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Abstract: We construct a non-relativistic limit of ten-dimensional N = 1 supergravity
from the point of view of the symmetries, the action, and the equations of motion. This
limit can only be realized in a supersymmetric way provided we impose by hand a set of
geometric constraints, invariant under all the symmetries of the non-relativistic theory, that
define a so-called ‘self-dual’ Dilatation-invariant String Newton-Cartan geometry. The non-
relativistic action exhibits three emerging symmetries: one local scale symmetry and two
local conformal supersymmetries. Due to these emerging symmetries the Poisson equation
for the Newton potential and two partner fermionic equations do not follow from a variation
of the non-relativistic action but, instead, are obtained by a supersymmetry variation of the
other equations of motion that do follow from a variation of the non-relativistic action. We
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1 Introduction

Recently, major progress has been made in understanding the formulation of non-relativistic
(NR) string theory in a general curved background thereby generalizing the original pro-
posal for NR string theory in a flat background [1, 2] and its early extensions to special
curved backgrounds [3]. These new developments have taken place both in terms of a
description via a two-dimensional non-linear sigma model as well as from the point of view
of a target space action and equations of motion for the background fields. For the closed
bosonic string these results have been obtained either by taking a NR limit [4–7] or by
applying a null reduction [7–10]. Moreover, the relation between the sigma model beta-
functions and the target space equations of motion has been clarified, both for closed and
open strings, proving the one-loop quantum consistency of the NR string theory [11–15].
There is also an intriguing relationship with Double Field Theory [16–21]. For other recent
work on NR string theory in a curved background, see [22–26].
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At first sight, the natural target space geometry of the NR string theory of [1, 2]
generalized to arbitrary backgrounds is given by a Newton-Cartan-like geometry with co-
dimension two foliation that is characterized by the following ‘zero torsion constraint’ on
the longitudinal Vielbein τµA:1

D[µ(ω)τν]
A = 0 . (1.1)

Here, the index A = 0, 1 refers to the directions longitudinal to the string and the deriva-
tive Dµ(ω) is covariant with respect to longitudinal Lorentz transformations. Since we are
working in the second order formalism part of the constraints (1.1) are identically satis-
fied. To obtain the genuinely geometric constraints one should project (1.1) onto those
components where the spin connection cancels out:

eA′
µτ(A|

ν∂[µτν]|B) = 0 , and eA′
µeB′

ν∂[µτν]
A = 0 . (1.2)

Here A′ refers to the directions transverse to the string, τAµ, eA′µ are (projective) inverses
of the longitudinal and transverse Vielbeine τµA, eµA

′ and (AB) indicates the symmetric
part of AB. The geometry defined by the zero torsion constraint (1.1) is referred to as
String Newton-Cartan (SNC) geometry [29].2 The NR string then couples to the SNC
Vielbeine, as well as to a Kalb-Ramond (KR) and dilaton background field.

In our recent paper [6], we studied the target space action and equations of motion
of the NS-NS sector of NR string theory, from the viewpoint of taking a NR limit of the
relativistic action and equations of motion. The resulting NR NS-NS action has also been
derived from a Double Field Theory point of view in [16]. We showed in particular that
in the NR case a natural geometric constraint, consistent with (part of) the target space
equations of motion, is not given by the constraints (1.2) of SNC geometry, but by the
weaker dilatation-invariant geometric constraints3

eA′
µτ{A|

ν∂[µτν]|B} = 0 , and eA′
µeB′

ν∂[µτν]
A = 0 , (1.3)

where {AB} indicates the symmetric traceless part of AB. The constraints (1.3) character-
ize what we called a ‘Dilatation invariant String Newton-Cartan’ (DSNC) geometry in [6].
We stress that these constraints are not imposed by hand neither do they follow from taking
the NR limit but they follow as natural solutions of (part of) the target space equations of
motion. The geometry before imposing any constraints is referred to as Torsional String
Newton-Cartan (TSNC) geometry [6, 7].

The NR limit of the relativistic equations of motion for the metric, Kalb-Ramond and
dilaton background fields can be taken such that it preserves the number of independent

1In this paper we only consider ‘stringy limits’ where the longitudinal directions are scaled differently
from the transverse directions. We will not consider ‘particle’ limits like in [27, 28].

2For earlier work on SNC geometry, see [3, 30, 31].
3These constraints can formally be obtained by replacing the covariant derviative in (1.1) by a dilatation

covariant derivative Dµ(ω, b) where bµ is the dilatation gauge field. The explicit form (1.3) then follows
after projecting to those components where both gauge fields cancel out. The second constraint in (1.3)
can also be written as εABτA ∧ τB ∧ dτC = 0, which shows that it is sufficient to define an integrable
co-dimension two foliation, see e.g. [32].
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equations of motion. However, not all of the resulting NR equations follow from a varia-
tion of the NR action that is obtained by taking the NR limit of the relativistic one. A
distinguishing feature of this NR NS-NS target space action is that it is invariant under an
emerging local scale symmetry that is absent in the relativistic case. Due to this emerging
symmetry there is one equation, the Poisson equation for the Newton potential, that does
not follow from the NR target space action. Instead, this equation constitutes, together
with all the other equations that do follow from the NR target space action, a so-called
reducible but indecomposable representation of the NR symmetries. For the Poisson equa-
tion this means that, by varying it under Galilean boosts, one can generate the full set
of equations but none of these other equations transforms back under Galilean boosts to
the Poisson equation. A similar story applies to the beta-functions. The NR string sigma
model is also invariant under an emerging dilatation symmetry and consequently the num-
ber of beta-functions that one can calculate is one less than the number of relativistic
equations of motion. Setting these beta-functions to zero one finds that a certain, purely
nonlinear equation that has a dilatation weight opposite to that of the Poisson equation is
missing. For an interpretation of this missing nonlinear equation, see the recent paper [33].
Schematically, the situation can be summarized as follows:

NR e.o.m.→ common equations + Poisson + Non-linear , (1.4)

NR NS-NS action→ common equations + Non-linear , (1.5)

NR β-functions→ common equations + Poisson . (1.6)

One might worry that the theory becomes overdetermined by changing the number of inde-
pendent degrees of freedom — through the emergence of the dilatation gauge symmetry —
while leaving the number of independent equations of motion unchanged. This, however, is
avoided since the linearization of one of the equations becomes trivial. It would be interest-
ing to get a systematic understanding of the interplay of the emergence of symmetries and
the differential structure of the equations of motion after taking the non-relativistic limit.
The fact that the NR NS-NS action does not lead to the Poisson equation for the Newton
potential is consistent with the fact that no action principle is known for NC gravity based
upon the Bargmann algebra.4

So far, most calculations have been performed for the bosonic NR string only.5 This
work is a companion to our previous paper where we enlarge our investigations of the NR
NS-NS gravity background to the case of a NR minimal supergravity background.6 To be
specific, we will present the NR limit of the ten-dimensional N = 1 supergravity action and
equations of motion defining the dynamics of the background fields. This sector is common
to all superstring theories. We have a heterotic superstring in mind but we will postpone a
discussion of the Yang-Mills sector to the conclusions. To obtain the results of this paper,

4For suggestions of such an action based on a larger algebra, see [34].
5For earlier work on NR strings and supersymmetry, see [3, 35].
6The NR supergravity theory is minimal in the sense that, although it contains two independent su-

persymmetries, both are needed to obtain translations along the longitudinal directions as the result of an
anti-commutator of two supercharges.
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we will follow the same strategy as used in [6] but there are notable new features in the
supersymmetric case. One complication is that, unlike in the bosonic case, there is no direct
connection between a two-dimensional sigma model description and the NR target space
effective action. A Green-Schwarz sigma model formulation for the NR superstring has been
given for a flat background [35] but not for a NR minimal supergravity background. Like
in the relativistic case, this will probably require a superspace formulation. Alternatively,
starting from a NR sigma model with (1,0) world-sheet supersymmetry,7 the target space
supersymmetry of the background fields is not manifest. In both cases we cannot use
the sigma model description to read off the emergent target space fermionic Stückelberg
symmetries that we expect to team up with the emergent local scale symmetry that we
found in the bosonic case.

Another complication, not encountered in the bosonic case, is that taking the naive
NR limit of the supersymmetry rules leads to divergent terms in these transformation
rules. Concerning the action, we find that, like in the bosonic case, a NR limit of the
N = 1 supergravity action can be defined due to a miraculous cancellation of divergent
terms when taking this limit. By performing a careful analysis of the NR limit, we will
show in this paper that the dangerous divergent terms in the supersymmetry rules are
controlled by two facts about the theory. Firstly, we are making use of the fact that the
NR action is invariant under two emergent local fermionic Stückelberg symmetries arising
as partners of the emergent local scale symmetry that we already found in the bosonic case.
We will call the two emerging fermionic symmetries S- and T -supersymmetry where the
S-supersymmetry is of a type that is also encountered in conformal supergravity. Secondly,
we are imposing by hand the following constraints on the geometry:

eA′
µτ+

ν∂[µτν]
− = 0 , and eA′

µeB′
ν∂[µτν]

− = 0 . (1.7)

Here, ± refer to (anti-)selfdual projections τµ± = 2−1/2(τµ0 ± τµ1) in the two longitudinal
directions. The constraints (1.7) constitute half of the constraints (1.3) defining a DSNC
geometry and define what we will call a ‘self-dual’ DSNC geometry. Importantly these
constraints are invariant under all the symmetries of the NR theory — including super-
symmetry — and therefore do not lead to additional constraints. They can be substituted
into the equations of motion but not into the NR action. In that sense the NR minimal
supergravity action is a so-called pseudo-action.

As we will show in this paper, the self-dual constraints (1.7) are in fact needed to
show the consistency of the NR theory. More precisely, they are a necessary requirement
for the closure of the non-relativistic superalgebra and for making sure that the set of NR
equations of motion is closed under supersymmetry. To better understand the geometric
meaning of (1.7), it is useful to rewrite them as

τ[µ
−∂ντρ]

− = 0 , (1.8)

which shows that (1.7) defines an integrable co-dimension one foliation along the lightcone
direction τ−µ∂µ. This, in turn, implies that one can choose coordinates such that τµ− =

7For the recent construction of a NR sigma model with (1,1) worldsheet supersymmetry, see [36].
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eκ∂µt for some κ = κ(xµ) and t = t(xµ). This corresponds to the twistless torsional
constraints of ordinary Newton-Cartan geometry, encountered in the literature, see e.g. [37].
We note, however, that the equations of motion for the background fields can lead to further
torsion constraints on the curls of τµ− and τµ+. The final background geometry can only
be determined after the constraints that follow from these equations of motion have been
taken into account and can take the form of a co-dimension two foliation.

Due to the emergent bosonic and fermionic local symmetries we find that the NR
action does not give rise to the full set of equations of motion. There is a Poisson equation
for the Newton potential and there are two additional fermionic equations that do not
follow from the variation of the NR action. However, unlike in the bosonic case, the NR
action knows indirectly about these three missing equations in the sense that they can be
obtained by varying the other equations of motion that follow from the NR action under
supersymmetry.

The organization of this paper is as follows. In section 2 we give a brief review of the
relativistic N = 1 supergravity theory together with the transformation rules of all fields
in a new basis of the fields that contains powers of c for finite c, i.e., before taking the
actual NR limit. In the next section we discuss in detail the NR limit of the relativistic
supergravity action ending up with a NR action that has emergent dilatations plus an
emerging S- and T -supersymmetry. In section 4, we take the NR limit of the equations of
motion and show that we obtain the same equations of motion that follow from varying
the NR action derived in the previous section plus three more equations: the Poisson
equation for the Newton potential together with two fermionic equations. Furthermore,
we show how these three missing equations of motion are connected to the ones that do
follow from the variation of the NR action via supersymmetry. In the final section we
discuss our results. In particular, we mention a few subtleties when including the Yang-
Mills sector of a heterotic supergravity theory. There are 5 appendices. Our notations and
conventions particular to the supersymmetric case are given in appendix A. In appendix B
we collect a few useful formulae describing Torsional String Newton-Cartan Geometry.
This is the generic background geometry of non-relativistic string theory, and the self-
dual DSNC geometry (1.3) is a special case. To make this paper more user-friendly for
those who wish to investigate compactifications or solutions of the NR superstring we have
summarized in appendix C the bosonic equations of motion with the fermions set equal
to zero together with the Killing spinor equations. Appendix D contains details on the
supersymmetry algebra that underlies the NR supergravity theory of this paper. Finally,
in the last appendix E we show how the NR limit can be defined for the special case of a
supersymmetric Yang-Mills theory in a flat background.

2 D = 10, N = 1 supergravity

In this section, we will briefly review ten-dimensional N = 1 supergravity [38, 39], i.e., the
common part of the effective theories for the massless modes of all superstrings. We will
summarize its fields and their transformation rules, as well as its action. In order to define
the NR limit, one performs an invertible field redefinition that involves a (dimensionless)
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parameter c, such that the NR limit corresponds to sending c → ∞. To facilitate taking
this limit in the next sections, we will here also give the field redefinition that is involved
and apply it to the transformation rules of N = 1 supergravity. The index, spinor, and
Clifford algebra conventions that we use throughout this paper are collected in appendix A.

The bosonic field content of ten-dimensional N = 1 supergravity consists of the Viel-
bein EµÂ, the Kalb-Ramond (KR) two-form field Bµν , and the dilaton Φ. The fermionic
fields are given by the gravitino Ψµ, and the dilatino λ. Here, Ψµ is a left-handed Majorana-
Weyl spinor, while λ is a right-handed one. The action of N = 1 supergravity is then
given by

S= 1
2κ2

∫
d10xE e−2Φ

{
R+4∂µΦ∂µΦ− 1

12HµνρH
µνρ−2Ψ̄µΓµνρDνΨρ−4 λ̄ΓµνDµΨν

+2 λ̄ /Dλ+ 1
24H

ρστ
(
2Ψ̄µΓ[µΓρστΓν]Ψν−4Ψ̄µΓµρστλ−2 λ̄Γρστλ

)
−4Ψ̄µ/∂ΦΓµλ−4Ψ̄µΓµΨν ∂

νΦ (+ quartic fermion terms)
}
,

(2.1)

where κ denotes the gravitational coupling constant and E = det(EµÂ). The Ricci scalar
R is constructed from the Levi-Civita spin connection Ωµ

ÂB̂ and

Hµνρ = 3∂[µBνρ] , (2.2)

is the field strength of the KR field. We moreover defined the (anti-symmetrized when
necessary) covariant derivatives of Ψµ and λ by

D[µΨν] = ∂[µΨν] −
1
4Ω[µ|

ÂB̂ΓÂB̂Ψ|ν] , Dµλ = ∂µλ−
1
4Ωµ

ÂB̂ΓÂB̂λ . (2.3)

Note that Ωµ
ÂB̂, R and Hµνρ in the action (2.1) do not contain any fermionic contributions

(such as supercovariantizations). The first three terms of (2.1) are thus purely bosonic,
and only the remaining terms contain fermions. We have not explicitly written the quar-
tic fermion terms that are present in (2.1). In this paper, we will consistently truncate
quartic fermion terms in actions, and we will only give the terms in the supersymmetry
transformation rules that are consistent with this truncation.

The fields of ten-dimensional N = 1 supergravity transform as follows under local
Lorentz transformations with parameter ΛÂB̂, a one-form symmetry of the KR field with
parameter Θµ and supersymmetry with a left-handed Majorana-Weyl spinor parameter ε:

δEµ
Â = ΛÂB̂Eµ

B̂ + ε̄ΓÂΨµ , δBµν = 2∂[µΘν] + 2 ε̄Γ[µΨν] , δΦ = 1
2 ε̄ λ ,

(2.4a)

δΨµ = 1
4ΛÂB̂ΓÂB̂Ψµ +Dµ

(
Ω(+)

)
ε (+ terms quadratic in Ψµ and λ) ,

(2.4b)

δλ = 1
4ΛÂB̂ΓÂB̂λ + Γµε ∂µΦ− 1

12 ΓÂB̂ĈεHÂB̂Ĉ (+ terms quadratic in Ψµ and λ) ,

(2.4c)

– 6 –
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where we have defined the following torsionful covariant derivative of ε

Dµ(Ω(+))ε = ∂µε−
1
4 Ω(+)

µ
ÂB̂ΓÂB̂ε , with Ω(+)

µ
ÂB̂ = Ωµ

ÂB̂ + 1
2Hµ

ÂB̂ . (2.5)

In order to take the NR limit in the following sections, we introduce a (dimensionless)
parameter c and perform the following field redefinition

τµ
A = c−1Eµ

A , eµ
A′ = Eµ

A′ , bµν = Bµν + εAB Eµ
AEν

B , φ = Φ− log c ,

ψµ± = c∓1/2Π±Ψµ , λ± = c∓1/2Π±λ , (2.6)

where we have split the Lorentz index Â into a longitudinal index A = 0, 1 and a transversal
index A′ = 2, · · · , 9. Note that the redefinition of the spinor fields involves the ‘worldsheet
chirality’ projection operators Π±, that are defined in (A.11) [35]. We refer to appendix A.2
for various properties that are obeyed by worldsheet chirality projected spinors and that
are used throughout this paper. For the bosonic fields, the above redefinition coincides
with the one used in [6] to derive the NR limit of NS-NS gravity.

As will be seen in the next sections, the fields τµA, eµA
′ , bµν , φ, ψµ± and λ± correspond,

after taking the limit c → ∞, to the fields of NR ten-dimensional minimal supergravity.
As explained in [6], in order to calculate the transformation rules of these fields in the NR
theory, it is important that the field redefinition (2.6) is invertible. This is the case and
the inverse of (2.6) is given by8

Eµ
A = c τµ

A , Eµ
A′ = eµ

A′ , Bµν = −c2 εAB τµ
Aτν

B + bµν , Φ = φ+ log c ,

Ψµ = c1/2ψµ+ + c−1/2ψµ− , λ = c1/2λ+ + c−1/2λ− , (2.7)

where it is understood that ψµ± and λ± are worldsheet chirality projected spinors (i.e.,
obey ψµ± = Π±ψµ± and λ± = Π±λ±). It is also useful to introduce objects τAµ and eA′µ

as the following (invertible) redefinitions of components of the inverse Vielbein EÂ
µ:

τA
µ = cEA

µ , eA′
µ = EA′

µ . (2.8)

The τµA, eµA
′ , τAµ, eA′µ then satisfy the following ‘projective invertibility’ relations:

τB
µτµ

A = δB
A , eB′

µeµ
A′ = δB′

A′ , τA
µeµ

A′ = 0 ,

eA′
µτµ

A = 0 , τµ
AτA

ν + eµ
A′eA′

ν = δνµ . (2.9)

To set the stage for our derivation of the NR limit of the action and equations of motion
of ten-dimensional N = 1 supergravity, we will end this section by applying the above field

8Note that the field mµ
A that occurred in [4, 5] has disappeared. One could keep it but then the

redefinition (2.7) would not be invertible. As shown in [6], this leads to the occurrence of Stückelberg
symmetries which just states that we have introduced too many fields in the expansion. Comparing with
the expansion for particles, we see that in many ways the Kalb-Ramond 2-form field bµν has taken over the
role of the central charge gauge field mµ, see [6, 7]. Both fields contain the Newton potential but to couple
this Newton potential to a string one must embed it in a 2-form bµν and not a 1-form mµ. Similarly, we
expect that one cannot add further subleading terms to the redefinition (2.7) containing new fields. Such
terms would violate the invertibility of the redefinition or, equivalently, introduce unwanted Stückelberg
symmetries in the final result that can be gauge-fixed.
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redefinition (2.6), (2.7) to the transformation rules (2.4). To do this, we introduce an
analogous invertible redefinition of the parameters ΛÂB̂ =

(
ΛAB,ΛAA′ ,ΛA′B′

)
, Θµ and ε

of local Lorentz transformations, the KR one-form symmetry and supersymmetry:

λA
′B′ = ΛA′B′ , λAA

′ = cΛAA′ , λM ε
AB = ΛAB , θµ = Θµ

ε± = c∓1/2Π±ε ⇔ ε = c1/2ε+ + c−1/2ε− (with Π±ε± = ε±) . (2.10)

After taking the c → ∞ limit, λM will correspond to the parameter of longitudinal
Lorentz transformations, λAA′ to the parameter of Galilean boosts and λA

′B′ to the pa-
rameter of transversal rotations, while the parameters ε± will be those of non-relativistic
supersymmetry.

Using the redefinitions (2.6), (2.7) and (2.10), one can easily find how τµ
A, eµA

′ , bµν ,
φ, ψµ± and λ± transform under the symmetries with parameters λM , λAA′ , λA′B′ , θ and
ε±. Considering first the transformation rules under the bosonic symmetries, one finds

δτµ
A = λM ε

A
Bτµ

B + 1
c2 λ

A
A′eµ

A′ , δeµ
A′ = λA

′
B′eµ

B′ − λAA
′
τµ
A , (2.11a)

δbµν = 2 ∂[µθν] − 2 εABλAA′τ[µ
B eν]

A′ , δφ = 0 . (2.11b)

for the bosonic fields and

δψµ+ = 1
4
(
λA
′B′ΓA′B′ − 2λM

)
ψµ+ + 1

2 c2 λ
AA′ΓAA′ψµ− , (2.12a)

δψµ− = 1
4
(
λA
′B′ΓA′B′ + 2λM

)
ψµ− + 1

2 λ
AA′ΓAA′ψµ+ , (2.12b)

δλ+ = 1
4
(
λA
′B′ΓA′B′ − 2λM

)
λ+ + 1

2 c2 λ
AA′ΓAA′λ− , (2.12c)

δλ− = 1
4
(
λA
′B′ΓA′B′ + 2λM

)
λ− + 1

2 λ
AA′ΓAA′λ+ , (2.12d)

for the fermionic fields. Note that for both sets of transformation rules (2.11), (2.12), the
limit c→∞ is well-defined.

One can similarly find the transformation rules under supersymmetry (with parameters
ε±). For the bosonic fields τµA, eµA

′ , bµν , φ, one finds, upon using that certain bilinears
with spinors of definite worldsheet chirality are identically zero (see e.g. (A.15)), that

δτµ
A = ε̄+ΓAψµ+ + 1

c2 ε̄−ΓAψµ− , (2.13a)

δeµ
A′ = ε̄+ΓA′ψµ− + ε̄−ΓA′ψµ+ , (2.13b)

δφ = 1
2(ε̄+λ− + ε̄−λ+) , (2.13c)

δbµν = 4 τ[µ
Aε̄−ΓAψν]− + 2

(
e[µ

A′ ε̄+ΓA′ψν]− + e[µ
A′ ε̄−ΓA′ψν]+

)
. (2.13d)

As for (2.11) and (2.12), the c→∞ limit of these transformations is regular. The derivation
of the ε± supersymmetry transformation rules of ψµ± and λ± is straightforward, but leads
to more lengthy expressions that involve powers of c2, c0 and c−2. We collect terms with
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like powers of c as follows:

δψµ± = c2 δ(2)ψµ± + c0 δ(0)ψµ± + c−2 δ(−2)ψµ± , (2.14a)

δλ± = c2 δ(2)λ± + c0 δ(0)λ± + c−2 δ(−2)λ± . (2.14b)

Explicitly, the terms that appear at order c2 are given by

δ(2)ψµ+ = 1
2 τµ

+τA
′B′−ΓA′B′ε+ , (2.15a)

δ(2)ψµ− = 1
2 τµ

+
(
τA
′B′−ΓA′B′ε− − τA

′−−Γ−A′ε+
)
, (2.15b)

δ(2)λ+ = 0 , (2.15c)

δ(2)λ− = −1
2τ

A′B′−ΓA′B′−ε+ , (2.15d)

where τµνA = ∂[µτν]
A and we refer to appendix A.1 for details on how curved µ, ν indices

are converted into flat longitudinal and transversal ones and on how flat light-cone indices
(A, B = +,−) are used to denote longitudinal directions (as an alternative to A, B = 0, 1).

The terms in (2.14) at order c0 can be written in terms of composite fields bµ, ωµ, ωµAA
′ ,

ωµ
A′B′ that depend on the bosonic fields τµA, eµA

′ , bµν and φ. Their explicit expressions
can be found in appendix B. These composite fields correspond to the dependent dilatation
and spin connections of the Torsional SNC (TSNC) geometry, that was introduced in [6]. In
particular, after taking the NR c→∞ limit, ωµ, ωµAA

′ and ωµA
′B′ will correspond to spin

connections for longitudinal SO(1, 1) Lorentz transformations, Galilean boosts and SO(8)
transversal rotations, while bµ will act as a gauge field for an emerging local dilatation
symmetry. In terms of these dependent gauge fields, we then find that

δ(0)ψµ+ = δ+ψµ+ + δ−ψµ− + 1
2 τµ

+Γ+η− , (2.16a)

δ(0)ψµ− = δ+ψµ− + δ−ψµ− + τµ
+ ρ− , (2.16b)

δ(0)λ+ = δ+λ+ + δ−λ+ , (2.16c)

δ(0)λ− = δ+λ− + δ−λ− + η− , (2.16d)

where

η− =
(
∂+φΓ+ − 1

4 h
−A′B′Γ−A′B′

)
ε+ + 2 bA′ΓA′ε− (+ terms quadratic in ψµ±, λ±) ,

(2.17a)

ρ− =
(
−2 ∂+φ+ 1

4 h
−A′B′ΓA′B′

)
ε− + 1

2 W+
−A′Γ−A′ε+ (+ terms quadratic in ψµ±, λ±) .

(2.17b)

– 9 –



J
H
E
P
1
2
(
2
0
2
1
)
1
2
3

and

δ+ψµ+ =Dµε+−
1
8 eµC

′hC
′A′B′ΓA′B′ε+ (+ terms quadratic in ψµ±, λ±) ,

(2.18a)

δ−ψµ+ =
(
eµB′τ

B′A′++τµ−τA
′++

)
ΓA′+ε− (+ terms quadratic in ψµ±, λ±) ,

(2.18b)

δ+ψµ−=−1
2 ωµ

−A′Γ−A′ε+ (+ terms quadratic in ψµ±, λ±) ,

(2.18c)

δ−ψµ−=Dµε−−
1
8 eµC

′hC
′A′B′ΓA′B′ε− (+ terms quadratic in ψµ±, λ±) ,

(2.18d)

δ+λ+ =
(
∂A′φΓA′−bA′ ΓA

′− 1
12 h

A′B′C′ΓA′B′C′
)
ε+ (+ terms quadratic in ψµ±, λ±) ,

(2.18e)

δ−λ+ = 1
2 τ

A′B′+ΓA′B′+ε− (+ terms quadratic in ψµ±, λ±) ,

(2.18f)

δ+λ−= 0 (+ terms quadratic in ψµ±, λ±) ,
(2.18g)

δ−λ−=
(
∂A′φΓA′−bA′ ΓA

′− 1
12 h

A′B′C′ΓA′B′C′
)
ε− (+ terms quadratic in ψµ±, λ±) ,

(2.18h)

where hµνρ = 3∂[µbνρ], Dµε± is given by

Dµε± =
(
∂µ −

1
4 ωµ

A′B′ΓA′B′ ±
1
2 ωµ ∓

1
2 bµ

)
ε± , (2.19)

and W+
−A′ in (2.17) refers to components of the spin connections that are not fully deter-

mined in TSNC geometry, but that do not play a role in the rest of this paper (see also
appendix B and [6]). Note that the redefined supersymmetry transformation rules (2.14)
also contain non-trivial terms at order c−2. We will not give the explicit expressions for
δ(−2)ψµ±, δ(−2)λ± here, as we will not need them in what follows.

Let us finish this section, by commenting on the appearance of terms of order c2 in
the supersymmetry transformation rules of the fermionic fields ψµ± and λ±. Since we
wish to identify τµA, eµA

′ , bµν , φ, ψµ± and λ± as fields in the NR theory that is obtained
after taking c → ∞, one would hope that the redefinitions (2.6), (2.7) and (2.10) lead to
transformation rules for these fields that take the form of an expansion in powers of c−2

that starts at order c0. That way, the c → ∞ limit of these transformation rules is well-
defined and can be identified with the transformation rules of the NR theory. Clearly, the
terms of order c2 in the supersymmetry transformation rules of ψµ± and λ± are potentially
problematic in this regard. In order to explain how to deal with these ‘divergent’ terms
in the next section, let us make the following useful observations here. One can isolate
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the divergent terms of order c2 in the supersymmetry transformation rules of ψµ±, λ± by
performing the following field redefinition:

ψ̃µ+ ≡ ψµ+ −
1
2 τµ

+Γ+λ− , ψ̃µ− ≡ ψµ− − τµ+ ψ̃− with ψ̃− ≡ τ+
µψµ− . (2.20)

Using (2.15), one can then easily see that the parts of the supersymmetry transformation
rules of ψ̃µ±, λ+, ψ̃− and λ− at order c2 are given by:

δ(2)ψ̃µ+ = 0 , δ(2)ψ̃µ− = 0 , δ(2)λ+ = 0 ,

δ(2)ψ̃− = 1
2
(
τA
′B′−ΓA′B′ε− − τA

′−−Γ−A′ε+
)
,

δ(2)λ− = −1
2 τ

A′B′−ΓA′B′−ε+ . (2.21)

The supersymmetry rules of ψ̃µ± and λ+ thus do not contain any divergent terms at
order c2 and their c → ∞ limit is well-defined. Note furthermore that the parts of the
supersymmetry transformations of ψ̃µ± at order c0 then also no longer depend on the
quantities η−, ρ−, defined in (2.17). We will see the significance of these observations in
what follows.

3 The NR limit of the action

In the previous section, we reviewed the action and transformation rules of relativistic
D = 10, N = 1 supergravity, introduced a field redefinition that involves a parameter c
and expressed all transformation rules for the redefined fields as expansions in powers of
c−2. Starting from this section, we wish to discuss the NR limit c→∞, that should lead to
NR minimal ten-dimensional supergravity, similar to how NR NS-NS gravity was obtained
in [6], by performing the bosonic part of the field redefinition (2.6), (2.7) and taking the
c→∞ limit. In this section, we will apply this limit to the action of ten-dimensional N = 1
supergravity, while the limit of its equations of motion will be discussed in the next section.

Ordinarily, the NR limit of quantities (such as an action or equations of motion) is per-
formed by applying a c-dependent field redefinition to the quantities under consideration,
expanding the result in powers of c−2 and retaining only the terms at leading order. In case
the transformation rules of the redefined fields assume the form of expansions in powers of
c−2 that start at order c0, this procedure guarantees that one ends up with quantities that
are invariant or covariant under the NR transformation rules that are given by the c→∞
limit of those of the redefined fields.

We wish to apply a similar limit procedure to the action (2.1) of D = 10, N = 1
supergravity. In particular, we still wish to define the NR limit of (2.1) as the leading
order term in the c−2-expansion of (2.1), after performing the field redefinition (2.6), (2.7).
Similarly, we still want to identify the transformation rules of the NR theory as the part at
order c0 in the c−2-expansions of the relativistic transformation rules (2.11), (2.12), (2.13)
and (2.14) for the redefined fields. Note, however, that presently the c−2-expansion of
some of the supersymmetry transformation rules of the redefined fermionic fields starts at
order c2, instead of at order c0. As a consequence, the interpretation of the c0 part of
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these transformation rules as NR ones is no longer straightforward. Moreover, invariance
or covariance under these NR transformation rules of the leading order of an expansion
of a quantity in powers of c−2 is also no longer guaranteed. Remarkably, even though
some transformation rules diverge in the c → ∞ limit, it turns out that the c → ∞ limit
can be taken in a smooth way upon imposition of a constraint. Importantly, after taking
the limit, the resulting NR action exhibits invariance under three emerging symmetries:
one dilatation symmetry and two fermionic shift symmetries. The emerging dilatation
symmetry was already encountered when taking the NR limit of NS-NS gravity [6]. In this
paper, we find that it extends to a symmetry of the NR limit of the action of D = 10, N = 1
supergravity and that it is accompanied by two fermionic symmetries as supersymmetric
counterparts.

The emergence of the two fermionic shift symmetries in the NR limit of (2.1) can be
understood on general grounds. In order to see this, let us first apply the redefinition (2.7)
to the action (2.1) and expand the result in powers of c−2. This gives a sum of three terms,
at orders c0, c−2 and c−4 respectively:

S = S(0) + c−2S(−2) + c−4S(−4) , (3.1)

where each of the S(i) now depends on the fields τµA, eµA
′ , bµν , φ, ψµ± and λ±. It is

important to note that it is non-trivial that the expansion (3.1) of S starts at order c0.
Indeed, examining all terms of (2.1) separately, one finds that some of them can contribute
terms at order c2 in the expansion (3.1), so that there can in principle be a c2S(2) term
on the right-hand-side of (3.1). It turns out however that all such contributions cancel
identically. For the bosonic part of the action (2.1), this relies on an order c2 contribution
from the Ricci scalar cancelling against a similar contribution from the kinetic term of the
KR field, as was explained in [6]. One can check that this cancellation of order c2 terms
extends to the full D = 10, N = 1 supergravity action (2.1), so that

S(2) = 0 (3.2)

identically.
Note that the c→∞ limit of S is then well-defined and gives S(0), which we identify as

the action that results from taking the NR limit. Let us now examine how S(0) transforms
under the NR symmetry transformation rules, that correspond to the parts at order c0 of
the relativistic transformation rules (2.11), (2.12), (2.13) and (2.14), after performing the
redefinition (2.6), (2.7). In order to do this, we will not yet take the c→∞ limit, but rather
require that the full relativistic action S, written as the c−2-expansion (3.1), is invariant
under the full relativistic transformation rules (2.11), (2.12), (2.13) and (2.14). Expanding
the symmetry variation of S in powers of c−2 and requiring that terms at different order in
this expansion vanish separately, then indicates how S(0), S(−2) and S(−4) transform into
each other under the different c−2 orders of the relativistic transformation rules. Let us
do this first for the bosonic symmetries (2.11), (2.12). The infinitesimal action δbos of a
generic bosonic symmetry leads to two variations δ(0)

bos and δ(−2)
bos , according to

δbosF = δ
(0)
bosF + c−2δ

(−2)
bos F , (3.3)
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0 S(0) S(−2) S(−4) 0

δ
(−2)
bos

δ
(0)
bos

δ
(−2)
bos

δ
(0)
bos

δ
(−2)
bos

δ
(0)
bos

δ
(−2)
bos

Figure 1. Schematic representation of the symmetry transformation of the different terms in (3.1)
under generic Lorentzian bosonic symmetries δbos. We see that only the leading order is invariant
under Lorentzian boosts by itself. This is equivalent to the statement of manifest Galilei invariance
of SNR = limc→∞ S.

where F is any of the fields τµA, eµA
′ , bµν , φ, ψµ±, λ±. As a consequence

δbosS = δ
(0)
bosS

(0) + c−2
(
δ

(0)
bosS

(−2) + δ
(−2)
bos S

(0)
)

+O
(
c−4

)
. (3.4)

The requirement that δbosS = 0, then imposes that every c−2 order in (3.4) is separately
zero. One thus in particular finds that

δ
(0)
bosS

(0) = 0 , (3.5)

or in other words, that the NR action S(0) is as expected invariant under the NR bosonic
symmetries, whose transformation rules are given by δ

(0)
bos. See figure 1 for a schematic

representation of the above statements.
We can apply a similar reasoning to the supersymmetries (2.13), (2.14). In this case,

the supersymmetry transformations can contain terms at order c2, so that the infinitesimal
action δQ of a generic supersymmetry Q leads to three variations δ(2)

Q , δ(0)
Q and δ(−2)

Q

δQF = c2δ
(2)
Q F + δ

(0)
Q F + c−2δ

(−2)
Q F , (3.6)

where again F is any of the fields τµA, eµA
′ , bµν , φ, ψµ±, λ±. The supersymmetry variation

δQS of the action can then be expanded as

δQS = c2δ
(2)
Q S(0) + c0

(
δ

(0)
Q S(0) + δ

(2)
Q S(−2)

)
+O

(
c−2

)
. (3.7)

Requiring invariance of S again imposes that every order of c−2 in (3.7) is separately zero.
This in particular leads to the following two requirements

δ
(2)
Q S(0) = 0 and δ

(0)
Q S(0) = −δ(2)

Q S(−2) . (3.8)

From (2.21), we see that only δ(2)
Q ψ̃− and δ(2)

Q λ− are non-zero and that these two variations
moreover have the effect of shifting the two fields ψ̃− and λ− independently. The only way,
in which the variation δ(2)

Q S(0) can vanish, is then if S(0) does not depend on ψ̃− and λ−.
We can alternatively state this in terms of the fields ψµ± and λ±. The requirement that
δ

(2)
Q S(0) vanishes then boils down to saying that S(0) is invariant under two fermionic shift
symmetries, that we call the S- and T -symmetries and whose non-trivial action on ψµ±
and λ± is as follows:

δSψµ+ = 1
2τµ

+Γ+η− , δSλ− = η− ,

δTψµ− = τµ
+ρ− , (3.9)
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0 S(0) S(−2) S(−4) 0

δ
(−2)
Q

δ
(0)
Q

δ
(−2)
Q

δ
(2)
Q

δ
(0)
Q

δ
(−2)
Q

δ
(2)
Q

δ
(0)
Q

δ
(−2)
Q

δ
(2)
Q

δ
(2)
Q

Figure 2. Schematic representation of (3.7). The diagram shows that different orders in the
expansion (3.1) mix under supersymmetry δQ, according to the rules: the sum of all arrows ending
at a certain order S(i) vanishes. This gives rise to (3.8).

where η− and ρ− are the parameters of the S- and T -symmetry respectively. As mentioned
above and as can be verified in the explicit expression for S(0) given below, the NR action
S(0) is also invariant under an emerging dilatation symmetry that has the following non-
trivial action on the fields in S(0):

δDφ = λD , δDτµ
A = λDτµ

A ,

δDψµ± = ±1
2λDψµ± , δDλ± = ±1

2λDλ± . (3.10)

Note that the dilatation weights of the NR fields are the same as the exponents of the
powers of c in the redefinition (2.7) of the relativistic fields in terms of the NR ones (for
the dilaton, this rule holds when considering, e.g., exp(Φ) = c exp(φ)).

We have seen above that general considerations allow us to conclude that the non-
relativistic action S(0) is invariant under the fermionic shift symmetries (3.9). One might
wonder whether a similar, general argument exists for the bosonic dilatation-shift symmetry
of the NR action S(0). As we will show now the answer is yes. However, the argument is
slightly more subtle than the one for the fermionic Stückelberg shift symmetries. Instead
of expanding the supersymmetry invariance of the relativistic action as in (3.7) we have to
consider the commutator of two supersymmetries, acting on the relativistic action — which
of course gives zero [δQ(ε1), δQ(ε2)]S = 0 — and extract information about the NR action
S(0) from the different orders in the expansion. Moreover, we use some information about
the algebra, in particular the commutator between S-symmetry and supersymmetry (D.5b),
from which we conclude that[

δ
(2)
Q (ε1) , δ(0)

Q (ε2)
]

= δD
(
λ′D
)

+ · · · , (3.11)

where the ellipses denote terms involving symmetries of S(0) that do not play a role in the
present discussion, see appendix D for more details. The parameters on the right-hand-side
are dependent expressions λ′D = −1/4 τA′B′− ε̄2+ΓA′B′−ε1−. Furthermore we can use the
fact that the fermionic Stückelberg symmetries commute, see appendix D, to show that
[δ(2)
Q (ε1), δ(2)

Q (ε2)] = 0. Taking all of the above into account one can then show that the
terms in [δQ(ε1), δQ(ε2)]S = 0 at order O(c2) vanish if and only if

δDS
(0) = 0 . (3.12)
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This shows that the non-relativistic action is indeed dilatation invariant as a consequence
of the divergence structure in the supersymmetry rules and the particular form of the
commutator between supersymmetry and fermionic shift symmetries.

Since we wish to identify δ(0)
Q as the NR supersymmetry transformation rules, the sec-

ond requirement of (3.8) tells us that the NR action S(0) is not necessarily invariant under
these NR supersymmetries, but is rather given by the variation δ(2)

Q S(−2) of the c−2 order of
the expansion of (2.1) under the leading c2 order of the relativistic supersymmetry trans-
formation rules. From (2.15) we see however that all terms in δ

(2)
Q S(−2) are proportional

to τA′B′− or τA′+−. We thus find that the variation δ(0)
Q S(0) of the NR action S(0) under

the NR supersymmetry transformation rules gives zero when the following constraints on
the torsion τµνA are imposed

τA′B′
− = 0 , τA′+

− = 0 . (3.13)

These constraints are invariant under the dilatation symmetry (3.10), and we will refer to
SNC geometry, in which these constraints are imposed, as ‘self-dual Dilatation invariant
SNC geometry’ or self-dual DSNC geometry for short. The constraints (3.13) are not only
invariant under dilatations; they are invariant under all non-relativistic transformation
rules, and in particular, their variation under NR supersymmetry vanishes identically.
This relies on the fact that the self-dual longitudinal Vielbein τµ

− is a singlet9 under
NR supersymmetry, i.e., δ(0)

Q τµ
− = 0, which follows from the chirality properties of the

non-relativistic spinors (see (A.19)), in particular, Γ−ψµ+ = 0. One can thus impose the
constraints (3.13) by hand in the theory and still maintain supersymmetry without having
to impose extra constraints.

In fact, the self-dual DSNC constraints are a necessary requirement for the consistency
of the theory. Above, we have already seen glimpses of that when discussing the super-
symmetry of the action. We will see more (and stronger) evidence for this crucial fact
when discussing the consistency of the non-relativistic equations of motion in section 4.2.
Here, we will consider parts of the supersymmetry algebra and show that it closes if and
only if (3.13) are imposed. In other words, we show that the self-dual DSNC constraints
are a necessary requirement for the existence of a supergravity multiplet. More details on
the algebra are given in appendix D. In the following, we will, unless mentioned otherwise,
slightly abuse notation and denote by δ

(0)
Q the NR supersymmetry transformation rules,

given in the c → ∞ limit of (2.13) and in (2.16), not including the parts that involve the
parameters (2.17). The latter correspond to field-dependent S- and T -transformations and
their omission will not change our arguments. For all practical purposes, this is equivalent
to indentifying (2.18) as the non-relativistic supersymmetry rules for the fermions. The
commutator of two such supersymmetries on τµ+ then gives:[

δ
(0)
Q (η+) , δ(0)

Q (ε+)
]
τµ

+ = ξν(++)Dντµ
+ +

(
∂µξ

ν
(++)

)
τν

+ + ξν(++)Rµν

(
H+

)
=
(
L(++) − δM

(
ξν(++)ων

)
− δD

(
ξν(++)bν

))
τµ

+ , (3.14)

9For a general account on supersymmetry singlets and the conditions for such fields to exist, see [40].
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where ξµ(++) = ε̄+Γ+η+ τ+
µ, L(++) denotes the usual Lie derivative along ξµ(++), and

Rµν(HA) denotes the fully covariant torsion 2-form (see (B.2)). To show closure we have
used the conventional constraints τ+

ν Rµν(H+) = 0 — similar to how one uses Rµν(P Â) = 0
in the analogous relativistic calculation. Let us now turn to the closure on the other lon-
gitudinal Vielbein τµ

−, which is a singlet under supersymmetry δ(0)
Q τµ

− = 0. Hence it is
clear that [δ(0)

Q (η+), δ(0)
Q (ε+)]τµ− = 0, and consequently we have to require that

(
L(++) − δM

(
ξν(++)ων

)
− δD

(
ξν(++)bν

))
τµ
− = −ξν(++) Rµν

(
H−

)
= 0 . (3.15)

Using the conventional constraints (B.2) it is not hard to see that this is equivalent to
setting τA′−− = 0, and by requiring consistency with Galilean boosts τA′B′− = 0. This
proves that the self-dual DSNC constraints are a necessary requirement for closure of the
algebra.

We can summarize the above discussion as follows. The NR limit S(0) of the ten-
dimensional N = 1 supergravity action is obtained as the leading order term in the c−2-
expansion of (2.1), after performing the field redefinition (2.6). This NR action S(0) is
invariant under two emerging fermionic S- and T -shift symmetries (3.9), an emerging
dilatation symmetry (3.10), as well as under the c→∞ limit of the bosonic transformation
rules (2.11), (2.12). The NR supersymmetry transformation rules are identified as the
order c0 part in the relativistic transformation rules (2.14). The action S(0) is then only
invariant under NR supersymmetry, if one assumes that the self-dual DSNC geometry
constraints (3.13) hold.10

Let us finish this section by giving the explicit expression for the NR action SNR = S(0).
It is useful to split SNR into a part SB that is purely bosonic, a part Sψψ that is quadratic in
the gravitini ψµ±, a part Sλλ that is quadratic in the dilatini λ± and a remaining quadratic
fermion part Sλψ that contains both a gravitino and a dilatino:

SNR = SB + Sλλ + Sλψ + Sψψ + quartic fermion terms . (3.16)

As mentioned above, we will ignore all quartic fermion terms and only require supersym-
metry up to cubic fermion terms. The bosonic part of the action has been given in [6]
and reads:

SB = 1
2κ2

∫
d10x e e−2φ

(
R(J) + 4 ∂A′φ∂A

′
φ− 1

12 hA
′B′C′h

A′B′C′

− 4 eA′µ(∂µbA
′ − ωµA

′B′bB′ − ωµAB
′
τA
′
B′A)

− 4 bA′bA
′ − 4 τA′{AB}τA

′{AB}
)
, (3.17a)

where e = det(τµA, eµA
′) and R(J) and other geometric quantities are defined in ap-

pendix B, see in particular (B.7). We refer to [6] for a detailed explanation of the notation.

10Note that one needs to treat S(0) as a pseudo-action, when checking its invariance under NR super-
symmetry, i.e., one should only impose the constraints (3.13) after performing a general variation.
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The part of the action that is quadratic in the dilatini reads

Sλλ = 1
2κ2

∫
d10x e e−2φ

(
2 λ̄±ΓA′DA′λ∓ + 2λ̄+ΓADAλ+

− 1
6hA

′B′C′

(
λ̄+ΓA′B′C′λ−

)
+ τB′C′A

(
λ̄−ΓB′C′Aλ−

))
,

(3.17b)

where the covariant derivatives are covariant with respect to Galilean symmetries and
dilatations, see (2.12) and (B.3). The notation λ̄±Γλ∓ is a shorthand for λ̄+Γλ−+ λ̄−Γλ+,
and will be used also below. The off-diagonal terms read

Sλψ = 1
2κ2

∫
d10x e e−2φ

(
− 4 λ̄±ΓA′B′eA′µeB′νD[µψν]∓ − 8 λ̄+ΓAB′τAµeB′νD[µψν]+

− 4 λ̄±ΓA′B′ψA′∓DB′φ− 4 λ̄+ΓAB′ψA+DB′φ

+ 1
6 hA

′B′C′

(
λ̄±ΓA′B′C′D′ψD′∓

)
+ 1

2hA
′B′C′

(
λ̄+ΓA′B′C′DψD+

)
−
(
ηDA + εDA

)
τB′C′D

(
λ̄−ΓB′C′ψA+ − λ̄+ΓB′C′ψA−

)
+ 2 τB′C′Aλ̄±ΓB′C′ψA∓ + 2 τC′{AB}λ̄+ΓC′AψB+

− 2τB′C′Aλ̄−ΓAB′C′D′ψD′−
)
. (3.17c)

The pure gravitino terms are given by

Sψψ = 1
2κ2

∫
d10xee−2φ

(
−2 ψ̄A+ΓAB′C′eB′µeC′νD[µψν]+−4 ψ̄A′+ΓA′B′CeB′µτCνD[µψν]+

−2 ψ̄A′±ΓA′B′C′eB′µeC′νD[µψν]∓+ 1
2 h

A′B′C′
(
ψ̄A′±ΓB′ψC′∓

)
− 1

6hA
′B′C′

(
ψ̄D′+ΓA′B′C′D′EψE++ 1

2 ψ̄D
′±ΓA′B′C′D′E′ψE′∓

)
+

−4
(
ψ̄A′±ΓA′ψB′±+ ψ̄A+ΓAψB′+

)
DB′φ

−2
(
ηAD+εAD

)
τB
′C′

D ψ̄C′±ΓB′ψA∓+2τB′C′A
(
ψ̄B′−ΓAψC′−

)
−2(ηBC−εBC)τC′{AB}ψ̄C+ΓAψC′+
+(ηAB+εAB)τB′C′A ψ̄D′±ΓBB′C′D′EψE∓

+τB′C′A ψ̄D′−ΓAΓB′C′D′E′ψE′−
)
. (3.17d)

Finally, the NR supersymmetry transformation rules that leave SNR invariant (up to cubic
fermion terms), upon imposition of the constraints (3.13), are found in (2.16) and (2.18),
as well as in the c → ∞ limit of (2.13). Note that we can leave out the parts in (2.16)
that involve η− and ρ− (whose explicit expressions are given in (2.17)) from these NR
supersymmetry transformation rules as these take the form of S- and T -symmetries.
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4 The NR limit of the equations of motion

In the previous section, we discussed the NR limit of the action of ten-dimensional N = 1
supergravity. We saw that the resulting NR action is only invariant under NR supersym-
metry after the (supersymmetric) self-dual DSNC geometry constraints (3.13) have been
imposed by hand. Nevertheless, one can derive equations of motion from it by treating
it as a pseudo-action, i.e., by applying the usual unconstrained variational principle and
imposing the constraints (3.13) only after variation. In this section, we will examine these
equations of motion in more detail. We will see that they can be derived as NR limits of
a subset of the equations of motion of relativistic D = 10, N = 1 supergravity. As we will
explain, this subset is a proper one due to the fact that the NR action is invariant under
the emerging S-, T - and dilatation symmetries (3.9), (3.10). The NR limit of the remaining
relativistic equations of motion leads to extra ‘missing equations of motion’. These missing
equations of motion consist of two fermionic equations, as well as a bosonic one that can
be identified as a supersymmetric generalization of the Poisson equation for the Newton
potential of NR gravity. Due to the fact that the NR action is only invariant under NR
supersymmetry up to the self-dual DSNC geometry constraints, the equations of motion
derived from it do not form a closed set under NR supersymmetry but can also transform
to the missing equations of motion. The full set of missing equations of motion and equa-
tions of motion derived from the NR action does, however, form a supersymmetric set only
if the self-dual DSNC geometry constraints (3.13) are imposed by hand.

4.1 Equations of motion from the NR action and missing NR equations
of motion

Viewing the NR action SNR, given in (3.16), (3.17) as a pseudo-action, we can derive
equations of motion for τµA, eµA

′ , φ, bµν , λ± and ψµ±, by computing Euler-Lagrange
derivatives, denoted here by 〈τ〉Aµ, 〈e〉A′µ, 〈φ〉, 〈b〉µν , 〈λ±〉 and 〈ψ±〉µ respectively, with
respect to these fields. Explicitly, we define these functional derivatives as the result of
performing an unconstrained variation of SNR as follows:

δ SNR = 1
2κ2

∫
d10x e e−2φ

{
〈τ〉Aµ δτµA + 〈e〉A′µ δeµA

′ − 8 〈φ〉 δφ+ 1
2 〈b〉

µνδbµν

+ 4 δλ̄+ 〈λ−〉+ 4 δψ̄µ+〈ψ−〉µ + 4 δλ̄− 〈λ+〉+ 4 δψ̄µ−〈ψ+〉µ
}
,

(4.1)

where the coefficients of the different terms have been chosen for later convenience. The
equations of motion derived from SNR are then given by setting 〈τ〉Aµ, 〈e〉A′µ, 〈φ〉, 〈b〉µν ,
〈λ±〉 and 〈ψ±〉µ to zero and supplementing the resulting set of equations by hand with the
self-dual DSNC geometry constraints (3.13).

As can be expected, the equations thus found can also be obtained as a NR limit of
the equations of motion of relativistic 10D, N = 1 supergravity. To clarify this, we denote
convenient combinations of the Euler-Lagrange derivatives with respect to EµÂ, Bµν , Φ, λ
and Ψµ of the relativistic action (2.1) by [G]Â

µ, [B]µν , [Φ], [λ] and [Ψ]µ respectively. We
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define these combinations via the following variation:

δS = 1
2κ2

∫
d10xE e−2Φ

{
− 2 [G]Â

µδEµ
Â + 1

2 [B]µνδBµν − 8[Φ]δΦ

+ 4 δλ̄ [λ] + 4 δΨ̄µ
(
[Ψ]µ + Γµ [λ]

)}
. (4.2)

Up to the order in fermions we are working in, [G]Â
µ, [B]µν , [Φ], [λ] and [Ψ]µ are explicitly

given by

[G]Âµ≡RÂµ+2∇Â∂µΦ− 1
4HÂρσHµ

ρσ−2EµÂ [Φ] (+ quadratic fermion terms) , (4.3a)

[B]µν ≡∇ρHρµν−2(∂ρΦ)Hρµν (+ quadratic fermion terms) , (4.3b)

[Φ]≡∇µ∂µΦ+ 1
4R−∂

µΦ∂µΦ− 1
48HµνρH

µνρ (+ quadratic fermion terms) , (4.3c)

[λ]≡ /Dλ−ΓµνDµΨν− /∂Φλ−Γµ/∂ΦΨµ−
1
24H

µνρ(ΓσµνρΨσ+Γµνρλ
)
, (4.3d)

[Ψ]µ≡ 2Γν
(
D[µΨν]−

1
8Hρσ[µΓρσΨν]

)
−
(
Dµ−

1
8HµνρΓ

νρ)λ
+ /∂ΦΨµ−

1
12ΓÂB̂ĈΨµHÂB̂Ĉ , (4.3e)

where (as in the relativistic action (2.1)) the Ricci tensor Rµν and all covariant derivatives
are constructed from the relativistic Levi-Civita (spin) connection. For brevity, we have
not explicitly given the quadratic fermion terms in [G]Â

µ, [B]µν and [Φ].
The equations of motion, obtained by putting the Euler-Lagrange derivatives 〈τ〉Aµ,

〈e〉A′µ, 〈φ〉, 〈b〉µν , 〈λ±〉 and 〈ψ±〉µ to zero, can then be obtained from a NR limit, in the
sense that they correspond to the leading order terms in a c−2-expansion of particular
combinations of their relativistic counterparts [G]Â

µ, [B]µν , [Φ], [λ] and [Ψ]µ. To quickly
find out which combinations of the relativistic Euler-Lagrange derivatives in this way lead
to the Euler-Lagrange derivatives for the NR fields, we note that we can use (2.6), (2.7)
to write

δEµ
A = c δτµ

A , δEµ
A′ = δeµ

A′ , δBµν = −2 c εABδτ[µ
AEν]

B + δbµν , δΦ = δφ ,

δλ̄ = c1/2δλ̄+ + c−1/2δλ̄− , δΨ̄µ = c1/2δψ̄µ+ + c−1/2δψ̄µ− . (4.4)

Using this in (4.2), we can rewrite the variation of the relativistic action S as follows

δS = 1
2κ2

∫
d10xE e−2Φ

{
c [E]A

µδτµ
A + [E]A′

µδeµ
A′ + 1

2 [B]µν δbµν − 8 [Φ] δφ

+ 4 c1/2 δλ̄+ Π− [λ] + 4 c1/2 δψ̄µ+ Π− ([Ψ]µ + Γµ [λ])

+ 4 c−1/2 δλ̄−Π+ [λ] + 4 c−1/2 δψ̄µ−Π+ ([Ψ]µ + Γµ [λ])
}
, (4.5)
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where we have introduced the notation11

[E]Aµ ≡ −2 [G]Aµ − εABEνB[B]µν , [E]A′µ ≡ −2 [G]A′µ . (4.6)

Note that in (4.5), the quantities that multiply δτµA, δeµA
′ , δbµν , δφ, δλ̄± and δψ̄µ± have

not yet been expanded in powers of c−2 and are thus still given in terms of the relativistic
fields EµÂ, Bµν , Φ, λ and Ψµ. Performing a c−2-expansion of these quantities in δS,
noting that the result should take the form δS = δSNR +O(c−2) (according to (3.1) with
S(0) = SNR) and comparing with (4.1), we see that

〈τ〉Aµ =
(
[E]Aµ

)(−1)
, 〈φ〉 =

(
[Φ]
)(0)

,

〈e〉A′µ =
(
[E]A′µ

)(0)
, 〈b〉µν =

(
[B]µν

)(0)
,

〈ψ−〉µ =
(
Π−([Ψ]µ + Γµ[λ])

)(−1/2)
, 〈λ−〉 =

(
Π−[λ])(−1/2) ,

〈ψ+〉µ =
(
Π+([Ψ]µ + Γµ[λ])

)(+1/2)
, 〈λ+〉 =

(
Π+[λ])(+1/2) , (4.7)

where here and in the following, the notation (X)(n) is used to denote all terms of order cn

in the expression obtained by expanding a relativistic quantity X in powers of c−2, after
performing the field redefinition (2.7). In particular, all quantities on the right-hand-side
of the equations in (4.7) refer to the leading order terms in these c−2-expansions.

The tensors 〈τ〉Aµ, 〈e〉A′µ, 〈φ〉, 〈b〉µν , 〈λ±〉 and 〈ψ±〉µ are not all independent, as there
exist various algebraic relations between them. The latter correspond to Noether identities
for those local symmetries of the NR action (3.16), under which none of the fundamental
fields τµA, eµA

′ , φ, bµν , λ± and ψµ± transform as a gauge field. For longitudinal Lorentz
transformations, transversal rotations and Galilean boosts, these Noether identities are
given by

εAB〈τ〉AB − 2λ̄+〈λ−〉+ 2λ̄−〈λ+〉 − 2ψ̄µ+〈ψ−〉µ + 2ψ̄µ−〈ψ+〉µ = 0 , (4.8a)
〈e〉[A′B′] − λ̄+ΓA′B′〈λ−〉 − λ̄−ΓA′B′〈λ+〉 − ψ̄µ+ΓA′B′〈ψ−〉µ − ψ̄µ−ΓA′B′〈ψ+〉µ = 0 , (4.8b)

〈e〉A′A + εA
B〈b〉BA′ + 2λ̄+ΓAA′〈λ+〉+ 2ψ̄µ+ΓAA′〈ψ+〉µ = 0 . (4.8c)

Note that these 45 Noether identities imply that the 45 components 〈τ〉[AB], 〈e〉[A′B′] and
〈e〉AA′ of the 100 Euler-Lagrange derivatives 〈τ〉Aµ and 〈e〉A′µ can be written in terms
of other Euler-Lagrange derivatives. We are thus left with 55 algebraically independent
components in 〈τ〉Aµ and 〈e〉A′µ, the same number of components that is contained in the
relativistic Einstein equations.

Naively, one would then say that the Euler-Lagrange derivatives 〈τ〉Aµ, 〈e〉A′µ, 〈φ〉,
〈b〉µν , 〈λ±〉 and 〈ψ±〉µ have as many algebraically independent components as their rela-
tivistic counterparts [G]µν , [B]µν , [Φ], [λ] and [Ψ]µ and that the NR action (3.16) thus leads
to as many equations of motion as there are relativistic ones. This counting is however
not correct as it does not yet take into account extra algebraic Noether identities that are

11The quantities [E]Aµ and [E]A′
µ then correspond to the Euler-Lagrange derivatives of the relativistic

action (2.1) with respect to EµA and EµA
′
, after viewing (2.1) as a functional of bµν = Bµν + εABEµ

AEν
B

(instead of as a functional of Bµν).
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associated to the emergent dilatation and S- and T -symmetries. In particular, the S- and
T -symmetries (3.9) lead to the following relations

〈λ+〉 −
1
2Γ+〈ψ−〉µτµ+ = 0 , τµ

+〈ψ+〉µ = 0 , (4.9)

while the dilatation symmetry (3.10) implies that

〈τ〉AµτµA − 8〈φ〉+ 2λ̄+〈λ−〉 − 2λ̄−〈λ+〉+ 2ψ̄µ+〈ψ−〉µ − 2ψ̄µ−〈ψ+〉µ = 0 . (4.10)

In what follows, it will be useful to simplify this identity, by using the Noether iden-
tity (4.8a) for SO(1, 1) longitudinal Lorentz transformations to eliminate the last four
terms. This gives

〈τ〉AµτµA + εAB〈τ〉AB − 8〈φ〉 = 0 ⇔ τµ
−〈τ〉−µ = 4〈φ〉 . (4.11)

From (4.9) and (4.11), we see that 〈ψ+〉+ is identically zero and that e.g. 〈τ〉−− and 〈λ+〉
are not independent.

In (4.7), we saw that the equations of motion, derived from the action (3.16), arise from
a NR limit that consists of retaining only the leading order terms in the c−2-expansion of the
relativistic equations of motion, obtained by setting [E]Aµ, [E]A′µ, [B]µν , [Φ], [Ψ]µ + Γµ[λ]
and [λ] equal to zero. The Noether identities (4.9) and (4.11) then tell us that taking the
limit in this way leads to some of the resulting equations being the same or identically zero,
so that one is left with less independent NR equations than relativistic ones. It is however
also possible to take the NR limit directly at the level of the relativistic equations of motion,
in such a way that it preserves the total number of algebraically independent equations.
To see how this works, we note that the Noether identity for dilatations says that not all
the leading order components in the c−2-expansions of the relativistic [E]Aµ and [Φ] are
linearly independent. Indeed, since τµ−〈τ〉−µ =

(
Eµ
−[E]−µ

)(0), the identity (4.11) tells
us that the leading (c0–)order contributions in the expansions of Eµ−[E]−µ and [Φ] are
proportional to each other:

τµ
−〈τ〉−µ = 4〈φ〉 ⇔

(
Eµ
−[E]−µ

)(0) = 4
(
[Φ]
)(0)

⇔ Eµ
−[E]−µ = 4〈φ〉+O(c−2) and [Φ] = 〈φ〉+O(c−2) . (4.12)

Similarly, the Noether identities (4.9) for the S- and T -symmetries are equivalent to saying
that the contribution to the c−2-expansion of certain components of [Ψ]µ vanishes identi-
cally at the order indicated in (4.7):(

Π−E−µ[Ψ]µ
)(1/2) = 0 , and

(
Π+E−

µ[Ψ]µ
)(3/2) = 0 . (4.13)

This then indicates how one can take the NR limit of the equations of motion, such that one
ends up with as many NR equations of motion as relativistic ones. The limit of most of the
relativistic equations of motion is taken as in (4.7). As regards the equations Π±E−µ[Ψ]µ =
0 however, one has to take into account that they vanish at the order given in (4.7) and that
one should instead retain the terms at one order lower in the c−2-expansion. Furthermore,
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instead of applying the NR limit to the equations {Eµ−[E]−µ = 0, [Φ] = 0}, one should
apply it to {Eµ−[E]−µ = 0, Eµ−[E]−µ − 4[Φ] = 0}, so that one ends up with two linearly
independent equations. Taking the NR limit of the equations of motion in this way, the set
of NR equations of motion, obtained by setting (4.7) to zero, is then supplemented with
the following extra equations:

〈ψ(S)
− 〉 ≡

(
Π−E−µ[Ψ]µ

)(−3/2) = 0 , 〈ψ(T )
+ 〉 ≡

(
Π+E−

µ[Ψ]µ
)(−1/2) = 0 ,

〈P 〉 ≡
(
Eµ
−[E]−µ − 4[Φ]

)(−2) = 0 . (4.14)

We will refer to these as ‘the missing equations of motion’. Although they are not derived
from the NR action (3.16), they are valid NR equations of motion, in the sense that they cor-
respond to the leading order in the c−2-expansion of particular components/combinations
of components of the relativistic equations of motion.

Explicitly, the fermionic missing equations of motion are given by:

〈ψ(S)
− 〉 ≡ −D−λ− + 2 τ−µeA′ν ΓA′D[µψν]− + 2 τ−µτ+

ν Γ+D[µψν]+

+
(

ΓA′DA′φ+ 1
24 ΓA′B′C′hA′B′C′

)
τ−

µψµ− − 2 τA′++ΓA′τ+
µψµ−

(+ terms of higher order in the fermions) = 0 , (4.15a)

〈ψ(T )
+ 〉 ≡ −D−λ+ + 2 τ−µeA′ν ΓA′D[µψν]+ +

(
ΓA′DA′φ+ 1

24 ΓA′B′C′hA′B′C′
)
τ−

µψµ+

+ τA′
++
(
ΓA′− λ− − ΓB′ΓA′−ψB′−

)
+ 1

2 τA
′B′

+ΓA′B′− τ−µψµ−

(+ terms of higher order in the fermions) = 0 . (4.15b)

One can then explicitly check that 〈ψ(S)
− 〉 and 〈ψ

(T )
+ 〉 are invariant under S- and T - transfor-

mations, while they transform covariantly under dilatations, with weights −3/2 and −1/2
respectively. The explicit expression for the bosonic equation of motion reads:

〈P 〉 ≡ τAµeA′νRµν (G)AA
′
+ εABτA

µτB
νRµν (M) (+ fermionic contributions) = 0 ,

(4.16)

where Rµν(G)AA′ and Rµν(M) are defined in (B.6). The linearization of the bosonic part of
this equation contains a term ∂A′∂

A′b01. Since in [6], it was argued that b01 can be identified
as the Newton potential, we see that the missing bosonic equation can be identified with a
supersymmetric generalization of the Poisson equation and we will refer to it as ‘the Poisson
equation’ in what follows. Under dilatations, 〈P 〉 scales covariantly with weight −2, while
the following transformation rules under the S- and T -symmetries (3.9) are found

δT 〈P 〉 = 4 ρ̄−〈ψ(T )
+ 〉 , δS〈P 〉 = 2 η̄−Γ−〈ψ(S)

− 〉 . (4.17)

The Poisson equation thus transforms to the two fermionic missing equations of motion
under the S- and T -symmetries. Since the NR action is invariant under dilatations, S- and
T -symmetries, we thus find that the full set of NR field equations, including the missing
ones, is invariant under these symmetries.
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The above discussion can be made more transparent, by performing a field redefinition
in the relativistic action (2.1). This field redefinition is such that the full set of NR field
equations, including the missing ones, is obtained by retaining the leading orders of the
c−2-expansions of the equations of motion of the redefined fields (instead of non-trivial
combinations of equations of motion of different fields). We will denote the redefined fields
with a tilde, as some of them correspond to rescalings of the NR fields with a tilde, that
were defined in (2.20), with a power of c. This field redefinition is explicitly given by:

Ẽµ
− ≡ e−2ΦEµ

− , Ẽµ
+ ≡ Eµ+ , Ẽµ

A′ ≡ EµA
′
,

Φ̃ ≡ Φ , B̃µν ≡ bµν ≡ Bµν + εAB Eµ
AEν

B ,

λ̃± ≡ λ± , Ψ̃µ+ ≡ Π+Ψµ −
1
2 Eµ

+Γ+Π−λ ,

Ψ̃− ≡ E+
µΠ−Ψµ , Ψ̃µ− ≡ Π−Ψµ − Eµ+E+

νΠ−Ψν . (4.18)

Note that this field redefinition is invertible. We can then use (2.7) to write the fields with
a tilde as powers of c multiplied with NR fields with a tilde, that can be expressed in terms
of the NR fields without a tilde:

Ẽµ
− ≡ c−1 τ̃µ

− ≡ c−1 e−2φτµ
− , Ẽµ

+ ≡ c τ̃µ+ ≡ c τµ+ , Ẽµ
A′ ≡ ẽµA

′ ≡ eµA
′
,

Φ̃ ≡ φ̃+ log c = φ+ log c , B̃µν ≡ b̃µν ≡ bµν ,

λ̃± ≡ c±1/2λ̃± = c±1/2λ± , Ψ̃µ+ ≡ c1/2ψ̃µ+ ,

Ψ̃− ≡ c−3/2ψ̃− , Ψ̃µ− ≡ c−1/2ψ̃µ− . (4.19)

The expressions for ψ̃µ± and ψ̃− in terms of NR fields without a tilde are given in (2.20).
As in (2.7), the dilatation weights of the NR fields with a tilde in the above formulas
coincide with the exponents of the powers of c that multiply these fields. Note that (4.19)
contains two types of redefinition that will be used in the following. On the one hand, it
expresses how the relativistic fields with a tilde are given in terms of NR fields with a tilde,
multiplied with a power of c. On the other hand, it also indicates how the NR fields with
a tilde are related to those without a tilde.

By applying (4.18), we can express the relativistic action (2.1) in terms of the fields
with a tilde and define functional derivatives of the resulting action S

[
Ẽµ
±, Ẽµ

A′ , Φ̃, B̃µν ,
Ψ̃µ±, Ψ̃−, λ̃±] via the following variation

δS = 1
2κ2

∫
d10x Ẽ

{
[̃E]−

µδẼµ
− + [̃E]+

µδẼµ
+ + [̃E]A′

µδẼµ
A′ + 1

2 [̃B]
µν
δB̃µν − 8 [̃Φ]δΦ̃

+ 4 δ¯̃λ+ [̃λ−] + 4 δ ¯̃Ψµ+
˜[Ψ−]

µ
+ 4 δ ¯̃Ψµ−

˜[Ψ+]
µ

+ 4 δ¯̃λ− [̃λ+] + 4 δ ¯̃Ψ− ˜[Ψ+]
}
, (4.20)

where Ẽ = det(ẼµÂ). Using the rules (4.18), one finds that the following non-trivial
relations hold between the functional derivatives with respect to the fields with tildes and
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those with respect to the original fields:

[̃E]−
µ = e2Φ[E]−µ , [̃E]+

µ = [E]+µ + 4 ¯̃Ψ− ˜[Ψ+]
µ
− 2 ¯̃λ−Γ+ [̃Ψ]

µ
,

[̃Φ] = [Φ]− 1
4 Eµ

−[E]−µ , ˜[Ψ±]
µ

= Π±
(
[Ψ]µ + Γµ[λ]

)
, (4.21)

˜[Ψ+] = Eµ
+Π+[Ψ]µ , [̃λ+] = −1

2 Eµ
+Π+Γ+[Ψ]µ .

For all other functional derivatives, the relation is trivial, e.g., [̃E]A′µ = [E]A′µ. From this,
we see that the field equations of Φ̃, λ̃− and Ψ̃− are given by

Eµ
−[E]−µ − 4[Φ] = 0 , Π−E−µ[Ψ]µ = 0 , Π+E−

µ[Ψ]µ = 0 , (4.22)

and, according to (4.14) and the discussion preceding it, thus indeed reproduce the missing
equations of motion in their c−2-expansion, as was the goal of the field redefinition (4.18).

We can then revisit the NR limit of the equations of motion. First, using (4.19)
in (4.20), we have

δS = 1
2κ2

∫
d10x Ẽ

{
c−1 [̃E]−

µδτ̃µ
− + c [̃E]+

µδτ̃µ
+ + [̃E]A′

µδẽµ
A′ + 1

2 [̃B]
µν
δb̃µν − 8 [̃Φ]δφ̃

+ 4 c1/2 δ ¯̃λ+ [̃λ−] + 4 c1/2 δ ¯̃ψµ+
˜[Ψ−]

µ
+ 4 c−1/2 δ ¯̃ψµ− ˜[Ψ+]

µ

+ 4 c−1/2 δ ¯̃λ− [̃λ+] + 4 c−3/2 δ ¯̃ψ− ˜[Ψ+]
}
. (4.23)

As in (4.5), the quantities that multiply δτ̃µ±, δẽµA
′ , δb̃µν , δφ̃, δ ¯̃λ±, δ ¯̃ψµ± and δ ¯̃ψ− have not

yet been expanded in powers of c−2. Requiring compatibility with δS = δSNR + c−2δS(−2)

(where SNR and S(−2) are expressed in terms of the NR fields with a tilde) shows that the
following expansions hold:

[̃E]−
µ = c 〈̃τ〉−

µ +O
(
c−1

)
, [̃E]+

µ = c−1 〈̃τ〉+
µ +O

(
c−3

)
,

[̃E]A′
µ = 〈̃e〉A′

µ +O
(
c−2

)
[̃B]

µν
= 〈̃b〉

µν
+O

(
c−2

)
,

˜[Ψ±]
µ

= c±1/2〈̃ψ±〉
µ

+O
(
c±1/2−2

)
, [̃λ−] = c−1/2〈̃λ−〉+O

(
c−5/2

)
. (4.24)

The quantities 〈̃τ〉±µ, 〈̃e〉A′µ, 〈̃b〉
µν
, 〈̃ψ±〉

µ
and 〈̃λ−〉 then correspond to the functional

derivatives of the NR action SNR with respect to τ̃µ±, ẽµA
′ , b̃µν , ψ̃µ∓ and λ̃+ (after ex-

pressing SNR in terms of these tilded NR fields).
The same reasoning would lead one to think that the expansions of [̃Φ], [̃λ+] and ˜[Ψ+]

start at orders c0, c1/2 and c3/2 respectively. This is however not correct. Indeed, if this
were true, (4.23) would imply that SNR depends on φ̃, λ̃− and ψ̃−. This can however
not be the case, since these fields shift as Stückelberg fields under dilatations and S- and
T -symmetries. Any dependence of SNR on φ̃, λ̃− and ψ̃− would then imply that SNR is
not invariant under these symmetries, contradicting what was found in section 3. We thus
conclude that the expansions of [̃Φ], [̃λ+] and ˜[Ψ+] have to start at one c−2-order higher.
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This is indeed found explicitly:

[̃Φ] = −1
4c
−2 〈P 〉+O

(
c−4

)
, [̃λ+] = c−3/2

2 Γ+〈ψ(S)
− 〉+O

(
c−7/2

)
,

˜[Ψ+] = c−1/2〈ψ(T )
+ 〉+O

(
c−5/2

)
. (4.25)

From this, we then also see that 〈P 〉, 〈ψ(S)
− 〉 and 〈ψ

(T )
+ 〉 can be interpreted as functional

derivatives of S(−2) with respect to φ̃, λ̃− and ψ̃−. This is similar to what happens when
considering the NR expansion of General Relativity, where the Poisson equation of NR
gravity is seen to arise from subleading orders in the expansion of the Einstein-Hilbert
action [34, 41]. Note also that there is a relation between the dilatation weights of the
NR fields with a tilde and the exponent of the power of c in front of their corresponding
functional derivatives (either of SNR or S(−2)) in (4.24) and (4.25). The exponent of the
power of c in front of 〈̃τ〉−µ, 〈̃τ〉+µ, 〈̃e〉A′µ, 〈̃b〉

µν
, 〈̃ψ±〉

µ
and 〈̃λ−〉 in (4.24) is given by the

negative of the dilatation weight of τ̃µ−, τ̃µ+, ẽµA
′ , b̃µν , ψ̃µ∓ and λ̃+ respectively. This

rule does not hold for 〈P 〉, 〈ψ(S)
− 〉 and 〈ψ

(T )
+ 〉: the exponent of the power of c in front of

these quantities in (4.25) is obtained by subtracting two from the negative of the dilatation
weight of φ̃, λ̃− and ψ̃− respectively.

Summarizing: after performing the field redefinition (4.18), the NR limit of the rel-
ativistic equations of motion can more easily be taken in such a way that it preserves
the number of algebraically independent equations. The resulting NR field equations are
given by

〈̃τ〉−
µ = 0 , 〈̃τ〉+

µ = 0 , 〈̃e〉A′
µ = 0 ,

〈̃b〉
µν

= 0 , 〈̃ψ±〉
µ

= 0 , 〈̃λ−〉 = 0 ,

〈P 〉 = 0 , 〈ψ(S)
− 〉 = 0 , 〈ψ(T )

+ 〉 = 0 , (4.26)

where each equation corresponds to the leading order terms in the c−2-expansion of a rela-
tivistic equation of motion for a redefined field with a tilde. The first two lines correspond
to equations that can be derived from the NR action (3.16). The equations in the last
line are the missing equations of motion, that do not follow from the NR action. The full
set of NR field equations (4.26) is invariant under the emergent dilatation and S- and T -
symmetries. In the next subsection, we will address the question whether these equations
also transform into each other under NR supersymmetry and Galilean boosts.

4.2 Consistency of all NR equations of motion under supersymmetry and
Galilean boosts

Here, we will give a generic argument that the set of NR field equations (4.26) is invari-
ant under NR supersymmetry and Galilean boosts. As we will see, invariance under NR
supersymmetry is not automatically guaranteed: it only holds when the (supersymmetric)
self-dual DSNC constraint (3.13) is imposed by hand.

We will argue exclusively in terms of the fields with tilde (4.18) and their NR coun-
terparts, defined in (4.19). It will then be useful to split the tilded fields (4.18) in two
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sets, based on whether the limit of their equations of motion can be derived from the NR
action (3.16) or not. The first set of fields is given by {Ẽµ+, Ẽµ

−, Ẽµ
A′ , B̃µν , Ψ̃µ±, λ̃+}. We

will refer to the fields in this set as the (relativistic) ‘bulk fields’ and we will collectively
denote them as Bi, with the index i enumerating the different bulk fields. The second set
of fields is given by {Φ̃, Ψ̃−, λ̃−} and their members will be referred to as the (relativistic)
‘missing fields’. We will collectively denote them as Mα, where the index α is used to
distinguish the different missing fields. The index I and notation XI will be used to denote
the members of the collection of bulk and missing fields: {XI} = {Bi,Mα}. The functional
derivative of the relativistic action with respect to a field Bi, Mα or XI will be denoted
by [B]i, [M ]α, [X]I respectively. We will split the NR fields with a tilde in a set of NR
bulk fields and one of NR missing fields in an analogous manner. The NR bulk fields are
given by {τ̃µ+, τ̃µ

−, ẽµ
A′ , b̃µν , ψ̃µ±, λ̃+} and will be collectively denoted by bi, whereas the

NR missing fields {φ̃, ψ̃−, λ̃−} will be collectively denoted by mα. Equations (4.19) can
then be summarized as

Bi = cb(i)bi , Mα = cm(α)mα , (4.27)

where b(i) and m(α) are the dilatation weigths of the corresponding NR fields bi and mα.
According to the remark made below (4.25), the expansions of the relativistic functional
derivatives [B]i and [M ]α then take the form:

[B]i = c−b(i)〈b〉i + c−b(i)−2 [B]iSL +O
(
c−b(i)−4

)
,

[M ]α = c−m(α)−2〈m〉α + c−m(α)−4 [M ]αSL +O
(
c−m(α)−6

)
. (4.28)

Here, the collection of 〈b〉i corresponds to {〈̃τ〉−µ, 〈̃τ〉+µ, 〈̃e〉A′µ, 〈̃b〉
µν
, 〈̃ψ±〉

µ
, 〈̃λ−〉}, the

collection of 〈m〉α to {〈P 〉, 〈ψ(S)
− 〉, 〈ψ

(T )
+ 〉} and we have denoted the first subleading terms

in the expansions of [B]i and [M ]α by [B]iSL and [M ]αSL.
We then wish to show that the 〈b〉i and 〈m〉α transform into each other under NR su-

persymmetry and Galilean boosts. To do this, we will rely on a formula, derived in [42], that
shows how Euler-Lagrange derivatives, derived from an action, transform into each other
under a symmetry of that action. Applied to the [X]I , defined via (4.20), this formula reads:

δ[X]I =
(
Ẽ δẼ−1) [X]I − δ (δXJ)

δXI
[X]J . (4.29)

The last term of (4.29) is written in the DeWitt notation [43], i.e., the sum over J also
entails an integral that is not written out explicitly. Furthermore, δXI refers to an infinites-
imal symmetry transformation of the fields XI that leaves the relativistic action (2.1) (ex-
pressed in terms of the fields with tilde (4.18)) invariant. The above formula then specifies
that the way in which the [X]I transform into each other under the symmetry variation δ,
is determined by the functional derivatives δ(δXJ)/δXI of δXJ with respect to XI .12 In

12In case δXJ involves derivatives of the fields XI , as is the case for supersymmetry, one can see that
the second term of (4.29) contributes terms that involve derivatives of the symmetry parameters, i.e.,
non-covariant terms. These non-covariant terms are, however, still zero on-shell. We refer to [42] for
more details.
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the following, we will start from the formula (4.29), applied to relativistic supersymmetry
and boosts, and expand it in powers of c−2. This will allow us to infer how 〈b〉i and 〈m〉α

transform into each other under NR supersymmetry and Galilean boosts.
Before showing that all NR field equations (4.26) transform into each other under NR

supersymmetry, we need to investigate the structure of the NR supersymmetry transforma-
tion rules in more detail. First, we note that by writing the c−2-expansions (2.13), (2.14)
of the relativistic supersymmetry transformation rules (denoted here by δQ) in terms of
the NR fields with a tilde, the following c−2-expansions are seen to hold:

δQbi = δ
(0)
Q bi + c−2δ

(−2)
Q bi ,

δQmα = c2δ
(2)
Q mα + δ

(0)
Q mα + c−2δ

(−2)
Q mα . (4.30)

The only non-zero δ(2)
Q mα take the form of specific S- and T -transformations and are deter-

mined by (2.21). Note that δ(2)
Q mα vanishes when the self-dual DSNC constraint (3.13) is

imposed. The terms δ(0)
Q bi and δ(0)

Q mα at order c0 in (4.30) constitute the NR supersymme-
try transformation rules. We will for simplicity ignore the S- and T -transformations (2.17)
that are in principle present in δ

(0)
Q mα. Doing this will not affect our arguments signifi-

cantly. Using (4.19), we can then express these NR supersymmetry rules in terms of the
fields with a tilde. In what follows, it will turn out to be important that δ(0)

Q bi takes the
following form

δ
(0)
Q bi = δ̃bi + δSO(1,1)bi + δboostbi , (4.31)

where δ̃bi is independent of the missing fields mα (so δ
(
δ̃bi
)
/δmα = 0) and δSO(1,1)bi and

δboostbi correspond to a local longitudinal SO(1, 1) transformation and Galilean boost,
whose parameters depend on the missing fields mα. Explicitly, the parameters of δSO(1,1)
and δboost are given (up to bilinear fermion terms in the fermionic transformation rules) by13

λM = −ε̄+λ̃− , λ+A′ = 0 , λ−A
′ = ε̄+ΓA′ψ̃− + 1

2 ε̄−ΓA′Γ+λ̃− , (4.32)

13Note that none of the δ(0)
Q bi then depends on the dilaton φ̃. A priori it is not clear why this is the

case, as the dilaton appears explicitly in (2.18). Moreover, since the spin connections and bµ in (2.18)
depend on τµ

− = e2φ̃τ̃µ
−, an extra dependence on φ̃ can be introduced, when writing these connections

in terms of the NR fields with a tilde. Explicitly, one however finds that ωµ = ω̃µ + ∂µφ̃, bµ = b̃µ + ∂µφ̃,
ωµ

AA′
= ω̃µ

AA′
and ωµA

′B′
= ω̃µ

A′B′
. The φ̃-dependence in δ(0)bi due to the connections then drops out,

because ωµ and bµ always appear in the combination bµ − ωµ in (2.18). The explicit dilaton dependence
in (2.18) also drops out, when going to the NR fields with a tilde, as this dependence appears in the form
∂µφ − bµ = ∂µφ̃ − (b̃µ + ∂µφ̃) = −b̃µ. Alternatively, one can also obtain these results by noting that the
redefinition from τµ

± to τ̃µ± can be viewed as a symmetry operation, namely the diagonal of an SO(1, 1)
transformation with a dilatation with parameters λM = λD = −φ. The above explicit expressions for the
connections then follow from this observation.
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and the δ̃bi are explicitly found as

δ̃ τ̃µ
+ = ε̄+Γ+ψ̃µ+ , δ̃ τ̃µ

−=−ε̄−λ̃+ τ̃µ
− ,

δ̃ ẽµ
A′ = ε̄±ΓA′ψ̃µ∓ , δ̃ b̃µν = 4 τ̃[µ

+ε̄−Γ+ψ̃ν]−+2 ẽ[µ
A′ δ̃ ẽν]

A′ ,

δ̃ ψ̃µ+ = ∇̃(+)
µ ε++T̃µε−−

1
2 τ̃µ

+
(
/̃b+ 1

12
/̃h

)
Γ+ε− , δ̃ ψ̃µ−=

(
δµ
ν−τ̃µ+τ̃+

ν
)
∇̃(+)
ν ε− ,

δ̃ λ̃+ =−
(
/̃b+ 1

12
/̃h

)
ε++ 1

2 τ̃
A′B′+ΓA′B′+ε− . (4.33)

Here and in the following, we use the notation that field dependent quantities, such as
τ̃µν

A, h̃µνρ, ω̃µA
′B′ , · · · are obtained from their counterparts without a tilde, by replac-

ing all NR fields without a tilde by ones with a tilde. Above, we have then denoted
T̃µε− ≡ (ẽµB′ τ̃B

′A′+ + τ̃µ
−τ̃A

′++)ΓA′+ε− and the superscript (+) on the covariant deriva-
tives means that these are defined with respect to a modified SO(8) spin connection
ω̃µ

(+)A′B ≡ ω̃µ
A′B′ + 1/2 ẽµC′ h̃C

′A′B′ . We have also used the Feynman-slash notation to
denote complete contractions with transversal gamma matrices, i.e., /c = cA′B′···C′ΓA

′B′···C′ .
We can now argue that 〈b〉i and 〈m〉α transform into each other under NR super-

symmetry δ(0)
Q , when the self-dual DSNC constraint (3.13)14 is imposed. To do this, we

specify (4.29) to relativistic supersymmetry transformations δQ and split the [X]I into [B]i

and [M ]α:

δQ[B]i =
(
Ẽ δQẼ

−1) [B]i − δ (δQBj)
δBi

[B]j − δ (δQMα)
δBi

[M ]α ,

δQ[M ]α =
(
Ẽ δQẼ

−1) [M ]α − δ (δQBi)
δMα

[B]i − δ (δQMβ)
δMα

[M ]β . (4.34)

We then expand these equations in powers of c−2, using (4.27), (4.28), (4.30), as well as that
generically δQ[X]I = c2δ

(2)
Q [X]I + δ

(0)
Q [X]I + c−2δ

(−2)
Q [X]I +O(c−4). The logic behind this

is very similar to how we analyzed the invariance of the non-relativistic action in section 3.
The results on invariance of the NR field equations under supersymmetry will follow from
the subleading order of these expansions.

Before discussing this subleading order however, let us first check how the leading order
is satisfied and what can be learnt from it. This leading order amounts to the following
equations:

δ
(2)
Q 〈b〉

i = 0 , (4.35a)

δ
(2)
Q 〈m〉

α = −
δ
(
δ

(0)
Q bi

)
δmα

〈b〉i −
δ
(
δ

(2)
Q mβ

)
δmα

〈m〉β . (4.35b)

The second of these equations can be simplified, by making use of the Noether identity
for relativistic Lorentz transformations, which states that for a Lorentz transformation δL
with arbitrary parameters

δLXI [X]I = 0 . (4.36)
14Note that this constraint assumes the same form in terms of the NR fields with a tilde, i.e., it is given

by τ̃A′B′
− = 0 and τ̃A′+

− = 0.
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This Noether identity can be expanded in powers of c−2, by using (4.27), (4.28) and the
fact that a generic Lorentz transformation δL takes the form δL = δ

(0)
L + c−2δ

(−2)
L , with δ(0)

L

corresponding to NR longitudinal SO(1, 1) Lorentz transformations, Galilean boosts and
transversal rotations. The leading order term in the expansion of (4.36) then says that

δ
(0)
L bi 〈b〉i = 0 , (4.37)

with δ(0)
L bi an arbitrary longitudinal SO(1, 1) transformation, Galilean boost or transversal

rotation of bi. According to (4.31), the only dependence of δ(0)
Q bi on the fields mα oc-

curs in field-dependent SO(1, 1) and Galilean boost transformations that act on bi. As a
consequence, δ

(
δ

(0)
Q bi

)
/δmα also corresponds to a longitudinal SO(1, 1) or Galilean boost

transformation (with mα stripped from the symmetry parameter), acting on bi. The first
term on the right-hand-side of (4.35b) is then zero as a consequence of (4.37), so that we
are left with

δ
(2)
Q 〈b〉

i = 0 , δ
(2)
Q 〈m〉

α = −
δ
(
δ

(2)
Q mβ

)
δmα

〈m〉β . (4.38)

Note that the only contributions to δ(2)
Q 〈b〉i or δ

(2)
Q 〈m〉α can come from their dependence on

the mα, since only these fields transform under δ(2)
Q . The first of (4.38) is then explained

by the fact that 〈b〉i do not depend on the fields mα, since the NR action (3.16) from which
they are derived is independent of the missing fields mα. Furthermore, since δ(2)

Q mα is
given by field-dependent S- and T -transformations, the second of (4.38) is consistent with
the fact that the missing NR equations of motion transform among themselves under S-
and T -symmetries (see, e.g., (4.17)).

The subleading term in the c−2-expansion of (4.34) gives the following equations:

δ
(0)
Q 〈b〉

i =
(
ẽ δ

(0)
Q ẽ−1) 〈b〉i − δ

(
δ

(0)
Q bj

)
δbi

〈b〉j −
δ
(
δ

(2)
Q mα

)
δbi

〈m〉α − δ(2)
Q [B]iSL , (4.39a)

δ
(0)
Q 〈m〉

α =
(
ẽ δ

(0)
Q ẽ−1) 〈m〉α − δ

(
δ

(0)
Q bj

)
δmα

[B]jSL −
δ
(
δ

(−2)
Q bi

)
δmα

〈b〉i

−
δ
(
δ

(0)
Q mβ

)
δmα

〈m〉β −
δ
(
δ

(2)
Q mβ

)
δmα

[M ]βSL − δ
(2)
Q [M ]αSL . (4.39b)

These equations tell us how the 〈b〉i and 〈m〉α transform under NR supersymmetry δ(0)
Q .15

The appearance of the subleading parts [B]iSL and [M ]αSL of the expansions of [B]i and
[M ]α is worrisome, as it implies that the 〈b〉i and 〈m〉α do not form a closed set under
NR supersymmetry. Note however that the second term on the right-hand-side of (4.39b)

15Note again that we assume that the S- and T -transformations (2.17) are not included in δ(0)
Q mα. The

effect of including these transformations is that δ(0)
Q 〈m〉

α and (δ
(
δ

(0)
Q mβ

)
/δmα) 〈m〉β in (4.39b) can receive

extra contributions. These are however always proportional to 〈m〉α (for δ(0)
Q 〈m〉

α this is because the 〈m〉α

transform into each other under S- and T -transformations), so that the overall conclusion that all NR field
equations transform into each other under supersymmetry is not affected.
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is harmless, due to the Noether identity (4.36). Indeed, the subleading order of the c−2-
expansion of (4.36) implies that

δ
(0)
L bi [B]iSL = −δ(0)

L mα 〈m〉α − δ(−2)
L bi 〈b〉i , (4.40)

so that δ(0)
L bi [B]iSL, with δ

(0)
L bi an arbitrary longitudinal SO(1, 1) transformation, Galilean

boost or transversal rotation of bi, can be written as a combination of 〈b〉i and 〈m〉α. As
mentioned below (4.37), δ

(
δ

(0)
Q bj

)
/δmα takes the form of a longitudinal SO(1, 1) transfor-

mation or Galilean boost, acting on bi, and consequently, the [B]iSL in the second term on
the right-hand-side of (4.39b) can be traded for 〈b〉i and 〈m〉α. The remaining terms that
involve [B]iSL and [M ]αSL in (4.39) can not necessarily be expressed in terms of 〈b〉i and
〈m〉α. They however vanish, when the self-dual DSNC constraint (3.13) is imposed. For
δ

(2)
Q [B]iSL and δ(2)

Q [M ]αSL, this is because each contribution to these terms is proportional to
δ

(2)
Q mα and thus vanishes when the self-dual DSNC constraint is imposed. From (2.21), one
can see that the functional derivatives δ

(
δ

(2)
Q mβ

)
/δmα are zero when the self-dual DSNC

constraint holds. The fifth term on the right-hand-side of (4.39b) then also vanishes, upon
imposition of this constraint.

We can thus conclude that the full set of NR field equations (4.26) is invariant under
NR supersymmetry when the self-dual DSNC constraint (3.13) is imposed by hand. Let
us stress again that this constraint is itself invariant under NR supersymmetry so that
it can be imposed consistently in a supersymmetric fashion, without the need for extra
constraints. It is furthermore also interesting to note that from the form of (4.39a), one can
see that the supersymmetry variation of the NR field equations 〈b〉i = 0, that follow from
the NR action (3.16), in general, gives rise to the missing equations of motion 〈m〉α = 0.
One can check explicitly that this indeed happens. This phenomenon occurs because the
NR action (3.16) is only invariant under NR supersymmetry up to the self-dual DSNC
constraint (3.13). So, even though the missing equations of motion do not follow directly
from the NR action (3.16), they can be obtained indirectly from it by varying its equations
of motion under NR supersymmetry.

Finally, let us finish this section, by noting that the above arguments can be adapted
to show that the 〈b〉i and 〈m〉α also transform into each other under Galilean boosts.
First, we note that, by writing the c−2-expansions (2.11), (2.12) of the relativistic boost
transformation rules (denoted here by δB) in terms of the NR fields with a tilde, the
following c−2-expansions are seen to hold:

δBbi = δ
(0)
B bi + c−2δ

(−2)
B bi , δBmα = δ

(0)
B mα + c−2δ

(−2)
B mα , (4.41)

where δ
(0)
B corresponds to a Galilean boost transformation. We can then again start

from (4.29), applied to relativistic boosts

δB[B]i = −δ (δBBj)
δBi

[B]j − δ (δBMα)
δBi

[M ]α , δB[M ]α = −δ (δBBi)
δMα

[B]i − δ (δBMβ)
δMα

[M ]β ,

(4.42)
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and expand these equations in powers of c−2, using (4.27), (4.28), (4.41), as well as δB[X]I =
δ

(0)
B [X]I+c−2δ

(−2)
B [X]I+O(c−4). The leading order in the c−2-expansion of the first of (4.42)

and the leading and subleading order of the second of (4.42) then lead to the following
equations:

δ
(0)
B 〈b〉

i = −
δ
(
δ

(0)
B bj

)
δbi

〈b〉j , (4.43a)

δ
(
δ

(0)
B bi

)
δmα

〈b〉i = 0 , (4.43b)

δ
(0)
B 〈m〉

α = −
δ
(
δ

(0)
B bi

)
δmα

[B]iSL −
δ
(
δ

(−2)
B bi

)
δmα

〈b〉i −
δ
(
δ

(0)
B mβ

)
δmα

〈m〉β . (4.43c)

The second of these equations is identically satisfied, as a consequence of (4.37) (applied
to a Galilean boost) and the fact that δ

(
δ

(0)
B bi

)
/δmα corresponds to a Galilean boost

transformation (with the field mα stripped off its parameter), acting on bi. Similarly, by
using (4.40) (applied to a Galilean boost), we see that the first term on the right-hand-side
of (4.43c) can be rewritten as a combination of 〈b〉i and 〈m〉α. We then see that Galilean
boost transformations transform the 〈b〉i and 〈m〉α among themselves. Note that (4.43)
shows that the Galilean boost transformation of the missing equations of motion 〈m〉α = 0
includes the equations 〈b〉i = 0, while the latter only transform among themselves since
they are derived from the Galilean boost invariant action (3.16). As a representation of
the non-semisimple group that consists of longitudinal SO(1, 1) transformations, Galilean
boosts, and transversal rotations, the NR field equations (4.26) are then seen to form a
so-called reducible indecomposable representation. Note that the appearance of reducible
indecomposable representations is quite common when discussing finite-dimensional repre-
sentations of non-semisimple groups [44].

5 Conclusions

In this paper we extended our previous work on taking the NR limit of ten-dimensional NS-
NS gravity to the supersymmetric case. This leads to a NR minimal supergravity theory
that is common to all NR superstring theories. In doing so we encountered two compli-
cations that were absent in the bosonic case. First of all, the relation between the string
sigma model and the target space effective action is less direct than in the bosonic case.
This had the effect that we could not independently check the two fermionic Stückelberg
symmetries that we found in the target space effective action at the level of the sigma model
description of the superstring. The second complication is that we found, upon taking the
NR limit, divergent terms in the supersymmetry rules of the fermionic fields that were all
proportional to the torsion components that define a self-dual DSNC geometry, see (1.7).
These divergent terms could be controlled by (i) using the fact that there are two emer-
gent fermionic Stückelberg symmetries and (ii) the constraints defining a self-dual DSNC
geometry are invariant under all the symmetries of the NR theory and therefore can be
imposed by hand without the need to impose more constraints. An important simplifying
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feature that we used is that, after making a particular field redefinition, see (4.18), all
NR equations of motion occurred as the leading term in the expansion of a corresponding
relativistic equation of motion, without the need to take special combinations of equations
of motion like we did for the bosonic case. Similar to the bosonic case we found that all
divergent terms in the action vanished due to cancellations of different contributions and
that the NR action did not give rise to all equations of motion. In particular, the Poisson
equation for the Newton potential and two fermionic equations were missing. A difference
with the bosonic case is that the so-called missing equations of motion, that do not follow
from a variation of the NR action, can be obtained by a supersymmetry variation of the
equations of motion that do follow from a variation of the NR action.

In hindsight, it is a good thing that we found divergent terms in the supersymmetry
rules. Would such terms have been absent we would have found a NR action that is
exactly supersymmetric without the need to impose any constraint. In that case the results
of [42] would apply with the consequence that the equations of motion corresponding to
the NR action would transform to each other forming a supermultiplet but that none of
these equations of motion would transform under supersymmetry to the missing Poisson
equation and hence the Poisson equation would not be part of this supermultiplet. Such a
situation would be hard to reconcile with the closure of the supersymmetry algebra.

Given the fact that we found an emerging dilatation symmetry and two emerging
superconformal symmetries one could wonder in which sense the NR minimal supergravity
multiplet we found defines a conformal supergravity multiplet. Apart from a few similarities
there are important differences. First of all conformal supergravity is usually presented as
an off-shell multiplet whereas the NR minimal supergravity multiplet is on-shell. Secondly,
the NR minimal supergravity multiplet lacks the special conformal symmetries. This is
a consequence of the fact that, unlike in conformal supergravity, all components of the
dilatation gauge field are dependent, see the first equation in (B.3).

In appendix E, we give some initial results on the Yang-Mills sector needed to discuss
the case of the heterotic superstring. Assuming that in the flat spacetime limit we can define
an independent NR Yang-Mills supermultiplet, we showed that, starting from a particular
field redefinition, there is a unique NR string limit of the relativistic ten-dimensional super-
Yang-Mills theory that avoids the occurrence of infinities in the supersymmetry rules. We
give the expressions for the action and supersymmetry rules in appendix E. It is interesting
to compare our results with those of [45] (see also [46]) where a similar analysis has been
made of Yang-Mills systems in flat spacetime involving the scaling of fields with a parameter
and taking the limit that this parameter goes to infinity. One difference is that we take the
different scalings such that the limit does not lead to divergences in the supersymmetry
rules and in the action. This is related to the fact that we scale two of the flat coordinates
different from the rest. We did this because we had a NR string limit in mind whereas
the discussion of [45] is more general. It would be interesting to apply the general analysis
of [45] to a matter coupled to gravity system and see under which conditions the global
scale symmetry, observed in [45], extends to a local scale symmetry like in this work.

After a dimensional reduction of the spatial worldsheet direction the bosonic part of
the NR ten-dimensional super-Yang-Mills theory seems to coincide with the one given
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in [47, 48] and, more recently, in [13] where it was identified with the low energy dynamics
of open strings ending on N coincident D-branes in flat spacetime. The same lower-
dimensional bosonic Yang-Mills theory also follows from a null reduction of a relativistic
Yang-Mills theory in one dimension higher [49]. These results seem to be consistent with
the T-duality of the bosonic NR open string theory as discussed in [14]. Here instead, we
are interested in the occurrence of Yang-Mills within the heterotic superstring theory. To
construct the Yang-Mills coupled to supergravity system, i.e. the NR heterotic supergravity
theory, one may proceed in two ways. Either one couples, via a Noether procedure like
in the relativistic case [38], the NR Yang-Mills theory to the minimal supergravity theory
that we already constructed in this work or one takes the NR limit of the relativistic Yang-
Mills coupled to supergravity theory. Approaching the problem from a sigma model point
of view, a new complication, not encountered in the pure supergravity or flat spacetime
Yang-Mills theory, occurs, namely the occurrence of a worldsheet anomaly in the sigma
model giving rise to a NR Chern-Simons term. We hope to show in a follow-up work how
these two different approaches lead to the same NR heterotic supergravity theory with its
characteristic NR Yang-Mills Chern-Simons term.

It would be interesting to approach the construction of a NR heterotic supergravity
theory from a Double Field Theory point of view where in the bosonic case a construction
of the NS-NS gravity theory using Double Field Theory with a degenerate geometry has
been given [16]. An intriguing issue arises in the supergravity case. Although we took
a NR string limit of the N = 1 supergravity theory in this paper, it is not clear what
the dual null reduction would correspond to. The reason for this is that the null Killing
condition corresponds to a constraint on the relativistic supergravity theory that is not
invariant under supersymmetry. In fact, we are not aware of any relativistic ten-dimensional
supergravity theory exhibiting a null isometry direction without breaking supersymmetry.16

We hope to come back to this issue in a forthcoming publication.
It is natural to generalize the results of this paper to IIA and IIB supergravity and

eleven-dimensional supergravity corresponding to the IIA and IIB superstring theories and
M-theory.17 In particular, it would be interesting to see what happens with the potential
divergent terms in the supersymmetry rules and the occurrence of emergent fermionic
Stückelberg symmetries. Once the finite supersymmetry rules have been constructed one
could study compactifications and look for interesting NR supersymmetric solutions by
analyzing the Killing spinor equations. For the case of minimal supergravity dealt with in
this paper we have collected the bosonic equations of motion (with the fermions set equal to
zero) and the Killing spinor equations in a separate appendix. This appendix is a convenient
starting point for discussing NR supersymmetric NS-NS solutions. In particular, it would
be interesting to see whether one can find NR supersymmetric solutions (probably with a
horizon) that can take over the role that black holes play in the AdS/CFT correspondence.
Such solutions could play an important role in setting up a NR holographic principle
independent of the relativistic one. We hope to return to these issues in the nearby future.

16We stress that this is different from looking to solutions of the 10D supergravity theory with a null
isometry direction. This leads to supersymmetric Killing spinor conditions that do exist and in general
break part of the supersymmetry.

17For the bosonic part of M-theory, see [50].
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A Notation and conventions

A.1 Bosonic conventions

Ten-dimensional flat Lorentz indices are denoted by Â and split into (A,A′), where A = 0, 1
and A′ = 2, · · · , 9. We refer to this as a splitting into longitudinal, resp. transversal
directions. We use the ‘mostly plus’ form of the Minkowski metric, i.e., (ηÂB̂) = (− +
+ · · ·+). The ten-dimensional Levi-Civita epsilon symbol is normalized by ε01···9 = +1
(ε01···9 = −1). We also use a two-dimensional longitudinal epsilon symbol εAB that is
normalized as ε01 = +1 (ε01 = −1). The following identities then hold

εACεBD = −ηABηCD + ηADηBC , εA
CεCB = ηAB . (A.1)

Instead of writing longitudinal components of tensors with respect to coordinates xA (A =
0, 1), we will also often write them with respect to light-cone coordinates x± that are
defined as follows:

x± = 1√
2

(
x0 ± x1

)
. (A.2)

The longitudinal ηAB-part of the Minkowski metric then has η+− = η−+ = −1 as its non-
zero components and one similarly has that ε+− = −ε−+ = −1. It is straightforward to
check that

XAηABY
B = −X−Y + −X+Y − , XAεABY

B = X−Y + −X+Y − , (A.3)
1
2 X

A (ηAB + εAB)Y B = X+Y+ ,
1
2 X

A (ηAB − εAB)Y B = X−Y− . (A.4)

A curved, lower µ index is turned into flat A or A′ indices, using the projective inverse
Vielbeine τAµ, eA′µ via the rule

XA = τA
µXµ , XA′ = eA′

µXµ ⇔ Xµ = τµ
AXA + eµ

A′XA′ . (A.5)

A.2 Spinor and Clifford algebra conventions

The defining relation for the Clifford algebra that is generated by the ten-dimensional
gamma matrices ΓÂ is taken to have the following normalization

{ΓÂ,ΓB̂} = 2ηÂB̂1 . (A.6)
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The gamma matrices satisfy the following hermiticity property:

Γ†
Â

= Γ0ΓÂΓ0 . (A.7)

The charge conjugation matrix C is unitary and satisfies

CT = −C , ΓT
Â

= −CΓÂC
−1 . (A.8)

All spinors are assumed to satisfy a Majorana-Weyl condition, so that the conjugate ψ̄ of a
spinor ψ can be interpreted as ψ̄ = ψTC. Using (A.8), one can show that spinor bilinears
obey the following symmetry property

χ̄1ΓÂ1···Ânχ2 =

 +χ̄2ΓÂ1···Ânχ1 for n = 0, 3 mod 4 ,
−χ̄2ΓÂ1···Ânχ1 for n = 1, 2 mod 4 .

(A.9)

Left-, resp. right-handed spinors are obtained by projecting with the Weyl projectors PL,
resp. PR, where

PL = 1
2 (1 + Γ∗) , PR = 1

2 (1− Γ∗) , with Γ∗ = −Γ0Γ1 · · ·Γ9 . (A.10)

In this paper, we frequently work with spinors that are projected, using the following
‘worldsheet chirality’ orthogonal projection operators Π±

Π± = 1
2 (1± Γ01)

(
obeying Π2

± = Π± and Π±Π∓ = 0
)
. (A.11)

The projection of a spinor χ with Π+, resp. Π− will be denoted as χ+ = Π+χ, resp.
χ− = Π−χ. One thus has

χ± = Π±χ , Π±χ∓ = 0 , Γ01χ± = ±χ± . (A.12)

Since

Γ∗Γ01 = Γ01Γ∗ , ΓAΓ01 = −Γ01ΓA , ΓA′Γ01 = Γ01ΓA′ , ΓT01C = −CΓ01 ,

(A.13)

worldsheet chirality projection is compatible with the Majorana-Weyl condition. The con-
jugate of a worldsheet chirality projected spinor is defined as χ̄± ≡ χT±C. Note that one
then has that

χ̄±Γ01 = ∓χ̄± . (A.14)

As a consequence, bilinears of the form

χ̄±ΓA′1···A′mψ± , χ̄±ΓABA′1···A′mψ± , χ̄±ΓAA′1···A′mψ∓ , (A.15)

are identically zero.
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When working with purely longitudinal gamma matrices ΓA, the following duality
relations are often handy:

ΓAB = εAB Γ01 , ΓA = −εABΓBΓ01 . (A.16)

These can for instance be used to show that

(ηAB + εAB)χ+ = ΓAΓBχ+ , (ηAB − εAB)χ+ = ΓBΓAχ+ ,

(ηAB − εAB)χ− = ΓAΓBχ− , (ηAB + εAB)χ− = ΓBΓAχ− . (A.17)

Instead of using indices A,B = 0, 1 for longitudinal gamma matrices, it is sometimes useful
to work with longitudinal gamma matrices with light-cone indices

Γ± = 1√
2

(Γ0 ± Γ1) . (A.18)

These satisfy Γ±Γ01 = ∓Γ± and one thus has

Γ+χ+ = 0 , and Γ−χ− = 0 , (A.19)

implying that e.g. Y AΓAψ+ = Y −Γ−ψ+.

B Torsional string Newton-Cartan geometry

In this section, we give some details on the non-Lorentzian geometric structures appearing
in this paper. We will use the name torsional string Newton-Cartan (TSNC) for generic
geometric structures without any further geometric constraints on the torsion. The self-
dual DSNC geometry that is relevant in this paper is a special case where the torsion tensor
satisfies T ρµν τρ− = 0, or equivalently (1.7). We refer the reader to appendices B and C
of [6] for more details.

The main novel feature of these structures is the occurrence of a 2-form bµν and a scalar
φ as part of the geometric structure, next to the longitudinal τµA (A = 0, 1), and transversal
Vielbeinen eµ

A′ (A′ = 2, · · · , 9). As explained in [6], one can introduce spin connections
for local SO(1, 1) × SO(8)−rotations (ωµ, ωµA

′B′), Galilean boosts ωµAA
′ , dilatations bµ,

together with an affine connection Γρµν , by imposing18

∇µφ ≡ ∂µφ− bµ = eµ
A′∇A′φ , (B.1a)

Hµνρ ≡ hµνρ + 6 εAB ω[µ
AB′τν

B eρ]B′ = eµ
A′eν

B′eρ
C′hA′B′C′ , (B.1b)

∇µτνA ≡ ∂µτνA − ωµ εABτνB − bµ τνA − ΓρµντρA = 0 , (B.1c)

∇µeνA
′ ≡ ∂µeνA

′ − ωµA
′B′eνB′ + ωµ

AA′τνA − ΓρµνeρA
′ = 0 , (B.1d)

where hµνρ = 3 ∂[µbνρ]. When considering the antisymmetric part of (B.1c) and (B.1d)
we observe that not all components depend on the spin connections and hence cannot be

18Note that it is straightforward to derive supercovariant versions of the above expressions by adding the
appropriate gravitino bilinears to the anholonomy coefficients τµνA/eµνA

′
/hµνρ/∂µφ, for example τ̂µνA =

τµν
A− 1/2 ψ̄µ+ΓAψν+. In this work we choose to write out the fermion bilinears explicitly when necessary,

and not use supercovariant expressions.
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used as conventional constraints. This is different from usual (semi-)Riemannian geometry
where the affine connection can be chosen to be symmetric without loss of generality. Here,
however, this implies that generic TSNC geometries have intrinsic torsion [51]

T ρµν = 2 Γρ[µν] = Rµν

(
HA

)
τA

ρ ,

with Rµν

(
HA

)
= eµ

A′eν
B′ τA′B′

A + 2 e[µ
A′τν]B τA′

{BA} , (B.2)

where Rµν(HA) ≡ 2 ∂[µτν]
A − 2

(
εAB ω[µ + δAB b[µ

)
τν]

B is the covariant version of τµνA =
∂[µτν]

A. Note that the independent components in the torsion tensor are equivalent to
what we refer to as the DSNC-torsion components in the main text. Phrased differently
— setting T ρµν = 0 is equivalent to imposing DSNC geometry (1.2). Similarly, the self-dual
DSNC geometry (1.7) that is relevant to this paper is equivalent to imposing T ρµντρ− = 0
(and, analogously, anti self-dual DSNC ⇔ T ρµντρ

+ = 0). By using the above and solving
the remaining conventional contraints in (B.1), one finds the following explicit expressions
for the spin connections

bµ = eµ
A′ τA′A

A + τµ
A∂Aφ , (B.3a)

ωµ =
(
τµ
AB − 1

2 τµ
CτABC

)
εAB − τµA εAB∂Bφ , (B.3b)

ωµ
AA′ = −eµAA

′ + eµB′e
AA′B′ + 1

2 ε
A
B hµ

BA′ + τµBW
BAA′ , (B.3c)

ωµ
A′B′ = −2 eµ[A′B′] + eµC′e

A′B′C′ − 1
2 τµ

A εAB h
BA′B′ , (B.3d)

where eµνA
′ = ∂[µeν]

A′ . However, not all components can be solved for, which is reflected by
the undetermined WABA′ which is traceless symmetric in the (A,B) indices, but otherwise
arbitrary. Since all the relevant expressions — such as action, equations of motion, and
symmetry transformation rules — follow from a limit it is clear that nothing depends on W ,
see also [6]. The constraints (B.1) can furthermore be used to give the explicit expression
for the “affine” connection19

Γρµν = τA
ρ
(
∂µτν

A − ωµ εABτνB − bµ τνA
)

+ eA′
ρ
(
∂µeν

A′ − ωµA
′B′eνB′ + ωµ

AA′τνA
)
.

(B.4)

Apart from the “metric-compatible” covariant derivative ∇µ as defined in (B.1c) and (B.1d)
we use two more covariant derviatives for the local Galilean and dilatation symmetries. It
is useful to distinguish between a derivative Dµ = Dµ(ω, ωA′B′ , b) that is covariant with
respect to SO(1, 1) × SO(8) and dilatations, and one Dµ = Dµ(ω, ωA′B′ , ωAA′ , b) that is
covariant with respect to all local Galilean symmetries and dilatations. In other words, the
two derivatives differ by a covariantization with respect to Galilean boosts, schematically

Dµ = Dµ − δG
(
ωµ

AA′
)
. (B.5)

19Note that this expression is not invariant under Galilean boosts. Hence it is a slight abuse of language
to call it an affine connection. It would be interesting to find a boost invariant connection for torsional
string Newton-Cartan geometries following the procedures outlined in [52, 53] or [54].
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To clarify the difference, let us write (B.1d) in the following equivalent ways: ∇µeνA
′ =

Dµeν
A′ − ΓρµνeρA

′ = DµeνA
′ + ωµ

AA′τνA − ΓρµνeρA
′ .

Finally, we give the full covariant curvatures corresponding to the gauge field of Dilata-
tions (D), SO(1, 1)−rotations (M), Galilean boosts (G), and SO(8)−rotations (J). These
are the expressions that appear in the bosonic equations of motion:

Rµν(D) = 2 ∂[µbν]+2 e[µ
A′ων]

BB′ τA′B′B + 2 τ[µ
A ων]A

A′ ∇A′φ , (B.6a)

Rµν(M) = 2 ∂[µων] + 2 εAB e[µ
A′ων]

AB′ τA′B′
B

− 4 τ[µ
Aων]

BB′ εB
CτB′{AC} + 2 εAB τ[µ

Aων]
BB′ ∇B′φ , (B.6b)

Rµν(G)AA′ = 2 ∂[µων]
AA′ − 2 εAB ω[µων]

BA′ − 2ω[µ
A′B′ων]

A
B′ + 2 b[µων]

AA′

− 4 e[µ
B′
(
ων]B

[A′τB
′]{AB} − 1

4 ε
AB ων]BC′ h

A′B′C′
)
, (B.6c)

Rµν(J)A′B′ = 2 ∂[µων]
A′B′ + 2ω[µ

A′C′ων]
B′
C′

+ 2 e[µ
C′
(

2ων]
C[A′τB

′]
C′C−ων]CC′τ

A′B′C
)

+ 8 τ[µ
A
(
ων]

B[A′τB
′]
{AB} −

1
8 εA

B ων]BC′h
A′B′C′

)
. (B.6d)

These curvatures satisfy a number of non-trivial Bianchi identities, some of which can be
found in [6]. There are several SO(1, 1) × SO(8)−singlets that one can define from the
above, for example

R(J) ≡ −eA′µeB′ν Rµν(J)A′B′ , (B.7)

which appears explicitly in the pseudo-action (3.17a).

C Bosonic equations of motion and killing spinor equations

Here, we provide the bosonic truncation of both the NR bosonic field equations and the
transformation rules of the fermionic fields. The truncated bosonic field equations comprise
the field equations that follow from the variation of the NR action in (3.1),

〈φ〉 = ∇A′∇A′φ−
(
∇A′φ

)2 + 1
4 R(J)− 1

48 hA
′B′C′h

A′B′C′ − τA′{AB}τA
′{AB} , (C.1a)

〈τ〉{AB} = 4
(
∇B′ − 2 (∇B′φ)

)
τB
′
{AB} , (C.1b)

〈τ〉AA′ = 2 RAC′(J)A′C
′ − 4∇A∇A′φ− 4∇BτA′{AB} , (C.1c)

〈e〉A′B′ = −2 RC′(A′(J)B′)C
′ − 4∇(A′∇B′)φ+ 1

2 hA
′C′D′hB′

C′D′

+ 8 τA′{AB}τB′{AB} + 4 δA′B′〈φ〉 , (C.1d)

〈e〉A′A = 2
(
∇B′ − 2 (∇B′φ)

)
τB
′
A′A + 4 τB′{AB}τB′A′B + εAB hA′B′C′τ

B′C′B , (C.1e)

〈b〉AB = 2 εAB τA′B′CτA
′B′C , (C.1f)

〈b〉A′B′ =
(
∇C′ − 2 (∇C′φ)

)
hC
′
A′B′ + 2 εAB∇AτA′B′B , (C.1g)
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and the Poisson equation that follows from the supersymmetry transformation of the miss-
ing fermionic field equations, as explained in section 4.2,

〈P 〉 ≡ RAA′(G)AA′ + εABRAB(M) = 0 , (C.2)

where the metric-compatible covariant derivative ∇µ and the covariant curvatures with
respect to the NR bosonic symmetries are defined in appendix B.

The Killing spinor equations of the NR minimal supergravity are given by

δλ−=∇A′φΓA′ε−−
1
12 hA

′B′C′ΓA
′B′C′ε−+η− = 0 , (C.3a)

δλ+ =∇A′φΓA′ε+−
1
12 hA

′B′C′ΓA
′B′C′ε++ 1

2 τ
A′B′+ΓA′B′+ε− = 0 , (C.3b)

δψµ−=Dµε−−
1
2 ωµ

−A′Γ−A′ε+−
1
8 eµ

C′hA′B′C′ΓA
′B′ε−+τµ+ρ− = 0 , (C.3c)

δψµ+ =Dµε+−
1
8 eµ

C′hA′B′C′ΓA
′B′ε++(eµB

′
τB′

A′++τµ−τA
′++)ΓA′+ε−+ 1

2 τµ
+Γ+η− = 0 .

(C.3d)

The fermionic completion of the bosonic field equations in (C.1) can be easily obtained
from the NR action and does not play a role in defining background solutions. However,
the complete Poisson equation can only be derived from the NR action indirectly. Thus,
we give terms quadratic in fermions in the Poisson equation for completeness:

〈P 〉
∣∣∣∣
λλ

= −2 λ̄−ΓADAλ− , (C.4a)

〈P 〉
∣∣∣∣
λψ

= 4 λ̄−ΓAB′τAµeB′νD[µψν]− + 3 λ̄−ΓABτAµτBνD[µψν]+ + λ̄+ΓABτAµτBνD[µψν]−

+ 2 ψ̄B′−ΓAB′DAλ− − 2 ψ̄A−ΓAB′DB′λ− + 3 ψ̄B−ΓABDAλ+ + ψ̄B+ΓABDAλ−

+DA
(
λ̄±ψA∓

)
+ 1

6 hA
′B′C′

(
ψ̄D−ΓDA′B′C′λ−

)
, (C.4b)

〈P 〉
∣∣∣∣
ψψ

= DA
(
ψ̄B′±ΓB′ψA∓ + 2ψ̄B+ΓBψA+

)
+DC′

(
2 ψ̄A−ΓAψC′− + ψ̄A+ΓC′ABψB−

)
+ 2 ψ̄A−ΓAB′C′eB′µeC′νD[µψν]− + 4 ψ̄C′−ΓAB′C′τAµeB′νD[µψν]−

+ ψ̄C′+ΓABC′τAµτBνD[µψν]− + 2 ψ̄B+ΓABC′eC′µτνAD[µψν]−

+ 3 ψ̄C′−ΓABC′τAµτBνD[µψν]+ + 6 ψ̄A−ΓABC′τBµeC′νD[µψν]+

+ 4 εABDC′φ
(
ψ̄A+ΓC′ψB−

)
− 4 τC′{AB}

(
ψ̄C′−ΓAψB−

)
+ 1

4 hA
′B′C′

(
ψ̄D′−ΓA′B′C′D′EψE−

)
+ 1

6 hA
′B′C′

(
ψ̄D+ΓA′B′C′DEψE−

)
. (C.4c)

D Closure of the non-relativistic super-algebra

This section gives some details on how the algebra is realized on fields by describing some
commutation relations involving the zeroth order of relativistic supersymmetry rules (de-
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noted with δ(0)
Q ) and some commutators involving S and T -symmetries. We recall that δ(0)

Q

coincides with non-relativistic supersymmetry for the bosonic fields while it contains also
extra S- and T -symmetry transformations for fermionic fields, see (2.16). We will not list
the fully field-dependent parameters. It is to be understood that the realizations below
hold provided the self-dual DSNC constraint is imposed.

Boost-δ(0). The commutator between boosts and δ(0)
Q closes on symmetries as follow[

δG
(
λAB

′)
, δ

(0)
Q (ε−)

]
= δT

(
ρ′−
)
, (D.1a)[

δG
(
λAB

′)
, δ

(0)
Q (ε+)

]
= δ

(0)
Q

(
ε′−
)

+ δS(η′−) + δT (ρ′′−) , (D.1b)

with parameters

ε′−= 1
2λ

A′−Γ−A′ε+ , (D.2a)

ρ′−= 1
2
(
∂A′λB′

−+λC′−eA′B′C
′+2λ−A′τ−B′−−λ−C

′
ψA′−ΓC′ψB′+

)
ΓA′B′ε− , (D.2b)

ρ′′−= 1
2
(
∂−λA

′−+2λB′−e+
A′B′+2λA′−τ+−

−+2λ−B′τν+e
ρA′ψ[ν−ΓB′ψρ]+

)
Γ−A′ε+ , (D.2c)

η′−= 1
2
(
∂A′λB′

−+λC′−eA′B′C
′+2λ−A′τ−B′−−λ−C

′
ψA′−ΓC′ψB′+

)
Γ+A′B′ε+ . (D.2d)

Only one component of the boost parameter, λ−A′ appears in the r.h.s. of (D.1). If λ−A′ = 0
the commutators above reduce to an Abelian algebra.

Dilatation-δ(0). The commutator between the emerging dilatation symmetry and δ
(0)
Q

closes as follows [
δD (λD) , δ(0)

Q (ε+)
]

= δ
(0)
Q

(
ε′+
)

+ δS
(
η′−
)
, (D.3a)[

δD (λD) , δ(0)
Q (ε−)

]
= δ

(0)
Q

(
ε′−
)

+ δS(η′′+) + δT (ρ−) , (D.3b)

where

ε′± = ∓1
2λDε± , ρ− = −∂+λDε− , (D.4a)

η′− = ΓAτµA∂µλDε+ , η′′− = 2ΓA′ε−∂A′λD . (D.4b)

S-symmetry-δ(0). The commutator between S-symmetry and δ(0)
Q gives[

δS (η−) , δ(0)
Q (ε−)

]
= δG

(
λAB

′

(S−)

)
+ δS

(
η(S−)

)
+ δT

(
ρ(S−)

)
, (D.5a)[

δS (η−) , δ(0)
Q (ε+)

]
= δL

(
λAB(S+)

)
+ δD

(
λD(S+)

)
+ δS

(
η(S+)

)
+ δT

(
ρ(S+)

)
, (D.5b)

where

λA
′+

(S−) = 0 , λA
′−

(S−) = 1
2ε−ΓA′−η− , (D.6a)

λAB(S+) = −1
2ε

AB(ε+η−) , λD(S+) = 1
2(ε+η−) (D.6b)

We note that dilatation appears only in the right hand side of (D.5b).
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T-symmetry-δ(0). Commutation relations between T-symmetry and δ(0)
Q close as follow

[
δT (ρ−) , δ(0)

Q (ε+)
]

= δG
(
λAB

′

(T+)

)
+ δS

(
η(T+)−

)
+ δT

(
ρ(T+)−

)
, (D.7a)[

δT (ρ−) , δ(0)
Q (ε−)

]
= δT

(
ρ(T−)−

)
, (D.7b)

with

λA
′+

(T+) = 0 , λA
′−

(T+) = −ε+ΓA′ρ− . (D.8)

δ(0)-δ(0). The commutators between two δ(0)
Q transformations close on the algebra as[

δ
(0)
Q (η+) , δ(0)

Q (ε+)
]

= Lξ(++) + δ
(0)
Q

(
ε(++)+

)
+ δ

(0)
Q

(
ε(++)−

)
+ δL

(
λ(++)

)
+

+ δθ
(
θ(++)

)
+ 〈EOM〉 , (D.9a)[

δ
(0)
Q (η+) , δ(0)

Q (ε−)
]

= Lξ(+−) + δ
(0)
Q

(
ε(+−)+

)
+ δ

(0)
Q

(
ε(+−)−

)
+ δL

(
λ(+−)

)
+

+ δθ
(
θ(+−)

)
+ δT

(
ρ(+−)−

)
+ δS

(
η(+−)−

)
+ 〈EOM〉 , (D.9b)[

δ
(0)
Q (η−) , δ(0)

Q (ε−)
]

= δ
(0)
Q

(
ε(−−)−

)
+ δL

(
λ(−−)

)
+ δθ

(
θ(−−)

)
+ δT

(
ρ(−−)−

)
+ 〈EOM〉 ,

(D.9c)

where δθ denotes the 1-form gauge symmetry δθbµν = 2 ∂[µθν]. The symbol δL collec-
tively denotes longitudinal SO(1, 1) Lorentz, transverse SO(8) rotations, and Galilean boost
transformations,

ξµ(++) = ξA(++)τA
µ , ξµ(+−) = ξA

′

(+−)eA′
µ , λAB(−−) = 0 , (D.10a)

θ(++)µ = bµνξ
ν
(++) , θ(−−)µ = −2 τµAξA(−−) , θ(+−)µ = bµνξ

ν
(+−) − eµA′ξ

A′

(+−) , (D.10b)

and we have used LX to denote Lie derivative, 〈EOM〉 to define terms proportional to the
equations of motion, and the notation

ξA(++) = ε̄+ΓAη+ , ξA(−−) = ε̄−ΓAη− , ξA
′

(+−) = ε̄−ΓA′η+ . (D.11)

Dilatation-S/T Symmetry. The commutation rules between dilatation and S- and T-
Symmetries are

[δD (λD) , δT (ρ−)] = δT

(3
2λDρ−

)
, [δD (λD) , δS (η−)] = δS

(1
2λDη−

)
. (D.12)

Boost-S/T Symmetry. The commutation rules between boost and S and T-symme-
tries are

[δG (λAB′) , δT (ρ−)] = 0 , [δG (λAB′) , δS (η−)] = δT

(
−1

4λAB
′ΓAB′Γ+η−

)
. (D.13)

S/T Symmetry-S/T Symmetry. S and T-symmetries define an Abelian algebra:[
δT (ρ−) , δT

(
ρ′−
)]

= 0 ,
[
δS (η−) , δS

(
η′−
)]

= 0 , [δT (ρ−) , δS (η−)] = 0 . (D.14)
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E non-relativistic D = 10 super-Yang-Mills

In this section, we present a consistent non-relativistic string limit of ten-dimensional super
Yang-Mills (SYM) theory [55] in flat space. Moreover, we will show that the multiplet
structure is compatible with the soft algebra derived in section D. Thus it is suggestive
that one can, in principle, couple this theory via a Noether procedure to N = 1 supergravity
along the lines of [38]. Essentially, this section is independent of the rest of the paper. We
do, however, use the same notation and conventions as explained in A.

We will show that there is one unique re-scaling Ansatz giving rise to a regular limit
c→∞. Remarkably, this requires an an-isotropic re-scaling of the gauge field. Typically,
such an Ansatz would break the spacetime symmetries of the theory. However, since we
are working with a 2-foliation structure, we can introduce an-isotropic re-scalings in the
longitudinal lightcone directions, which is consistent with the diagonal SO(1, 1)×SO(8) part
of Lorentzian symmetries. We show that this leads to a theory with 16 supercharges, defined
on flat space with a two-dimensional foliation. We give the re-scaling Ansatz (E.3)/(E.4),
the non-relativistic multiplet structure (E.9), and the action for NR SYM (E.7).

Let us start by reviewing the relativistic theory [55]. The ten-dimensional SYM on-
shell multiplet is described by a gauge field Aµ

I and a gaugino XI , both in the adjoint
representation of some gauge group G. The gaugino is a right-handed Majorana-Weyl
fermion. The action

S = 1
g2

∫
d10X

{
−1

4 Fµν
IFµνI − X̄I /DXI

}
(E.1)

is invariant under 16 supercharges with parameter ε

δAµ
I = ε̄ΓµXI , δXI = −1

4 Γµνε FµνI , (E.2)

where DµX
I = ∂µX

I + f IJK Aµ
JXK , and FµνI = 2 ∂[µAν]

I + f IJKAµ
JAν

K .
Let us now define a non-relativistic limit by introducing a (dimensionless) contraction

parameter c. We choose this Ansatz such that the limit c→∞ is well-defined both in the
symmetry transformation rules and the action. In order to get Galilean boost symmetries
with parameter λAA′ = c−1ΛAA′ we rescale the flat coordinates Xµ = (X0, X1, XA′=2,··· ,9)
as X± = (X0 ±X1)/

√
2 = c x± and XA′ = xA

′ . (This can be seen as the flat space limit
of (2.6).) It is not a priori clear how to choose a consistent Ansatz for the fields (AµI ,XI)
— hence we parametrize different choices with four to-be determined parameters α/β/γ/δ

Aµ
I dXµ = cα aI dx+ + cβ bI dx− + cγ cA′

IdxA′ , XI = cδ+1/2 χI+ + cδ−1/2 χI− , (E.3)

which is equivalent to expressing AµI = (A+
I , A−

I , AA′
I) as aI = c1−αA+

I , b = c1−βA−
I ,

cA′
I = c−γ AA′

I , and χI± = c−δ∓1/2Π±XI . Note that the re-scaling of χI+ and χI− differ by
a relative power of c1. This has been chosen so that the fermions transform appropriately
under Galilean boosts, see (E.8).

Let us now constrain the parameters α/β/γ/δ by requiring that the limit c → ∞ is
well-defined. In other words, we choose the parameters such that there are no positive
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powers of c in the symmetry rules. This gives a number of constraints — such as β ≥ 2
from δbI = c2−β ε̄+Γ−χI+ — that are enough to uniquely fix

α = 0 , β = 2 , γ = 0 , δ = 0 , (E.4)

It is remarkable that we are led to an an-isotropic limit, where the gauge field in the X−/x−

direction bI = c−1AI− is re-scaled differently from the rest — see (E.3). Note, that this is
only compatible with the bosonic symmetries of the theory due to the lightlike nature of
this direction since under longitudinal SO(1, 1) rotations δA±I = ±ΛM A±

I . It would be
interesting to see whether similar limits can be taken for other foliation structures, too.

Let us now consider the non-relativistic symmetries that follow after taking the limit
c → ∞. First of all, the an-isotropic rescaling implies that the bI = c−1AI− field becomes
a matter field under gauge transformations

δθa
I = ∂+θ

I − f IJK θJaK , δθcA′ = ∂A′θ
I − f IJKθJcA′K ,

δθb
I = −f IJK θJaK , δθχ

I
± = −f IJKθJχK± , (E.5)

which motivates the introduction of the following covariant expressions

fA′B′
I ≡ 2 ∂[A′cB′]

I + f IJK cA′
JcB′

K (E.6a)
fA′

I ≡ ∂+cA′
I − ∂A′aI + f IJKa

JcA′
K , (E.6b)

DA′b
I ≡ ∂A′bI + f IJKcA′

JbK , (E.6c)
D+b

I ≡ ∂+b
I + f IJKa

JbK , (E.6d)

and similarly for the fermions. Here and in the following we take ∂A′ = ∂/∂xA
′ and

∂± = ∂/∂x±. Similarly, it is not hard to see that the limit of the action (E.1) is well
defined with SNR = limc→∞ c

−2 S,20 and explicitly given by

SNR = 1
g2

∫
d10x

{
− 1

4 fA
′B′

IfA
′B′I − fA′IDA′b

I +D+b
I D+b

I

− 2 χ̄I−γA
′
DA′χ

I
+ − χ̄I+Γ+D+χ

I
+ + fIJKb

J χ̄I−Γ−χK−
}
. (E.7)

Remarkably this action (and, relatedly, none of the equations of motion) contains a deriva-
tive in the x− direction. This observation makes it tempting to perform a dimensional
reduction along the ∂/∂x1 direction leading to a theory in nine dimensions with a one-
dimensional foliation structure. Some aspects of such Galilean gauge theories have been
studied in [13, 48, 49, 56, 57].

Let us now study the symmetries of the non-relativistic SYM action (E.7). The theory
is manifestly invariant under Yang-Mills tranformations (E.5) and Galilean symmetries.
The action of the diagonal part SO(1, 1)× SO(8) is as expected from the index structure.
The Galilean boosts, however, act non-trivially

δGa
I = −λ−A′cA′I , δGcA′

I = −λ−A′bI , δGb
I = 0 ,

δGχ
I
− = 1

2 λ
−
A′Γ−A′χI+ , δGχ

I
+ = 0 , (E.8)

20Alternatively one could define an effective non-relativistic coupling gYM = c−1g.
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showing that the multiplet forms a reducible, yet in-decomposable representation of the
Galilei algebra. Furthermore, just as the relativistic parent theory, the non-relativistic
action (E.7) is invariant under 16 supercharges with parameters (ε+, ε−), and transforma-
tion rules

δaI = ε̄−Γ+χ
I
− , (E.9a)

δbI = ε̄+Γ−χI+ , (E.9b)
δcIA′ = ε̄+ΓA′χI− + ε̄−ΓA′χI+ , (E.9c)

δχI+ = −1
4 ΓA′B′ε+fA′B′I + 1

2Γ−A′ε−DA′b
I − 1

2 ε+D+b
I , (E.9d)

δχI− = −1
4 ΓA′B′ε−fA′B′I −

1
2Γ+A′ε+ fA′

I + 1
2 ε−D+b

I . (E.9e)

It is not hard to see that these transformations close on the symmetries of the theory.
Boost commute with supersymmetry as follows[

δG
(
λAA

′)
, δ (ε+)

]
= δ

(
ε′− = 1

2 λ
−A′Γ−A′ε+

)
,

[
δG
(
λAA

′)
, δ (ε−)

]
= 0 , (E.10)

which shows that one can in principle truncate to a theory with 8 supercharges by setting
ε+ = 0. However, this contraction does not allow for an interesting superalgebra closing
on spacetime translations, as can be seen from

[δ (η+) , δ (ε+)] = ξ(++)∂+ + δθ
(
−ξ(++)a

I
)
, (E.11a)

[δ (η−) , δ (ε−)] = δθ
(
−ξ(−−)b

I
)
, (E.11b)

[δ (η+) , δ (ε−)] = ξA
′

(+−)∂A′ + δθ
(
−ξA′(+−)cA′

I
)
, (E.11c)

where ξ(++) = ε̄+Γ+η+, ξ(−−) = ε̄−Γ−η−, and ξA
′

(+−) = ε̄−ΓA′η+. Just as in the relativistic
theory these commutators close off-shell on the bosonic fields and on-shell on the fermionic
ones. Remarkably this superalgebra is compatible with the N = 1 superalgebra derived
in section D. As mentioned above, this is an encouraging observation suggesting that the
non-relativistic SYM multiplet can be coupled to the minimal supergravity theory studied
in this paper along the lines of [38]. We hope to return to these questions soon.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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