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Abstract

This work aims to introduce and analyze an adaptive stabilized finite element method to solve a nonlinear Darcy equation
ith a pressure-dependent viscosity and mixed boundary conditions. We stated the discrete problem’s well-posedness and
ptimal error estimates, in natural norms, under standard assumptions. Next, we introduce and analyze a residual-based a
osteriori error estimator for the stabilized scheme. Finally, we present some two- and three-dimensional numerical examples
hich confirm our theoretical results.

c 2021 Elsevier B.V. All rights reserved.

eywords: Nonlinear Darcy’s equation; Stabilized finite element method; a priori error analysis; a posteriori error analysis

1. Introduction

In many critical applications, it becomes necessary to study the fluids flow through a porous medium, such as
n oil reservoirs, contaminant transport, mesoscale blood flows, filter design, and water resource problems. The
rst model adopted to study this phenomenon corresponds to the Darcy model (see [1]) when the fluid viscosity

s considered to be a constant and the pressure is independent of this viscosity. Then it was proved experimentally
hat in a wide variety of industrial applications, as in the case of organic liquid, viscosity can be pressure-dependent
see [2]). This situation occurs, for example, when the viscosity has an exponential dependence on pressure (see [2]),
urning the Darcy problem into a nonlinear problem (for details on the derivation, see [3]).

For the classical Darcy equation, there are a large number of numerical schemes that approximate the velocity
nd pressure of the fluid, including some mixed methods that consider the stable subspace of H (div;Ω ), such as
he Raviart–Thomas [4] or Brezzi–Douglas–Marini elements [5]. For an incomplete list of these stable schemes,
ee [6–11] and the references therein.

On the other hand, in fluid dynamics simulations, the usage of equal-order interpolation subspaces for pressure
nd velocity is a desirable property. However, this choice, unfortunately, does not lead to stable finite element
ethods that fulfill the Babuska–Brezzi–Ladyzenskaya condition (see [12] and the references therein). In order

o overcome this problem, several stabilized finite-element methods have been proposed over the last decades.
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Some remarkable examples of stabilized methods, which add residual terms to the Galerkin formulation, consist of
the SUPG/PSPG or SDFEM methods (see, for instance, [13–16]). A minor variation of these schemes is the so-
called Residual Local Projection (RELP) methods, which reintroduce the residues through interpolation operators
(fluctuation operators) on finite-dimensional spaces using the solution of local problems (see, for example, [17] for
the Stokes equations, [18] for the Darcy equations, and [19] for the Navier–Stokes equations). When the additional
terms are not residual-based, the Orthogonal Subscales method (see [20]), the CIP methods (see [21]), or the Local
Projection Stabilization (LPS) method (see [22]) can be employed. The LPS methods can also be considered as
a simplification of the RELP method. This method considers symmetric term-by-term fluctuation terms, therefore
generating a method that, although simpler, lacks a consistency property (see, for instance, [23] for the Oseen
equations and [24] for the Navier–Stokes equations). Another list of stabilized schemes for the linear Darcy equation
is [25–30]. A different strategy to approach this problem consists of multilevel approximation, such as the Multiscale
Hybrid-Mixed (MHM) method (for details, see [31,32]).

Regarding the nonlinear Darcy equation, the list of numerical schemes is relatively short when, for instance, the
iscosity is pressure-dependent. In [33], an approximation of the nonlinear equation in a circular well-established
omain using a spectral element discretization was proposed and analyzed. In [34], this strategy was extended to
onsider an a posteriori error estimator so as to improve the performance of a simplified model in which pressure
ependence does not show much variation. In [35], the authors used the implicit Euler scheme to extend the spectral
lement discretization to the non-stationary case. A study of the convergence of a stable finite element discretization
an be found in [36] for the nonlinear problem when the viscosity dependence on pressure is a bounded function. A
ixed finite element method with a Lagrange multiplier was introduced and analyzed in [37] for stable subspaces.
he authors also introduced an a posteriori error estimator to enhance the quality of the results. Extending the

deas presented in [25], a stabilized finite element method was proposed in [16] when the viscosity dependence on
ressure can occur in several different ways. A scalable numerical formulation based on variational inequalities was
ecently presented in [38], and the convergence of the last two schemes mentioned was carried out in a numerical
orm.

This work aims to present and analyze a stabilized finite element method for the nonlinear Darcy equations when
he viscosity can be exponentially dependent on pressure, for example, when this dependency satisfies the Barus
aw [39]. As in [37], we use a change of variable that allows us to transform the nonlinear equation into a linear
roblem. Implementing the ideas of [25], a new stabilized finite element method was defined. This new scheme is
ree of mesh-dependent stabilization parameters and allows the classical Pd

k ×Pk elements for velocity and pressure.
To ensure the method’s stability, some tools presented in [37] were used, such as the Banach fixed point theorem
and a generalized Lax–Milgram theorem. In the convergence analysis, we employed strategies from the analysis of
other classical stabilized finite element method (for details, see [40,41]). Thus, our contribution corresponds to the
numerical analysis of the discrete scheme, as well as the definition of a residual-based a posteriori error estimator.

This work is organized as follows: In Section 2 the nonlinear Darcy equation and the variational formulation of
the linear problem obtained from a change of variable is introduced. Some preliminary results that will be needed
later are presented at the end of this section. In Section 3, we described the stabilized finite element approximation
proposed and included the well-posedness of the scheme. This section also includes a priori error estimates for the
elements Pd

k × Pk .
Then, an a posteriori error estimator related to the new stabilized scheme is presented and analyzed in Section 4.

We also showed the equivalence between the error estimator and the approximation error in natural norms. In
Section 5, we presented the adaptive procedure established, in addition to the numerical results that validate the a
priori error results and the performance of the a posteriori error estimator. Finally, in Appendix A, we proved a
technical result essential for our adaptive scheme.

2. Model problem and preliminary results

Let Ω be a bounded domain in Rd , d = 2, 3 with polygonal boundary ∂Ω divided in ΓD and ΓN , with
D ∩ ΓN = ∅ and ΓD ̸= ∅. We focus in to seek the velocity and pressure solution (ũ, p̃) to the nonlinear Darcy
quations, with mixed boundary condition, given by:⎧⎪⎪⎨⎪⎪⎩

α( p̃) ũ + ∇ p̃ = f in Ω ,
∇ · ũ = 0 in Ω ,

p̃ = ϕ̃ on ΓD,
(2.1)
ũ · n = 0 on ΓN ,
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where α( p̃) is the drag function, ϕ̃ ∈ H 1/2(ΓD) is the prescribed pressure in ΓD , f ∈ L2(Ω )d is a given source and
is the unit outward normal vector to ∂Ω .

emark 1. When ΓN = ∂Ω it is necessary, for the uniqueness of the solution, to impose the condition
∫
Ω p̃ = 0.

n this work, we consider |ΓD| > 0, which is more complex to analyze.

In the standard Darcy equation, the drag coefficient α is equal to the ratio of the viscosity µ of the fluid and the
ermeability κ of the porous media, i.e.

α =
µ

κ
. (2.2)

In this work, we follow Barus [39], who proposed the exponential dependence of viscosity on pressure given by
he function

µ(s) = µ0eγ s, ∀s ∈ R, (2.3)

where µ0 is a positive constant and γ is called the Barus coefficient, which can be obtained experimentally (see [2]).
hereby, from (2.2) and (2.3) we get

α(s) = α0eγ s, ∀s ∈ R, (2.4)

where α0 :=
µ0

κ
.

Now, thanks to the (2.4) and in view of analysis, we will rewrite the problem (2.1) in a more convenient form.
o this end, the first equality of (2.1) is reduced to

ũ =
1

α( p̃)
(f − ∇ p̃) =

1
α0

e−γ p̃f +
1
α0γ

∇(e−γ p̃).

Now, defining u := ũ, and p := e−γ p̃
− 1, and using (2.1), we define the following Darcy equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

u =
1
α0

(p + 1)f +
1
ε
∇ p in Ω ,

∇ · u = 0 in Ω ,
p = ϕ on ΓD,

u · n = 0 on ΓN ,

(2.5)

where ε :=α0γ > 0 and ϕ := e−γ ϕ̃
− 1. This transformation was introduced in [37], where the authors present

a similar mixed variational formulation for (2.5), with different Hilbert spaces and using a Lagrange multiplier to
weakly impose some boundary conditions.

In the sequel we will use the following Hilbert spaces,

H := {v ∈ H (div;Ω ) : v · n = 0 on ΓN } ,

Q̃ := L2(Ω ),

and the norms

∥v∥H = ∥v∥div;Ω and ∥q∥Q̃ = ∥q∥0,Ω ,

for all v ∈ H and q ∈ Q̃.
The variational formulation of problem (2.5) can be written as: Find (u, p) ∈ H × Q̃ such that

a(u, v) + b(v, p) = ⟨v · n, ϕ⟩ΓD + γ (pf , v) + γ (f , v) ∀v ∈ H, (2.6)

b(u, q) = 0 ∀q ∈ Q̃, (2.7)

where a : H × H −→ R and b : H × Q̃ −→ R are the bilinear forms defined by

a(u, v) := ε (u, v) ∀(u, v) ∈ H × H, (2.8)

b(v, q) := (q,∇ · v) ∀(v, q) ∈ H × Q̃. (2.9)

ere (·, ·) stands for the L2(Ω )-inner product, where we use the same notation for vector, or tensor, valued functions,
−1/2 1/2
nd ⟨·, ·⟩ΓD is the duality pairing between H (ΓD) and H (ΓD).

3
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Also we consider the norm, on H−1/2(ΓD), given by

∥µ∥−1/2,ΓD := inf
σ∈H (div;Ω)

σ ·n=µ on ΓD

∥σ∥H , (2.10)

for all µ ∈ H−1/2(ΓD).
We equip the space H × Q̃ with the product norm

∥(w, r )∥H×Q̃ = ∥w∥H + ∥r∥0,Ω .

Throughout this paper C and Ci , i > 0 will denote positive constants independent of the mesh size h, but who
ay depend on the parameter ε.
The next result states some inequalities which will be used in the sequel.

emma 1. Let a(·, ·) and b(·, ·) be the bilinear forms given by (2.8) and (2.9), respectively. Then, there exists a
ositive constant βb, such that

|a(u, v)| ≤ ε∥u∥H∥v∥H ∀ u, v ∈ H, (2.11)
|b(v, q)| ≤ ∥q∥Q̃∥v∥H ∀ v ∈ H, ∀q ∈ Q̃, (2.12)

sup
v∈H

b(v, q)
∥v∥H

≥ βb ∥q∥Q̃ ∀q ∈ Q̃. (2.13)

Proof. The proof of (2.11) and (2.12) follows from norm definitions. For (2.13) see [42, (7.1.13)]. □

The next result guarantees the solvability of problem (2.6)–(2.7).

Theorem 2. Assume that f ∈ L∞(Ω )d and(
1
ε

+
2
βb

)
γ ∥f∥∞,Ω < 1. (2.14)

Then, problem (2.6)–(2.7) has a unique solution (u, p) ∈ H × Q̃ and there exist a positive constant C, independent
of ε and γ , such that

∥(u, p)∥H×Q̃ ≤ C
(

1
ε

+
2
βb

)
∥f∥∞,Ω . (2.15)

Proof. The proof is a simple adaptation of [37, Theorem 3.1]. □

In the rest of this work, we find the pressure solution p ∈ Q := H 1(Ω ), and over H × Q we will define the
ollowing norm

|||(w, r )||| := ε1/2
∥w∥H + ∥r∥1,Ω ,

or all (w, r ) ∈ H × Q.

. The stabilized finite element method

From now on, we denote by {Th}h>0 a regular family of triangulations of Ω̄ composed by simplexes. For a Th
e will denote by T the elements of the triangulation, and by Eh the set of all edges (faces) of Th , with the splitting

h = EΩ ∪ ED ∪ EN , where EΩ stands for the edges (faces) lying in the interior of Ω , ED and EN stands for the
dges (faces) on the boundaries ΓD and ΓN , respectively. As usual hT means the diameter of T , h = max

T ∈Th
hT , and

hF := |F | for F ∈ Eh .
We introduce two finite element subspaces of H and Q, given by

Hh :={v ∈ C(Ω )d
: v|T ∈ Pk(T )d , ∀T ∈ Th} ∩ H,

Qh :={q ∈ C(Ω ) : q|T ∈ Pk(T ), ∀T ∈ Th},

with k ≥ 1, where P stands for the space of polynomials of total degree less or equal to k.
k

4
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Next, we consider the following discrete stabilized scheme: Find (uh, ph) ∈ Hh × Qh such that

Bstab((uh, ph), (vh, qh)) = ⟨vh · n, ϕ⟩ΓD + γ ((ph + 1)f , vh) −
1
2

(
ε−1 γ (ph + 1)f , εvh + ∇qh

)
, (3.1)

for all (vh, qh) ∈ Hh × Qh , where

Bstab((wh, rh), (vh, qh)) := a(wh, vh)+b(v, rh)−b(wh, qh)−
1
2

(
ε−1(εwh −∇rh), ε vh +∇qh

)
+ε (∇ ·wh,∇ · vh).

(3.2)

Remark 2. This scheme, as well as the proposed in [16], is based on the stabilized finite element method, for the
linear Darcy equation, presented in [25], with the difference that in our scheme we add an ε (∇ · uh,∇ · vh) term
which improves the quality of the numerical results.

The following result will be fundamental to prove the well-posedness of the stabilized finite element scheme.
The proof is based on the same arguments used in [41, Lemma 4.1].

Lemma 3. Let Bstab(·, ·) be the bilinear form defined in (3.2). Then there is a positive constant βs , independent
of h and ε, such that

sup
(vh ,qh )∈Hh×Qh

Bstab((uh, ph), (vh, qh))
|||(vh, qh)|||

≥ βs |||(uh, ph)|||, (3.3)

for all (uh, ph) ∈ Hh × Qh .

Proof. Let (uh, ph) ∈ Hh × Qh and let wh ∈ Hh be a function for which the supremum in Lemma 10 is attained,
and such that ∥wh∥H = ∥ph∥0,Ω . If we consider w̃h = −wh , we have

−(ph,∇ · w̃h)
∥w̃h∥H

=
(ph,∇ · wh)

∥wh∥H
≥ βw∥ph∥0,Ω − λ|ph |1,Ω ,

and therefore,

− (ph,∇ · w̃h) ≥ βw∥ph∥
2
0,Ω − λ|ph |1,Ω∥w̃h∥H . (3.4)

Then, for (vh, qh) := (uh − δw̃h, ph), with δ > 0, we get that

Bstab((uh, ph), (vh, qh)) =Bstab((uh, ph), (uh, ph)) − δ Bstab((uh, ph), (w̃h, 0))

=Bstab((uh, ph), (uh, ph)) − δ
[

Bstab((uh, 0), (w̃h, 0)) + Bstab((0, ph), (w̃h, 0))
]

=
1
2
ε ∥uh∥

2
0,Ω + ε ∥∇ · uh∥

2
0,Ω +

1
2
ε−1

|ph |
2
1,Ω

− δ

[
1
2
ε (uh, w̃h) + ε (∇ · uh,∇ · w̃h) + (ph,∇ · w̃h) +

1
2

(∇ ph, w̃h)
]

=
1
2
ε ∥uh∥

2
0,Ω + ε ∥∇ · uh∥

2
0,Ω +

1
2
ε−1

|ph |
2
1,Ω

−
δ

2
ε (uh, w̃h) − δε (∇ · uh,∇ · w̃h) − δ (ph,∇ · w̃h) −

δ

2
(∇ ph, w̃h)

≥
1
2
ε ∥uh∥

2
0,Ω + ε ∥∇ · uh∥

2
0,Ω +

1
2
ε−1

|ph |
2
1,Ω + δβw ∥ph∥

2
0,Ω − δλ|ph |1,Ω ∥w̃h∥H

−
δ

2
ε (uh, w̃h) − δε (∇ · uh,∇ · w̃h) −

δ

2
(∇ ph, w̃h)

≥
1
2
ε ∥uh∥

2
0,Ω + ε ∥∇ · uh∥

2
0,Ω +

1
2
ε−1

|ph |
2
1,Ω + δβw ∥ph∥

2
0,Ω

−
δ

2
ε ∥uh∥0,Ω∥w̃h∥0,Ω − δε ∥∇ · uh∥0,Ω∥∇ · w̃h∥0,Ω

−
δ
|ph | ∥w̃h∥0,Ω − δλ|ph | ∥w̃h∥H .
2 1,Ω 1,Ω

5
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Now, using Young’s inequality 2ab ≤
a2

γ
+ γ b2, for all a, b, γ > 0, and the fact that ∥w̃h∥H = ∥ph∥0,Ω , we get

Bstab((uh, ph), (vh, qh)) ≥
1
2
ε ∥uh∥

2
0,Ω + ε ∥∇ · uh∥

2
0,Ω +

1
2
ε−1

|ph |
2
1,Ω + δβw ∥ph∥

2
0,Ω

−
δε

4γ1
∥uh∥

2
0,Ω −

δεγ1

4
∥w̃h∥

2
0,Ω

−
δε

2γ2
∥∇ · uh∥

2
0,Ω −

δεγ2

2
∥∇ · w̃h∥

2
0,Ω

−
δ

4γ3
|ph |

2
1,Ω −

δγ3

4
∥w̃h∥

2
0,Ω

−
δλ

2γ4
|ph |

2
1,Ω −

δλγ4

2
∥w̃h∥

2
H

≥
1
2
ε

(
1 −

δ

2γ1

)
∥uh∥

2
0,Ω + ε

(
1 −

δ

2γ2

)
∥∇ · uh∥

2
0,Ω

+
1
2

(
ε−1

−
δ

2γ3
−
δλ

2γ4

)
|ph |

2
1,Ω

+ δ

(
βw −

δεγ1

4
−
δεγ2

2
−
δγ3

4
−
δλγ4

2

)
∥ph∥

2
0,Ω

≥
1
2
ε

(
1 −

δ

2γ1

)
∥uh∥

2
0,Ω + ε

(
1 −

δ

2γ2

)
∥∇ · uh∥

2
0,Ω

+
1
2

(
ε−1

−
δ

2γ3
−
δλ

2γ4

)
|ph |

2
1,Ω + δC10 ∥ph∥

2
0,Ω ,

with C10 > 0, if γ1, γ2, γ3 and γ4 are chosen small enough.

Now, if we choose 0 < δ < min
{

2γ1, 2γ2,
2γ3γ4ε

−1

γ4 + γ3λ
, ε−1/2

}
, we have

Bstab((uh, ph), (vh, qh)) ≥ C |||(uh, ph)|||2. (3.5)

On the other hand, using the definition of vh, qh, δ and the triangle inequality, we have

|||(vh, qh)||| ≤
√
ε ∥uh∥H + δ

√
ε ∥ph∥0,Ω + ∥ph∥1,Ω ≤ C |||(uh, ph)|||,

thus, using (3.5), we complete the proof. □

Remark 3. This result is also valid for the continuous spaces H and Q and it will be used in the analysis of
the a posteriori error estimator proposed in Section 4 (for details, see Lemma 11). On the other hand, if we use
stable subspaces of H and Q, as for example, Raviart–Thomas elements of degree k, for the velocity, and piecewise

olynomial elements of order k, for the pressure, or the Brezzi–Douglas–Marini spaces of order k, for the velocity,
nd piecewise polynomial elements of order k − 1, for the pressure, Lemma 3 is also true (for details on stable
ubspaces, see [42]). In both cases the proof is similar to that proposed for Lemma 11 and therefore (3.1) can be
een as an augmented finite element method when stable subspaces of H and Q are used.

Concerning the well-posedness of the stabilized discrete problem (3.1), we have the following result.

Theorem 4. Let βs > 0 as in (3.3) and βc > 0 as in (A.7). If

γ ∥f∥∞,Ω ≤
min{βs, βc} ε

1/2

3 + ε−1/2 , (3.6)

then the discrete stabilized problem (3.1) has a unique solution (uh, ph) ∈ Hh × Qh .

roof. To prove the result, we write the solution of the problem (3.1), as the solution of a fixed point problem.
hereby, given r ∈ L2(Ω ), we define the linear functionals

Fs
: H × Q −→ R and Fs

: H × Q −→ R,
r h h h h

6
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by

Fs
r (vh, qh) := γ (r f , vh) −

1
2

(
ε−1γ r f , ε vh + ∇qh

)
,

Fs(vh, qh) := ⟨vh · n, ϕ⟩ΓD + γ (f , vh) −
1
2

(
ε−1γ f , ε vh + ∇qh

)
.

Now, we can write equation (3.1) as

Bstab((uh, ph), (vh, qh)) = Fs
ph

(vh, qh) + Fs(vh, qh) ∀ (vh, qh) ∈ Hh × Qh .

If we assume that f ∈ L∞(Ω )d , the functional Fs
r satisfy

|Fs
r (vh, qh)| ≤ γ ∥r∥0,Ω∥f∥∞,Ω∥vh∥0,Ω +

1
2
ε−1γ ∥r∥0,Ω∥f∥∞,Ω

{
ε∥vh∥0,Ω + ∥∇qh∥0,Ω

}
≤ γ ε−1/2

∥r∥0,Ω∥f∥∞,Ω |||(vh, qh)||| +
1
2
ε−1γ ∥r∥0,Ω∥f∥∞,Ω

{
ε1/2

+ 1
}
|||(vh, qh)|||

≤
ε−1/2

2

{
3 + ε−1/2} γ ∥r∥0,Ω∥f∥∞,Ω |||(vh, qh)|||. (3.7)

oreover, let Th : Hh × Qh −→ Hh × Qh the operator defined, for a given (wh, rh) ∈ Hh × Qh , by

Th(wh, rh) = (ūh, p̄h),

here (ūh, p̄h) ∈ Hh × Qh is the unique solution of the linear problem

Bstab((ūh, p̄h), (vh, qh)) = Fs
rh

(vh, qh) + Fs(vh, qh) ∀ (vh, qh) ∈ Hh × Qh .

n this way, the discrete problem (3.1) can be written as follows: Find (uh, ph) ∈ Hh × Qh such that

Th(uh, ph) = (uh, ph).

ow, we can observe that

Th(wh, rh) = (u0
h, p0

h) + Sh(wh, rh) ∀ (wh, rh) ∈ Hh × Qh,

here (u0
h, p0

h) ∈ Hh × Qh is the unique solution of the auxiliar problem

Bstab((u0
h, p0

h), (vh, qh)) = Fs(vh, qh), ∀ (vh, qh) ∈ Hh × Qh, (3.8)

and Sh : Hh × Qh −→ Hh × Qh is the linear operator defined by

Sh(wh, rh) = (ũh, p̃h)

where (ũh, p̃h) ∈ Hh × Qh satisfies the problem

Bstab((ũh, p̃h), (vh, qh)) = Fs
rh

(vh, qh), ∀ (vh, qh) ∈ Hh × Qh . (3.9)

Furthermore, using the continuous dependence result and inequality (3.7), we have that

|||Sh(wh, rh)||| = |||(ũh, p̃h)||| ≤
ε−1/2

2βs

{
3 + ε−1/2} γ ∥rh∥0,Ω∥f∥∞,Ω . (3.10)

Let (w1
h, r

1
h ), (w2

h, r
2
h ) ∈ Hh × Qh . Then, from (3.10) we have

|||Th(w1
h, r

1
h ) − Th(w2

h, r
2
h )||| =|||Sh(w1

h, r
1
h ) − Sh(w2

h, r
2
h )|||

=|||Sh(w1
h − w2

h, r
1
h − r2

h )|||

≤
ε−1/2

2βs

{
3 + ε−1/2} γ ∥r1

h − r2
h∥0,Ω∥f∥∞,Ω

≤
ε−1/2

2βs

{
3 + ε−1/2} γ ∥f∥∞,Ω |||(w1

h − w2
h, r

1
h − r2

h )|||.

hus, using condition (3.6), we have that

|||Th(w1
h, r

1
h ) − Th(w2

h, r
2
h )||| ≤

1
2
|||(w1

h − w2
h, r

1
h − r2

h )|||.

The result follows using the Banach fixed point theorem. □
7
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We consider the Lagrange interpolants Ih : H k+1(Ω )d
−→ Hh and Jh : H k+1(Ω ) −→ Qh such that (see [43]

or details):

|u − Ihu|l,Ω ≤Chs−l
|u|s,Ω , (3.11)

|p − Jh p|l,Ω ≤Chs−l
|p|s,Ω , (3.12)

for all u ∈ H s(Ω )d and all p ∈ H s(Ω ) with l = 0, 1 and 1 ≤ s ≤ k + 1.

emma 5. Let (u, p) and (uh, ph) be the solutions of (2.5) and (3.1), respectively. If (u, p) ∈ H k+1(Ω )d
∩ H ×

H k+1(Ω ), then it holds

|Bstab((u − uh, p − ph), (vh, qh))| ≤
ε−1/2

2
(3 + ε−1/2) γ ∥f∥∞,Ω∥p − ph∥0,Ω |||(vh, qh)|||, (3.13)

or all (vh, qh) ∈ Hh × Qh .

roof. Using the regularity of the solution (u, p) of (2.5), we can prove that εu − γ (p + 1)f − ∇ p = 0, ∇ · u = 0
nd p = ϕ on ΓD . Now, using integration by parts and the definition of Bstab(·, ·), we have

Bstab((u − uh, p − ph), (vh, qh)) = Bstab((u, p), (vh, qh)) − Bstab((uh, ph), (vh, qh))
= ε(u, vh) + (p,∇ · vh) − (qh,∇ · u)

−
1
2

(
ε−1(εu − ∇ p), εvh + ∇qh

)
+ ε (∇ · u,∇ · vh)

− ⟨vh · n, ϕ⟩ΓD − γ ((ph + 1)f , vh) +
1
2

(
ε−1γ (ph + 1)f , εvh + ∇qh

)
= (εu − γ (ph + 1)f − ∇ p, vh)

−
1
2

(
ε−1[εu − ∇ p − γ (ph + 1)f

]
, εvh + ∇qh

)
=

(
γ (p − ph)f , vh

)
−

1
2

(
ε−1γ (p − ph)f , εvh + ∇qh

)
=

1
2

(
γ (p − ph)f , vh

)
−

1
2

(
ε−1γ (p − ph)f ,∇qh

)
≤

1
2

{
γ ∥p − ph∥0,Ω∥f∥∞,Ωε

−1/2
+ γ ∥p − ph∥0,Ω∥f∥∞,Ωε

−1}
|||(vh, qh)|||

=
ε−1/2

2
(1 + ε−1/2) γ ∥f∥∞,Ω∥p − ph∥0,Ω |||(vh, qh)|||

≤
ε−1/2

2
(3 + ε−1/2) γ ∥f∥∞,Ω∥p − ph∥0,Ω |||(vh, qh)|||,

nd the result follows. □

heorem 6 (Main Result). Let (u, p) ∈ H k+1(Ω )d
∩ H × H k+1(Ω ), be the solution of (2.5) and (uh, ph) ∈ Hh × Qh

olution of (3.1). If we assume (3.6), then it holds

|||(u − uh, p − ph)||| ≤ C hk
{

(ε1/2
+ 1) ∥u∥k+1,Ω + (ε−1/2

+ ε−1
+ 1) ∥p∥k+1,Ω

}
,

ith C > 0 independent of h and ε.

roof. Let

(ηu, ηp) := (u − Ihu, p − Jh p) and (eu
h , ep

h ) := (uh − Ihu, ph − Jh p).

sing the definition of Bstab given in (3.2), and Cauchy–Schwarz inequality, we have

Bstab((ηu, ηp), (vh, qh))

= ε(ηu, vh) + (ηp,∇ · vh) − (qh,∇ · ηu) −
1(
ε−1(εηu

− ∇ηp), εvh + ∇qh
)
+ ε (∇ · ηu,∇ · vh)
2
8
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U

N

F

≤

{
ε1/2

∥ηu
∥0,Ω + ε−1/2

∥ηp
∥0,Ω + ∥∇ · ηu

∥0,Ω +
1
2

(ε1/2
+ 1)

[
∥ηu

∥0,Ω + ε−1
|ηp

|1,Ω
]

+ε1/2
∥∇ · ηu

∥0,Ω

}
|||(vh, qh)|||

≤

{
1
2

(3ε1/2
+ 1)∥ηu

∥0,Ω + (ε1/2
+ 1)∥∇ · ηu

∥0,Ω + ε−1/2
∥ηp

∥0,Ω +
1
2
ε−1(ε1/2

+ 1) |ηp
|1,Ω

}
|||(vh, qh)|||.

(3.14)

sing Lemmas 3 and 5, and inequality (3.14), we get that

Bstab((eu
h , ep

h ), (vh, qh)) = Bstab((ηu, ηp), (vh, qh)) − Bstab((u − uh, p − ph), (vh, qh))

≤

[
1
2

(3ε1/2
+ 1)∥ηu

∥0,Ω + (ε1/2
+ 1)∥∇ · ηu

∥0,Ω + ε−1/2
∥ηp

∥0,Ω+

1
2
ε−1(ε1/2

+ 1) |ηp
|1,Ω

]
|||(vh, qh)|||+

ε−1/2

2
(3 + ε−1/2) γ ∥f∥∞,Ω∥p − ph∥0,Ω |||(vh, qh)|||.

ow, using Lemma 3 and (3.6), we have

βs |||(eu
h , ep

h )|||

≤
1
2

(3ε1/2
+ 1)∥ηu

∥0,Ω + (ε1/2
+ 1)∥∇ · ηu

∥0,Ω + ε−1/2
∥ηp

∥0,Ω+

1
2
ε−1(ε1/2

+ 1) |ηp
|1,Ω +

ε−1/2

2
(3 + ε−1/2) γ ∥f∥∞,Ω∥p − ph∥0,Ω

≤
1
2

(3ε1/2
+ 1)∥ηu

∥0,Ω + (ε1/2
+ 1)∥∇ · ηu

∥0,Ω + ε−1/2
∥ηp

∥0,Ω+

1
2
ε−1(ε1/2

+ 1) |ηp
|1,Ω +

ε−1/2

2
(3 + ε−1/2) γ ∥f∥∞,Ω |||(u − uh, p − ph)|||

≤
1
2

(3ε1/2
+ 1)∥ηu

∥0,Ω + (ε1/2
+ 1)∥∇ · ηu

∥0,Ω + ε−1/2
∥ηp

∥0,Ω+

1
2
ε−1(ε1/2

+ 1) |ηp
|1,Ω +

βs

2
|||(u − uh, p − ph)|||. (3.15)

urthermore, using the triangle inequality and (3.15), we obtain

|||(u − uh, p − ph)||| ≤ |||(ηu, ηp)||| + C
{

(ε1/2
+ 1) ∥ηu

∥H + ε−1/2
∥ηp

∥0,Ω + ε−1(ε1/2
+ 1) |ηp

|1,Ω

}
+

1
2

|||(u − uh, p − ph)|||,

thus

|||(u − uh, p − ph)||| ≤ C
{
|||(ηu, ηp)||| + (ε1/2

+ 1) ∥ηu
∥H + ε−1/2

∥ηp
∥0,Ω + ε−1 (ε1/2

+ 1) |ηp
|1,Ω

}
.

Finally, using the properties of Ih and Jh , we have

|||(ηu, ηp)||| ≤ C hk
{
ε1/2

∥u∥k+1,Ω + ∥p∥k+1,Ω

}
,

and the result follows. □

4. A posteriori error analysis

In this section, we present a residual a posteriori error estimator for the stabilized finite element method (3.1). Let
ΓD,h be the partition of ΓD inherited from the triangulation Th , and define the mesh size hD := max{|F | : F ∈ ΓD,h}.

For simplicity, we assume that

9
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• f is a piecewise polynomial in Ω ; i.e f
⏐⏐⏐

K
∈ Pl(K )d , ∀K ∈ Th, l ≥ 0.

• ϕ is a continuous piecewise polynomial in ΓD,h , i.e ϕ ∈ C0(ΓD,h), ϕ
⏐⏐⏐

F
∈ Pl(F), ∀F ∈ ΓD,h, l ≥ 0.

emark 4. If f is not a piecewise polynomial, then some oscillatory terms will appear in our a posteriori bounds
n a standard way. We made this assumption only for a clarity matter.

For each K ∈ Th and each F ∈ ED , we define the residuals

RK :=

(
γ (ph + 1)f − ε uh + ∇ ph

)⏐⏐⏐
K
,

RF :=(ϕ − ph)
⏐⏐⏐

F
.

hus, our residual-based error estimator is given by

η :=

⎧⎨⎩ ∑
K∈Th

η2
K

⎫⎬⎭
1/2

, (4.1)

here, for each K ∈ Th , we have that

η2
K := ∥RK ∥

2
0,K + ε2

∥∇ · uh∥
2
0,K +

∑
F⊂E(K )∩ED

h−1
F ∥RF∥

2
0,F . (4.2)

emma 7. Let (u, p) ∈ H × Q and (uh, ph) ∈ Hh × Qh , be the solutions of (2.5) and (3.1), respectively. Then,
or all (v, q) ∈ H × Q, we have

Bstab((u − uh, p − ph), (v, q))

= ⟨v · n, ϕ − ph⟩ΓD +
1
2

(
ε−1/2γ (p − ph)f , ε1/2v − ε−1/2

∇q
)

+
1
2

∑
K∈Th

(
ε−1/2(RK ), ε1/2v − ε−1/2

∇q
)

K + (q,∇ · uh) − ε (∇ · uh,∇ · v).

roof. Using (2.6), (2.7), (3.1) and integration by parts, we get that

Bstab((u − uh, p − ph), (v, q))
=Bstab((u, p), (v, q)) − Bstab((uh, ph), (v, q))

=⟨v · n, ϕ⟩ΓD + γ ((p + 1)f , v) −
1
2

(
ε−1(γ (p + 1)f ), εv + ∇q

)
− ε (uh, v) − (ph,∇ · v) + (q,∇ · uh) +

1
2

(
ε−1(εuh − ∇ ph), εv + ∇q

)
− ε (∇ · uh,∇ · v)

=⟨v · n, ϕ⟩ΓD + γ ((p + 1)f , v) + ε (∇ · u,∇ · v) − ε (uh, v) − (ph,∇ · v) + (q,∇ · uh)

+
1
2

(
ε−1(εuh − ∇ ph − γ (p + 1)f ), εv + ∇q

)
− ε (∇ · uh,∇ · v)

=⟨v · n, ϕ − ph⟩ΓD + (γ (p + 1)f − ε uh + ∇ ph, v) + ε (∇ · u,∇ · v) + (q,∇ · uh)

+
1
2

(
ε−1(εuh − ∇ ph − γ (p + 1)f ), εv + ∇q

)
− ε (∇ · uh,∇ · v)

=⟨v · n, ϕ − ph⟩ΓD + (γ (p − ph)f , v) + (γ (ph + 1)f − ε uh + ∇ ph, v) + ε (∇ · u,∇ · v) + (q,∇ · uh)

−
1
2

(
ε−1(γ (p − ph)f ), εv + ∇q

)
+

1
2

(
ε−1(εuh − ∇ ph − γ (ph + 1)f ), εv + ∇q

)
− ε (∇ · uh,∇ · v)

=⟨v · n, ϕ − ph⟩ΓD + (γ (p − ph)f , v) +

∑
K∈Th

(RK , v)K + ε (∇ · u,∇ · v) + (q,∇ · uh)

−
1
2

(
ε−1(γ (p − ph)f ), εv + ∇q

)
−

1
2

∑ (
ε−1(RK ), εv + ∇q

)
K − ε (∇ · uh,∇ · v)
K∈Th

10
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=⟨v · n, ϕ − ph⟩ΓD +
1
2

(ε−1/2γ (p − ph)f , ε1/2v − ε−1/2
∇q)

+
1
2

∑
K∈Th

(
ε−1/2(RK ), ε1/2v − ε−1/2

∇q
)

K + (q,∇ · uh) − ε (∇ · uh,∇ · v),

nd the result follows. □

To introduce the main result of this section, we need to define the following mesh-dependent norm for the
ressure

∥p∥ωF :=

⎧⎨⎩ ∑
K∈ωF

[
h−2

K ∥p∥
2
0,K + |p|

2
1,K

]⎫⎬⎭
1/2

,

or all p ∈ Q, and for all F ∈ Eh , where ωF is the set of elements K of Th such that F ∈ ∂K .

emma 8. There exists C > 0, independent of h, such that

∥ψ∥
2
0,∂K ≤ C

{
h−1

K ∥ψ∥
2
0,K + hK |ψ |

2
1,K

}
,

or all K ∈ Th and all ψ ∈ H 1(K ).

roof. See [44, Theorem 3.10] or [45, (10.3.8)]. □

We are ready to prove the efficiency and reliability of the error estimator (4.1).

heorem 9. Let (u, p) ∈ H × Q and (uh, ph) ∈ Hh × Qh , be the solutions of (2.5) and (3.1), respectively, and
uppose valid (3.6). Then, the following holds

|||(u − uh, p − ph)||| ≤ C ε−1/2 max
{
1, ε−1/2} η,

here C > 0 is independent of ε, γ and h, and

η2
K ≤ C

{
ε2

∥u − uh∥
2
div,K + β2

K ∥p − ph∥
2
1,K +

∑
F⊂E(K )∩ED

∥p − ph∥
2
ωF

}
,

or all K ∈ Th , where βK := max
{
γ ∥f∥∞,Ω , 1

}
.

roof. From [46,47] we have the following inverse estimate ∥ϕ − ph∥1/2,ΓD ≤ Ch−1/2
D ∥ϕ − ph∥0,ΓD , thus using

auchy–Schwarz inequality, the definition of norm ∥ · ∥−1/2,ΓD given in (2.10) and Lemma 7, we get

Bstab((u − uh, p − ph), (v, q))

≤C ∥v · n∥−1/2,ΓD ∥ϕ − ph∥1/2,ΓD +
1
2
ε−1/2

∥p − ph∥0,Ω γ ∥f∥∞,Ω ∥ε1/2v − ε−1/2
∇q∥0,Ω+

1
2

∑
K∈Th

ε−1/2
∥RK ∥0,K ∥ε1/2v − ε−1/2

∇q∥0,K + ∥q∥0,Ω∥∇ · uh∥0,Ω + ε ∥∇ · uh∥0,Ω∥∇ · v∥0,Ω

≤C h−1/2
D ∥v∥H∥ϕ − ph∥0,ΓD +

1
2
ε−1/2

∥p − ph∥0,Ω γ ∥f∥∞,Ω ∥ε1/2v − ε−1/2
∇q∥0,Ω+

1
2

∑
K∈Th

ε−1/2
∥RK ∥0,K ∥ε1/2v − ε−1/2

∇q∥0,K + ∥q∥0,Ω∥∇ · uh∥0,Ω + ε ∥∇ · uh∥0,Ω∥∇ · v∥0,Ω

≤C ∥v∥H

⎧⎨⎩ ∑
F⊂ED

h−1
F ∥ϕ − ph∥

2
0,F

⎫⎬⎭
1/2

+
1
2
ε−1/2

∥p − ph∥0,Ω γ ∥f∥∞,Ω

{
ε1/2

∥v∥0,Ω + ε−1/2
|q|1,Ω

}
+

C

⎧⎨⎩ ∑ [
ε−1

∥RK ∥
2
0,K + ε ∥∇ · uh∥

2
0,K

]⎫⎬⎭
1/2
K∈Th

11
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A

O

×

⎧⎨⎩ ∑
K∈Th

[
ε∥v∥2

0,K + ε ∥∇ · v∥2
0,K + ε−1

∥q∥
2
0,K + ε−1

|q|
2
1,K

]⎫⎬⎭
1/2

≤
1
2
ε−1/2

∥p − ph∥0,Ω γ ∥f∥∞,Ω

{
ε1/2

∥v∥0,Ω + ε−1/2
|q|1,Ω

}
+

C

⎧⎨⎩ ∑
K∈Th

⎡⎣ε−1
∥RK ∥

2
0,K + ε ∥∇ · uh∥

2
0,K +

∑
F⊂E(K )∩ED

ε−1h−1
F ∥RF∥

2
0,F

⎤⎦⎫⎬⎭
1/2 {

ε∥v∥2
H + ε−1

∥q∥
2
1,Ω

}1/2

≤ε−1/2 max
{
1, ε−1/2} {

1
2

∥p − ph∥0,Ω γ ∥f∥∞,Ω + C η
}

|||(v, q)|||. (4.3)

dditionally, from Lemma 11, (3.6) and (4.3), we arrive at

βc |||(u − uh, p − ph)||| ≤ sup
(v,q)∈H×Q

Bstab((u − uh, p − ph), (v, q))
|||(v, q)|||

≤ε−1/2 max
{
1, ε−1/2} 1

2
∥p − ph∥0,Ω γ ∥f∥∞,Ω + C ε−1/2 max

{
1, ε−1/2} η

≤
3 + ε−1/2

2
ε−1/2

∥p − ph∥1,Ω γ ∥f∥∞,Ω + C ε−1/2 max
{
1, ε−1/2} η

≤
βc

2
∥p − ph∥1,Ω + C ε−1/2 max

{
1, ε−1/2} η,

and therefore,

|||(u − uh, p − ph)||| ≤ C ε−1/2 max
{
1, ε−1/2} η.

n the other hand, using the definition of RK and (2.5), we deduce that

∥RK ∥0,K = ∥γ phf + γ f − ε uh + ∇ ph∥0,K

= ∥γ phf + ε u − γ pf − ∇ p − ε uh + ∇ ph∥0,K

= ∥γ (ph − p)f + ε (u − uh) + ∇(ph − p)∥0,K

≤ ∥p − ph∥0,K γ ∥f∥∞,K + ε ∥u − uh∥0,K + |p − ph |1,K . (4.4)

In addition, as ∇ · u = 0 in Ω , we have

∥∇ · uh∥0,K = ∥∇ · (u − uh)∥0,K . (4.5)

Similarly, as p = ϕ on ΓD , using the triangle inequality, Lemma 8 and the mesh regularity, we have that

h−1
F ∥RF∥

2
0,F = h−1

F ∥p − ph∥
2
0,F ≤ C

∑
K∈ωF

[
h−2

K ∥p − ph∥
2
0,K + |p − ph |

2
1,K

]
. (4.6)

Finally, using the definition of ηK and (4.4)–(4.6), we get the result. □

5. Numerical results

In this section we present some numerical tests that illustrate the performance of our adapted stabilized finite
element method given in (3.1). In particular, we confirm the results presented in Theorem 6 and the quality of the
a posteriori error estimator (4.1) for the Darcy equation (2.5).

The stabilized finite element scheme was implemented using the open source finite element library FEniCS [48].
Recall that we use the notation Pd

k ×Pk to mean that the velocity and the pressure are approximated using piecewise
continuous polynomials of total degree at most k.

We will use the following notation for the error in velocity and pressure, respectively
eu := ∥u − uh∥H , and ep := ∥p − ph∥1,Ω ,

12
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while the convergence rates are denoted by

rm(x) =
log(ei

x/e
i−1
x )

log(hi/hi−1)
, with x ∈ {u, p} ,

here m is the polynomial degree, hi , hi−1, and, ei
x , ei−1

x represent two consecutive mesh sizes and two consecutive
rrors, respectively.

Finally, we define the effectivity index E as follows

E :=
η

|||(u − uh, p − ph)|||
.

Our adaptive algorithm is given by
Algorithm 1 Adaptivity procedure

Require: θ ∈ (0, 1) and a coarse mesh Th .
1: Solve the stabilized discrete scheme (3.1) on the current mesh.
2: For each K ∈ Th , compute the local error indicator ηK given by (4.2).
3: Given K ∈ Th such that ηK ≥ θ max

K ′∈Th
ηK ′ , mark K and generate a new mesh Th refining the marked elements.

4: If the stop criterion is not satisfied, go to step 1.

5.1. Analytic solution

In this example, we will test the approximation capability of the stabilized method in a non-convex domain with
nearly singular solution close to the origin of coordinates. We will also show that our error estimator adapts the
eshes where it is expected and has a good effectivity index.
In this case our domain is Ω :=

{
(x, y) ∈ R2

: x2
+ y2

≤ 1
}

\ (0, 1)2, with ΓN := (0, 1) × {0} ∪ {0} × (0, 1) and
ΓD := ∂Ω \ ΓN . The data f and ϕ are such that the exact solution is given by

u(x, y) := [(x − c)2
+ (y − c)2]−1/2(c − y, x − c), p(x, y) :=

1 − x2
− y2

(x − c)2 + (y − c)2 ,

here c = 0.025. For the drag function (2.4), we take α0 = 1.0, while γ = 1, 10−2, 10−4.
Note that in this case f (x, y) = [h(x, y)]−1

(
f1(x, y), f2(x, y)

)
, where

f1(x, y) =
c − y√

(x − c)2 + (y − c)2
+

2x
ε((x − c)2 + (y − c)2)

+
(1 − x2

− y2)(2x − 2c)
ε((x − c)2 + (y − c)2)2

f2(x, y) =
x − c√

(x − c)2 + (y − c)2
+

2y
ε((x − c)2 + (y − c)2)

+
(1 − x2

− y2)(2y − 2c)
ε((x − c)2 + (y − c)2)2

h(x, y) =

[
1 − x2

− y2
+ (c − x)2

+ (c − y)2
][

(c − x)2 + (c − y)2
] .

In this experiment, we consider a post-processed pressure p̃h :=
1
γ

log(ph + 1) used to approximate the exact

ressure p̃ of the original problem (2.1). In Tables 1–6 we show the approximation error using P2
1 ×P1 and P2

2 ×P2.
We note that the errors on the velocity and pressure have the order predicted by Theorem 6. In particular, we have a
better order for the velocity in the norm ∥·∥H because the velocities considered are smooth functions. On the other
hand, the error estimator η, given by (4.1), has a quite good quality reflected on the fact that effectivity indexes
are close to the unity. Note that there is a small degradation of the effectivity index when ε goes to 0, because the
contribution of the velocity norm ∥u − uh∥H in the total error is negligible when ε → 0, and by (4.4) and (4.6),
the estimator η to be asymptotically smaller than ∥p − ph∥1,Ω and therefore the effectivity index decreases. On the
other hand, when the order of the interpolation polynomials is increased in our discrete scheme, now the velocity
norm ∥u − uh∥H in the total error is not negligible when ε → 0 and therefore the effectivity index increased.

In Fig. 1 we show some of the adapted meshes obtained with Algorithm 1. Note that most of the refinement is

lose to the origin due to the fact that the exact solution has a singularity at the point (c, c) with c = 0.025, which

13
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Table 1
P2

1 × P1 stabilized scheme with a quasi-uniform refinement and ε = 1.

h ∥ p̃ − p̃h∥0,Ω r1( p̃) ∥p − ph∥1,Ω r1(p) ∥u − uh∥H r1(u) |||(u − uh , p − ph )||| η E

0.079946 1.0710 – 2056.657064 – 54.729693 – 2111.386757 1888.309544 0.894346
0.039990 0.3093 1.8237 1318.996805 0.641253 28.518113 0.941022 1347.514919 1315.964898 0.976587
0.019998 0.0973 1.6963 868.049234 0.603722 13.842753 1.042973 881.891987 854.508058 0.968949
0.010000 0.0428 1.1913 463.443573 0.905514 5.588739 1.308725 469.032312 460.407948 0.981612
0.005000 0.0085 2.3461 235.075873 0.979267 1.851054 1.594176 236.926927 234.680437 0.990518
0.002500 0.0013 2.5169 115.909138 1.020132 0.579464 1.675556 116.488602 115.857322 0.994581

Table 2
P2

1 × P1 stabilized scheme with a quasi-uniform refinement and ε = 10−2.

h ∥ p̃ − p̃h∥0,Ω r1( p̃) ∥p − ph∥1,Ω r1(p) ∥u − uh∥H r1(u) |||(u − uh , p − ph )||| η E

0.079946 105.3769 – 2055.714421 – 5464.968894 – 2602.211310 1884.365482 0.724140
0.039990 30.9629 1.7985 1319.171243 0.640401 2851.557217 0.939039 1604.326965 1316.475766 0.820578
0.020000 9.6558 1.7087 868.110785 0.603812 1381.329850 1.045919 1006.243770 854.723621 0.849420
0.010000 4.2576 1.1872 463.470837 0.905531 558.754010 1.305961 519.346238 460.505925 0.886703
0.005000 0.8452 2.3475 235.078411 0.979337 185.072224 1.594125 253.585634 234.689286 0.925483
0.002500 0,1480 2.5137 115.909236 1.020147 57.943499 1.675370 121.703586 115.857687 0.951966

Table 3
P2

1 × P1 stabilized scheme with a quasi-uniform refinement and ε = 10−4.

h ∥ p̃ − p̃h∥0,Ω r1( p̃) ∥p − ph∥1,Ω r1(p) ∥u − uh∥H r1(u) |||(u − uh , p − ph )||| η E

0.079946 10541.657 – 2055.705163 – 546489.178588 – 7520.596949 1884.326586 0.250555
0.039990 3096,2833 1.7990 1319.173081 0.640392 285155.519779 0.939019 4170.728279 1316.481140 0.315648
0.019998 965.5397 1.7088 868.112101 0.603811 138413.649790 1.045919 2252.248599 854.727871 0.379500
0.010000 425.7359 1.1873 463.471114 0.905533 55875.284002 1.308893 1022.223954 460.506911 0.450495
0.005000 84.5191 2.2376 235.078437 0.979337 18507.189808 1.594124 420.150335 234.689375 0.558584
0.002500 14.8034 2.5137 115.909237 1.020147 5794.347388 1.675368 173.852711 115.857691 0.666413

Table 4
P2

2 × P2 stabilized scheme with a quasi-uniform refinement and ε = 1.

h ∥ p̃ − p̃h∥0,Ω r1( p̃) ∥p − ph∥1,Ω r2(p) ∥u − uh∥H r2(u) |||(u − uh , p − ph )||| η E

0.0799 0.0862 – 1107.895742 – 60.328929 – 1167.701879 967.730613 0.828748
0.0399 0.0306 1.5064 470.076480 1.237528 18.287520 1.761370 488.364000 457.382915 0.936561
0.0199 0.0014 4.4855 169.449270 1.4726600 3.462993 2.410449 172.912263 170.783398 0.987688
0.0099 0,00022 2.6861 51.791285 1.710069 0.686595 2.335218 52.477880 51.906513 0.989112
0.0049 4.4e−05 2.3251 13.031846 1.990669 0.080419 3.094040 13.112265 13.041533 0.994606
0.0024 2.0e−06 4.4575 3.230428 2.012244 0.009300 3.112197 3.239729 3.230962 0.997294

Table 5
P2

2 × P2 stabilized scheme with a quasi-uniform refinement and ε = 10−2.

h ∥ p̃ − p̃h∥0,Ω r1( p̃) ∥p − ph∥1,Ω r2(p) ∥u − uh∥H r2(u) |||(u − uh , p − ph )||| η E

0.079946 8.5929 – 1107.408226 – 6033.736118 – 1710.781838 967.887247 0.565757
0.039990 3,0673 1.4993 470.062955 1.237020 1828.499303 1.723048 652.912885 457.301064 0.700401
0.019998 0,1410 4.4846 169.448973 1.472322 346.295943 2.401102 204.078568 170.782099 0.836845
0.010000 0,0219 2.6682 51.791298 1.710316 68.659412 2.334812 58.657239 51.906578 0.884913
0.005000 0,0044 2.3364 13.031845 1.990668 8.041910 3.093847 13.836036 13.041530 0.942577
0.002500 1.88e−4 4.5372 3.230428 2.012244 0.930030 3.112189 3.323431 3.230962 0.972176

is close to (0, 0). Finally, in Fig. 2 we compare the approximated solution, obtained by our proposed scheme, and
the exact solution. Note that the approximated solution has a good agreement with the exact one.
14
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Table 6
P2

2 × P2 stabilized scheme with a quasi-uniform refinement and ε = 10−4.

h ∥ p̃ − p̃h∥0,Ω r1( p̃) ∥p − ph∥1,Ω r2(p) ∥u − uh∥H r2(u) |||(u − uh , p − ph )||| η E

0.079946 859,2656 – 1107.408586 – 603374.475161 – 7141.153338 967.888845 0.135537
0.039990 306,7392 1.4992 470.062821 1.237021 182849.680322 1.723453 2298.559625 457.300247 0.198951
0.019998 14,0967 4.4846 169.448970 1.472321 34629.590957 2.401101 515.744880 170.782086 0.331137
0.010000 2,1925 2.6882 51.791298 1.710316 6865.941117 2.334813 120.450710 51.906579 0.430936
0.005000 0,4371 2.3364 13.031845 1.990668 804.191016 3.093847 21.073755 13.041530 0.618852
0.002500 0.0188 4.5360 3.230428 2.012244 93.003039 3.112188 4.160459 3.230962 0.776588

Fig. 1. Suite of adaptive meshes: Th,0 (top left), Th,8 (top right), Th,16 (bottom left) and Th,20 (bottom right).

.2. A reservoir simulation

For our second problem, we have taken a reservoir problem from [16]. Here Ω := (0, 2) × (0, 1), α0 = 1 and
= 0.005. On Γ 1

D we prescribe p = patm = 1.0 and on Γ 2
D, p = penh = 5. On the rest of the boundary we impose

· n = 0 (see Fig. 3).
As in the previous example, we show in Fig. 4 some of the adapted meshes obtained with Algorithm 1. Note that

ost of the refinement is close to the Γ 1
D , which is consistent with the physics of the problem. Finally, in Figs. 5

nd 6, we compare the approximated solution, obtained by our stabilized scheme, and the exact solution. Note that
he approximated solution has a good agreement with the reference one.

.3. A 3D simulation

Let Ω := (0, 1)3, and let f such that the exact solution is given by

u(x, y, z) :=
1

(−y2, z2, x2) and p(x, y, z) := 2 + xyz.

2

15
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Fig. 2. Components of the exact solution (left column) compared with the approximated solution (right column) obtained using P2
1 × P1 on

the final adapted mesh of 178,596 elements.

We assume that ΓD := {0}×]0, 1[×]0, 1[∪]0, 1[×{0}×]0, 1[∪]0, 1[×]0, 1[×{0} with ϕ := 2, and ΓN := ∂Ω\ΓD . We
choose α0 = 1.0 and γ = 0.25, i.e. ε = 0.25. Note that in this case we have f (x, y, z) := [h(x, y, z)]−1

(
f1(x, y, z),

f2(x, y, z), f3(x, y, z)
)
, where

f1(x, y, z) = −
1

y2
+

1
yz
2 ε
16
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Fig. 3. Sketch of Ω with Dirichlet boundary conditions for the pressure in Γ 1
D and Γ 2

D , and normal trace zero for the velocity in ΓN .

Fig. 4. Suite of adaptive meshes: Th,0 (top), Th,2 (middle) and Th,9 (bottom).

f2(x, y, z) =
1
2

z2
+

1
ε

xz

f3(x, y, z) =
1
2

x2
+

1
ε

xy

h(x, y, z) = 3 + xyz.
17
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Fig. 5. Isolines of the pressure using P2
1 × P1 finite element spaces, corresponding to the solution with 1,286 elements on the initial mesh

(top), the solution with 6,994 elements on the adapted mesh (middle) and the reference solution on a fine uniform mesh with 773,034
elements (bottom).

In Table 7 we present the approximation errors and our a posteriori error estimator η. As in the two-dimensional
case, we can see that the errors on the pressure ∥p − ph∥0,Ω show a perfect agreement with those predicted by the
theory, and on the velocity ∥u − uh∥H again have a better order due to the smoothness of the solution. Moreover,
the effectivity index for the residual a posteriori error estimator η is close to one.

Finally, we present the approximated solutions obtained with the stabilized scheme in a highly uniform refined
mesh in Fig. 7. Here we used P3

1 × P1 elements and we observe that the overall results are in accordance with the
expected ones.
18



R. Araya, C. Cárcamo and A.H. Poza Computer Methods in Applied Mechanics and Engineering 387 (2021) 114100
Fig. 6. Isolines of the velocity magnitude using P2
1 × P1 finite element spaces, corresponding to the solution with 1,286 elements on the

initial mesh (top), the solution with 6,994 elements on the adapted mesh (middle) and the reference solution on a fine uniform mesh with
773,034 elements (bottom).

6. Conclusions

In this work we introduced a new stabilized formulation for a Darcy equation, with an exponentially pressure-
dependent porosity, in two or three dimensions. We included the well-posed results and a priori error analysis under
standard assumptions. This new formulation enables us to use equal-order interpolation spaces for both velocity
and pressure. Besides, we introduced and studied a residual-type a posteriori error estimator for this new stabilized
formulation. In particular, we proved the equivalence between our error estimator and the approximation error. We
also included numerical examples to demonstrate the theoretical results for both a priori and a posteriori error

bounds. In the future, we will pursue the aim of extending this adaptive scheme to problems in which a fluid flow

19
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Table 7
P3

1 × P1 stabilized scheme with a quasi-uniform refinement and ε = 0.25.

h ∥p − ph∥1,Ω r1(p) ∥u − uh∥H r1(u) |||(u − uh , p − ph )||| η E

0.866025 0.264920 – 0.232318 – 0.352355 0.279711 0.793833
0.433013 0.155252 0.770946 0.078652 1.562548 0.174038 0.162626 0.934427
0.216506 0.082301 0.915627 0.023047 1.770898 0.085467 0.086156 1.008067
0.108253 0.041952 0.972170 0.006394 1.849788 0.042436 0.043960 1.035904
0.054127 0.021103 0.991305 0.001730 1.885972 0.021173 0.022123 1.044853
0.027063 0.010570 0.997446 0.000462 1.904757 0.010580 0.011078 1.047037

Fig. 7. Approximated solution. Velocity magnitude (top left), velocity vectors (top right), velocity streamlines (bottom left) and isovalues of
the pressure (bottom right). We use P3

1 × P1 elements on a uniform mesh of 1,572,864 elements.

modeled by the Stokes or Navier–Stokes equation) is coupled with a porous media flow (modeled by the Darcy
quation), which is a highly interesting problem for practitioners.
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ppendix A

As it is well known, the bilinear form b(·, ·) does not satisfy an inf–sup condition, using the subspaces Hh and
Qh , but it satisfies the following weak inf–sup condition.

emma 10. There exist positive constants βw and λ, independent of ε and h, such that

sup
vh∈Hh

b(vh, ph)
∥vh∥H

≥ βw ∥ph∥0,Ω − λ |ph |1,Ω ∀ph ∈ Qh . (A.1)

Proof. The proof of this result uses similar arguments to those used in [40, Lemma 3.3]. Let ph ∈ Qh , then there
exist p̄h ∈ R and p∗

h ∈ L2
0(Ω ), such that ph = p̄h + p∗

h . Additionally, there exists w ∈ H 1
0 (Ω )d (see [12]) such that

(∇ · w, ph) = (∇ · w, p∗

h) ≥ C1∥p∗

h∥0,Ω∥w∥1,Ω . (A.2)

urthermore, let Chw ∈ Hh ∩ H 1
0 (Ω )d the Clément interpolate of w (see [49]). This interpolation operator satisfies⎧⎨⎩ ∑

K∈Th

h−2
K ∥w − Chw∥

2
0,K

⎫⎬⎭
1/2

≤ C2∥w∥1,Ω , (A.3)

and

∥Chw∥1,Ω ≤ C3∥w∥1,Ω . (A.4)

Using (A.2) and integration by parts, we get that

(∇ · Chw, ph) = (∇ · Chw, p∗

h)

= (∇ · (Chw − w), p∗

h) + (∇ · w, p∗

h)

≥

∑
K∈Th

(Chw − w,∇ p∗

h)K + C1∥p∗

h∥0,Ω∥w∥1,Ω .

sing Cauchy–Schwarz inequality and (A.3), we obtain

(∇ · Chw, ph) ≥ −

⎛⎝ ∑
K∈Th

h−2
K ∥Chw − w∥

2
0,K

⎞⎠1/2 ⎛⎝ ∑
K∈Th

h2
K ∥∇ p∗

h∥
2
0,K

⎞⎠1/2

+ C1∥p∗

h∥0,Ω∥w∥1,Ω

≥

⎧⎪⎨⎪⎩−C2

⎛⎝ ∑
K∈Th

h2
K ∥∇ p∗

h∥
2
0,K

⎞⎠1/2

+ C1∥p∗

h∥0,Ω

⎫⎪⎬⎪⎭ ∥w∥1,Ω ,

nd, in consequence

(∇ · Chw, ph)
∥w∥1,Ω

≥ C1∥p∗

h∥0,Ω − C2

⎛⎝ ∑
K∈Th

h2
K ∥∇ p∗

h∥
2
0,K

⎞⎠1/2

. (A.5)

e can assume (see [40]) that, for a reasonable mesh, there exist zh ∈ Hh , zh ̸= 0, such that

(∇ · zh, p̄h)
≥ C4∥ p̄h∥0,Ω . (A.6)
∥zh∥1,Ω
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a
C

w

L

Let ṽh := ∥w∥
−1
1,ΩChw + δ∥zh∥

−1
1,Ω zh , with δ > 0. It is clear that ṽh ∈ Hh and using (A.5), (A.6), we get

(∇ · ṽh, ph) =
(∇ · Chw, ph)

∥w∥1,Ω
+ δ

(∇ · zh, p̄h)
∥zh∥1,Ω

+ δ
(∇ · zh, p∗

h)
∥zh∥1,Ω

≥ C1∥p∗

h∥0,Ω − C2

⎛⎝ ∑
K∈Th

h2
K ∥∇ p∗

h∥
2
0,K

⎞⎠1/2

+ δC4∥ p̄h∥0,Ω − δC5∥p∗

h∥0,Ω

≥ C6∥ph∥0,Ω − C7

⎛⎝ ∑
K∈Th

h2
K ∥∇ p∗

h∥
2
0,K

⎞⎠1/2

,

ssuming that δ < C1/C5. On the other hand, note that the definition of ṽh and (A.4) shows ∥ṽh∥H ≤ C∥ṽh∥1,Ω ≤

C3 + C δ, and hence, we have that

sup
vh∈Hh

(∇ · vh, ph)
∥vh∥H

≥ C8∥ph∥0,Ω − C9

⎛⎝ ∑
K∈Th

h2
K ∥∇ ph∥

2
0,K

⎞⎠1/2

,

hich conclude the proof. □

emma 11. There exists a positive constant βc, independent of ε, such that

sup
(v,q)∈H×Q

Bstab((u, p), (v, q))
|||(v, q)|||

≥ βc |||(v, q)|||, (A.7)

for all (u, p) ∈ H × Q.

Proof. Given p ∈ L2(Ω ), from [42], there exists w ∈ H such that ∇ · w = −p and ∥w∥H ≤ C∥p∥0,Ω . Then, for
(v, q) := (u − δw, p), with δ > 0, we have

Bstab((u, p), (v, q)) = Bstab((u, p), (u, p)) − δ Bstab((u, p), (w, 0))

= Bstab((u, p), (u, p)) − δ
[

Bstab((u, 0), (w, 0)) + Bstab((0, p), (w, 0))
]

=
1
2
ε ∥u∥

2
0,Ω + ε ∥∇ · u∥

2
0,Ω +

1
2
ε−1

|p|
2
1,Ω

− δ

[
1
2
ε (u,w) + ε (∇ · u,∇ · w) + (p,∇ · w) +

1
2

(∇ p,w)
]

=
1
2
ε ∥u∥

2
0,Ω + ε ∥∇ · u∥

2
0,Ω +

1
2
ε−1

|p|
2
1,Ω

−
δ

2
ε (u,w) − δε (∇ · u,∇ · w) − δ (p,∇ · w) −

δ

2
(∇ p,w)

=
1
2
ε ∥u∥

2
0,Ω + ε ∥∇ · u∥

2
0,Ω +

1
2
ε−1

|p|
2
1,Ω + δ ∥p∥

2
0,Ω

−
δ

2
ε (u,w) − δε (∇ · u,∇ · w) −

δ

2
(∇ p,w)

≥
1
2
ε ∥u∥

2
0,Ω + ε ∥∇ · u∥

2
0,Ω +

1
2
ε−1

|p|
2
1,Ω + δ ∥p∥

2
0,Ω

−
δ

2
ε ∥u∥0,Ω∥w∥0,Ω − δε ∥∇ · u∥0,Ω∥∇ · w∥0,Ω −

δ

2
|p|1,Ω∥w∥0,Ω .

The result follows using similar arguments as in the proof of Lemma 3. □
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