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A Switching-Based Adaptive Dynamic
Programming Method to Optimal

Traffic Signaling
Di Liu, Wenwu Yu , Senior Member, IEEE, Simone Baldi , Jinde Cao , Fellow, IEEE, and Wei Huang

Abstract—The work presented in this paper concerns a
switching-based control formulation for multi-intersection and
multiphase traffic light systems. A macroscopic traffic flow
modeling approach is first presented, which is instrumental to the
development of a model-based and switching-based optimization
method for traffic signal operation, in the framework of adap-
tive dynamic programming (ADP). The main advantage of the
switching-based formulation is its capability to determine both
“when”’ to switch and “which” mode to switch on without the
need to use the cycle-based average flow approximation typi-
cal of state-of-the-art formulations. In addition, the framework
can handle different cycle times across intersections without the
need for synchronization constraints and, moreover, minimum
dwell-time constraints can be directly enforced to comply with
minimum green/red times in each phase. The simulation experi-
ments on a multi-intersection and multiphase traffic light systems
are presented to show the effectiveness of the method.

Index Terms—Adaptive dynamic programming (ADP), dwell-
time switching, model-based and switching-based optimization,
traffic flow model, traffic signal operation.
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I. INTRODUCTION

TRAFFIC congestion has become a serious problem on
the agenda of many public/private stakeholders, due to

the constantly increasing urban traffic volumes, and to the
lack of space and public funds to construct new transportation
infrastructure. These problems are coupled with the complex-
ity of understanding, modeling, and controlling the dynamics
of traffic networks [1]–[3]. In fact, as an indispensable part of
any traffic control department, traffic signal operations play an
important role in the effective functioning of the urban traffic.
A significant traffic engineering challenge is to find more intel-
ligent traffic signaling methods to make transportation more
efficient [3]–[5].

Due to their complexity, there is still no common agree-
ment on the best description for the dynamics of traffic
networks [6]–[9]. Recent research showed that we can dis-
tinguish at least two main families in this area. The first
family is the microscopic simulation-based approach, which
uses historical traffic data to build a vehicle-based simula-
tion environment of the traffic network. Then, in combination
with artificial intelligence learning methods, one can fore-
cast the future states and design optimal traffic signal poli-
cies [10]–[16]. For example, researchers have proposed to
control traffic lights in real time by means of a reinforcement
learning [12]–[14]. Li et al. used deep neural networks to learn
the Q-function from the sampled traffic state/control inputs and
the corresponding traffic system performance output. Then,
based on the deep neural networks, they found appropriate
signal timing policies [13]. Liang et al. [14] proposed a deep
reinforcement learning model to decide the traffic signals’
duration based on the collected data from different sensors and
vehicular networks. Reinforcement learning was also proposed
for decision making of intelligent vehicles [17]–[19]. The
curse of dimensionality is the main problem of microscopic
frameworks: in fact, because the model describes dynam-
ics at the vehicle level, the state easily becomes extremely
large, making optimization prohibitive. Most of the afore-
mentioned works involve only a single intersection, while
extension to multiple intersections seems in general pro-
hibitive. Some methods have been proposed in the literature
for tackling such dimensionality issues. Tahifa et al. [20] uti-
lized the multiagent framework to model a traffic network
and demonstrated the effectiveness of cooperative swarm Q-
learning for traffic signal control. Multiagent theory alleviates
the curse of dimensionality by breaking the optimization
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into subproblems, but convergence guarantees for multiagent
reinforcement learning can be provided only under strong
assumptions. Prashanth and Bhatnagar [21] developed a Q-
learning-based reinforcement learning algorithm with function
approximation. Function approximation alleviates the curse
of dimensionality but poses the problem of feature selection.
Again, the convergence guarantees for reinforcement learning
with function approximation is not easy to get.

The second family of methods to describe the dynamics
of traffic systems is the macroscopic model-based approach,
which can capture the aggregate dynamics of traffic flow. In
other words, while microscopic models describe what happens
at the single-vehicle level (or sometimes at a single-cell level),
macroscopic models capture average characteristics of the traf-
fic flow. Therefore, the macroscopic approach can intrinsically
reduce the curse of dimensionality, at the expense of less
detailed modeling. In recent years, several macroscopic traffic
models have been proposed to describe the dynamics of urban
traffic networks [22]–[25]. Widely adopted models include
the Store-and-forward model [26], [27], the BLX-model [28],
and the S-model [29]–[31]. Based on such models, a num-
ber of model-based optimization control strategies have been
studied [26], [29]–[32]. The common feature of the Store-
and-forward, BLX, and S-models is to take the cycle time as
the sampling interval and to average the vehicle flow across
one cycle time [26], [30], [31] (we remind that a cycle is
the time period in which the set of signal phases is com-
plete). In other words, instead of describing what happens for
each vehicle at a certain time step, one gets a description of
the average of the vehicle flow across one cycle time. By
doing this, the curse of dimensionality is certainly reduced, but
extra structural restrictions must be imposed on the network:
most notable macroscopic frameworks assume that the cycle
time homogeneous in the network, and they treat the control
variable (green time) as a continuous function.

These structural restrictions are often unrealistic and create
two problems. The first problem is that additional constraints
must be taken when the cycle time in the network is not
homogeneous, leading to nonconvex optimization problems.
For example, in the Store-and-forward model, one should
“rescale and project” the optimal solution to a linear-quadratic
problem, in such a way that minimum green/red times or non-
homogeneous cycle time can be handled [26]; in the S-model,
nonhomogeneous cycle time leads to considering the synchro-
nization constraints among different intersections. Clearly, the
constraints give rise to some feasibility problems that might
be difficult to analyze. The second problem is that cycle-
based sampling time cannot capture what happens in between
a cycle time. In fact, the cycle-based sampling time gives a
rough (average) approximation of the actual traffic dynamics,
which should exhibit a switching behavior (change of regime)
between the green and the red phases of the intersections [26].
In view of the aforementioned issues, an open problem in
macroscopic traffic modeling and control seems to be how
to overcome the structural restrictions typical of the state-of-
the-art: a promising framework in this direction seems to be
the so-called switched systems framework. In other words, a
traffic signal network can be seen as a giant switching system

composed of many different traffic light phases, where at each
switching instant only one phase is active: the cycle-based
average dynamics are in general just a rough approximation
of the true switching dynamics (see [33], where the differ-
ences between the average and switching dynamics at low and
high frequency are discussed). When the switching occurs at
low frequency, which is the case of traffic lights, the average
dynamics can be quite far from the switched dynamics. This
is also recognized (implicitly) by the Store-and-forward, BLX,
and S-model, which distinguish among the under-saturated and
saturated case depending on whether the queue can be served
within one cycle time or not. On the other hand, by explic-
itly taking into account the switching among different phases,
one can obtain traffic dynamics which are closer to reality,
and leverage on recently developed optimization approaches
for switched systems [34]–[38].

In this paper, we propose a novel model-based and
switching-based frameworks for traffic signal operation: the
framework does not use cycle-based sampling time and allows
us to determine both which phase to switch on and when to
switch it on. In addition, minimum dwell-time constraints can
be easily imposed, to comply with a minimum green/red time
in each phase. The main contributions of this paper can be
summarized as follows.

1) We propose a switching-based model to describe multi-
intersections and multiphases traffic light systems. Based
on this model, appropriate adaptive dynamic program-
ming (ADP) methods are used to seek the optimal traffic
light policy. To the best of our knowledge, it is the
first time that such a switching-based ADP method is
proposed for optimal traffic signal operation.

2) Some advantages over the Store-and-forward, BLX, and
S-models arise, that is, no need to average the dynamics
over one cycle time. The sampling time can be selected
by the designer to the desired accuracy. In addition,
we can more directly impose minimum green/red time
in terms of minimum dwell-time constraints, without
resorting to constraining the continuous solution as in
the Store-and-forward model. Finally, we can directly
handle different cycle times at different intersections
without the need to impose synchronization constraints
as in the S-model.

3) We make use of the structure of the system to define
new ADP heuristics (in the form of the piecewise smooth
neural network approximators) that can take into account
some structural and nonlinear characteristics of the
problem. The effectiveness of the method is presented
via simulations on a benchmark traffic network.

The rest of this paper is organized as follows. Section II
proposes the macroscopic urban traffic model and gives the
problem formulation; Section III presents the optimization
framework; Section IV provides the traffic network benchmark
and some simulations; and Section V is the conclusion.

II. PROPOSED MACROSCOPIC URBAN TRAFFIC MODEL

In this section, we present the proposed urban traffic
model. The model is a macroscopic flow-based model. As
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Fig. 1. Phases for an illustrative single intersection.

compared with the BLX model [28], the Store-and-forward
model [26], [27], and the S-model [29]–[31], where the flow
is averaged over one cycle time, in our case, we can average
the flow dynamics with finer precision than one cycle time. In
fact, a sampling time T , typically much smaller than the cycle
time, can be selected by the designer for the desired accuracy.
Then, the flow can be approximated over T .

In the following, the notation xk+1 will be used to indicate
x(k + 1) and the notation xk will be used to indicate x(k). Let
us use a simple single-intersection example to describe the
modeling approach. With reference to Fig. 1, let us define xi

to be the queue length [in veh] at link i. Because the example
under consideration has two links and two phases, it is not
difficult to see that the dynamics can be represented as follows.

Phase 1:{
x1k+1 = x1k + (

αin
1 − (

β1,r + β1,s
)
μ1

)
T

x2k+1 = x2k + αin
2 T.

(1)

Phase 2:{
x1k+1 = x1k + αin

1 T
x2k+1 = x2k + (

αin
2 − (

β2,l + β2,s
)
μ2

)
T.

(2)

The dynamics are discrete time, where k + 1 indicates the
time after T seconds; βi,r, βi,s, and βi,l indicate the turning
rates [in %] at link i, i.e., the vehicles going right, straight,
and left, respectively; αin

i indicates the inflow rate [in veh/s]
at origins; and μi indicates the outflow rate [in veh/s] of each
link. The equations above simply indicate that the number of
vehicles in a link facing the red light can only increase due to
the inflow rate, whereas for a link facing the green light there
is also an outflow to the downstream links.

Because the number of vehicles cannot go below zero, let
us give the following notation.

Phase 1:{
x1k+1 = P

[
x1k + (

αin
1 − (

β1,r + β1,s
)
μ1

)
T
]

x2k+1 = x2k + αin
2 T.

(3)

Phase 2:{
x1k+1 = x1k + αin

1 T
x2k+1 = P

[
x2k + (

αin
2 − (

β2,l + β2,s
)
μ2

)
T
] (4)

to indicate the projection operator P that constrains the number
of vehicles to be greater or equal to zero

xik+1 = P
[
g
(
xik

)] =
{

0 if g
(
xik

)
< 0

g
(
xik

)
otherwise.

(5)

Note that the projection operator is not necessary when a link
faces a red light.

Fig. 2. Phases for an illustrative double intersection.

The dynamics (3) and (4) can be easily extended to multiple
intersections: to illustrate how to distribute this idea in case
of multiple intersections, let us consider a double-intersection
example, connected as in Fig. 2.

Phase 1:⎧⎪⎪⎨
⎪⎪⎩

x1k+1 = P
[
x1k + (

αin
1 − (

β1,r + β1,s
)
μ1

)
T
]

x2k+1 = x2k + αin
2 T

x3k+1 = x3k + αin
3 T

x4k+1 = P
[
x4k + (

β1,rμ1 − (
β4,r + β4,s

)
μ4

)
T
]
.

(6)

Phase 2:⎧⎪⎪⎨
⎪⎪⎩

x1k+1 = x1k + αin
1 T

x2k+1 = P
[
x2k + (

αin
2 − (

β2,l + β2,s
)
μ2

)
T
]

x3k+1 = x3k + αin
3 T

x4k+1 = P
[
x4k + (

β2,sμ2 − (
β4,r + β4,s

)
μ4

)
T
]
.

(7)

Phase 3:⎧⎪⎪⎨
⎪⎪⎩

x1k+1 = P
[
x1k + (

αin
1 − (

β1,r + β1,s
)
μ1

)
T
]

x2k+1 = x2k + αin
2 T

x3k+1 = P
[
x3k + (

αin
3 − (

β3,l + β3,s
)
μ3

)
T
]

x4k+1 = x4k + β1,rμ1T.

(8)

Phase 4:⎧⎪⎪⎨
⎪⎪⎩

x1k+1 = x1k + αin
1 T

x2k+1 = P
[
x2k + (

αin
2 − (

β2,l + β2,s
)
μ2

)
T
]

x3k+1 = P
[
x3k + (

αin
3 − (

β3,l + β3,s
)
μ3

)
T
]

x4k+1 = x4k + β2,sμ2T.

(9)

The main difference as compared to the single-intersection
case is that link 4 takes as inflow the vehicles coming from
link 2 (going straight during phases 2 and 4) or link 1 (turning
right during phases 1 and 3). The turning rates, and inflow and
outflow rates have a similar meaning as in the previous single
intersection case. It is clear that by connecting appropriately
different links, one can extend this modeling methodology to
networks of arbitrary topology. In this section, all roads have
been taken as one-way roads, which is consistent with the typ-
ical Manhattan-like regular networks often considered in [39].
Clearly, two-way roads can be considered after adding more
states in the system.

At this point, it is worth comparing the proposed model with
the most popular flow-based models adapted in the state-of-
the-art, namely, the BLX model [28], the Store-and-forward
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model [26], [27], and the S-model [29]–[31]. In such models,
each link can be in one of these two conditions.

1) Saturated: The link has a continuous outflow of vehicles
which is equal to its maximum (saturated) capacity.

2) Unsaturated: The link can serve all the cars in queue
at the link. The corresponding flow is less than the
saturated flow.

In the BLX model, the Store-and-forward model, and the
S-model, the above two conditions must be clearly distin-
guished because the flow is averaged over one cycle time.
Therefore, during one cycle time, one can serve all vehicles
(unsaturated condition) or continuously have vehicles to serve
(saturated condition): in our case, because the sampling time
T is smaller than the cycle time, the distinction about the two
conditions is made by simply imposing xik ≥ 0 for all k (via
the projection operator P). In other words, if for a certain
link at a certain time k, there are no more vehicles to serve,
yet the traffic light is green, one can impose xik+1 = xik . To
reveal other features of the proposed modeling framework, let
us now embed the phase dynamics in a so-called switched
system framework.

A. Problem Formulation

It is now possible to embed the phase dynamics previously
described section in a discrete-time switched system with M
autonomous subsystems [37], [38]

xk+1 = fν(xk), k ∈ Z+, ν ∈ I, xk ∈ R
n (10)

where fν : R
n → R

n is a continuous vector-valued function
where each entry represents the dynamics of a set of links
during a certain phase ν. Every phase is represented by a sub-
system of the switched system, and the subsystems are indexed
by I = {1, 2, . . . ,M}. The non-negative integer n denotes the
dimension of the state vector xk = [x1k . . . xnk ]′, i.e., the num-
ber of links (the prime symbol denotes the transpose of a
vector). The subscript ν in fν(·) denotes the active subsystem:
specifically, only one subsystem is active at time k, which is
denoted as νk. Let us now formulate an optimal switching
problem as one of the minimizing cost functions

J = ψ(xN)+
k+N−1∑

i=k

γ i−kr(xi) (11)

with a horizon of N steps, and with 0 < γ ≤ 1 being a
discount factor. The function ψ : Rn → R+ is the final cost,
while r(xi) is known as the utility function (or running cost).

Because of the underlying traffic signal control problem, we
are interested in considering constrained switching signals. In
view of the minimum green time requirements typical of traffic
lights, let us define a minimum dwell time as D ∈ Z+, and
we impose a minimum dwell time constraint on the switching.
This implies that the current subsystem (the current phase) has
to stay active at least a minimum number of time steps before
being able to switch to another subsystem (the next phase).

We are now ready to define the control objective.
Problem: For the switched system (10), the objective is to

find a feedback switching policy ν(·), which can minimize the
cost function (11) under the constraint of the minimum dwell
time D.

Remark 1: It is worth remarking that, in this paper, both
the subsystem sequence and the number of switching are free.
This means that the solution of the problem will tell us “when”
to switch and “to which mode” to switch on, in such a way
that the cost function (11) is minimized. This provides a clear
advantage as compared with the BLX model, the Store-and-
forward model, and the S-model, in case, the cycle time is
different across the intersection.

1) In the BLX and Store-and-forward models, it is typi-
cally assumed that the cycle time is the same for all
intersections. In general, it is not easy to handle differ-
ent cycle times: at most, in the Store-and-forward model,
it is possible to embed double cycling.

2) In the S-model, additional synchronization constraints
must be taken into account when the cycle times differ
for the intersections.

3) By embedding the phase dynamics in a switched system,
one can easily handle cycle times differing up to multi-
ples of the sampling time T . This is because each mode
contains information about the status (green/red) of each
phase. However, it must be said that a disadvantage
of this strategy is that the number of subsystems will
increase exponentially with the number of intersections.

The following section will describe the methodology
adopted for the solution of the traffic light problem.

III. OPTIMIZATION FRAMEWORK

A. Adaptive Dynamic Programming Approach

This section relies on the tools in [37] and [40], with some
ad-hoc modifications that will be clarified later. Initially, let
us forget about the dwell-time constraints, in such a way to
simplify the presentation. It is well known from ADP that
minimizing (11) can be recast as the problem of selecting the
optimal policy that minimizes the cost-to-go/value function

V∗(xk) = min
ν

[
ψ(xN)+

N−1∑
i=k

γ i−kr(xi)

]
. (12)

The value function (12) is a function of τ := N − k, i.e.,
the number of time steps before the end of the horizon N, and
of the current state xk. Then, the optimal switching policy at
time k on state xk is given by

ν∗(xk) = arg min
ν

[
ψ(xN)+

N−1∑
i=k

γ i−kr(xi)

]
. (13)

The optimal switching (13) is state-feedback because it
depends on the state of the system. However, it is worth noting
that switching should also obey the minimum dwell-time con-
straint that was imposed. Therefore, both the elapsed time dk

of the current subsystem and already active mode νk−1 should
play an important role in determining ν∗(xk).

1) The optimal ν∗(xk) depends on the elapsed time of the
current subsystem dk, because if the minimum dwell
time is more than the elapsed time, no switching should
be allowed.

2) The optimal ν∗(xk) depends on the already active sub-
system/mode νk−1 because if νk−1 is actually equal to
ν∗

k , no switching will be needed.
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According to above arguments, an augmented state of the
system (10) can be defined as wk := [x′

k, dk, νk−1]′ ∈
� := R

n × D × I, where the range of variation of the
elapsed time dk is denoted as D := {1, 2, . . . ,D}. Note that
dk ≥ D is equivalent to dk = D, i.e., the range of variation
of dk can be represented by a saturation function. Then, the
dynamics of wk is given by

wk+1 = Fν(wk) :=
⎡
⎣ fν(xk)

sat
(
Iνk−1(ν)dk + 1

)
ν

⎤
⎦

∀wk = [
x′

k, dk, νk−1
]′ ∈ � (14)

where Iv(v̄) is an indicator function, i.e., Iv(v̄) = 1, if v = v̄
and Iv(v̄) = 0, if v 
= v̄. sat(·) denotes the saturation function
for the elapsed time, i.e., when 0 ≤ d ≤ D, sat(d) = d, and
when d ≥ D, sat(d) = D. Summarizing:

1) the term xk+1 can be calculated from fν(xk);
2) dk+1 = sat(dk + 1) when ν = νk−1, and dk+1 = 1 when

ν 
= νk−1;
3) the last term of the function Fν(·) implies that if ν at

time k is chosen, then the active subsystem/mode at the
next time step will be ν.

By denoting the value function as V∗
τ : � → R+ (where

τ := N − k is the time before the end of the horizon), one
obtains from (11)

V∗
0 (wN) = ψ(xN) ∀wN = [

x′
N, dN, νN−1

]′ ∈ � (15)

and

V∗
τ+1(wk) = r(xk)+ γV∗

τ

(
Fν∗

k
(wk)

)
(16)

∀τ ∈ T := {0, 1, . . . ,N − 1} ∀wk = [x′
k, dk, νk−1]′ ∈ �, where

ν∗
k denotes the optimal active subsystem at time k.

Let M(wk) denote the set of subsystems eligible to be active,
given the current state of wk. Note that M(wk) depends on wk

because if dk < D, then M(wk) = {νk−1} (only one element
in the set as the system is not allowed to switch to another
subsystem). According to the Bellman optimality principle, we
can get

V∗
τ+1(wk) = min

ν∈M(wk)

[
r(xk)+ γV∗

τ (Fν(wk))
]

(17)

∀τ ∈ T ∀wk ∈ �. After obtaining the optimal value function,
the optimal switching policy can be obtained by

ν∗
k (wk) = arg min

v∈M(wk)

[
r(xk)+ γV∗

N−k−1(Fν(wk))
]

≈ arg min
v∈M(wk)

[
r(xk)+ γV∗

N(Fν(wk))
]

(18)

whose calculation can be done in real time. The second in (18)
is an approximation, for N large enough, given by the fact
the discount factor γ can guarantee convergence of the value
function. This is necessary because in a traffic system the
state (number of vehicles) will never converge to zero for the
whole network: therefore, without a discount factor and for
N → ∞, the value function would not be finite. Note that
in the original formulation [37], a nondiscounted formulation
is considered. The next section will propose an algorithm to
learn an approximation of the desired value function V∗

τ .

B. Value Function Approximation for Switching Problem

It is well known from the dynamic programming that the
desired (approximate) value function (15) and (17) should be
derived backward in time, i.e., from τ = N to τ = 0. For
the purpose of the approximating value function in switching
problem, and motivated by the development in the HDP liter-
ature for switching problems [37], [38], [41], it is proposed to
utilize a critic NN to learn the optimal time-dependent value
at each time step.

Denote the approximation value function, which is known
as critic, as

W ′
τ,ν,dφ(xk) ≈ V∗

τ (wk) (19)

where Wτ,ν,d ∈ R
m is the unknown optimal weights at time

step τ , for the active mode ν, and the elapsed time d, and φ(xk)

is the basis function of the critic NN, which is a polynomial
function composed of the states xk.

Remark 2: The proposed critic networks turn out be
multiple parametrized critic networks, i.e., they depend not
only on the horizon τ as the actual value function but also
on the active mode ν and on the elapsed time d. Taking
the approximated value function dependent on the horizon τ ,
on the active mode ν, and on the elapsed time d certainly
increases the number of weights to be trained, but it has the
clear advantage that the basis function φ(xk) can be taken as
dependent on xk instead of the full state wk. This means that
in order to obtain the weights, i.e., evaluate the approximation
over many different samples chosen from �, the number of
features necessary to train the NN are sensibly reduced (no
polynomials over ν and d are necessary in the regressor of the
NN [37]).

Let us now denote the state samples with x[j], j =
1, 2, . . . , p, where p is a large positive integer: by exploiting
the least squares method one can get

Wτ,ν,d = arg min
W∈Rm

p∑
j=1

(
W ′φ

(
x[j]) − V∗

τ

(
w[j]))2

τ = 0, 1, . . . ,N (20)

where V∗
τ (w

[j]) is approximated using Wτ+1,ν,d (w[j] represents
the fact that the value function is evaluated for the samples x[j],
for the active subsystem/mode ν and for the elapsed time d,
i.e., w[j] = [x[j]′, d, ν]

′
); we will use Wτ+1,ν,d to calculate each

Wτ,ν,d, i.e., by backward recursions (15) and (17). The starting
point of such recursions is W0 obtained from (15) and (20).

The algorithm used to train the neural network is summa-
rized in Algorithm 1. The algorithm includes two stages: the
first stage is offline (steps 1–6). To tune the parameters of the
function approximator, this stage involves solving (N + 1)DM
least squares problems through steps 2 and 4, i.e., this stage is
the most expensive stage in terms of computation. In addition,
the memory requirement need to store (N+1)DM sets of critic
NN weights (i.e., Wτ,ν,d ∀τ = 0, 1, . . . ,N ∀ν = 1, . . . ,M
∀d = 1, . . . ,D).

The second stage is online for feedback policy calculation
(for online control in real time). The computational cost of this
stage is much lower since it just needs to evaluate no more
than M scalar-valued functions. Finally, it is worth noting that
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Algorithm 1 Switched-Based ADP Based on Multiple
Parameterized Critic Networks

1: Initialization: Given the state-space system (14) and the
cost (11), grid the state space in p points or randomly
select p different state samples x[j], j = 1, 2, · · · p, with p
being a large positive integer.

2: Training final network: Train the network weights W0
(using least squares) such that

W ′
0,ν,dφ(x

[j]) = ψ(x[j]) ≈ V∗
0 (w

[j])

∀j ∈ {1, 2, · · · , p}, and with w[j] = [x[j]′, d, ν]
′

(the
approximation at this step is the same for any ν and d).

3: Offline phase: Set τ = 0
4: Approximate optimality principle: For any ν and d, denote

w[j] = [x[j]′, d, ν]
′
. Calculate V∗

τ+1(w
[j]) by using

V∗
τ+1(w

[j]) ≈ min
ν∈M(w[j])

[
r(x[j])+ γW ′

τ,ν,dφ(Fν(w
[j]))

]

∀j ∈ {1, 2, · · · , p}, and where W ′
τ,ν,dφ(Fν(w

[j])) is the
approximation of V∗

τ (Fν(w
[j])) based on the weights

Wτ,ν,d calculated at the previous step.
5: Training backward network: For each ν and d, use least-

squares method to calculate weight Wτ+1,ν,d

Wτ+1,ν,d = arg min
W∈Rm

p∑
j=1

[
W ′φ(x[j])− V∗

τ+1(w
[j])

]2
,

(the approximation at this step will be different for each ν
and d due to the different V∗

τ+1(w
[j]) associated with each

ν and d).
6: Set τ = τ + 1. Go back to step 4 until τ = N. When
τ = N, the offline phase is complete, and go to step 7.

7: Online phase: Using the states xk coming at each
time step k from the traffic network, denote wk =
[xk′, dk, νk−1]′. Calculate at each time step k

ν∗
k (wk) = arg min

v∈M(wk)

[
r(xk, ν)+ γW ′

N,ν,dφ(xk)
]

where W ′
N,ν,dφ(xk) is the approximation of V∗

N(wk) based
on the weights WN,ν,d calculated at the last step of the
offline stage.

as compared to [37], we are using only V∗
N for online control.

This is because we want the feedback action to be active over
an infinitely long time span. Note that for N long enough,
the value function V∗

N will converge to the infinite-horizon
discounted-cost solution. While exploiting a similar switched
framework as [37], the major advance we will explore in the
proposed approach regards the special structure of the approx-
imation for the value function, as it will be explained in the
next section.

IV. TRAFFIC NETWORK BENCHMARK

In this section, the proposed algorithm will be applied to a
benchmark traffic network. The benchmark network is taken
in a regular (Manhattan-like) network configuration, as it can
be found in [30], [39], and [42]–[44]. The performance of the

algorithm will be analyzed based on the resulting optimal cost.
The Manhattan-like network is shown in Figs. 6 and 7, and
the corresponding model for each phase can be written as

xk+1 = fν(xk) = P[xk + BνT], ν = 1, . . . , 16 (21)

where the matrices Bν are reported in the Appendix, and they
have been derived using a similar procedure as in Section II.

The basis functions were selected as polynomials of x (note
that we do not need to add any polynomial in ν and d because
the NN gains will be parameterized accordingly). The accuracy
of the approximation capability of the NN can be adjusted by
the selection of the order of the polynomials. The training
was done over the domain x = [0, 15]. In these simulations,
we use three different approximators to approximate the value
function, which is done in order to highlight different features
of the algorithm.

A. Full-States Quadratic Approximator

The basis function is selected as quadratic polynomials of
all the states of four intersections

Vτ (wk) = W ′
τ,dk,νk−1

φ(xk) (22)

where the regressor depends only on xk, because the NN
weights Wτ,dk,νk−1 depend on dk and νk−1.

B. Distributed Quadratic Approximator

Each intersection uses a function approximator composed
of local states, leading to a local value function (four value
functions for the four intersections). The basis function in each
intersection is selected as quadratic polynomials of the states
in each intersection, and the value function is approximated as

Vτ (wk) = W ′
1,τ,dk,νk−1

φ
(
x1,k

) + W ′
2,τ,dk,νk−1

φ
(
x2,k

)
+ W ′

3,τ,dk,νk−1
φ
(
x3,k

) + W ′
4,τ,dk,νk−1

φ
(
x4,k

)
(23)

where x1,k contains only the states affecting intersection 1
(which are x1, x2, and x4) and φ(x1,k) are all the monomi-
als of order 2 of x1,k (similarly, for the other intersections).
The weights W1,τ,dk,νk−1 , . . . ,W4,τ,dk,νk−1 are indexed by four
indices because they are related to a particular intersection.
Note that the value function ends up being the sum of local
value function, which justifies the term “distributed.”

The main advantage of this type of approximator is not
distributed computation (even if this is in principle possible,
but outside the scope of this paper) because each approxi-
mator involves a state of smaller dimension, it allows more
easily to test regressor beyond the quadratic one (with the pur-
pose of increasing the precision of the approximation). This
is explored in the following class of approximators.

C. Distributed Piecewise Quadratic Approximator

Each intersection uses a function approximator, giving four
value functions. The basis function is selected as piecewise
quadratic polynomials of the states in each intersection, so as
to take explicitly into account the projection term P, which
gives rise to multiple linear dynamics. The intuition is that
we want to use a quadratic approximator for each one of
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Fig. 3. Full-state approximator: states and phases. The steady-state sequence
is 3-5-10.

these dynamics. First, we consider only two states for each
intersection, as one state is common to more intersection.
Then, for a value function depending on two states (call them
xa and xb for simplicity), we have three different piecewise
linear dynamics, according to:

1) Case 1: xa > 0, xb > 0;
2) Case 2: xa = 0, xb > 0;
3) Case 3: xa > 0, xb = 0.
This indicates that no more than one state can saturate at a

certain time instant. Therefore, each intersection has at most
three piecewise linear dynamics: no saturation, saturation of
the first or of the second flow. This leads to

Vτ (wk) = Ŵ ′
1,τ,dk,νk−1

φ̂
(
x1,k

) + Ŵ ′
2,τ,dk,νk−1

φ̂
(
x2,k

)
+ Ŵ ′

3,τ,dk,νk−1
φ̂
(
x3,k

) + Ŵ ′
4,τ,dk,νk−1

φ̂
(
x4,k

)
(24)

where Ŵ and φ̂ are used to indicate the piecewise smooth
weights and regressor.

D. Comparisons and Discussion

The simulation experiments are performed for the following
initial states and turning rates:

x0 = [15 12.5 14 13.5 12 13 12.5 14.5]′

αin = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

μ = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

βs = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

βr = [0.5, 0, 0, 0.5, 0.5, 0, 0, 0.5]

βl = [0, 0.5, 0.5, 0, 0, 0.5, 0.5, 0]

r(xi) = x′
ixi,= ψ(xN) = x′

NxN, γ = 0.999

where αin, μ, βs, βl, βr contain αin
i , μi, βi,s, βi,l, βi,r for

each link i. The turning rates βi,s, βi,l, βi,r obviously meet the
condition βi,s + βi,l + βi,r = 1. Both the running and the
terminal costs are quadratic with respect to the state. Finally,
we take N = 50, D = 2, and T = 5. The simulation results are
given in Figs. 3–5 (for the three approximators, respectively).
These figures show the evolution of the states starting from
the same initial condition, as well as the optimal switching

Fig. 4. Distributed quadratic approximator: states and phases. The steady-
state sequence is 1-13-5.

Fig. 5. Piecewise quadratic approximator: states and phases. The steady-state
sequence is 1-10-7.

TABLE I
TRAINING TIME FOR THE THREE APPROXIMATORS (OFFLINE STAGE).

THE PLATFORM USED IS A DELL PRECISION WORKSTATION WITH INTEL

XEON PROCESSOR 3.2 GHZ, 8GB RAM, MATLAB R2017B

modes/phases. Before the online stage, the weights of the critic
were tuned during the offline stage. According to Algorithm 1,
the last WN is obtained using the least-squares method, as
in (19). Once WN is found, (17) can be used for calculating
WN−1. Repeating this process backward, all the weights can
be found from k = N to k = 0 (offline). The training times
for the different approximators are reported in Table I.

The actual costs for the different approximators are reported
in Table II. Two costs are considered: 1) the total cost is the
cost related to the entire simulation from 0 to 150 cycles
and 2) the transient cost is the cost in the initial phase,
from 0 to 45 cycles. Using local states in the NN approx-
imation (in place of global states) does not lead to loss
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Fig. 6. Phases 1–8 for the Manhattan-like network with four intersections.

of performance; actually, the performance of the distributed
approach is slightly better, which can be explained with the
state dimension. In fact, because the full-state approximator
must approximate a value function over a state space of large
dimension (dimension 8), its approximation error might result
bigger than multiple approximators working with a smaller
state space (dimension 3). The most important result of the
simulations is that the piecewise quadratic NN works better
than the quadratic NN: this suggests that exploiting the struc-
ture of the traffic dynamics (taking into account the structural
and nonlinear characteristics of the problem) helps to define
new ADP heuristics in the form of the piecewise smooth neural
network approximators leading to improved performance.

Fig. 7. Phases 9–16 for the Manhattan-like network with four intersections.

TABLE II
COST OF THE THREE APPROXIMATORS

A final comment regards the steady-state sequence (i.e.,
the sequence achieved after the transient): from Figs. 3–5,
it can be seen that this is sequence 3-5-10 for the full-state
approximator, sequence 1-13-5 for the distributed quadratic
approximator, and sequence 1-10-7 for the distributed piece-
wise quadratic approximator. From Figs. 6 and 7, it can be seen
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TABLE III
STEADY-STATE COST OF THE THREE APPROXIMATORS

that all these sequences allow the vehicles to circulate along
the ring. In addition, Table III reveals that all the steady-state
sequences have a very similar average cost, i.e., the sequences
are almost equivalent. The true benefits of one approximator
as compared to the other one come from the transient phase.

V. CONCLUSION

This paper proposed a novel model-based and switching-
based framework for traffic signal operation. The framework
used learning methods to seek the optimal traffic light pol-
icy, i.e., it can determine both when to switch and “which
mode” to switch on when controlling the traffic lights opera-
tion. Minimum dwell-time constraints can be added to comply
with a minimum green/red time in each phase. Compared with
the Store-and-forward, BLX, and S-model models, the new
model does not need to average the dynamics over one cycle
time. This implies that the switching architecture can aver-
age the dynamics over one phase instead of one cycle, and
different cycle times at different intersections can be handled
without the need to impose synchronization constraints. We
make use of the structure of the system to define new ADP
heuristics (in the form of the piecewise smooth neural network
approximators) that can taken into account some structural and
nonlinear characteristics of the problem.

Relevant future work is to make the neural network train-
ing distributed, with the aim to overcome the curse of
dimensionality arising from having exponential increasing
phases. Another interesting future work could be to try
the proposed methodology on a representative microscopic
network created on simulation of urban mobility (SUMO), for
example.

APPENDIX

MATRICES FOR THE MANHATTAN-LIKE NETWORK

B1 = [
β8,rμ8 − (

β1,r + β1,s
)
μ1;αin

2 ;αin
3 ;β1,rμ1 − (

β4,r + β4,s
)
μ4

β4,rμ4 − (
β5,r + β5,s

)
μ5;αin

6 ;αin
7 ;β5,rμ5 − (

β8,r + β8,s
)
μ8

]
B2 = [

β8,rμ8;αin
2 − (

β2,r + β2,s
)
μ2;αin

3 ;β2,sμ2 − (
β4,r + β4,s

)
μ4

β4,sμ4 − (
β5,r + β5,s

)
μ5;αin

6 ;αin
7 ;β5,rμ5 − (

β8,r + β8,s
)
μ8

]
B3 = [

β8,rμ8 − (
β1,r + β1,s

)
μ1;αin

2 ;αin
3 − (

β3,r + β3,s
)
μ3;β1,rμ1

β3,sμ3 − (
β5,r + β5,s

)
μ5;αin

6 ;αin
7 ;β5,rμ5 − (

β8,r + β8,s
)
μ8

]
B4 = [

αin
1 ;αin

2 − (
β2,r + β2,s

)
μ2;αin

3 − (
β3,l + β3,s

)
μ3;β2,sμ2

β3,sμ3 − (
β5,r + β5,s

)
μ5;αin

6 ;αin
7 ;β5,rμ5 − (

β8,r + β8,s
)
μ8

]
B5 = [

β8,rμ8 − (
β1,r + β1,s

)
μ1;αin

2 ;αin
3 ;β1,rμ1 − (

β4,r + β4,s
)
μ4

β4,rμ4;αin
6 − (

β6,l + β6,s
)
μ6;αin

7 ;β6,sμ6 − (
β8,r + β8,s

)
μ8

]
B6 = [

β8,rμ8 − (
β1,r + β1,s

)
μ1;αin

2 − (
β2,l + β2,s

)
μ2;αin

3

β2,sμ2 − (
β4,r + β4,s

)
μ4;β4,rμ4;αin

6 − (
β6,l + β6,s

)
μ6;αin

7

β6,sμ6 − (
β8,r + β8,s

)
μ8

]

B7 = [
β8,rμ8 − (

β1,r + β1,s
)
μ1;αin

2 ;αin
3 − (

β3,l + β3,s
)
μ3;β1,rμ1

β3,sμ3;αin
6 − (

β6,l + β6,s
)
μ6;αin

7 ;β6,sμ6 − (
β8,r + β8,s

)
μ8

]
B8 = [

β8,rμ8;αin
2 − (

β2,l + β2,s
)
μ2;αin

3 − (
β3,l + β3,s

)
μ3;β2,sμ2

β3,sμ3;αin
6 − (

β6,l + β6,s
)
μ6;αin

7 ;β6,sμ6 − (
β8,r + β8,s

)
μ8

]
B9 = [

β7,sμ7 − (
β1,r + β1,s

)
μ1;αin

2 ;αin
3 ;β1,rμ1 − (

β4,r + β4,s
)
μ4

β4,rμ4 − (
β5,r + β5,s

)
μ5;αin

6 ;αin
7 − (

β7,l + β7,s
)
μ7;β5,rμ5

]
B10 = [

β7,sμ7;αin
2 − (

β2,l + β2,s
)
μ2;αin

3 ;β2,sμ2 − (
β4,r + β4,s

)
μ4

β4,rμ4 − (
β5,r + β5,s

)
μ5;αin

6 ;αin
7 − (

β7,l + β7,s
)
μ7;β5,rμ5

]
B11 = [

β7,sμ7 − (
β1,r + β1,s

)
μ1;αin

2 ;αin
3 − (

β3,l + β3,s
)
μ3;β1,rμ

β3,sμ3 − (
β5,r + β5,s

)
μ5;αin

6 ;αin
7 − (

β7,l + β7,s
)
μ7;β5,rμ5

]
B12 = [

β7,sμ7;αin
2 − (

β2,l + β2,s
)
μ2;αin

3 − (
β3,l + β3,s

)
μ3;β2,sμ2

β3,sμ3 − (
β5,r + β5,s

)
μ5;αin

6 ;αin
7 − (

β7,l + β7,s
)
μ7;β5,rμ5

]
B13 = [

β7,sμ7 − (
β1,r + β1,s

)
μ1;αin

2 ;αin
3 ;β1,rμ1 − (

β4,r + β4,s
)
μ4

β4,rμ4;αin
6 − (

β6,l + β6,s
)
μ6;αin

7 − (
β7,l + β7,s

)
μ7;β6,sμ6

]
B14 = [

β7,sμ7;αin
2 − (

β2,r + β2,s
)
μ1;αin

3 ;β2,sμ2 − (
β4,r + β4,s

)
μ4

β4,rμ4;αin
6 − (

β6,l + β6,s
)
μ6;αin

7 − (
β7,l + β7,s

)
μ7;β6,sμ6

]
B15 = [

β7,sμ7 − (
β1,r + β1,s

)
μ1;αin

2 ;αin
3 − (

β3,l + β3,s
)
μ3;β1,rμ1

β3,sμ3;αin
6 − (

β6,l + β6,s
)
μ6;αin

7 − (
β7,l + β7,s

)
μ7;β6,sμ6

]
B16 = [

β7,sμ7;αin
2 − (

β2,l + β2,s
)
μ;αin

3 − (
β3,l + β3,s

)
μ3;β2,sμ2

β3,sμ3;αin
6 − (

β6,l + β6,s
)
μ6;αin

7 − (
β7,l + β7,s

)
μ7;β6,sμ6

]
.
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