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ABSTRACT: We construct a non-relativistic limit of ten-dimensional N' = 1 supergravity
from the point of view of the symmetries, the action, and the equations of motion. This
limit can only be realized in a supersymmetric way provided we impose by hand a set of
geometric constraints, invariant under all the symmetries of the non-relativistic theory, that
define a so-called ‘self-dual’ Dilatation-invariant String Newton-Cartan geometry. The non-
relativistic action exhibits three emerging symmetries: one local scale symmetry and two
local conformal supersymmetries. Due to these emerging symmetries the Poisson equation
for the Newton potential and two partner fermionic equations do not follow from a variation
of the non-relativistic action but, instead, are obtained by a supersymmetry variation of the
other equations of motion that do follow from a variation of the non-relativistic action. We
shortly discuss the inclusion of the Yang-Mills sector that would lead to a non-relativistic
heterotic supergravity action.
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1 Introduction

Recently, major progress has been made in understanding the formulation of non-relativistic
(NR) string theory in a general curved background thereby generalizing the original pro-
posal for NR string theory in a flat background [1, 2] and its early extensions to special
curved backgrounds [3]. These new developments have taken place both in terms of a
description via a two-dimensional non-linear sigma model as well as from the point of view
of a target space action and equations of motion for the background fields. For the closed
bosonic string these results have been obtained either by taking a NR limit [4-7] or by
applying a null reduction [7-10]. Moreover, the relation between the sigma model beta-
functions and the target space equations of motion has been clarified, both for closed and
open strings, proving the one-loop quantum consistency of the NR string theory [11-15].
There is also an intriguing relationship with Double Field Theory [16-21]. For other recent
work on NR string theory in a curved background, see [22-26].



At first sight, the natural target space geometry of the NR string theory of [1, 2]
generalized to arbitrary backgrounds is given by a Newton-Cartan-like geometry with co-
dimension two foliation that is characterized by the following ‘zero torsion constraint’ on

the longitudinal Vielbein TMA:1

Dy, (w)ry* =0. (1.1)

Here, the index A = 0, 1 refers to the directions longitudinal to the string and the deriva-
tive D, (w) is covariant with respect to longitudinal Lorentz transformations. Since we are
working in the second order formalism part of the constraints (1.1) are identically satis-
fied. To obtain the genuinely geometric constraints one should project (1.1) onto those
components where the spin connection cancels out:

eA/“T(A‘”a[MTV”B) =0, and eA/“eB/l’@[HTV]A =0. (1.2)

Here A’ refers to the directions transverse to the string, 74*, e4/* are (projective) inverses
of the longitudinal and transverse Vielbeine 7,4, eMAI and (AB) indicates the symmetric
part of AB. The geometry defined by the zero torsion constraint (1.1) is referred to as
String Newton-Cartan (SNC) geometry [29].2 The NR string then couples to the SNC
Vielbeine, as well as to a Kalb-Ramond (KR) and dilaton background field.

In our recent paper [6], we studied the target space action and equations of motion
of the NS-NS sector of NR string theory, from the viewpoint of taking a NR limit of the
relativistic action and equations of motion. The resulting NR NS-NS action has also been
derived from a Double Field Theory point of view in [16]. We showed in particular that
in the NR case a natural geometric constraint, consistent with (part of) the target space
equations of motion, is not given by the constraints (1.2) of SNC geometry, but by the
weaker dilatation-invariant geometric constraints®

eA/“T{A‘”f)[#T,,”B} = 0, and eA/“GB/Va[HTZ,]A = 0, (13)

where { AB} indicates the symmetric traceless part of AB. The constraints (1.3) character-
ize what we called a ‘Dilatation invariant String Newton-Cartan’ (DSNC) geometry in [6].
We stress that these constraints are not imposed by hand neither do they follow from taking
the NR limit but they follow as natural solutions of (part of) the target space equations of
motion. The geometry before imposing any constraints is referred to as Torsional String
Newton-Cartan (TSNC) geometry [6, 7].

The NR limit of the relativistic equations of motion for the metric, Kalb-Ramond and
dilaton background fields can be taken such that it preserves the number of independent

'In this paper we only consider ‘stringy limits’ where the longitudinal directions are scaled differently
from the transverse directions. We will not consider ‘particle’ limits like in [27, 28].

2For earlier work on SNC geometry, see [3, 30, 31].

3These constraints can formally be obtained by replacing the covariant derviative in (1.1) by a dilatation
covariant derivative D, (w,b) where b, is the dilatation gauge field. The explicit form (1.3) then follows
after projecting to those components where both gauge fields cancel out. The second constraint in (1.3)
can also be written as 6AB’TA ATE AdTC = 0, which shows that it is sufficient to define an integrable
co-dimension two foliation, see e.g. [32].



equations of motion. However, not all of the resulting NR equations follow from a varia-
tion of the NR action that is obtained by taking the NR limit of the relativistic one. A
distinguishing feature of this NR NS-NS target space action is that it is invariant under an
emerging local scale symmetry that is absent in the relativistic case. Due to this emerging
symmetry there is one equation, the Poisson equation for the Newton potential, that does
not follow from the NR target space action. Instead, this equation constitutes, together
with all the other equations that do follow from the NR target space action, a so-called
reducible but indecomposable representation of the NR symmetries. For the Poisson equa-
tion this means that, by varying it under Galilean boosts, one can generate the full set
of equations but none of these other equations transforms back under Galilean boosts to
the Poisson equation. A similar story applies to the beta-functions. The NR string sigma
model is also invariant under an emerging dilatation symmetry and consequently the num-
ber of beta-functions that one can calculate is one less than the number of relativistic
equations of motion. Setting these beta-functions to zero one finds that a certain, purely
nonlinear equation that has a dilatation weight opposite to that of the Poisson equation is
missing. For an interpretation of this missing nonlinear equation, see the recent paper [33].
Schematically, the situation can be summarized as follows:

NR e.om. — common equations + Poisson + Non-linear, (1.4)
NR NS-NS action — common equations + Non-linear, (1.5)
NR S-functions — common equations + Poisson. (1.6)

One might worry that the theory becomes overdetermined by changing the number of inde-
pendent degrees of freedom — through the emergence of the dilatation gauge symmetry —
while leaving the number of independent equations of motion unchanged. This, however, is
avoided since the linearization of one of the equations becomes trivial. It would be interest-
ing to get a systematic understanding of the interplay of the emergence of symmetries and
the differential structure of the equations of motion after taking the non-relativistic limit.
The fact that the NR NS-NS action does not lead to the Poisson equation for the Newton
potential is consistent with the fact that no action principle is known for NC gravity based
upon the Bargmann algebra.*

So far, most calculations have been performed for the bosonic NR string only.® This
work is a companion to our previous paper where we enlarge our investigations of the NR
NS-NS gravity background to the case of a NR minimal supergravity background.® To be
specific, we will present the NR limit of the ten-dimensional NV = 1 supergravity action and
equations of motion defining the dynamics of the background fields. This sector is common
to all superstring theories. We have a heterotic superstring in mind but we will postpone a
discussion of the Yang-Mills sector to the conclusions. To obtain the results of this paper,

4For suggestions of such an action based on a larger algebra, see [34].

SFor earlier work on NR, strings and supersymmetry, see [3, 35].

5The NR supergravity theory is minimal in the sense that, although it contains two independent su-
persymmetries, both are needed to obtain translations along the longitudinal directions as the result of an
anti-commutator of two supercharges.



we will follow the same strategy as used in [6] but there are notable new features in the
supersymmetric case. One complication is that, unlike in the bosonic case, there is no direct
connection between a two-dimensional sigma model description and the NR target space
effective action. A Green-Schwarz sigma model formulation for the NR superstring has been
given for a flat background [35] but not for a NR minimal supergravity background. Like
in the relativistic case, this will probably require a superspace formulation. Alternatively,
starting from a NR sigma model with (1,0) world-sheet supersymmetry,” the target space
supersymmetry of the background fields is not manifest. In both cases we cannot use
the sigma model description to read off the emergent target space fermionic Stiickelberg
symmetries that we expect to team up with the emergent local scale symmetry that we
found in the bosonic case.

Another complication, not encountered in the bosonic case, is that taking the naive
NR limit of the supersymmetry rules leads to divergent terms in these transformation
rules. Concerning the action, we find that, like in the bosonic case, a NR limit of the
N = 1 supergravity action can be defined due to a miraculous cancellation of divergent
terms when taking this limit. By performing a careful analysis of the NR limit, we will
show in this paper that the dangerous divergent terms in the supersymmetry rules are
controlled by two facts about the theory. Firstly, we are making use of the fact that the
NR action is invariant under two emergent local fermionic Stiickelberg symmetries arising
as partners of the emergent local scale symmetry that we already found in the bosonic case.
We will call the two emerging fermionic symmetries S- and T-supersymmetry where the
S-supersymmetry is of a type that is also encountered in conformal supergravity. Secondly,
we are imposing by hand the following constraints on the geometry:

eA/'uT_,_Va[uTy]i =0, and eA/“eB/”é)[HT,,]’ =0. (1.7)

Here, + refer to (anti-)selfdual projections 7,* = 271/2(1,% + 7, in the two longitudinal
directions. The constraints (1.7) constitute half of the constraints (1.3) defining a DSNC
geometry and define what we will call a ‘self-dual’ DSNC geometry. Importantly these
constraints are invariant under all the symmetries of the NR theory — including super-
symmetry — and therefore do not lead to additional constraints. They can be substituted
into the equations of motion but not into the NR action. In that sense the NR minimal
supergravity action is a so-called pseudo-action.

As we will show in this paper, the self-dual constraints (1.7) are in fact needed to
show the consistency of the NR theory. More precisely, they are a necessary requirement
for the closure of the non-relativistic superalgebra and for making sure that the set of NR
equations of motion is closed under supersymmetry. To better understand the geometric
meaning of (1.7), it is useful to rewrite them as

7'[#781,7'[,]7 =0, (1.8)

which shows that (1.7) defines an integrable co-dimension one foliation along the lightcone
direction 7_#@,,. This, in turn, implies that one can choose coordinates such that 7,~ =

"For the recent construction of a NR sigma model with (1,1) worldsheet supersymmetry, see [36].



e"0yt for some k = k(z*) and t = t(x#). This corresponds to the twistless torsional
constraints of ordinary Newton-Cartan geometry, encountered in the literature, see e.g. [37].
We note, however, that the equations of motion for the background fields can lead to further
torsion constraints on the curls of 7,~ and 7, 7. The final background geometry can only
be determined after the constraints that follow from these equations of motion have been
taken into account and can take the form of a co-dimension two foliation.

Due to the emergent bosonic and fermionic local symmetries we find that the NR
action does not give rise to the full set of equations of motion. There is a Poisson equation
for the Newton potential and there are two additional fermionic equations that do not
follow from the variation of the NR action. However, unlike in the bosonic case, the NR
action knows indirectly about these three missing equations in the sense that they can be
obtained by varying the other equations of motion that follow from the NR action under
supersymmetry.

The organization of this paper is as follows. In section 2 we give a brief review of the
relativistic AV = 1 supergravity theory together with the transformation rules of all fields
in a new basis of the fields that contains powers of ¢ for finite ¢, i.e., before taking the
actual NR limit. In the next section we discuss in detail the NR limit of the relativistic
supergravity action ending up with a NR action that has emergent dilatations plus an
emerging S- and T-supersymmetry. In section 4, we take the NR limit of the equations of
motion and show that we obtain the same equations of motion that follow from varying
the NR action derived in the previous section plus three more equations: the Poisson
equation for the Newton potential together with two fermionic equations. Furthermore,
we show how these three missing equations of motion are connected to the ones that do
follow from the variation of the NR action via supersymmetry. In the final section we
discuss our results. In particular, we mention a few subtleties when including the Yang-
Mills sector of a heterotic supergravity theory. There are 5 appendices. Our notations and
conventions particular to the supersymmetric case are given in appendix A. In appendix B
we collect a few useful formulae describing Torsional String Newton-Cartan Geometry.
This is the generic background geometry of non-relativistic string theory, and the self-
dual DSNC geometry (1.3) is a special case. To make this paper more user-friendly for
those who wish to investigate compactifications or solutions of the NR superstring we have
summarized in appendix C the bosonic equations of motion with the fermions set equal
to zero together with the Killing spinor equations. Appendix D contains details on the
supersymmetry algebra that underlies the NR, supergravity theory of this paper. Finally,
in the last appendix E we show how the NR limit can be defined for the special case of a
supersymmetric Yang-Mills theory in a flat background.

2 D =10, N = 1 supergravity

In this section, we will briefly review ten-dimensional N = 1 supergravity [38, 39], i.e., the
common part of the effective theories for the massless modes of all superstrings. We will
summarize its fields and their transformation rules, as well as its action. In order to define
the NR limit, one performs an invertible field redefinition that involves a (dimensionless)



parameter ¢, such that the NR limit corresponds to sending ¢ — oco. To facilitate taking
this limit in the next sections, we will here also give the field redefinition that is involved
and apply it to the transformation rules of N' = 1 supergravity. The index, spinor, and
Clifford algebra conventions that we use throughout this paper are collected in appendix A.

The bosonic field content of ten-dimensional N' = 1 supergravity consists of the Viel-
bein EMA, the Kalb-Ramond (KR) two-form field B,,,, and the dilaton ®. The fermionic
fields are given by the gravitino ¥, and the dilatino A. Here, ¥, is a left-handed Majorana-
Weyl spinor, while A is a right-handed one. The action of N/ = 1 supergravity is then
given by

1 1 _ ,
S = 2.2 /leer%{R%—élﬁ,ﬁI) oH P — D H,pHMP —20, TP D, W, — AT D, ¥,
K
_ 1 _ _ _
+2NDAF 5 HT (20, o T, — 48, TV yy A= 22T A

—4V, JPIHA—4V, ["¥, 0"® (+ quartic fermion terms)}7
(2.1)

where x denotes the gravitational coupling constant and £ = det(EHA). The Ricci scalar
R is constructed from the Levi-Civita spin connection QMAB and

is the field strength of the KR field. We moreover defined the (anti-symmetrized when
necessary) covariant derivatives of ¥, and A by

1, iB 1. iB

Note that Q#AB , R and H,,,, in the action (2.1) do not contain any fermionic contributions
(such as supercovariantizations). The first three terms of (2.1) are thus purely bosonic,
and only the remaining terms contain fermions. We have not explicitly written the quar-
tic fermion terms that are present in (2.1). In this paper, we will consistently truncate
quartic fermion terms in actions, and we will only give the terms in the supersymmetry
transformation rules that are consistent with this truncation.

The fields of ten-dimensional N = 1 supergravity transform as follows under local
Lorentz transformations with parameter AAB, a one-form symmetry of the KR field with
parameter ©, and supersymmetry with a left-handed Majorana-Weyl spinor parameter e:

1

§EA =N LB, +eThy,, By = 201,0,) + 26T, 0, 6% = S EN,
(2.4a)
o, = iAABFAB\IJM + D, <Q(+)) € (+ terms quadratic in ¥, and A),
(2.4Db)
S\ = iAABFAB}‘ +THe 9, — %2 rABC, H ipe (+ terms quadratic in ¥, and A),
(2.4c)



where we have defined the following torsionful covariant derivative of €

Du(QM)e = dpe — ~QIABT e with  QUDAB = AB 4“9y AB (95

I

| =

In order to take the NR limit in the following sections, we introduce a (dimensionless)
parameter ¢ and perform the following field redefinition

TMA =t EMA, eMA/ = EMA/ , buy = B +€aB EMAEVB , o= —logc,

Pur = TV, Ap = ¢FY2IILA, (2.6)

where we have split the Lorentz index Aintoa longitudinal index A = 0, 1 and a transversal
index A’ =2,---,9. Note that the redefinition of the spinor fields involves the ‘worldsheet
chirality’ projection operators Il¢, that are defined in (A.11) [35]. We refer to appendix A.2
for various properties that are obeyed by worldsheet chirality projected spinors and that
are used throughout this paper. For the bosonic fields, the above redefinition coincides
with the one used in [6] to derive the NR limit of NS-NS gravity.

As will be seen in the next sections, the fields T#A, euA/, buv, ¢, Yu+ and A4 correspond,
after taking the limit ¢ — oo, to the fields of NR ten-dimensional minimal supergravity.
As explained in [6], in order to calculate the transformation rules of these fields in the NR
theory, it is important that the field redefinition (2.6) is invertible. This is the case and
the inverse of (2.6) is given by®

EMA = CTNA , EMA/ = eHA/ , B, = —Peap THATVB +buw s ®=¢+logc,
W, =My + P, A=c 2 4+ (2.7)

where it is understood that v,+ and A+ are worldsheet chirality projected spinors (i.e.,
obey ,+ = Il1+9p,+ and A4 = II4 A1), It is also useful to introduce objects 74 and e/*
as the following (invertible) redefinitions of components of the inverse Vielbein £ ;#:

TAM:CEAM, eA/“:EA/M. (28)
The TuA, eHA/, TAM, e 4* then satisfy the following ‘projective invertibility’ relations:

el = o7, eB/“e“A, =, TAM€#A, =0,

EAII'LTMA = 07 T,U,ATAV + ey,A/eA’V = 5;: . (29)

To set the stage for our derivation of the NR limit of the action and equations of motion
of ten-dimensional N = 1 supergravity, we will end this section by applying the above field

8Note that the field mﬂA that occurred in [4, 5] has disappeared. One could keep it but then the
redefinition (2.7) would not be invertible. As shown in [6], this leads to the occurrence of Stiickelberg
symmetries which just states that we have introduced too many fields in the expansion. Comparing with
the expansion for particles, we see that in many ways the Kalb-Ramond 2-form field b, has taken over the
role of the central charge gauge field m,, see [6, 7]. Both fields contain the Newton potential but to couple
this Newton potential to a string one must embed it in a 2-form b,, and not a 1-form m,. Similarly, we
expect that one cannot add further subleading terms to the redefinition (2.7) containing new fields. Such
terms would violate the invertibility of the redefinition or, equivalently, introduce unwanted Stiickelberg
symmetries in the final result that can be gauge-fixed.



redefinition (2.6), (2.7) to the transformation rules (2.4). To do this, we introduce an
analogous invertible redefinition of the parameters A4? = (AAB ,AAA/,AA/B/), ©, and €
of local Lorentz transformations, the KR one-form symmetry and supersymmetry:

/\A/B’ _ AA’B' 7 )\AA' _ CAAA/ ’ )\MEAB _ AAB , 9“ _ @;L

e =cte & e= Cl/2€+ +c V2 (with TTper =eq). (2.10)

After taking the ¢ — oo limit, Ay will correspond to the parameter of longitudinal
Lorentz transformations, A4" to the parameter of Galilean boosts and A5’ to the pa-
rameter of transversal rotations, while the parameters e4 will be those of non-relativistic
supersymmetry.

!

Using the redefinitions (2.6), (2.7) and (2.10), one can easily find how 7,4, e,?", b,
¢, Yu+ and A4 transform under the symmetries with parameters Ay, NAANAE g and

€+. Considering first the transformation rules under the bosonic symmetries, one finds

1 / / / ! /
(571/4 = /\MeABTuB + 2 )\AA’euA , 5€HA =4 me - Aa? THA J (2.11a)

!

by = 20,0, — 2€apX ar, Py 5p=0. (2.11b)

for the bosonic fields and

Sy = i ()\A/B/F W —2 )\M) Yy + 2%2 AMAT b (2.12a)
0y = i (AA/B/FA’B’ +2 )\M) Yu— + % MAT g4ty (2.12b)
SAy = i (MPTam = 220) Ay + 2%2 AMAT (2.12¢)
SA_ = i (AA’B’FA/B/ T 2)\M> A+ %AAA’FAA/M : (2.12d)

for the fermionic fields. Note that for both sets of transformation rules (2.11), (2.12), the
limit ¢ — oo is well-defined.

One can similarly find the transformation rules under supersymmetry (with parameters
€4). For the bosonic fields TMA, eMA/, buv, ¢, one finds, upon using that certain bilinears
with spinors of definite worldsheet chirality are identically zero (see e.g. (A.15)), that

o, A = & Ty + c% E-T,, (2.13a)
Se, ¥ =& Ty, e Ty, (2.13b)
5 = %(EM, Fe ), (2.13¢)
Sbuy = 47, € Tath,_ + 2(e[MA’é+F wtb +ep e T A/%H) . (2.13d)

As for (2.11) and (2.12), the ¢ — oo limit of these transformations is regular. The derivation
of the e+ supersymmetry transformation rules of 1,,+ and A4 is straightforward, but leads
to more lengthy expressions that involve powers of ¢, ¢® and ¢~2. We collect terms with



like powers of ¢ as follows:

St = 6P + 6Oy, p + 260Dy, (2.14a)
A =20 + 60N, + 726020, (2.14Db)

Explicitly, the terms that appear at order ¢? are given by

1 Il
6(2)¢u+ = 5 Tu+TA B Tarpres, (2.15a)
1 o2 ’
(5(2)7,/}“_ = 5 TH+ (TA B _FA’B’E— — TA __F,AIE_;'_) s (215b)
52, =0, (2.15¢)
1 %
(5(2))\_ = —§TA B _FA’B’—€+ s (215d)

where TWA = 6[M7',,]A and we refer to appendix A.1 for details on how curved u, v indices
are converted into flat longitudinal and transversal ones and on how flat light-cone indices
(A, B =+, —) are used to denote longitudinal directions (as an alternative to A, B = 0,1).

The terms in (2.14) at order ¢ can be written in terms of composite fields by, Wy, wMAA’,

qu/B/ that depend on the bosonic fields THA, eMA/, by, and ¢. Their explicit expressions
can be found in appendix B. These composite fields correspond to the dependent dilatation
and spin connections of the Torsional SNC (TSNC) geometry, that was introduced in [6]. In

/ 1R/ . .
AA" and w“A B will correspond to spin

particular, after taking the NR ¢ — oo limit, w,, w,
connections for longitudinal SO(1,1) Lorentz transformations, Galilean boosts and SO(8)
transversal rotations, while b, will act as a gauge field for an emerging local dilatation

symmetry. In terms of these dependent gauge fields, we then find that

1
0O = sty + 0+ 57 T, (2.16a)
60— = 64ty + 0t + 1  p (2.16D)
SON, =0 h + 66X, (2.16¢)
SON =6 A + 6+, (2.16d)
where
]_ / ! !
n_ = (8+¢ It — 1 A F_A/Br> €t + 264 yre (+ terms quadratic in ¥+, A1),
(2.17a)

1 ’ ! 1 !
p_ = (—2 01+ 1 hAB FA/B/> €+ B W, AT_ses (+ terms quadratic in Yut, At) .
(2.17b)



and

1 1 Al !/
O g = DMeJr—geu(yh BT yipres (+ terms quadratic in ¢+, A1),
(2.18a)
Sty = <6MB/TB/AI++TM_TA/++> Tarpe (+ terms quadratic in ¢+, A1),
(2.18b)
1 /
Oy = —§wH_A | (+ terms quadratic in ¢+, A1),
(2.18¢)
]. 1 Al !
0_t—=Dye_— 3 eﬂcfhc A'B I'ape_ (+ terms quadratic in ¥+, A1),
(2.184)
/ / 1 / el
5+)\+ = (EMQSFA —bA/ FA —ﬁhA BC FA’B’C’) €4+ (-l- terms quadratic in l/J,uj:, )\:I:) s
(2.18¢)
]. / !
0_Ay = 57‘4 B T e (+ terms quadratic in ¢+, A+),
(2.18f)
o4A_=0 (+ terms quadratic in ¢+, A1),
(2.18g)
/ / ]_ / el
S_\_ = <8A,¢I‘A —hauTA —ﬁhA B'C FA/B/C/> €_ (+ terms quadratic in ¥+, A+),
(2.18h)
where ., = 30),b,,), Dy€x is given by
1 ap 1 1
Duﬁi = 8# — Z wu FA/B/ + 5 Wu F 5 b,LL €+, (219)

and W, =4 in (2.17) refers to components of the spin connections that are not fully deter-
mined in TSNC geometry, but that do not play a role in the rest of this paper (see also
appendix B and [6]). Note that the redefined supersymmetry transformation rules (2.14)
also contain non-trivial terms at order ¢=2. We will not give the explicit expressions for
5(_2)%&7 82\, here, as we will not need them in what follows.

Let us finish this section, by commenting on the appearance of terms of order ¢? in
the supersymmetry transformation rules of the fermionic fields 1,4+ and Ay. Since we
wish to identify TuA, euA/, buv, ¢, Yu+ and A4 as fields in the NR theory that is obtained
after taking ¢ — oo, one would hope that the redefinitions (2.6), (2.7) and (2.10) lead to
transformation rules for these fields that take the form of an expansion in powers of ¢ 2
that starts at order ¢. That way, the ¢ — oo limit of these transformation rules is well-
defined and can be identified with the transformation rules of the NR theory. Clearly, the
terms of order ¢? in the supersymmetry transformation rules of Y+ and A+ are potentially
problematic in this regard. In order to explain how to deal with these ‘divergent’ terms
in the next section, let us make the following useful observations here. One can isolate
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the divergent terms of order ¢? in the supersymmetry transformation rules of Y+, A+ by
performing the following field redefinition:

- 1 . . . .
Yyt = Yuy — 3 T, Yy =ty — 1, p- with o =7, (2.20)

Using (2.15), one can then easily see that the parts of the supersymmetry transformation
rules of 1/~Jui, At ¢_ and A_ at order ¢? are given by:

5(2)’(/’;,&-"- =Y, 5(2)1;}L— = 07 6(2))\4- = 07
5(2)1/;, 2 (TA,B/_FA/BIG -7 /__F_A/E+) ,
1 4
§AN_ = 5 TAB_FA/B/,6+. (2.21)

The supersymmetry rules of zﬁui and Ay thus do not contain any divergent terms at
order ¢? and their ¢ — oo limit is well-defined. Note furthermore that the parts of the
supersymmetry transformations of @Eui at order ¢ then also no longer depend on the
quantities 7, p_, defined in (2.17). We will see the significance of these observations in
what follows.

3 The NR limit of the action

In the previous section, we reviewed the action and transformation rules of relativistic
D = 10, N' = 1 supergravity, introduced a field redefinition that involves a parameter c
and expressed all transformation rules for the redefined fields as expansions in powers of
¢~2. Starting from this section, we wish to discuss the NR limit ¢ — 0o, that should lead to
NR minimal ten-dimensional supergravity, similar to how NR NS-NS gravity was obtained
in [6], by performing the bosonic part of the field redefinition (2.6), (2.7) and taking the
¢ — oo limit. In this section, we will apply this limit to the action of ten-dimensional V' = 1
supergravity, while the limit of its equations of motion will be discussed in the next section.

Ordinarily, the NR limit of quantities (such as an action or equations of motion) is per-
formed by applying a c-dependent field redefinition to the quantities under consideration,
expanding the result in powers of ¢~2 and retaining only the terms at leading order. In case
the transformation rules of the redefined fields assume the form of expansions in powers of
c~? that start at order ¥, this procedure guarantees that one ends up with quantities that
are invariant or covariant under the NR transformation rules that are given by the ¢ — oo
limit of those of the redefined fields.

We wish to apply a similar limit procedure to the action (2.1) of D = 10, N’ = 1
supergravity. In particular, we still wish to define the NR limit of (2.1) as the leading
order term in the ¢~ 2-expansion of (2.1), after performing the field redefinition (2.6), (2.7).
Similarly, we still want to identify the transformation rules of the NR theory as the part at
order ¢ in the ¢~ 2-expansions of the relativistic transformation rules (2.11), (2.12), (2.13)
and (2.14) for the redefined fields. Note, however, that presently the ¢ 2-expansion of
some of the supersymmetry transformation rules of the redefined fermionic fields starts at

0

order ¢?, instead of at order ¢’. As a consequence, the interpretation of the ¢? part of
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these transformation rules as NR ones is no longer straightforward. Moreover, invariance
or covariance under these NR transformation rules of the leading order of an expansion
of a quantity in powers of ¢~2 is also no longer guaranteed. Remarkably, even though
some transformation rules diverge in the ¢ — oo limit, it turns out that the ¢ — oo limit
can be taken in a smooth way upon imposition of a constraint. Importantly, after taking
the limit, the resulting NR action exhibits invariance under three emerging symmetries:
one dilatation symmetry and two fermionic shift symmetries. The emerging dilatation
symmetry was already encountered when taking the NR limit of NS-NS gravity [6]. In this
paper, we find that it extends to a symmetry of the NR limit of the action of D = 10, N' =1
supergravity and that it is accompanied by two fermionic symmetries as supersymmetric
counterparts.

The emergence of the two fermionic shift symmetries in the NR limit of (2.1) can be
understood on general grounds. In order to see this, let us first apply the redefinition (2.7)
to the action (2.1) and expand the result in powers of ¢~2. This gives a sum of three terms,

0

at orders ¢?, ¢72 and ¢4 respectively:

S =80 42802 4 gD (3.1)

where each of the S now depends on the fields THA, euA/, buv, ¢, Yu+ and Ay. It is
important to note that it is non-trivial that the expansion (3.1) of S starts at order c°.
Indeed, examining all terms of (2.1) separately, one finds that some of them can contribute
terms at order ¢? in the expansion (3.1), so that there can in principle be a ¢S @) term
on the right-hand-side of (3.1). It turns out however that all such contributions cancel
identically. For the bosonic part of the action (2.1), this relies on an order ¢? contribution
from the Ricci scalar cancelling against a similar contribution from the kinetic term of the
KR field, as was explained in [6]. One can check that this cancellation of order ¢? terms
extends to the full D = 10, N' = 1 supergravity action (2.1), so that

S@ =9 (3.2)

identically.

Note that the ¢ — oo limit of S is then well-defined and gives S(©), which we identify as
the action that results from taking the NR limit. Let us now examine how S transforms
under the NR symmetry transformation rules, that correspond to the parts at order ¢® of
the relativistic transformation rules (2.11), (2.12), (2.13) and (2.14), after performing the
redefinition (2.6), (2.7). In order to do this, we will not yet take the ¢ — oo limit, but rather
require that the full relativistic action S, written as the ¢~ 2-expansion (3.1), is invariant
under the full relativistic transformation rules (2.11), (2.12), (2.13) and (2.14). Expanding
the symmetry variation of S in powers of ¢~2 and requiring that terms at different order in
this expansion vanish separately, then indicates how S(©, §(-2) and $(-% transform into
each other under the different ¢=2 orders of the relativistic transformation rules. Let us
do this first for the bosonic symmetries (2.11), (2.12). The in?nitesimal action dpes of a

generic bosonic symmetry leads to two variations 51()%)5 and 51(3352 , according to

ShosF = 6V F 2602, (3.3)

bos bos
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Figure 1. Schematic representation of the symmetry transformation of the different terms in (3.1)
under generic Lorentzian bosonic symmetries dn,s. We see that only the leading order is invariant
under Lorentzian boosts by itself. This is equivalent to the statement of manifest Galilei invariance
of SNR = limc_>oo S.

where F' is any of the fields T,uA, eMA/, buv, ¢, Y+, A+. As a consequence

OhosS = O5AS @ + 72 (5L 4+ 50,2 5O) + 0 (7). (3.4)

bos

The requirement that dp05S = 0, then imposes that every ¢=2 order in (3.4) is separately
zero. One thus in particular finds that

50 50 — ¢, (3.5)

bos

or in other words, that the NR action S is as expected invariant under the NR bosonic
symmetries, whose transformation rules are given by 5&%)5. See figure 1 for a schematic
representation of the above statements.

We can apply a similar reasoning to the supersymmetries (2.13), (2.14). In this case,
the supersymmetry transformations can contain terms at order ¢2, so that the infinitesimal
action d¢g of a generic supersymmetry () leads to three variations 5222 ), 68) ) and (582)

SoF = 205 F + 05 F + ¢ 2652 F (3.6)

where again F' is any of the fields T#A, eMA/, buvs @, Yu+, A+. The supersymmetry variation
0gS of the action can then be expanded as

58 = 20550 + & (598 +6750D) + 0 (c7?) . (3.7)

Requiring invariance of S again imposes that every order of ¢~2 in (3.7) is separately zero.
This in particular leads to the following two requirements

6550 =0 and 6580 = 65052 (3.8)

From (2.21), we see that only 6((5 )1,57 and 58 )A_ are non-zero and that these two variations
moreover have the effect of shifting the two fields ¢»_ and A_ independently. The only way,
in which the variation 58 )50 can vanish, is then if S(© does not depend on ¥_ and A_.
We can alternatively state this in terms of the fields 1,4+ and A4+. The requirement that
6g )$(0) vanishes then boils down to saying that S is invariant under two fermionic shift
symmetries, that we call the S- and T-symmetries and whose non-trivial action on 4
and A4 is as follows:

1
Ostut = ) #+F+n, ) OsA— =1—,
Orhp— = Tu+p, ) (3.9)
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Figure 2. Schematic representation of (3.7). The diagram shows that different orders in the
expansion (3.1) mix under supersymmetry dqg, according to the rules: the sum of all arrows ending
at a certain order S vanishes. This gives rise to (3.8).

where 7_ and p_ are the parameters of the S- and T-symmetry respectively. As mentioned
above and as can be verified in the explicit expression for S(© given below, the NR action
SO) is also invariant under an emerging dilatation symmetry that has the following non-
trivial action on the fields in S(©):

dp® = Ap, 6D7_,uA = )\DTuA )
1 1
IpYut+ = ii)‘Dwui , OpAt = i§/\D)\:I: . (3.10)

Note that the dilatation weights of the NR fields are the same as the exponents of the
powers of ¢ in the redefinition (2.7) of the relativistic fields in terms of the NR ones (for
the dilaton, this rule holds when considering, e.g., exp(®) = ¢ exp(¢)).

We have seen above that general considerations allow us to conclude that the non-
relativistic action S is invariant under the fermionic shift symmetries (3.9). One might
wonder whether a similar, general argument exists for the bosonic dilatation-shift symmetry
of the NR action S(®. As we will show now the answer is yes. However, the argument is
slightly more subtle than the one for the fermionic Stiickelberg shift symmetries. Instead
of expanding the supersymmetry invariance of the relativistic action as in (3.7) we have to
consider the commutator of two supersymmetries, acting on the relativistic action — which
of course gives zero [dg(e1),g(€2)]S = 0 — and extract information about the NR action
SO from the different orders in the expansion. Moreover, we use some information about
the algebra, in particular the commutator between S-symmetry and supersymmetry (D.5b),
from which we conclude that

166 (1), 08 (2)] = 30 (Ap) + -+, (3.11)

where the ellipses denote terms involving symmetries of S(9) that do not play a role in the
present discussion, see appendix D for more details. The parameters on the right-hand-side
are dependent expressions N, = —1/4 TA'B' - €2+ 4rpr_€1—. Furthermore we can use the
fact that the fermionic Stiickelberg symmetries commute, see appendix D, to show that
[(58) (e1), 68) (e2)] = 0. Taking all of the above into account one can then show that the
terms in [d¢(e1), 0 (e2)]S = 0 at order O(c?) vanish if and only if

6pS© =0. (3.12)
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This shows that the non-relativistic action is indeed dilatation invariant as a consequence
of the divergence structure in the supersymmetry rules and the particular form of the
commutator between supersymmetry and fermionic shift symmetries.

Since we wish to identify 58 ) as the NR supersymmetry transformation rules, the sec-
ond requirement of (3.8) tells us that the NR action S(©) is not necessarily invariant under
these NR supersymmetries, but is rather given by the variation 58 )$(=2) of the ¢~2 order of
the expansion of (2.1) under the leading ¢? order of the relativistic supersymmetry trans-

formation rules. From (2.15) we see however that all terms in 58 )S2) are proportional

to Ta4/pr~ or Ta4~. We thus find that the variation 58)5(0) of the NR action S under
the NR supersymmetry transformation rules gives zero when the following constraints on
the torsion T,WA are imposed

TA'B' :0’ TA/+_ =0. (313)

These constraints are invariant under the dilatation symmetry (3.10), and we will refer to
SNC geometry, in which these constraints are imposed, as ‘self-dual Dilatation invariant
SNC geometry’ or self-dual DSNC geometry for short. The constraints (3.13) are not only
invariant under dilatations; they are invariant under all non-relativistic transformation
rules, and in particular, their variation under NR supersymmetry vanishes identically.
This relies on the fact that the self-dual longitudinal Vielbein 7,~ is a singlet’ under
NR supersymmetry, i.e., 58 )Tu_ = 0, which follows from the chirality properties of the
non-relativistic spinors (see (A.19)), in particular, I'"¢,4 = 0. One can thus impose the
constraints (3.13) by hand in the theory and still maintain supersymmetry without having
to impose extra constraints.

In fact, the self-dual DSNC constraints are a necessary requirement for the consistency
of the theory. Above, we have already seen glimpses of that when discussing the super-
symmetry of the action. We will see more (and stronger) evidence for this crucial fact
when discussing the consistency of the non-relativistic equations of motion in section 4.2.
Here, we will consider parts of the supersymmetry algebra and show that it closes if and
only if (3.13) are imposed. In other words, we show that the self-dual DSNC constraints
are a necessary requirement for the existence of a supergravity multiplet. More details on
the algebra are given in appendix D. In the following, we will, unless mentioned otherwise,
slightly abuse notation and denote by (58 ) the NR supersymmetry transformation rules,
given in the ¢ — oo limit of (2.13) and in (2.16), not including the parts that involve the
parameters (2.17). The latter correspond to field-dependent S- and T-transformations and
their omission will not change our arguments. For all practical purposes, this is equivalent
to indentifying (2.18) as the non-relativistic supersymmetry rules for the fermions. The
commutator of two such supersymmetries on ’7'“+ then gives:

[6((5) (ny) ,6((90) (6+)] = §E’++)Dzﬁu+ + (augaﬂ) '+ &) Ry (H+>
= (Leey = 0 () = dn (b)) ™ (319)

9For a general account on supersymmetry singlets and the conditions for such fields to exist, see [40].
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where §f++) = e I'"ny 7 #, L44) denotes the usual Lie derivative along fél++)’ and
R, (H#) denotes the fully covariant torsion 2-form (see (B.2)). To show closure we have
used the conventional constraints 7,.¥ Ry, (H ) = 0 — similar to how one uses RW(PA) =0
in the analogous relativistic calculation. Let us now turn to the closure on the other lon-
gitudinal Vielbein 7,7, which is a singlet under supersymmetry (58 )Tlf = 0. Hence it is

clear that [(58 ) (n+), 58 ) (e4)]7u~ = 0, and consequently we have to require that

(L) = 0nr (€lesywn) = 0 (&liiyb) ) 7™ = €0y R (H7) = 0. (3.15)

Using the conventional constraints (B.2) it is not hard to see that this is equivalent to
setting 74—~ = 0, and by requiring consistency with Galilean boosts 745~ = 0. This
proves that the self-dual DSNC constraints are a necessary requirement for closure of the
algebra.

We can summarize the above discussion as follows. The NR limit S(© of the ten-
dimensional N = 1 supergravity action is obtained as the leading order term in the ¢=2-
expansion of (2.1), after performing the field redefinition (2.6). This NR. action S(©) is
invariant under two emerging fermionic S- and T-shift symmetries (3.9), an emerging
dilatation symmetry (3.10), as well as under the ¢ — oo limit of the bosonic transformation
rules (2.11), (2.12). The NR supersymmetry transformation rules are identified as the
order ® part in the relativistic transformation rules (2.14). The action S is then only
invariant under NR supersymmetry, if one assumes that the self-dual DSNC geometry
constraints (3.13) hold.'?

Let us finish this section by giving the explicit expression for the NR action Syr = S(©.
It is useful to split Sy g into a part Sp that is purely bosonic, a part Sy, that is quadratic in
the gravitini 1,4, a part Sy, that is quadratic in the dilatini A4 and a remaining quadratic
fermion part Sy, that contains both a gravitino and a dilatino:

SNr =SB + Sxn + Sy + Sy + quartic fermion terms. (3.16)

As mentioned above, we will ignore all quartic fermion terms and only require supersym-
metry up to cubic fermion terms. The bosonic part of the action has been given in [6]
and reads:

1

=52

! ]_ / el
/dl% ee2¢(R(J) + 40400 ¢ — o hoargror kY B'C

’ !
— 4eA/“(8MbA - wMA B bB’ — (,UMAB TA B’A)

—4bb? — 4TA,{AB}TA’{AB}), (3.17a)

where e = det(TMA,eHA/) and R(J) and other geometric quantities are defined in ap-
pendix B, see in particular (B.7). We refer to [6] for a detailed explanation of the notation.

ONote that one needs to treat S© as a pseudo-action, when checking its invariance under NR super-
symmetry, i.e., one should only impose the constraints (3.13) after performing a general variation.
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The part of the action that is quadratic in the dilatini reads

1 < .
K

- éhA’B’C’ (5\+FAIB/C/)\_) + T’ A ()\_FB/CIA)\_)> R

(3.17h)

where the covariant derivatives are covariant with respect to Galilean symmetries and
dilatations, see (2.12) and (B.3). The notation A+T'\+ is a shorthand for A\, TA_ +X_T\y,
and will be used also below. The off-diagonal terms read

Sxg = 2—22 / 4%z ee—2¢< —AM TP eyt Dyt — 8 A TP T4t e Dy 4
— AN TP Y g D — AN TP Yy, D
+ é hapicr (XiFA/B/C/D/¢D’¢) + %hA’B’C’ (5\+FA/B/C/D¢D+)
- (WDA + GDA) TB'C'D (X_FB'C’wA+ - 5\+FB/C,¢A—)
+ 270 AT T Yar + 279 BN Do gy

— 2TB,C/A5\_FAB’C’D/¢D,_> . (317C)

The pure gravitino terms are given by

1 _ - 1w — 1=
Spv =753 /dloxee 29 (—2¢A+TAB Ceptec” Dyt — 40 a TP Ceptrc Dy, ¢
- ! ! ! ]_ ’ / ! -
—2¢p 4, TAPC 63/“6C'VD[H%F+§ hABC (1/1A'iFB/”¢C':F>
]. - !/ / ! ! ]_ - i ! ! / !

— ghA’B’C’ <¢D/+FA b E¢E++§ Y PABCDE ¢E':F) +
—4 (Pars T Yprs+ Par T4, ) D'
—2 (UAD+€AD> 5 p e Dprpas +275 4 (@B'—FA"L/)C'—)
—2(npc—epc) T MBYC T aghony
+(nap+eap) Tpiot Y TEE O By

+TB,C,A¢D,FAFB’C’D’E’¢E,) . (3.17d)

Finally, the NR supersymmetry transformation rules that leave Sypg invariant (up to cubic
fermion terms), upon imposition of the constraints (3.13), are found in (2.16) and (2.18),
as well as in the ¢ — oo limit of (2.13). Note that we can leave out the parts in (2.16)
that involve n_ and p_ (whose explicit expressions are given in (2.17)) from these NR
supersymmetry transformation rules as these take the form of S- and T-symmetries.
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4 The NR limit of the equations of motion

In the previous section, we discussed the NR limit of the action of ten-dimensional A/ = 1
supergravity. We saw that the resulting NR action is only invariant under NR supersym-
metry after the (supersymmetric) self-dual DSNC geometry constraints (3.13) have been
imposed by hand. Nevertheless, one can derive equations of motion from it by treating
it as a pseudo-action, i.e., by applying the usual unconstrained variational principle and
imposing the constraints (3.13) only after variation. In this section, we will examine these
equations of motion in more detail. We will see that they can be derived as NR limits of
a subset of the equations of motion of relativistic D = 10, N' = 1 supergravity. As we will
explain, this subset is a proper one due to the fact that the NR action is invariant under
the emerging S-, T- and dilatation symmetries (3.9), (3.10). The NR limit of the remaining
relativistic equations of motion leads to extra ‘missing equations of motion’ These missing
equations of motion consist of two fermionic equations, as well as a bosonic one that can
be identified as a supersymmetric generalization of the Poisson equation for the Newton
potential of NR gravity. Due to the fact that the NR action is only invariant under NR
supersymmetry up to the self-dual DSNC geometry constraints, the equations of motion
derived from it do not form a closed set under NR supersymmetry but can also transform
to the missing equations of motion. The full set of missing equations of motion and equa-
tions of motion derived from the NR, action does, however, form a supersymmetric set only
if the self-dual DSNC geometry constraints (3.13) are imposed by hand.

4.1 Equations of motion from the NR action and missing NR equations
of motion

Viewing the NR action Syg, given in (3.16), (3.17) as a pseudo-action, we can derive
equations of motion for T”A, eHA,, ¢, buy, A+ and 1,4, by computing Euler-Lagrange
derivatives, denoted here by ()", (e) ar*, (@), (b)) (Ay) and (o) respectively, with
respect to these fields. Explicitly, we define these functional derivatives as the result of
performing an unconstrained variation of Sy g as follows:

1 , 1
sSnn =53 | d”wee”{ (r) Ak 61" + ()t ben™ —8(9) 66 + 5 (0) by

BN O0) + 450, () + 450 () + 450, ()|
(4.1)

where the coefficients of the different terms have been chosen for later convenience. The
equations of motion derived from Syg are then given by setting (1) 4*, (e) a*, (@), ()",
(A+) and (¢4 )" to zero and supplementing the resulting set of equations by hand with the
self-dual DSNC geometry constraints (3.13).

As can be expected, the equations thus found can also be obtained as a NR limit of
the equations of motion of relativistic 10D, N' = 1 supergravity. To clarify this, we denote
convenient combinations of the Euler-Lagrange derivatives with respect to EMA, By, ®, A
and ¥, of the relativistic action (2.1) by [G] 3#, [B]*”, [®], [A] and [W¥]* respectively. We
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define these combinations via the following variation:

_ 1
- 2k2

1

55 / a0 Be 2 = 2(G]#0B, " + S [BI" B, — 8[8]60

+ 40N + 480, ([U]* +T*[N)) } (4.2)

Up to the order in fermions we are working in, [G] ;#, [B]*, [®], [\] and [V]* are explicitly

given by
1
(G4, =R4, T2V 10,2— Z’HAPUHM”” —2E ;[®] (+ quadratic fermion terms), (4.3a)
(Bl =VPH py —2(0°®) Hpp  (+ quadratic fermion terms), (4.3b)

1 1
(@] =V*H), D+ ZR—B"(IJGHCI) T HuwpH!"? (+ quadratic fermion terms), (4.3¢)
1
N|= PA=T" Dy, — JON-TH U, — = H (17 1 W + T M) (4.3d)

14 1 g 1 1%
(W] =2 (DY Wy~ ¢ Hpolu D77 W) = (D= g Hyup )N

1 A A A
+P0, — STV, H 0, (4.3¢)

where (as in the relativistic action (2.1)) the Ricci tensor R, and all covariant derivatives
are constructed from the relativistic Levi-Civita (spin) connection. For brevity, we have
not explicitly given the quadratic fermion terms in [G] ;#, [B],., and [®].

The equations of motion, obtained by putting the Euler-Lagrange derivatives (7)4*,

(e)art, (¢), (b)Y, (Ay) and (1) to zero, can then be obtained from a NR limit, in the

sense that they correspond to the leading order terms in a ¢ 2-expansion of particular

combinations of their relativistic counterparts [G] 3#, [B]*, [®], [A] and [¥]*. To quickly
find out which combinations of the relativistic Euler-Lagrange derivatives in this way lead
to the Euler-Lagrange derivatives for the NR fields, we note that we can use (2.6), (2.7)
to write

SE, N =cor,r, OB =6, 0By = —2ceapdr, B P +0bu, 60 =69,
A=cY20 +c7V2A 00, = V2, + 20y, (4.4)

Using this in (4.2), we can rewrite the variation of the relativistic action S as follows

1 _ ! 1 v
35 = 53 [0 Be e (B, 67,4 + By 56, + 5 [BI* 8b,, - 8[2] 66

+ 4¢P SN T (A] + 47 5 T ([¥]" + T [A])

e ST, [N+ e 260, T (94 + T A )} , (4.5)
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where we have introduced the notation*!

[B]a* = —2[G)a" — eapE, "B, [E]at = =2[G]at. (4.6)

Note that in (4.5), the quantities that multiply 57’,/4, 5@,/4/, Obyw, 69, 6A+ and M_’ui have
not yet been expanded in powers of ¢~2 and are thus still given in terms of the relativistic
fields EMA, B,,, ®, A and V¥,. Performing a ¢ 2-expansion of these quantities in 0.5,
noting that the result should take the form §S = §Syg + O(c2) (according to (3.1) with
SO0 = Syg) and comparing with (4.1), we see that

(r)ak = (1Bla") Y, (@) = ()",

()t = (B, e = (1B,

(o) = (I (9] + D)) 2, () = (D2,

(i) = (T (W] + T 2 ) = (ILANEYD (@)

where here and in the following, the notation (X)) is used to denote all terms of order ¢
in the expression obtained by expanding a relativistic quantity X in powers of ¢~2, after
performing the field redefinition (2.7). In particular, all quantities on the right-hand-side
of the equations in (4.7) refer to the leading order terms in these ¢~ 2-expansions.

The tensors (1) 4%, (e) a*, (¢), (BY*, (Ax) and (4 )* are not all independent, as there
exist various algebraic relations between them. The latter correspond to Noether identities
for those local symmetries of the NR action (3.16), under which none of the fundamental
fields THA, eHA/, ¢, buy, A+ and 9,4 transform as a gauge field. For longitudinal Lorentz
transformations, transversal rotations and Galilean boosts, these Noether identities are
given by

eAB(Tyap — 204 (A2) + 20 (A1) — 20,4 (Y ) + 29, (Y )" = 0
(€)= ATap (A=) = A_Tarp (Ar) = s Darpr (Y- )" — T (4)# = 0, (4.8b)
(e)ara+ea® By par + 22T 4w (Ap) + 204 Taar (W4 ) =0

Note that these 45 Noether identities imply that the 45 components (7)(4p], (€)[ap/ and
(e)aar of the 100 Euler-Lagrange derivatives (7)4" and (e) 4" can be written in terms
of other Euler-Lagrange derivatives. We are thus left with 55 algebraically independent
components in (7)4* and (e) 4/*, the same number of components that is contained in the
relativistic Einstein equations.

Naively, one would then say that the Euler-Lagrange derivatives ()", (e) a*, (),
(b)Y, (Ay) and (¢4 )* have as many algebraically independent components as their rela-
tivistic counterparts [G]*", [B]*, [®], [A] and [¥]* and that the NR action (3.16) thus leads
to as many equations of motion as there are relativistic ones. This counting is however
not correct as it does not yet take into account extra algebraic Noether identities that are

"' The quantities [E]4* and [E]4* then correspond to the Euler-Lagrange derivatives of the relativistic
action (2.1) with respect to £,” and E,* , after viewing (2.1) as a functional of b, = B, + eapE,*E,?
(instead of as a functional of By,).
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associated to the emergent dilatation and S- and T-symmetries. In particular, the S- and
T-symmetries (3.9) lead to the following relations

1
(A+) = §F+<¢7>#Tu+ =0, (Y =0, (4.9)
while the dilatation symmetry (3.10) implies that

(T) A" = 8(0) + 201 (A2) = 20 (Ap) + 2y () — 2, ()" =0, (4.10)

In what follows, it will be useful to simplify this identity, by using the Noether iden-
tity (4.8a) for SO(1,1) longitudinal Lorentz transformations to eliminate the last four
terms. This gives

(MY a1, + BTy ap — 8(p) =0 < T, () = 4(g) . (4.11)

From (4.9) and (4.11), we see that (¢;)" is identically zero and that e.g. (7)_~ and (\;)
are not independent.

In (4.7), we saw that the equations of motion, derived from the action (3.16), arise from
a NR limit that consists of retaining only the leading order terms in the ¢~2?-expansion of the
relativistic equations of motion, obtained by setting [E]4*, [E]a/*, [B]*, [®], [¥]* + T#[)]
and [A] equal to zero. The Noether identities (4.9) and (4.11) then tell us that taking the
limit in this way leads to some of the resulting equations being the same or identically zero,
so that one is left with less independent NR equations than relativistic ones. It is however
also possible to take the NR limit directly at the level of the relativistic equations of motion,
in such a way that it preserves the total number of algebraically independent equations.
To see how this works, we note that the Noether identity for dilatations says that not all
the leading order components in the ¢~2-expansions of the relativistic [E]4* and [®] are
linearly independent. Indeed, since 7,~ (1)_* = (Eu*[E]_”)(O), the identity (4.11) tells
us that the leading (c-)order contributions in the expansions of E,~[E]_# and [®] are
proportional to each other:

(Nt =4g) e (BB =4(e)”
& E,[El-F=4(¢)+0(c?) and  [®] = (¢) +O(c?). (4.12)

Similarly, the Noether identities (4.9) for the S- and T-symmetries are equivalent to saying
that the contribution to the ¢~2-expansion of certain components of [U]* vanishes identi-
cally at the order indicated in (4.7):

(M E_rw],)"? =0, and (I E_"9],)*? =0. (4.13)

This then indicates how one can take the NR limit of the equations of motion, such that one
ends up with as many NR equations of motion as relativistic ones. The limit of most of the
relativistic equations of motion is taken as in (4.7). As regards the equations II4 E_#[¥],, =
0 however, one has to take into account that they vanish at the order given in (4.7) and that
one should instead retain the terms at one order lower in the ¢~?-expansion. Furthermore,
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instead of applying the NR limit to the equations {E,” [E]_* = 0,[®] = 0}, one should
apply it to {E, " [E]_-# =0, E,” [E]_* — 4[®] = 0}, so that one ends up with two linearly
independent equations. Taking the NR limit of the equations of motion in this way, the set
of NR equations of motion, obtained by setting (4.7) to zero, is then supplemented with
the following extra equations:

W) = (1 Borw),) = = o, (W) = (W, Brw],) T <0,
(P) = (B, [E)-* —4/o)) " = 0. (4.14)

We will refer to these as ‘the missing equations of motion’. Although they are not derived
from the NR action (3.16), they are valid NR equations of motion, in the sense that they cor-
respond to the leading order in the ¢~ 2-expansion of particular components/combinations
of components of the relativistic equations of motion.

Explicitly, the fermionic missing equations of motion are given by:

(W) == DA+ 27 Fep TA Dy, + 27 47 TH Dy, 0
f 1 R el 4
+ (FA Dy + ﬂ FA B'C hA/B/C/) T—#@Z)u* - 27—A’++FA 7_+#¢M*

(4 terms of higher order in the fermions) =0, (4.15a)

/ ! 1 ! ! ’
<Q/)S_T)> = — D_)\+ + 2T_‘LL6A/VFA D[#lf)y]_i_ + <FA DA/QZ) + ﬂ FA BT hA’B’C”) T_“’QD,H_

! ! ! 1 I !
+ Tt (FA “A--rfrd _wB'*) +3 Targ TTAB T iy

(4 terms of higher order in the fermions) = 0. (4.15b)

One can then explicitly check that (¢(_S)> and <¢SFT)> are invariant under S- and T- transfor-
mations, while they transform covariantly under dilatations, with weights —3/2 and —1/2
respectively. The explicit expression for the bosonic equation of motion reads:

(P) =T1atea" Ry (G)AA/ + P ratrpY R, (M) (4 fermionic contributions) = 0,
(4.16)

where Ry, (G)44" and Ry, (M) are defined in (B.6). The linearization of the bosonic part of
this equation contains a term 9,404 bo1. Since in [6], it was argued that by; can be identified
as the Newton potential, we see that the missing bosonic equation can be identified with a
supersymmetric generalization of the Poisson equation and we will refer to it as ‘the Poisson
equation’ in what follows. Under dilatations, (P) scales covariantly with weight —2, while
the following transformation rules under the S- and T-symmetries (3.9) are found

or(P) =45 ("), 65(P) = 27T~ (). (4.17)

The Poisson equation thus transforms to the two fermionic missing equations of motion
under the S- and T-symmetries. Since the NR action is invariant under dilatations, S- and
T-symmetries, we thus find that the full set of NR field equations, including the missing

ones, is invariant under these symmetries.
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The above discussion can be made more transparent, by performing a field redefinition
in the relativistic action (2.1). This field redefinition is such that the full set of NR field
equations, including the missing ones, is obtained by retaining the leading orders of the
¢ 2-expansions of the equations of motion of the redefined fields (instead of non-trivial
combinations of equations of motion of different fields). We will denote the redefined fields
with a tilde, as some of them correspond to rescalings of the NR fields with a tilde, that

were defined in (2.20), with a power of ¢. This field redefinition is explicitly given by:

n — . =2 — ~ _ ~ AI o A/

E, =e?*E,", E,f=E,", EAN=E7,
P=0, By = b = B +eap BB,

- - 1

Ar =Ax, Uy =TT, — B, TILA,

U_=E MY, U, =1_Y,-E,"E."TI_V,. (4.18)

Note that this field redefinition is invertible. We can then use (2.7) to write the fields with
a tilde as powers of ¢ multiplied with NR fields with a tilde, that can be expressed in terms
of the NR fields without a tilde:

E#_ =c 17 T, = ¢! e_2¢TM_ , Eu+ = cﬁﬁ = C’TM+, ENA/ = éMA/ = euA/ ,
d=¢+loge=¢+loge, BWEBWEI)W,

Ay =20 = F2 , \illt-‘r = 01/21;;& ,

U_ =32, U, = 0_1/2&#_ . (4.19)

The expressions for 1/~}Mi and ¢_ in terms of NR fields without a tilde are given in (2.20).
As in (2.7), the dilatation weights of the NR fields with a tilde in the above formulas
coincide with the exponents of the powers of ¢ that multiply these fields. Note that (4.19)
contains two types of redefinition that will be used in the following. On the one hand, it
expresses how the relativistic fields with a tilde are given in terms of NR fields with a tilde,
multiplied with a power of ¢. On the other hand, it also indicates how the NR fields with
a tilde are related to those without a tilde.

By applying (4.18), we can express the relativistic action (2.1) in terms of the fields
with a tilde and define functional derivatives of the resulting action S [Eui, E“A', P, Buw
\i/ui, ¥ _, AL] via the following variation

59 = 212/d10xE{[’E] WSE," + [E],"SE,* + [B] #SE," +;[B]“”5BW—8[’T§>]5&>

FAGAL A+ 400, [V_)" + 450, _[v,]"
+AGA_ [y + 45@4@]} , (4.20)

where F = det(EuA). Using the rules (4.18), one finds that the following non-trivial
relations hold between the functional derivatives with respect to the fields with tildes and
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those with respect to the original fields:

[B] " =e®[B]*, [B] "= [B) " +49_[0,]" —2A 1 9]",
@ =(0]- ;BB L] = (e ), (4.21)
VL] = BT [u) Vo] = —5 By LT [0

For all other functional derivatives, the relation is trivial, e.g., [E] 4* = [E]a/*. From this,
we see that the field equations of ®, A_ and W_ are given by

E, [E]_*—4[® =0, TI_E_"W¥,=0, T E"¥],=0, (4.22)

and, according to (4.14) and the discussion preceding it, thus indeed reproduce the missing
equations of motion in their ¢~2-expansion, as was the goal of the field redefinition (4.18).

We can then revisit the NR limit of the equations of motion. First, using (4.19)
n (4.20), we have

1 - 1771 . _ T - i A 1/\//.111 ~ —~

08 =55 / lexE{c LE]_#67,” + c[E] 67, + [B] 4"06, " + 5Bl b, — 8[®]66
AN A+ 4260 (W] a2 5, [,

A2 N A2 g [\m} | (4.23)

As in (4.5), the quantities that multlply 57,5, (56,/4 by, 00, 6/\i, &pui and 5w have not
yet been expanded in powers of ¢~2. Requiring compatibility with 65 = 6Sng + ¢ 265(-2)
(where Syg and S(=2) are expressed in terms of the NR fields with a tilde) shows that the
following expansions hold:

[’EJ]J‘:CZTV “+(’)( 1) [AEJ]+“:c71<A7'§+“+(’)(c73)a
(Bl = (e) A,“+<9( ) B =®"+0(c?),
o) = 2" 0 (F1272) . D=0 10 (¢92) 0 (a2

— — —~ Yy —_~—

The quantities (1), ", (e) 4", (b) , (¢i>“ and (A_) then correspond to the functional
derivatives of the NR action Sygr with respect to %Mi, éMA/, E,W, @MJF and 5\+ (after ex-
pressing Sy g in terms of these tilded NR fields).

The same reasoning would lead one to think that the expansions of [(}T], [ﬂ] and [(I/:]

start at orders ¢, ¢/2 3/2

and ¢°/“ respectively. This is however not correct. Indeed, if this
were true, (4.23) would imply that Syr depends on é, A\_ and ¢_. This can however
not be the case, since these fields shift as Stiickelberg fields under dilatations and S- and
T-symmetries. Any dependence of Syg on ¢, A_ and 1)_ would then imply that Syp is
not invariant under these symmetries, Acgntradicting what was found in section 3. We thus

conclude that the expansions of [®], [Ay] and [\IAJI] have to start at one c~2-order higher.
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This is indeed found explicitly:

@] = —30—2 (P)+ 0O (c—4> : [ﬂ] _ c—3/2 r. <¢(_S)> +0 <0—7/2> ’
[24) = P@) +0 (7). (425)

From this, we then also see that (P), <1/J(,S)> and <1/1(+T) ) can be interpreted as functional
derivatives of S(~2) with respect to ¢, A_ and ¢_. This is similar to what happens when
considering the NR expansion of General Relativity, where the Poisson equation of NR
gravity is seen to arise from subleading orders in the expansion of the Einstein-Hilbert
action [34, 41]. Note also that there is a relation between the dilatation weights of the
NR fields with a tilde and the exponent of the power of ¢ in front of their corresponding
functional derivatives (either of Syg or S(=2)) in (4.24) and (4.25). The exponent of the

power of ¢ in front of GSJ‘, <f7\'§+“, (€) 4™, <Nb>lw, @# and </)_\t/> in (4.24) is given by the
negative of the dilatation weight of 7,7, 7,7, éMA/, IS,W, @MJF and /~\+ respectively. This
rule does not hold for (P), <1/J(,S)) and <¢S_T)>: the exponent of the power of ¢ in front of
these quantities in (4.25) is obtained by subtracting two from the negative of the dilatation
weight of ¢, A_ and 1)_ respectively.

Summarizing: after performing the field redefinition (4.18), the NR limit of the rel-
ativistic equations of motion can more easily be taken in such a way that it preserves

the number of algebraically independent equations. The resulting NR field equations are

given by
mﬂzoa Z;—;Jrli:()’ @A,NZO,
<A“b>t‘“/:0’ @“:O’ <//_\\;/>:0>
(P) =0, Wy =o0, Wy =o, (4.26)

where each equation corresponds to the leading order terms in the ¢~2-expansion of a rela-
tivistic equation of motion for a redefined field with a tilde. The first two lines correspond
to equations that can be derived from the NR action (3.16). The equations in the last
line are the missing equations of motion, that do not follow from the NR action. The full
set of NR field equations (4.26) is invariant under the emergent dilatation and S- and T-
symmetries. In the next subsection, we will address the question whether these equations
also transform into each other under NR supersymmetry and Galilean boosts.

4.2 Consistency of all NR equations of motion under supersymmetry and
Galilean boosts

Here, we will give a generic argument that the set of NR field equations (4.26) is invari-
ant under NR supersymmetry and Galilean boosts. As we will see, invariance under NR
supersymmetry is not automatically guaranteed: it only holds when the (supersymmetric)
self-dual DSNC constraint (3.13) is imposed by hand.

We will argue exclusively in terms of the fields with tilde (4.18) and their NR coun-
terparts, defined in (4.19). It will then be useful to split the tilded fields (4.18) in two
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sets, based on whether the limit of their equations of motion can be derived from the NR
action (3.16) or not. The first set of fields is given by {E,ﬁ, EM_, EMA/, Buw \ilui, Ay} We
will refer to the fields in this set as the (relativistic) ‘bulk fields’ and we will collectively
denote them as B;, with the index 7 enumerating the different bulk fields. The second set
of fields is given by {®, ¥_,A_} and their members will be referred to as the (relativistic)
‘missing fields’. We will collectively denote them as M,, where the index « is used to
distinguish the different missing fields. The index I and notation X will be used to denote
the members of the collection of bulk and missing fields: {X;} = {B;, M, }. The functional
derivative of the relativistic action with respect to a field B;, M, or X; will be denoted
by [B]?, [M]®, [X] respectively. We will split the NR fields with a tilde in a set of NR
bulk fields and one of NR missing fields in an analogous manner. The NR bulk fields are
given by {7,%,7,”, éMA/, ZN)W, z/;ui, Ay} and will be collectively denoted by b;, whereas the
NR missing fields {¢,7_, A_} will be collectively denoted by m,. Equations (4.19) can
then be summarized as

B; = "p, , M, = ™D, , (4.27)

where b(7) and m(«a) are the dilatation weigths of the corresponding NR fields b; and m,.
According to the remark made below (4.25), the expansions of the relativistic functional
derivatives [B]* and [M]® then take the form:
[B]z _ C—b(i)<b>i + c—b(i)—2 [B]TS'L +0 (C—b(i)—4> 7

[M]* = ™2 (m)e 4 =@ (MG, 4 O (7m0 (4.28)
Here, the collection of (b)! corresponds to {H_",ZTV)JF“, @A/“, <Nb>lwa @Mam}, the
collection of (m)® to {(P), <1/J(,S)>7 <1,Z)SFT)>} and we have denoted the first subleading terms
in the expansions of [B]" and [M]® by [B]%; and [M]g;.

We then wish to show that the (b)* and (m)® transform into each other under NR su-
persymmetry and Galilean boosts. To do this, we will rely on a formula, derived in [42], that
shows how Euler-Lagrange derivatives, derived from an action, transform into each other
under a symmetry of that action. Applied to the [X]/, defined via (4.20), this formula reads:

.~ 0 (60X
SIX) = (ESE~Y) [Xx)! - M[X]J. (4.29)

0Xr
The last term of (4.29) is written in the DeWitt notation [43], i.e., the sum over J also
entails an integral that is not written out explicitly. Furthermore, § X refers to an infinites-
imal symmetry transformation of the fields X; that leaves the relativistic action (2.1) (ex-
pressed in terms of the fields with tilde (4.18)) invariant. The above formula then specifies
that the way in which the [X]! transform into each other under the symmetry variation 4,
is determined by the functional derivatives §(6X;)/5X; of X with respect to X;.'? In

2In case 6X; involves derivatives of the fields X7, as is the case for supersymmetry, one can see that
the second term of (4.29) contributes terms that involve derivatives of the symmetry parameters, i.e.,
non-covariant terms. These non-covariant terms are, however, still zero on-shell. We refer to [42] for
more details.
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the following, we will start from the formula (4.29), applied to relativistic supersymmetry
and boosts, and expand it in powers of ¢=2. This will allow us to infer how (b)* and (m)®
transform into each other under NR supersymmetry and Galilean boosts.

Before showing that all NR field equations (4.26) transform into each other under NR
supersymmetry, we need to investigate the structure of the NR supersymmetry transforma-
tion rules in more detail. First, we note that by writing the ¢~2-expansions (2.13), (2.14)
of the relativistic supersymmetry transformation rules (denoted here by dg) in terms of
the NR fields with a tilde, the following ¢~2-expansions are seen to hold:

0 —2¢(—2
Sqbi = 63)bi + =265 ;.
Soma = 63 ma + 68 ma + ¢ 265 Pm, . (4.30)

(2)

The only non-zero 5@92
mined by (2.21). Note that 68 ) vanishes when the self-dual DSNC constraint (3.13) is
imposed. The terms 58 )bi and 58 )ma at order ¥ in (4.30) constitute the NR supersymme-

my, take the form of specific S- and T-transformations and are deter-

try transformation rules. We will for simplicity ignore the S- and T-transformations (2.17)
that are in principle present in 68) )ma. Doing this will not affect our arguments signifi-
cantly. Using (4.19), we can then express these NR supersymmetry rules in terms of the
fields with a tilde. In what follows, it will turn out to be important that (58 )bi takes the

following form
58)bi = Sbi + 550(171)172‘ ~+ Oboost Di (4.31)

where 0b; is independent of the missing fields mq (so o (sz)/ dmq = 0) and dgo(1,1)b; and
dboostDi correspond to a local longitudinal SO(1,1) transformation and Galilean boost,
whose parameters depend on the missing fields m,. Explicitly, the p