sup>37</sup><br>The use of ionising radiation <sup>37</sup><br>High cost <sup>37</sup>                          |  |  |  |  |
| ICGA      | ICG is a water soluble, non-radioactive, non-<br>ionising, and non-toxic contrast agent <sup>40</sup>                                                                                                      | Low penetration depth <sup>13</sup> Expensive imaging systems <sup>13</sup> Measurements affected by temperature and medication (vasoactive substances) <sup>13</sup> The need for intravenous contrast administration <sup>13</sup> |  |  |  |  |

LSCI = laser speckle contrast imaging; MRIp = magnetic resonance imaging perfusion;  $O_2C$  = micro-lightguide spectrophotometry; NIRS = near infrared spectroscopy; PT = plantar thermography; SPP = skin perfusion pressure; DSA = digital subtraction angiography; 2D-PA = two dimensional perfusion angiography; CEUS = contrast enhanced ultrasound; CT-PI = computed tomography perfusion imaging; ICGA = indocyanine green (ICG) angiography.

Contrast enhanced ultrasound. CEUS uses an intravenous injection of microbubbles combined with ultrasound, which allows for analysis of the intravascular distribution of this hyperechogenic contrast agent over time. EUS can be performed with a penetration depth of 4 - 15 cm. Quantitative measurements are performed by determining the TTP contrast intensity.

Computed tomography perfusion imaging. CT perfusion imaging uses a flat panel detector angiographic system to capture real time parenchymal blood volume, using an automated intra-arterial injection of an iodine based contrast agent.<sup>37</sup> Imaging of the entire foot and ankle can be performed. Post-processing software is used for three dimensional reconstruction and conversion to colour coded perfusion maps.

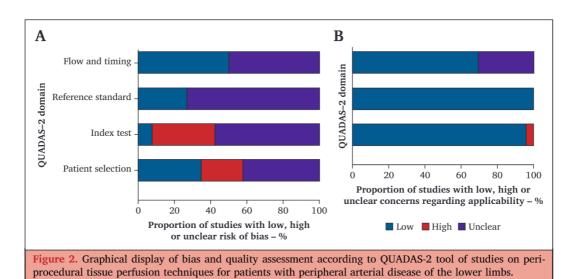
Indocyanine green angiography. ICGa uses a laser light source, in the near infrared light spectrum (650 - 900 nm), combined with intravenous injection of ICG. 13,38

A charged coupled device camera captures a real time image.  $^{39,40}$  ICGa provides approximately 3-7 mm of tissue penetration,  $^{41-43}$  and could therefore be used as an indicator of superficial tissue perfusion.  $^{41}$  Dedicated software can be used to analyse quantitatively ICG intensity in the entire image or in a chosen ROI.  $^{39,40,42-45}$ 

# Study outcomes

Six studies including 335 patients, ranging from 30 to 101 patients with Fontaine IIb — IV PAD, were found. A significant improvement in perfusion directly after revascularisation, by means of multiple ICGa perfusion parameters, was found. 39,40,42—45 All studies measured ABPI and showed significant improvement after revascularisation. Colvard *et al.*, 39 Patel *et al.*, 40 and Rother *et al.* 42 showed a correlation of different ICGa perfusion parameters with an overall change in ABPI. Mironov *et al.* showed that none of the perfusion variables was a significant predictor of wound healing. 44 However, the studies

| Table 4. Bias and quality assessment of the 26 included studies on peri-procedural tissue perfusion techniques for patients with |
|----------------------------------------------------------------------------------------------------------------------------------|
| lower limb peripheral arterial disease according to OUADAS-2                                                                     |


| Study (year)                                 | Risk of bias      |            |                       |                 | Applicability concerns |               |                       |
|----------------------------------------------|-------------------|------------|-----------------------|-----------------|------------------------|---------------|-----------------------|
|                                              | Patient selection | Index test | Reference<br>standard | Flow and timing | Patient selection      | Index<br>test | Reference<br>standard |
| Kikuchi <i>et al.</i> (2019) <sup>10</sup>   | High              | Unclear    | Unclear               | Unclear         | Low                    | Low           | Unclear               |
| Grözinger et al. (2014) <sup>12</sup>        | Unclear           | High       | Unclear               | Low             | Low                    | Low           | Low                   |
| Rother et al. (2017) <sup>16</sup>           | Low               | High       | Low                   | Low             | Low                    | Low           | Low                   |
| Boezeman <i>et al.</i> (2016) <sup>19</sup>  | Low               | High       | Low                   | Low             | Low                    | Low           | Low                   |
| Kundra <i>et al.</i> (2020) <sup>21</sup>    | Unclear           | Unclear    | Unclear               | Unclear         | Low                    | Low           | Low                   |
| Chang et al. (2020) <sup>22</sup>            | Low               | Low        | Low                   | Low             | Low                    | Low           | Low                   |
| Ichihashi et al. (2020) <sup>27</sup>        | Unclear           | Unclear    | Unclear               | Unclear         | Low                    | Low           | Unclear               |
| Ikeoka <i>et al.</i> (2018) <sup>25</sup>    | High              | Unclear    | Unclear               | Low             | Low                    | Low           | Unclear               |
| Ikeoka <i>et al.</i> (2020) <sup>9</sup>     | High              | Unclear    | Unclear               | Low             | Low                    | Low           | Low                   |
| Kawarada <i>et al</i> . (2014) <sup>24</sup> | Unclear           | Unclear    | Unclear               | Unclear         | Low                    | Low           | Unclear               |
| Mochizuki et al. (2016) <sup>23</sup>        | Unclear           | Unclear    | Unclear               | Unclear         | Low                    | Low           | Unclear               |
| Hinrichs <i>et al.</i> (2017) <sup>28</sup>  | High              | Low        | Low                   | Low             | Low                    | Low           | Low                   |
| Jens et al. (2015) <sup>30</sup>             | Low               | Unclear    | Unclear               | Unclear         | High                   | Low           | Unclear               |
| Kim et al. (2017) <sup>34</sup>              | Unclear           | High       | Low                   | Low             | Low                    | Low           | Low                   |
| Murray et al. (2016) <sup>29</sup>           | Unclear           | Unclear    | Unclear               | Unclear         | Low                    | Low           | Unclear               |
| Ng et al. (2019) <sup>31</sup>               | Low               | High       | Low                   | Unclear         | Low                    | Low           | Low                   |
| Pärsson et al. (2020) <sup>33</sup>          | Unclear           | Unclear    | Unclear               | Low             | Low                    | Low           | Low                   |
| Reekers et al. (2016) <sup>32</sup>          | Low               | Unclear    | Unclear               | Unclear         | Low                    | Low           | Unclear               |
| Duerschmied et al. (2010) <sup>36</sup>      | High              | High       | Unclear               | Unclear         | Low                    | Low           | Low                   |
| Ma et al. (2021) <sup>37</sup>               | Low               | Unclear    | Unclear               | Low             | Low                    | Low           | Low                   |
| Colvard <i>et al.</i> (2016) <sup>39</sup>   | High              | Unclear    | Unclear               | Unclear         | Low                    | Low           | Low                   |
| Mironov et al. (2019) <sup>44</sup>          | Unclear           | Unclear    | Unclear               | Unclear         | Low                    | Low           | Low                   |
| Patel <i>et al.</i> (2018) <sup>40</sup>     | Unclear           | Unclear    | Unclear               | Low             | Low                    | Low           | Low                   |
| Rother <i>et al.</i> (2017) <sup>42</sup>    | Low               | High       | Unclear               | Low             | Low                    | Low           | Low                   |
| Rother <i>et al.</i> (2018) <sup>43</sup>    | Low               | High       | Low                   | Low             | Low                    | Low           | Low                   |
| Settembre et al. (2017) <sup>45</sup>        | Unclear           | High       | Unclear               | Unclear         | Low                    | Low           | Low                   |

were difficult to compare owing to heterogeneity in imaging devices and protocols.

# **DISCUSSION**

In this systematic review, 10 techniques were found that assessed tissue perfusion in patients suffering Fontaine II - IV PAD before and within 24 hours after revascularisation procedures. Twenty-three of the 26 included studies had a small sample size (n < 50) and only investigated the

feasibility of determining the change in tissue perfusion with these techniques. No diagnostic accuracy or correlation with treatment outcomes, such as wound infection and healing, amputation rate, need for re-admission, quality of life or mobility, were demonstrated. The results of the 26 eligible studies, which were mostly of poor quality according to the QUADAS-2 tool, were not sufficient to substantiate implementation in daily clinical practice yet. Comparing and pooling of data and results was not



meaningful because of the limited number of studies per technique. Besides, heterogeneity in inclusion criteria, patient selection, measurement protocols, follow up time, measurement of clinical outcomes, and clinical endpoints made pooling impossible. Normally, the QUADAS-2 tool is used to assess studies evaluating diagnostic tests that compare the diagnostic accuracy of the index test vs. a reference standard test. Six of the included studies in this review did not describe a reference standard and the remaining studies showed high heterogeneity within described reference standards: ABPI; TBI; clinical classifications; wound healing; or amputation rate. This is an important limitation of the included studies; however, considering available quality assessment tools, there was no reasonable alternative to the QUADAS-2 tool.

Before assessment of the microcirculation can be implemented as standard care, multiple issues have to be resolved. Measurement protocols need to be optimised and standardised; techniques should be validated in large clinical cohorts; reliability assessments should be performed; and cutoff values need to be determined with a high sensitivity and specificity. To do so, a well defined study population of patients with Fontaine III — IV PAD should be included and analysed on major clinical outcomes such as the aforementioned wound infection and healing, amputation rate, need for re-admission, quality of life, and mobility. 46

One of the main reasons to perform endovascular or open revascularisation procedures in patients suffering from PAD is to improve tissue perfusion and skin oxygenation of the lower leg and foot. This is of the utmost importance in patients with ischaemic ulcers, to facilitate healing. Ideally, the increase in perfusion and oxygenation of the diseased tissue can be monitored in real time during an intervention. Endovascular revascularisation is currently considered successful when an arterial stenosis or occlusion is overcome and no haemodynamically significant lesion is left behind. Outcomes are therefore focused on anatomical results and thus the macrovasculature. It may be argued that as long as the tissue oxygenation and perfusion parameters in the lower leg and/or foot do not increase the intervention may be considered as not successful. Real time monitoring of these parameters may guide the vascular surgeon or interventionalist during the procedure to extend it (if possible) and to revascularise more feeding arteries. So far, none of the described techniques seem capable of doing this. Future studies should focus on this, and also try to associate the peri-procedural findings of changes in tissue perfusion and skin oxygenation with clinical outcomes including improvement in walking distance, pain relief, and time to wound healing. To do so, the first step would be to define validated normal values for the tissue perfusion techniques. It would be of great help if the course of tissue perfusion and skin oxygenation levels could be monitored in the early post-intervention period. It may be argued that tissue perfusion takes some time after revascularisation to set a new equilibrium. So far, it is unknown when this new equilibrium is reached. Repeated measurements in the early post-intervention period, even at home, may be

helpful in determining a decrease that may be associated with early treatment failures and the need to perform additional Doppler ultrasound, CT angiography, or magnetic resonance angiography, and eventually early reintervention. Finally, the cost of equipment was not studied. Equipment cost was difficult to determine because its place in the clinic has not yet crystallised and the reimbursement systems are country and sometimes even hospital dependent.

# **CONCLUSION**

This systematic review provides an overview of 10 tissue perfusion techniques used before and within 24 hours after revascularisation procedures of the lower extremity to treat PAD. Within the broad inclusion criteria, only 26 articles were found to be eligible for inclusion in this review. Ideally, a tissue perfusion technique should guide the vascular surgeon or interventionalist in real time throughout the entire revascularisation procedure and be related to major clinical outcomes such as improvement in Fontaine classification and time to wound healing. The technique should be non-invasive, non-operator dependent, accurate, cost effective, and fast. At this time, evidence remains low regarding the diagnostic accuracy of these techniques. It is too early to recommend one of the currently available techniques as a decision tool in the treatment of patients with PAD. Prospective observational studies, to relate periinterventional assessments with clinical outcomes after a certain length of follow up, are necessary as a first step in the implementation of one of these techniques into daily vascular practice.

# **CONFLICTS OF INTEREST**

None.

# **FUNDING**

None.

# APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejvs.2021.08.017.

# REFERENCES

- 1 Becker F, Robert-Ebadi H, Ricco J-B, Setacci C, Cao P, de Donato G, et al. Chapter I: Definitions, epidemiology, clinical presentation and prognosis. *Eur J Vasc Endovasc Surg* 2011;42(Suppl. 2):S4–12.
- 2 Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, et al. Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. Eur J Vasc Endovasc Surg 2019;58(1S):S1—S109.
- 3 Mizzi A, Cassar K, Bowen C, Formosa C. The progression rate of peripheral arterial disease in patients with intermittent claudication: a systematic review. J Foot Ankle Res 2019;12:40.
- 4 Schreuder SM, Hendrix YMGA, Reekers JA, Bipat S. Predictive parameters for clinical outcome in patients with critical limb ischemia who underwent percutaneous transluminal angioplasty (PTA): a systematic review. Cardiovasc Intervent Radiol 2018;41: 1–20.

- 5 Reed GW, Raeisi-Giglou P, Kafa R, Malik U, Salehi N, Shishehbor MH. Hospital readmissions following endovascular therapy for critical limb ischemia: associations with wound healing, major adverse limb events, and mortality. *J Am Heart Assoc* 2016;5:e003168.
- 6 Pennell DJ. Editorial: To BOLDly go where positron emission tomography has been before. Circ Cardiovasc Imaging 2010;3:2–4.
- 7 Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preffered reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4:1.
- 8 Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Ann Intern Med* 2011;155:529.
- 9 Ikeoka K, Watanabe T, Shinoda Y, Minamisaka T, Fukuoka H, Inui H, et al. Below-the-ankle arrival time as a novel limb tissue perfusion index: two-dimensional perfusion angiography evaluation. *J Endovasc Ther* 2020;27:198–204.
- 10 Kikuchi S, Miyake K, Tada Y, Uchida D, Koya A, Saito Y, et al. Laser speckle flowgraphy can also be used to show dynamic changes in the blood flow of the skin of the foot after surgical revascularization. *Vascular* 2019;27:242–51.
- 11 Draijer M, Hondebrink E, Leeuwen T Van, Steenbergen W. Review of laser speckle contrast techniques for visualizing tissue perfusion. *Lasers Med Sci* 2009;24:639-51.
- 12 Grözinger G, Pohmann R, Schick F, Grosse U, Syha R, Brechtel K, et al. Perfusion measurements of the calf in patients with peripheral arterial occlusive disease before and after percutaneous transluminal angioplasty using mr arterial spin labeling. *J Magn Reson Imaging* 2014;40:980–7.
- 13 Bajwa A, Wesolowski R, Patel A, Saha P, Ludwinski F, Smith A, et al. Assessment of tissue perfusion in the lower limb current methods and techniques under development. Circ Cardiovasc Imaging 2014;7:836–43.
- 14 Ma KF, Kleiss SF, Schuurmann RCL, Bokkers RPH, Ünlü Ç, De Vries JPPM. A systematic review of diagnostic techniques to determine tissue perfusion in patients with peripheral arterial disease. *Expert Rev Med Devices* 2019;16:697–710.
- 15 Englund EK, Langham MC. Quantitative and dynamic MRI measures of peripheral vascular function. Front Physiol 2020;11:120.
- 16 Rother U, Krenz K, Lang W, Horch RE, Schmid A, Heinz M, et al. Immediate changes of angiosome perfusion during tibial angioplasty. J Vasc Surg 2017;65:422–30.
- 17 Gyldenlove T, Jorgensen LP, Schroeder TV. Micro-lightguide spectrophotometry (O2C) for lower limb perfusion: effects of exercise walking in claudicants. *Int J Angiol* 2019;28:161–6.
- 18 Mesquita RC, Putt M, Chandra M, Yu G, Xing X, Han SW, et al. Diffuse optical characterization of an exercising patient group with peripheral artery disease. *J Biomed Opt* 2013;18: 057007.
- 19 Boezeman RPE, Becx BP, van den Heuvel DAF, Unlu C, Vos JA, de Vries JPPM. Monitoring of foot oxygenation with near-infrared spectroscopy in patients with critical limb ischemia undergoing percutaneous transluminal angioplasty: a pilot study. *Eur J Vasc Endovasc Surg* 2016;52:650–6.
- 20 Patel HJ. Near infrared spectroscopy: basic principles and use in tablet evaluation. *Int J Chem Life Sci* 2017;**6**:2006.
- 21 Kundra TS, Thimmarayappa A, Subash SS, Kaur P. Monitoring of limb perfusion after vascular surgery in critical limb ischemia using near-infrared spectroscopy: a prospective observational study. Ann Card Anaesth 2020;23:429—32.
- 22 Chang WC, Wang CY, Cheng Y, Hung YP, Lin TH, Chen WJ, et al. Plantar thermography predicts freedom from major amputation after endovascular therapy in critical limb ischemic patients. *Medicine (Baltimore)* 2020;99:e22391.
- 23 Mochizuki Y, Hoshina K, Shigematsu K, Miyata T, Watanabe T. Distal bypass to a critically ischemic foot increases the skin perfusion pressure at the opposite site of the distal anastomosis. *Vascular* 2016;24:361–7.

- 24 Kawarada O, Yasuda S, Nishimura K, Sakamoto S, Noguchi M, Takahi Y, et al. Effect of single tibial artery revascularization on microcirculation in the setting of critical limb ischemia. *Circ Cardiovasc Interv* 2014;7:684–91.
- 25 Ikeoka K, Hoshida S, Watanabe T, Shinoda Y, Minamisaka T, Fukuoka H, et al. Pathophysiological significance of velocity-based microvascular resistance at maximal hyperemia in peripheral artery disease. *J Atheroscler Thromb* 2018;25:1128–36.
- 26 Pan X, Chen G, Wu P, Han C, Ho JK. Skin perfusion pressure as a predictor of ischemic wound healing potential. *Biomed Rep* 2018:8:330-4
- 27 Ichihashi S, Takahara M, Fujimura N, Shibata T, Fujii M, Kato T, et al. Changes in skin perfusion pressure after endovascular treatment for chronic limb-threatening ischemia. *J Endovasc Ther* 2020;28:208–14.
- 28 Hinrichs JB, Murray T, Akin M, Lee M, Brehm MU, Wilhelmi M, et al. Evaluation of a novel 2D perfusion angiography technique independent of pump injections for assessment of interventional treatment of peripheral vascular disease. *Int J Cardiovasc Imaging* 2017;33:295–301.
- 29 Murray T, Rodt T, Lee MJ. Two-dimensional perfusion angiography of the foot: technical considerations and initial analysis. J Endovasc Ther 2016;23:58–64.
- 30 Jens S, Marquering HA, Koelemay MJW, Reekers JA. Perfusion angiography of the foot in patients with critical limb ischemia: description of the technique. *Cardiovasc Intervent Radiol* 2015;38: 201-5.
- 31 Ng JJ, Papadimas E, Dharmaraj RB. Assessment of Flow after lower extremity endovascular revascularisation: a feasibility study using time attenuation curve analysis of digital subtraction angiography. *EJVES Short Rep* 2019;45:1—6.
- 32 Reekers JA, Koelemay MJW, Marquering HA, van Bavel ET. Functional imaging of the foot with perfusion angiography in critical limb ischemia. *Cardiovasc Intervent Radiol* 2016;39:183–9.
- 33 Pärsson HN, Lundin N, Lindgren H. 2D perfusion-angiography during endovascular intervention for critical limb threatening ischemia – a feasibility study. *JRSM Cardiovasc Dis* 2020;9. 204800402091539.
- 34 Kim AH, Shevitz AJ, Morrow KL, Kendrick DE, Harth K, Baele H, et al. Characterizing tissue perfusion after lower extremity intervention using two-dimensional color-coded digital subtraction angiography. J Vasc Surg 2017;66:1464—72.
- 35 Dietrich CF, Averkiou M, Nielsen MB, Barr RG, Burns PN, Calliada F, et al. How to perform Contrast-enhanced ultrasound (CEUS). *Ultrasound Int Open* 2018;4:E2-15.
- 36 Duerschmied D, Maletzki P, Freund G, Olschewski M, Bode C, Hehrlein C. Success of arterial revascularization determined by contrast ultrasound muscle perfusion imaging. *J Vasc Surg* 2010;52:1531–6.
- 37 Ma J, Lai Z, Shao J, Lei J, Li K, Wang J, et al. Infrapopliteal endovascular intervention and the angiosome concept: intraoperative real-time assessment of foot regions' blood volume guides and improves direct revascularization. Eur Radiol 2021;31: 2144-52
- 38 Yuan B, Chen N, Zhu Q. Emission and absorption properties of indocyanine green in Intralipid solution. *J Biomed Opt* 2004;9: 497.
- **39** Colvard B, Itoga NK, Hitchner E, Sun Q, Long B, Lee G, et al. SPY technology as an adjunctive measure for lower extremity perfusion. *J Vasc Surg* 2016;**64**:195–201.
- 40 Patel HM, Bulsara SS, Banerjee S, Sahu T, Sheorain VK, Grover T, et al. Indocyanine green angiography to prognosticate healing of foot ulcer in critical limb ischemia: a novel technique. *Ann Vasc Surg* 2018;51:86–94.
- 41 Zimmermann A, Roenneberg C, Reeps C, Wendorff H, Holzbach T, Eckstein HH. The determination of tissue perfusion and collateralization in peripheral arterial disease with indocyanine green fluorescence angiography. Clin Hemorheol Microcirc 2012;50: 157–66.

42 Rother U, Lang W, Horch RE, Ludolph I, Meyer A, Regus S. Microcirculation evaluated by intraoperative fluorescence angiography after tibial bypass surgery. *Ann Vasc Surg* 2017;40:190–7.

- 43 Rother U, Lang W, Horch RE, Ludolph I, Meyer A, Gefeller O, et al. Pilot assessment of the angiosome concept by intra-operative fluorescence angiography after tibial bypass surgery. *Eur J Vasc Endovasc Surg* 2018;55:215—21.
- 44 Mironov O, Zener R, Eisenberg N, Tan KT, Roche-Nagle G. Realtime quantitative measurements of foot perfusion in patients with critical limb ischemia. *Vasc Endovasc Surg* 2019;53:310–5.
- **45** Settembre N, Kauhanen P, Alback A, Spillerova K, Venermo M. Quality control of the foot revascularization using indocyanine green fluorescence imaging. *World J Surg* 2017;**41**:1919–26.
- **46** Ambler GK, Brookes-Howell L, Jones JAR, Verma N, Bosanquet DC, Thomas-Jones E, et al. Development of core

- outcome sets for people undergoing major lower limb amputation for complications of peripheral vascular disease. *Eur J Vasc Endovasc Surg* 2020;**60**:730—8.
- 47 Mennes OA, van Netten JJ, Slart RHJ, Steenbergen W. Novel optical techniques for imaging microcirculation in the diabetic foot. *Curr Pharm Des* 2018;24:1304–16.
- 48 Marcoccia A, Klein-Weigel PF, Gschwandtner ME, Wautrecht JC, Matuska J, Rother U, et al. Microcirculatory assessment of vascular diseases. Vasa 2020;49:175–86.
- 49 Misra S, Shishehbor MH, Takahashi EA, Aronow HD, Brewster LP, Bunte MC, et al. Perfusion assessment in critical limb ischemia: principles for understanding and the development of evidence and evaluation of devices: a scientific statement from the American Heart Association. *Circulation* 2019;140:e657–72.