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Research Article

A multi-robot allocation model
for multi-object based on Global
Optimal Evaluation of Revenue

Xun Li1,2 , Zhi Zhang1 , Dan-Dan Wu1, Michel Medema2

and Alexander Lavozik2

Abstract
The problem of global optimal evaluation for multi-robot allocation has gained attention constantly, especially in a multi-
objective environment, but most algorithms based on swarm intelligence are difficult to give a convergent result. For solving
the problem, we established a Global Optimal Evaluation of Revenue method of multi-robot for multi-tasks based on the real
textile combing production workshop, consumption, and different task characteristics of mobile robots. The Global Optimal
Evaluation of Revenue method could traversal calculates the profit of each robot corresponding to different tasks with global
traversal over a finite set, then an optimization result can be converged to the global optimal value avoiding the problem that
individual optimization easy to fall into local optimal results. In the numerical simulation, for fixed set of multi-object and
multi-task, we used different numbers of robots allocation operation. We then compared with other methods: Hungarian,
the auction method, and the method based on game theory. The results showed that Global Optimal Evaluation of Revenue
reduced the number of robots used by at least 17%, and the delay time could be reduced by at least 16.23%.
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Introduction

With the emergence of a large number of robots in various

production work scenarios, the research of multi-robot sys-

tems (MRS) has become an essential field in the study of

robot control. Especially for a multi-object and multi-robot

system, real-time and reasonable task allocation is neces-

sary for a high-efficiency production. It is a great challenge

to find the optimal value of multi-task allocation for an

MRS. Many scholars simply summarize the task allocation

problem as assigning different robots to corresponding

tasks with consistent strategies or assigning reasonable

objects to a given group of tasks and robots. However, such

assignment sometimes may fail to finish multi-task on time

or not the maximum of tasks.

The MRS has been applied in workshop transportation,1

intelligent warehousing,2 emergency rescue,3 and

1School of Electronic and Information, Xi’an Polytechnic University, Xi’an

Shaanxi, China
2 Bernoulli Institute, Faculty of Science & Engineering, University of

Groningen, Groningen, the Netherlands

Corresponding authors:

Xun Li, School of Electronic and Information, Xi’an Polytechnic University,

Xi’an Shaanxi 710048, China; Bernoulli Institute, Faculty of Science &

Engineering, University of Groningen, Groningen 9747GA, the Netherlands.

Email: lixun@xpu.edu.cn

Zhi Zhang, School of Electronic and Information, Xi’an Polytechnic

University, Xi’an Shaanxi 710048, China.

Email: z_zhang1213@163.com

International Journal of Advanced
Robotic Systems

November-December 2021: 1–18
ª The Author(s) 2021

Article reuse guidelines:
sagepub.com/journals-permissions

DOI: 10.1177/17298814211060650
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0001-7749-2902
https://orcid.org/0000-0001-7749-2902
https://orcid.org/0000-0003-2231-3270
https://orcid.org/0000-0003-2231-3270
mailto:lixun@xpu.edu.cn
mailto:z_zhang1213@163.com
https://sagepub.com/journals-permissions
https://doi.org/10.1177/17298814211060650
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F17298814211060650&domain=pdf&date_stamp=2021-12-09


exploration of dangerous and unknown battlefield environ-

ment.4 The reasonable assignment of tasks, the reduction of

response time, and the combination of optimal paths will

still be studied. According to the existing MRS, the solution

of the multi-robot-multi-object-multi-task problem as

assigning r robots to k desired object positions to perform

n tasks at time t. There is r�k�n three-dimensional task

solving set. The data in the task solving set increase expo-

nentially, when the number of objects, tasks, and the num-

ber of robots increases.

As the reasons stated above, merely thinking about task

allocation, we found the following critical issues. The first

question is how to describe the influence of mutual pertur-

bations of robots on the optimization process. The behavior

of multiple robots is determined by interaction, which

could also be essential a single robot in a group of mobile

robots. The second question is how to respond to sensitive

time constraints. The third question is how to avoid the

problem that for the optimization model in swarm intelli-

gence, optimization value is challenging to converge in the

process of multi-robot optimization infinite space. The

final question is for an MRS, how the optimal result of

multi-task allocation could effectively utilize data after

balancing the benefits, such as path planning, energy con-

sumption, and carrying capacity.

To solve these issues and obtain the optimal profit

model, we introduce a new global optimal evaluation

method. In this article, the determined optimal solution is

obtained by global traversal of the set of finite space and

finite tasks. At the same time, the profit value of each robot

corresponding to the human is calculated, and the final

optimization result converges to the global optimal. We

first mathematically abstract the profit and consumption

of tasks performed by a robot. Then we applied the optimal

profit model to the multi-robot multi-task assignment. The

multi-mobile robot system was applied to the multi-object

and multi-task environment by analyzing the basic and

necessary parameters: the power loss of robot’s operation,

the revenue from the execution of virtual tasks, and the

addition of path replanning in the allocation. Then the opti-

mal allocation was set. A sub-model was established for

improving the gain value acquisition method of game the-

ory in the global optimization process. In the process of

numerical simulation, the global revenue optimization

matrix was constructed by deterministic results. The global

revenue optimization matrix is used to solve the problems

of a limited set of multi-objective-multi-task assignments

in the indoor environment. Finally, we applied the Global

Optimal Evaluation of Revenue (GOER) model to the

simulation environment of the distribution process of yarn

reel handling tasks in the combing workshop of the actual

textile enterprise. The execution response of all tasks in one

iteration is completed within a limited time range, which

verifies the maximum global revenue value that the model

could obtain and converges.

For the given object set, task set, and robot set, this

article makes the following contributions:

(1) We proposed a multi-task-multi-robot allocation

model based on the GOER for a limited set. Under

the constraints of limited space and a small task

set, the model obtains a deterministic optimal solu-

tion through a global traversal method;

(2) For the limited task state, the model can be used to

obtain the optimal number of robot matching under

the constraints of tasks and robot characteristics;

(3) Carry out multiple iterations of the optimal path

planning of the individual robot to obtain a path

planning method oriented to the global optimal

solution, and the optimal value converges.

The division of labor in the remaining chapters of this

article is as follows:

Related work part briefly introduces some assignment

methods involved in this article.

Model of GOER mainly introduces the process of goer

optimal model from the description Of multi-object and

multi-task to the establishment of revenue model and also

describes the realization of GOER algorithm.

Experiments and data analysis part were carried out to

describe and analyze the task assignment results from

experimental Settings. Meanwhile, comparative experi-

ments were added to illustrate the superiority of GOER

algorithm.

Conclusion gives a general description of the content of

this article, analyzes the content of this article and its prac-

tical application, and points out the work that needs to be

completed in the next research stage.

Related work

The task allocation of robots is a research hotspot in the

field of multi-robots. The existing application research that

mainly solves the problem of MRS is as follows: In a

limited time, the object task allocation set could be

responded to and executed by the provided multi-robot

groupset. It is hoped that the optimal allocation of the

multi-task set allocation result could be obtained in a short

time. In this regard, the existing related research work is

mainly divided into centralized task allocation5,6 methods

and decentralized task allocation methods.

In the early research stage of multi-robot task assign-

ment method, most scholars adopt the centralized task

assignment mechanism. Because the mechanism has a cen-

tral control robot that collects and senses the environment

around it, makes calculations on the collected data, and

relays decisions to the lower robots. When the communi-

cation strength and computer power are limited, the robust-

ness and scalability of the system are poor. The centralized

method mainly includes heuristic algorithm, constrained

programming method, and integer programming method.
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In a centralized system, a robot is required to have the

global information of the system. The central control sys-

tem calculates the optimal or near-optimal decision-making

to maximize the efficiency of the MRS. Centralized

decision-making processes are usually modeled as integer

programming. Although these methods are able to find the

optimal solution, it is still necessary to use a decentralized

task allocation method to achieve the requirements of suf-

ficient information.

The distributed group structure can give full play to the

role of individual robot. Each individual can independently

collect information and make decisions. Moreover, individ-

uals can exchange information and make swarm intelli-

gence behavior. Because of the good robustness of

distributed system, most MRSs adopt distributed architec-

ture. The main methods of distributed task assignment

include market method, contract network method, and

immune system–based method.

In a decentralized system, each robot needs to make its

own decisions, which makes the system more flexible and

robust. Robots could collaborate to maximize the effi-

ciency of the system. Negotiation is an effective way for

decentralized robots to cooperate. But robots can only

negotiate in pairs once. If a robot wants to participate in

another talk, the robot needs to go offline and reprogram

to adjust the new negotiation protocol. The problem is that

the control method of the robot cannot be independent of

the protocol, but the protocol cannot be determined in

negotiation once. However, in different environments,

robots often need to complete other tasks with varying

members of the team.

In general, when the number of robots is large, the cen-

tralized system has poor robustness due to limited commu-

nication and computing capabilities, while distributed

system can well avoid this problem and realize swarm

intelligence behavior, which is also the inevitable choice

for the development of multi-robots in the future.

At present, there are mainly three types of existing

decentralized task allocation methods: optimization-

based, market-based, and game theory. Based on optimized

methods, the existence of a matrix waiting for the optimal

allocation solution at each iteration step provides a better

solution. Scholars have proposed a variety of optimization

models and algorithms using distributed computing and

cluster intelligence. Wu et al.7 suggested a dynamic ant

colony division of labor model, which is real-time and

flexible. Still, the simple division of labor out of the phys-

ical space makes it challenging to apply existing MRSs

directly. The improvement of Wu’s method is proposed

by Chen et al.8 The organization algorithm is a popular

multi-task assignment algorithm in recent years. The orga-

nization algorithm enables multi-robots to reach the desig-

nated object position without collision in an environment

with obstacles and allocates tasks reasonably in combina-

tion with path prediction. Less consideration is given to

issues such as cost and power energy consumption. Zhang

et al.9 introduce time constraints and robot capacity con-

straints to construct multi-task and multi-object allocation

model in dynamic environment. Su et al.10 propose a multi-

objective quantum particle swarm algorithm, which com-

bines timing constraints, collaborative constraints. Based

on the method, robot’s ability is constrained to perform

different tasks. However, the above two methods do not

consider time cost and priority issues. Simultaneously, it

is found in the process of numerical simulation that it is

easier to fall into the local maximum. Han et al.11 solve the

problem of falling into local optimality and propose a task

allocation method of transfer learning, which considers the

relationship between tasks and the impact of historical

experience on functions. Chopra et al.12 combined several

standard heuristic algorithms to design a genetic algorithm

for dynamic task allocation. Although optimization-based

methods have good exploratory properties and a wide range

of applications, it is challenging to develop appropriate

local decision rules.13 Therefore, most optimization-based

methods are used for centralized task allocation.

The auction algorithm is a typical market-based

method, which is an iterative process in which the bids

of multiple robots are compared to determine the best

offer, and the final transaction is obtained by the highest

bid.14 Attiya and Hamam15 proposed an auction algorithm

based on consensus and a bundled auction algorithm to

solve the task assignment method of autonomous robot

formation. Andrew et al.16 designed an improved auction

algorithm in a dynamic environment considering the com-

munication range of a limited agents. Although the

market-based method has good robustness and scalability,

it also has some shortcomings: lack of effective individual

control strategies and practical techniques; poor perfor-

mance when introducing necessary negotiation and pun-

ishment programs.

In recent years, research on distributed game decision-

making has emerged endlessly. Whether there is an exter-

nal authority to enforce the rules, games could be divided

into cooperative and noncooperative games. In the coop-

erative game, the feature alliance is first formed into a

game. The relationship between profit and loss is used to

solve the task distribution problem among multiple auton-

omous robots. Zhang et al.17 used the method of evolution-

ary game theory to study the evolution process of the

division of labor under three strategies and concluded that

the more massive synergy benefit is helpful to the signifi-

cant division of the system and provides higher services for

the MRS. In recent years, learning from game theory in

economics and applying heuristic improvements to task

allocation have solved the problems in the resource alloca-

tion of the robots above. However, this method needs to

consider the interests of both players. A balance is reached

between the two, and it is difficult to achieve the global

optimal or approximate global optimal. Choi HL et al.18

proposed a new framework based on a one-step environ-

ment of hedonic games. The framework has good

Li et al. 3



scalability and at least 50% sub-optimality, but this method

could not guarantee global convergence. For noncoopera-

tive games, we previously proposed a distributed autono-

mous decision-making framework based on multi-robot

game theory. The task model is established according to

the textile production task environment, the task distance

and time priority are considered, and the object utility func-

tion of the robot is used as the basis for strategy selection.

The equilibrium theory of the game is introduced to solve

the problem. However, this framework could not ensure the

efficiency of the Nash equilibrium and the convergence of

the algorithm.19

Therefore, according to the current research, this article

fuses the decision data of the robot in the distributed system

into the iterative process of traversal calculation of the

finite set global optimal allocation. This combination of

centralized and distributed methods avoids the one-to-one

determinism of robot and task execution.20 In this article,

the intelligent decision data part in the distributed system

and the optimal allocation part in the centralized system are

fused together, aiming to find a more flexible and efficient

algorithm, and the overall framework is still centralized

task allocation. At the same time, the profit value function

model draws on the idea of task cost increasing with time in

the study of Lu et al.21

Model of GOER

Description of multi-object and multi-task

Please refer to Table 1 for the symbols involved in this

article and their descriptions. For the model to be univers-

ality applicable, we do not limit specific and features of

objects. The features of objects are digitized. There are

limited types of tasks to be executed for the same object,

and then the set of k objects at time t can be expressed as

ObjectsðtÞ ¼ ðO1;O2; :::;OoÞ;o ¼ 1; 2; :::; k½ � (1)

The type of tasks that might need to be performed for the

o-th object is described as

TasksoðtÞ ¼ ðtasko
1; tasko

2; :::; tasko
j Þ;j¼ 1; 2; :::; n½ � (2)

The global task set at time t is shown in equation (3).

There are k�n task requirements

ObjectsðtÞT � TasksoðtÞ ¼

T 1
1 � � � T 1

n

..

. . .
. ..

.

Tk
1 � � � Tk

n

0
BB@

1
CCA (3)

Task location feature Po
j ðxðtÞ; yðtÞÞ, the location of the

task in response to demand is consistent with the site where

the task is executed, and its location feature does not

change with time.

Task value weight W o
j ðtÞ represents the current value of

the j-th task of the o-th object being executed; when the

weight is 0, the consumption is minimum. With the

increase of the load of the robot, the weight of the robot

also increases, and the power consumption of the robot also

increases. So, the greater the weight, the greater the power

consumption.

Waiting for priority feature Do
j ðtÞ, assuming that the

longer the waiting time of the task response, the higher

the priority of the response. The purpose is to make

the task with a long waiting time be responded to first.

We determined the waiting time by the robot group

completed the task at the last moment, as shown in equa-

tion (4)

Do
j ðtÞ ¼ operationo

ijðt � 1Þ þ distanceo
ijðt � 1Þ=vi (4)

In formula (4), operationo
ijðt � 1Þ and distanceo

ijðt � 1Þ=
vi are the operating time and motion time expressions of the

assigned robot i at the previous time t�1, respectively, and

vi is the speed of the i-th robot (vi represents the running

speed of the i-th robot. In the article, its value is expressed

by 1.6 m/s).

Table 1. List of symbols.

Symbol Description

Po
j ðxðtÞ; yðtÞÞ Task response location of object o

Wo
j ðtÞ Task weights of object o

Do
j ðtÞ Delay of time

Co
ijðtÞ The consumption of the J task of the I robot executing the o target at time t

powerijðtÞ The electric quantity used between the position of robot I at time t and the JTH task coordinate assigned to the O object
poweri Power of robot i
distanceo

ijðtÞ Manhattan distance between the position of robot I at time t and the JTH task coordinate assigned to the O object
Dlim Maximum delay time limit
Ho

ijðtÞ The income obtained by the i robot at time t when it performs the J task of the o target
HiðtÞ Profit matrix
Go

ij tð Þ Maximum profit value
A Global income value traversal matrix
Hm ho

i;j

� �
The global optimal m-th subpayoff matrix of the j-th task of the oth target performed by the i-th robot

GOi tð Þ Global optimal value
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Multi-task and single robot global revenue model

Consumption Co
ijðtÞ represents the consumption when the

i-th robot performs the j-th task of the o-th object at time t,

such as the consumption of electric power. We quantified

electric power according to the distance relationship with

assigned task

Co
ijðtÞ ¼ powerijðtÞ

.
poweri

� �
� distanceo

ijðtÞ (5)

Poweri is the current electric power of the i-th robot.

The powerijðtÞ and distanceo
ijðtÞ are the electric power

usage value and Manhattan distance between the position

RiðxðtÞ; yðtÞÞ of the robot at time t and the coordinates of the

j-th task assigned to the o-th object. powerijðtÞ is limited by

Poweri. When Poweri is less than powerijðtÞ, the robot

cannot reach the target point, and the robot needs to charge

at the charging pile. We could express the distance as

distanceo
ijðtÞ ¼ manhattanðRiðxðtÞ; yðtÞÞ;Po

j ðxðtÞ; yðtÞÞÞ
(6)

For the task, the longer the waiting time is, the higher the

priority is. The shorter the distance between the robot and the

task is, the higher the value is. Here, distance and wait time

are not both weighted into the allocation method. Distance

and waiting time are part of the value of a task. When a task

is executed, it first needs to be classified, that is, it is divided

into tasks of different classes with different waiting time and

tasks of different classes with different distance. In the same

class of tasks, the longer the waiting time is, the higher the

priority is. The waiting time is more important for task pri-

ority, because the longer the waiting time, the more the task

needs to be processed. At the same time, for the same type of

tasks, the shorter distance corresponds to less energy con-

sumption of the robot, so the distance is also used as one of

the priority evaluation criteria in this article.

Ho
ijðtÞ represents the income obtained when the i-th

robot executes the j-th task of the o-th object at time t.

We calculated the income value based on the maximum

delay time limit Dlim, as shown in equation (7)

Ho
ijðtÞ¼

ðDo
j ðtÞ �W o

j ðtÞÞ=Co
ijðtÞ ; Do

j ðtÞ � Dlim

W o
j ðtÞ=ðDo

j ðtÞ � DlimÞ � Co
ijðtÞ ; Do

j ðtÞ > Dlim

(

(7)

There is a profit matrix HiðtÞ for the object-task set corre-

sponding to robot i. We expressed HiðtÞ as equation (8)

HiðtÞ ¼

H 1
i1ðtÞ � � � H 1

inðtÞ
..
. . .
. ..

.

Hk
i1ðtÞ � � � Hk

inðtÞ

0
BB@

1
CCA (8)

For the guidance execution position of a single robot i at

the next moment, we selected the maximum profit value as

shown in equation (9)

Go
ijðtÞ ¼ max

H 1
i1ðtÞ � � � H 1

inðtÞ
..
. . .
. ..

.

Hk
i1ðtÞ � � � Hk

inðtÞ

0
BB@

1
CCA (9)

The task set was traversed to calculate its profitability

matrix Hi, and the object corresponding to optimal value

was obtained as the induction position of robot i, as shown

in Figure 1.

In Figure 1, the robot conducts traversal calculation on

the task set at the next moment to obtain the induced exe-

cution bit at the next moment and returns the position

Po
j ðx; yÞ to be executed and the Co

ijðtÞ consumed to the point

of execution to the robot. The robot moves to the induced

execution bit at the next moment according to the informa-

tion returned.

Multi-task and multi-robot global revenue model

Section “Multi-task and single robot global revenue mod-

el” could provide a straightforward and multi-task profit

optimal evaluation for the optimization of a single robot

with multiple tasks. Still, the following problems will

exist in an MRS:

(1) It is challenging to solve the situation where the

profit value of various robots for the same task is

equal, and the profit of the same robot is the same

for multiple tasks;

(2) There is a risk of “optimization without

replacement.” That is, when a robot takes a task

away, the task is no longer used for the optimal profit

evaluation of other robots in the task concentration.

It results in the inconsistency of the optimal local

value of the task and the global optimal value.

Figure 1. Schematic diagram of single robot multi-task
optimization.
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(3) The optimal summation of multiple individual

robots could not prove that it is globally optimal

in the multi-robot multi-task assignment process of

“optimization without replacement.”

Therefore, it is necessary to evaluate the distribution

income of all tasks to obtain the global optimal value of

all tasks to obtain the global optimal value.

First, at time t, we put the possible profit values of the

robot set and the multi-objective-multi-task set into the

same global profit value matrix, as shown in equation (10)

TotalðtÞ¼ H 1ðtÞ; H 2ðtÞ; :::;HmðtÞ½ �;m¼ ð1; 2; :::; r�n�kÞ
(10)

The number of sub-matrices of global profit matrix is r,

which is same as the number of robots that could work at

time t.

Each time a return value is taken for each income sub-

matrix, we calculate the sum value. We formed a global

income value traversal matrix A (All), as shown in

equation (11)

(11)

The gain value in formula (11) is to ensure the unique-

ness of the object task being executed. We determined the

combination of each row in the recipe (12) by the formula

(11) to be unique

ðho
i;j; :::; h

a
c;bÞ ho

i;j 2 TotalðtÞ; i 6¼ c 2 ð1; 2; :::; rÞ
� �� ����

\ o 6¼ a [ j 6¼ bð Þ (12)

Then we obtained the Global Optimal (GO) value

GOiðtÞ ¼max
Xr

i¼1
Hm ho

i;j

� �
;m¼ 1; 2; :::; r�n�k (13)

Through equation (13), the value of the individual robot

under the global optimal evaluation condition, Hm ho
i;j

� �
,

can be obtained, which corresponds to the global optimal

m-th sub income matrix. The corner mark of Hm ho
i;j

� �
indicates that the i-th robot performs the j-th task of the

o-th object. We show the multi-robot multi-task of task

allocation in Figure 2.

In Figure 2, multiple robots traverse the task set at the

same time. After this process is completed, each robot will

get a profit value ho
i;j and the induced execution bit Go

ijðtÞ.
The profit values of all robots are placed in the matrix to

form the traversal matrix Hm ho
i;j

� �
of global profits. By

calculating the ergodic matrix Hm ho
i;j

� �
of global revenue,

the global optimal value GO can be obtained, and the

uniqueness of the task to be executed can be guaranteed.

The calculated optimal value is reassigned to the induced

execution bit, and the robot’s execution bit at the next

moment is obtained, so as to ensure that the robot’s position

at the next moment is optimal.

Algorithm implementation

The implementation process of the algorithm is shown in

Figure 3.

1). Data initialization

To prove the universality of the model in this article, we

use random data when obtaining the initial object working

point position and robot distribution coordinates. The func-

tion receives the coordinate value.

Data initialization

Determine the Object_number and Robot_numberrandom
‘‘‘Object position random arrangement with Object_number’’’
arr ¼ 1
while arr < Object_number:

x(o) ¼ random.randint(99,0), y(o) ¼ random.randint(99,0)
for j in range (1, arr):

if x(o) !¼ x(j) or y(o) !¼ y(j): # Ensure that each initial position of Object do not overlap
object_position(o) ¼ (x(o), y(o))
object_position_arr ¼ np.append(object_position_arr, object_position(o))
arr ¼ np.linalg.matrix_rank (object_position_arr)

else: arr ¼ arr
Dj

o(t) ¼ random.randint [1, 130) # waiting time initialization
end

end
end
‘‘‘ Robot position random arrangement with Robot_number’’’
r ¼ 1

(continued)
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4). Assignment task uniqueness

The result of global optimization is that corresponding

to the optimal value of one allocation, multiple robots may

adapt to a task, respectively, or one or more tasks may

adapt to the execution of one robot. To ensure the unique-

ness of the assigned tasks, we defined when multiple allo-

cation plans correspond to the optimal value of one

allocation plan, we only executed the allocation plan that

appears for the first time.

(continued)

Data initialization

while r < Robot_numeber: #Obtaining random object coordinates

robot_position (r) ¼ (random.randint (99,0), random.randint (99,0)) #Simuliation of 100 square meters
for j in range (0, r):

for o in range(0, Object_number):
if robot_position (r) !¼ object_position (r)and robot_position (r) !¼ Object_number(o):
robot_position_arr ¼ np.append(robot_position_arr, robot_position(r))
r ¼ np.linalg.matrix_rank (robot_position_arr)
else r ¼ r
Wj

o(t) ¼ random.randint (1, 2, 4, 5) # Randomly define the task value weight
end

end
end

end

poweri ¼ random.randint (1:10) # Current battery of the i-th robot

distanceo
ijðtÞ ¼ manhataan Ri xðtÞ; yðtÞð Þ; Po

j xðtÞ; yðtÞð Þ
� �

# Manhattan distance
Co

ijðtÞ ¼ power
ðtÞ
ij

.
poweri

� �
� distanceo

ij tð Þ # The cost of the i-th robot at time t
Do

j ðtÞ ¼ operationo
i ðt� 1Þ þ distanceo

i ðt� 1Þ=vi # Waiting for priority characteristics

2) Profit calculation traversal

for o in range(1, Object_number) # Traverse each object
for j in range(1, arr): # Iterate through each task

if Do
j ðtÞ � Dlim :

Ho
ijðtÞ ¼ ðDo

j ðtÞ �Wo
j ðtÞÞ=Co

ijðtÞ # according to whether the delay time limit is exceeded
else: Ho

ijðtÞ ¼ Wo
j ðtÞ=ðDo

j ðtÞ � DlimÞ � Co
ijðtÞ # Calculation formula of income value

Hi.append Ho
ijðtÞ

� �
#Obtain the income matrix of a single robot i

end
end

end

3) Global benefits calculation
for r in range(1, Robot_number): # Traverse currently available robots

for o in range(1, Object_number): # Traverse each object
for j in range(1, arr): # Iterate through each task

if Do
j ðtÞ � Dlim: Ho

ijðtÞ ¼ ðDo
j ðtÞ �Wo

j ðtÞÞ=Co
ijðtÞ # Ho

ijðtÞ represents the revenue
else: Ho

ijðtÞ ¼Wo
j ðtÞ=ðDo

j ðtÞ � DlimÞ � Co
ijðtÞ

Total.append Ho
ij tð Þ

� �
end

end
end

end

if

GO1ðtÞ ¼¼GO2ðtÞ ¼¼ � � � ¼¼GOnðtÞ and ho
i;j ¼¼ � � � ¼¼ ha

c;b

ho
i;j 2 ðGO1ðtÞ or GO2ðtÞ or � � � or GOnðtÞ Þ

and a 6¼ o; or b 6¼ j ; or c 6¼ i

0
@

1
A # If there are multiple allocation optimal value

then GOðtÞ¼ GO1ðtÞ # Choose the first plan as the allocation plan at time t
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Experiments and data analysis

Experimental setup and data initialization

The application of our GOER model in the handling of cot-

ton yarn rolls in the combing workshop is as follows. In the

experiment, we assumed that all the robots were free from

any interference during the task execution, and all the pro-

duction equipment operated stably and the workshop envi-

ronment did not change. The combing workshop is a limited

two-dimensional area (this article refers to the workshop 100

� 100 m2), and the distribution of robots in the workshop is

random, all robots are the same type, with primary naviga-

tion, obstacle avoidance, odometer, and communication (In

this article, only the optimal assignment of tasks is consid-

ered, and conflict resolution is not considered for the time

being.). All tasks are randomly assigned to a robot, but in the

initial stage of experiment (textile production workshop

began to run), our task synchronization is assigned to the

default all robots, however, as the workshop began operating,

the running efficiency of each machine may be different, and

the robot to shop different position when the cost of time, we

began operations in the textile production workshop, by

default all tasks will be assigned to robots asynchronously.

In the textile production workshop, since the maximum load

mass is less than the rated load of the robot, we default all the

robots in this article to have no cooperative task. The number

of targets is limited. In the experiment, we set all the robots

to have enough power when they start working, and no task

can consume all the power of a robot. There are limited task

types for each target. Therefore, the handling of cotton yarn

rolls in the combing workshop provides an ideal practical

object for evaluating the effectiveness of the GOER model.

The schematic diagram of the cotton yarn handling is that

performing an abstract mathematical description of the

actual environment first, and followed by performing numer-

ical simulation verification (as shown in Figure 4). Figure 4

is the two-dimensional model we built according to the

actual textile production workshop, which is finally simpli-

fied into the task model as shown in the figure.

Robots data initialization. Robot object initializes two basic

data: robot initial position coordinate Ri(x, y), the value is

Ri(x, y)¼ (random(0, 99), random(0, 99)), The initial value

range of robot power is poweri ¼ random(0, 10 and 0 is the

autonomous charging demand bit.

Objects data initialization. The object needs to randomly gen-

erate three sets of data to initialize the object data:

The value weight is set as W o
j ðtÞ¼ rand (1, 2, 4, 5). The

value weights correspond to four types of handling work (the

rated load of a mobile laboratory robot is less than 70 kg, and

the average weight of real cotton coil is 25 kg). According to

the load capacity, we set the value as: no-load is 1, empty roll

is 2, single real is roll 4, double real roll is 5.

Delay time. In actual production and processing, the time for

workers to replace empty rolls and cotton rolls does not

Figure 2. Multi-robot multi-task of task allocation diagram.
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exceed 5 min. At the same time, the average value of the

robot in this article is assumed to be v ¼ 1.6 m/s, so the

robots completed a diagonal reciprocating movement (4 �
100)/v ¼ 250 s, it only takes 125 s to complete the farthest

mission. Considering that the robot needs to complete

turns and u-turns, in this experiment, we set the upper limit

of the delay time of nonresponse of the object task as

130 s(Dlim ¼ 130). That is, the initial delay time of the

object task was Do
j ðtÞ ¼ random 1; 130½ Þ.

The object position coordinate is OOðx; yÞ, the value

range is (0, 99).

Initial data set. The characteristic value of the multi-object is

its two-dimensional space coordinate point. Take the simu-

lated real work station distribution in a combing workshop

as an example. In Figure 5, there are at least 66 spatial

coordinate points that need to be reached (64 working

points, 1 raw material supply point, and 1 robot charging

point). That is, there are 66 object points, and we set the

upper limit of the object points to o� 70 in the experiment.

The number of robot i ¼ [1, 2, r, . . . o], where r is the

minimum number of robots to meet the production demand.

When the number of robots is less than r, there is a delay

time D for the target to respond Do
j ðtÞ > 130 seconds in this

experiment. When the upper limit of the number of robots

is o (object number) and the number of online robots are

taken at the same time, there will be a lot of robot redun-

dancies. Gazebo simulation environment for obtaining

the initial GOER multi-robot task allocation is shown in

Figure 5 (taking the optimal number of robots as an exam-

ple, r ¼ 17, o ¼ 70).

In this article, a traversal method was used to calculate

the optimal value in accordance with the GOER optimiza-

tion rules. For a fixed task size, we optimized the number of

robots by half and increased or decreased the number of

robots near the optimal number of robots in accordance

with the trend of the GOER value. Take the experiment

in this article as an example: For 70 targets within a

10-min time limit, the optimal number of robot groups

obtained from the task set size of four task weights is 17.

In Figure 5, after the experimental data are initialized,

the target task will be randomly distributed in the graph

(dark rectangle), and the number of robots performing the

task will be set at the same time. The robots (black cylin-

der) will appear in the graph according to the specified

distribution and will not overlap with the position of the

random task. After the task starts, the robot begins to move

autonomously, looking for its own target position, and

Figure 4. Schematic diagram of cotton yarn handling in the combing workshop.

start

Data initialization

Traverse through the 

currently available 

robots

Iterate through each 

object

Go through each 

task

Whether the current task will exceed the 

delay limit

Select the first type of 

revenue calculation formula

Select the second type of revenue 

calculation formula

Obtain the optimal 

payoff matrix

Whether multiple allocations 

are optimal

Select the optimal 

allocation scheme

Select the first scheme as the T 

time allocation scheme

Implement the 

allocation plan

End

Figure 3. GOER algorithm flow chart.
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starts to move to the target position until it reaches the

target position. When all the target bits are traversed by

the robot (the robot reaches all the rectangular boxes), the

task assignment is completed.

Task distribution results and analysis

In the numerical simulation of task allocation, we used the

naive half-divided method to discuss the optimal number of

robot tasks. To ensure the uniformity of the task set data,

we initialized the initial data of the object-task set in Table 3

for only one time. For different numbers of robots, we

performed data initialization ten times. Then the numerical

simulation of the distribution model was performed. At

last, we verified the practicability of the model in this arti-

cle through indicators such as optimal value, maximum

delay time, and path length.

No response delay allocation. When the number of robots is

equal to the number of object tasks, r ¼ o ¼ 70, each task

will be directly assigned to all robots. That is, the robots

can execute all the tasks simultaneously. At this time, the

task can be quickly responded to and executed. There is no

delay in the task allocation response, or the delay is only

generated in the allocation calculation. According to the

initial data set and equation (6), we are able to get the

benefits of each robot for all tasks, as shown in Table 3.

As shown in Table 3, we can clearly see the maximum

Table 3. The total earnings of the robot performing the target task “O.”

Agent
Revenue

Task ����
����
�

������
������

������

Robot1 Robot2 Robot3 Robot6 Robot7 . . . Robot69 Robot70

Task1,2 18 7 9 1 12 . . . 52 3
Task2,1 16 10 20 2 17 . . . 44 3
Task3,5 15 23 34 12 40 . . . 16 7
..
. ..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
.

Task69,2 23 25 28 8 47 . . . 29 8
Task70,4 14 17 46 7 31 . . . 20 5

Figure 5. Schematic diagram of the simulation environment.

Table 2. Parameters and description.

Symbols Description Value

Initial eigenvalues of robots r Serial number of robot r [1, 2, . . . , o]
Ri(x, y) Position coordinates (rand(0: 99), rand(0: 99)), i 2 ½1; 2; � � � ; r�
Poweri Power of Roboti [0, 10]

Initial eigenvalues of objects o Serial number of object o [1, 2, . . . , 70]
Wo

j ðtÞ Task weight of object o [1,2,4,5]
Do

j tð Þ Delay of time [1, 130)
Oo(x, y) Object coordinates (rand(0: 99), (0: 99))
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benefits of each robot performing the task. The profit val-

ues of 70 robots for the 70 target tasks are as follows. Here

we can see that for robot 1, the maximum gain value

obtained is 23, corresponding to Task69,2. Correspondingly,

we can see the maximum profit value of each robot and can

quickly query the corresponding task.

In Table 3, Taskij means that after a task assignment is

completed, the TASK is the i-th TASK and the j is TASK

type. TASK1,2 means the task,1 means that the task is first

task, 2 means the task type 2, (no-load is 1, empty roll is 2,

single real is roll 4, double real roll is 5.).

With the help of the GOER model, the result of multi-

rob allocation corresponding to the optimal value is shown

in Table 4.

In Table 4, we can clearly see the profit value of each

robot when performing different tasks of the same type after

task assignment. Tables 3 and 4 show when the number of

robots is the same as the number of tasks. Each robot can

execute the assignment of tasks in time, which is obtained at

the expense of the number of robots. However, the robot will

be idle before the next moment. This situation causes a waste

of resources. In a limited space, it is easy to cause blockage

of the workshop path. For the profit value of the robot with

different tasks, we found that the profit value selected in

Table 4 is 18 instead of the optimal profit value of the robot

in Table 3. The same is true for robot number 69, indicating

that the global optimal value is not merely the sum of indi-

vidual return values.

Task assignment with delayed response. For the allocation

method that was wasteful of resources, we took Dlim(130

s) as a standard to ensure that the delay time did not exceed

the limit. By continuously reducing the number of robots,

we discussed the changes in the optimal value of the profit

obtained under different numbers of robots in GOER

model. We also analyzed the number of robots under the

conditions of fixed value tasks, the relationship with the

optimal value of income.

Compared with the redundant robots situation, the

experiment took the number of robots as 1/2 and 1/4 of the

object number, and the number of experimental robots was

r ¼ 35 and r ¼ 18. The robot set generated 10 random

initial data according to the elements in Table 4. And the

profit value was calculated from the initial task data and

GOER model, as shown in Table 5.

In Table 5, when the number of robots is 35, the average

total income is 237.69, the average delay time is 60.40 s,

and the maximum average delay time in 10 numerical

simulations is 69.72 s. When the number of robots is 18,

the average return value is 379.56, the average delay time is

98.50 s, and the maximum average delay time in 10 numer-

ical simulations is 105.26 s. The data corresponding to r ¼
18 show that except the 10th experiment, the average delay

time for task allocation is 105.26 s. The other nine delay

times were all less than 105 s, and the minimum average

delay time is 91.56 s. When robots number is reduced to 18,

the profit value is increased, and the delay time response

increases but does not exceed the time limit of 130 s.

In Figure 6, the abscissa shows the frequency of waiting

for the response, and the ordinate shows profit value, which

are both dimensionless values. The “frequency” means the

times of experiments. The income of task allocation under

different numbers of robots was further analyzed, as shown

in Figure 6. When the number of robots is 35, the mean

value changes only 2% (maximum variance: 2.38, mini-

mum variance: 0.08). When the number of robots is

Table 5. The optimal return value table of 10 random robot collections when r ¼ 35 and r ¼ 18.

Times 1 2 3 4 5 6 7 8 9 10

r ¼ 35 Revenue 237.75 237.99 237.68 237.25 237.05 238.19 237.89 237.55 237.67 237.85
Delay time 52.36 58.96 65.38 67.36 51.39 69.72 57.69 61.78 66.32 52.95
Maximum delay time 54.05 60.02 66.75 68.69 52.50 71.52 59.49 62.95 67.49 54.38

r ¼ 18 Revenue 379.54 379.63 379.9 379.89 380.34 379.39 379.54 379.74 378.88 378.79
Delay time 91.56 97.89 99.63 102.36 104.25 95.63 94.32 93.69 100.39 105.26
Maximum delay time 92.36 98.75 100.42 102.82 105.49 96.03 95.67 94.82 101.21 106.23

Table 4. Task distribution results.

Agent
Revenue

Task ����
����
�

�������
������

�����

Robot1 Robot2 Robot3 . . . Robotr . . . Robot69 Robot70

Task1,2 18
Task2,2 44
Task3,2 16
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

Task69,2 28
Task70,2 37
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reduced to 18, the mean value changes within 2% (maxi-

mum variance: 1.65, minimum variance: 0.02). The com-

parison shows that as the number of robots decreases, the

mean fluctuation and variance further decreases. This is

because when the number of tasks is twice the number of

robots, most robots do not have a waiting state. While

waiting for response tasks occurs less frequently, the reduc-

tion in the number of robots results in continuity of oper-

ation and equalization of revenue.

When the number of robots is close to the optimal num-

ber, the search step is narrowed based on experience.

Therefore, we selected 10 experiments with r ¼ 17 and

r ¼ 16 to obtain return value, as shown in Table 6.

The revenue value of 16 and 17 robots is shown in

Figure 7. In Figure 7, the abscissa shows the frequency is

times, and the ordinate shows the revenue value, which are

both dimensionless values. The “frequency” means the

times of experiments.

In the data corresponding to r ¼ 16 in Table 6, the max-

imum average delay time is 129.76 s, which is less than the

limited delay time. However, after observing the 1, 2, 5, and

10 returns, they are all less than the average return of r¼ 17.

This is because, although the average delay time does not

exceed the upper delay limit, referring to Figure 8(c), the

maximum delay time exceeds the limit (The dotted line is

the upper limit of the delay time.). The corresponding max-

imum delay time is 130.18 s, 130.25 s, 130.26 s, and 130.72

s, respectively. Therefore, according to the formula (7) of

GOER, when the delay time is over the limit, the difference

will be used as a denominator and become a penalty factor. If

the penalty factor is involved in return value, the return value

will drop rapidly. The mean return value is only 375.82,

which is 1.1% lower than the mean return value when r ¼
17, indicating that the GOER reflects the impact of exceed-

ing the limit on the task assignment results better. At the

same time, for the actual production situation, when the

number of robots is 16, the unexpected overrun condition

can cause an accumulation of delay time and a disturbance to

the stability of the system.

When the number of robots is 16, the delay time exceeds

the limit. So we increased the number of robots to 17. When

r ¼ 17, the average maximum delay time in 10

Figure 6. (a) The global revenue of 35 robots. (b) The global revenue of 18 robots.

Figure 7. The global revenue of 16 and 17 robot. (a) The global revenue of 16 robots. (b) The global revenue of 17 robots
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optimizations is 120.37 s, and the maximum delay time is

120.54 s which occurrs in the 8th simulation, with no

exceeding the maximum delay time of 130 s. The average

return value is 408.23 with increases of 0.5%, compared to

the number of robots 16. The result further proves the

rationality of the income formula (7), which could be used

to allocate over-limit tasks—correct profit evaluation.

To sum up, for the workshop tasks and robot hypotheses

in this article, when the number of robots is 17, the optimal

solution for task allocation under the GOER model can be

obtained. It shows that the GOER model is a model that

takes the benefit value and delay time as indicators under

the constraints of limited space and limited task status.

The changes in the return value mention in increasing

order show that except the return value depressions of 1, 2,

5, and 10, when r ¼ 16, the other profit value increases as

the number of robots decreases. This is because the robots

work more efficiently. Meanwhile, the different robot num-

bers shows the variance of robot revenue is further reduced

as the number of robots decreases. Because there is no

stagnation in the robot’s work within a limited time, the

difference in benefits is minimal.

Delay time analysis. Based on formula (4), the delay time of

10 random experiments was calculated as shown in

Figure 8(a), (b), (c), (d), when the number of robots was

35, 18, 17, and 16. In Figure 8, the abscissa represents the

frequency (dimensionless value) at which to wait for the

response, the ordinate represents the delay time in seconds.

The “frequency” means the times of experiments.

We analyzed 10 numerical simulations of different num-

ber of robot sets and found the following characteristics.

Figure 8. (a) Delay time of the robot multi-task response with 35 robots. (b) Delay time of the robot multi-task response with 18
robots. (c) Delay time of the robot multi-task response with 16 robots. (d) Delay time of the robot multi-task response with 17 robots.

Table 6. The optimal return value table of 10 random robot sets when r ¼ 17, r ¼ 16.

Times 1 2 3 4 5 6 7 8 9 10

r ¼ 16 Revenue 369.61 378.52 430.14 429.8 379.7 430.55 430.31 430.04 430.14 375.45
Average of delay 129.25 129.42 128.84 128.94 129.17 128.39 128.91 128.82 128.9 129.76
Maximum delay time 130.18 130.25 129.33 129.35 130.26 129.03 129.23 129.27 129.17 130.72

r ¼ 17 Revenue 410.99 409.15 410.62 410.61 409.64 410.73 410.99 410.83 410.83 410.43
Average of delay 120.13 120.05 120.34 120.24 120.32 120.37 120.36 120.37 120.35 120.23
Maximum delay time 120.32 120.20 120.51 120.36 120.47 120.51 120.47 120.54 120.58 120.38
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The maximum difference between the upper and lower

value limits of the average delay time of a different number

of robots is 2.6%. When the number of robots decreases to

35, the average delay time increases as the number of

robots decreases.

As can be seen from Figure 8, when the waiting fre-

quency is different, the delay time caused by any number

of robots in the process of completing the task will fluc-

tuate. Among them, when the number of robots is 35, the

fluctuation times of the average delay time are the most

obvious and the fluctuation times are the largest. With the

reduction of the number of robots, the number and range of

fluctuations decrease. When the number of robots is 17, the

average delay time is relatively flat, and the amplitude and

number of fluctuations are the least. When the number of

robots is reduced to 16 again, compared with the number of

robots is 17, the delay time has a larger fluctuation, and the

amplitude and fluctuation times of the average time also

increase slightly. When the number of robots is 17, we find

that the delay time fluctuates within a small range, indicat-

ing that the current robot can perform the task stably, and

the time required for the robot to complete the task can be

guaranteed to be minimum. The robots are assigned tasks

more reasonably. The above results show that the model in

this article conforms to the actual application situation and

can reasonably allocate the corresponding object multi-task

under limited conditions.

Figure 9 shows the global optimal characteristic return

value in 10 random experiments of different numbers of

robots. The minimum difference between the upper and

lower limits of the average revenue value of different num-

bers of robots is 7.5%. When the number of robots is 17, the

revenue value is at least 9.5% higher than the other four

digits. The minimum variance of the revenue value is

reduced by 3%. As the number of robots decreases, the

average return value gradually increases. We are able to

prove the global optimal solution through each traversal of

the GOER model due to each traversal of the optimal return

value solution process. We regarded each traversal as a

sub-traversal of the global optimal value. The global opti-

mal value is obtained by repeated traversal.

Analysis of robot situation distance. In the case of the same of

object number and task type distribution, the difference in

individual robot motion is caused by the different number of

robots, which could verify the effectiveness of the allocation

model. In this article, the whole road from the starting point

to the target point is called the path, and the distance traveled

by the mobile robot is called the path length. Figure 10

shows the path length of each mobile robot when the number

of robots is 17 and 70, respectively. In Figure 10, the vertical

axis path length represents the total path length generated by

a single robot performing tasks. Figure 10(a) shows the

length of paths taken by each of the 70 robots during the

task execution. As we can see, the path length of 70 robots

varies greatly. As shown in Figure 10, there is little differ-

ence in the length of paths taken by 17 robots. Comparing

the subgraphs (a) and (b) in Figure 10, we found that as the

Figure 10. (a) The length of the path taken by each robot when the number of robots is 70. (b) The length of the path taken by each
robot when the number of robots performing the task is 17.

Figure 9. Global optimal return value of different number
of robots.
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number of robots decreases, the total path length increases.

Based on the assumption in this article that the speed is 1.6

m/s, the difference of path distance in subgraph (b) is similar

to the upper limit of delay time, and the difference of path

distance between any two robots does not exceed the max-

imum delay time of corresponding distance (208 ¼ 1.6 �
130), which indicates that in the experiment process, none of

the robots exceeded the maximum delay time. A careful

observation of subgraph (a) in Figure 10 shows that there

is a significant difference in the movement distance of dif-

ferent robots in an execution time interval. This is because

redundant robots only complete work once in an execution

time interval. When r ¼ 35, the task set does not change, so

the robot with the first short path can perform two or even

three tasks. Therefore, the path difference between individ-

ual robots is decreasing. Corresponding to the observation of

subgraph (b), the difference in distance between robots is

significantly reduced due to the optimization of the number

of robots. This phenomenon is further reflected when the

number of robots is 17 or 16, and the robot group executes

multiple tasks. The phenomenon of path length change

proves that the algorithm takes the path and electric power

as one of the consumption parameters, which could better

balance the dynamic change of robot electric power. This

advantage is that the GOER could adjust the average con-

sumption of multiple robots and avoid the overuse of a cer-

tain robot.

Comparative experiment with different algorithms

To further verify the advancement of GOER infinite space

optimization, we conducted comparative experiments with

the classic Hungarian algorithm, auction algorithm, and

game theory algorithm. First, under the same set of robots,

we increased the number of tasks and compared their

response time; second, we compared the number of robots

required under the same number of tasks and the same time

constraints. To ensure the objectivity and fairness of the

algorithm comparison, all algorithms used the same numer-

ical simulation computer environment: the operating sys-

tem environment was Ubuntu Xenial (16.04 LTS), the

numerical calculation used Pandas, the simulation environ-

ment was Robot Operation System, and the version number

was Kinetic Kame and Gazebo 7.0 þ Rviz.

Maximum response time. We took the optimal number of

robots in section “Task distribution results and analysis”

as an example. First, we chose r¼ 17 and set the number of

tasks to 10–100. We only calculated the response time

of robot multitasking. We ignored the movement process

of the robot. That is, when the robot responded to a certain

task, the robot immediately entered the next multi-task

allocation link. When all tasks were allocated, we then

compared the total response time of different algorithms.

The subgraph (a) in Figure 11 is the corresponding box

diagram of the Hungarian algorithm. The Hungarian

algorithm is a simple combinatorial allocation. Therefore,

as the number of robots increases, the algorithm causes

high computational overhead and low task allocation effi-

ciency. Compared with other subgraphs, the total response

time is the longest under a different number of tasks. The

auction algorithm reduces the response time by 3% com-

pared with the Hungarian algorithm. The sub-figures (b)

and (c) correspond to the auction algorithm and game the-

ory, respectively. The game theory algorithm has a better

response time than the auction algorithm when the number

of tasks is less than 100. At the same time, in the game

theory algorithm, the response time increases linearly with

the number of tasks. Sub-graph (d) corresponds to the max-

imum response time under a different number of tasks cor-

responding to this GOER model. The maximum response

time of the proposed modeling method can be reduced by at

least 1.6% compared with other algorithms. At the same

time, the box plot diagram of response time corresponding

to the number of tasks in each subgraph was analyzed.

GOER has better stability, and the maximum deviation is

reduced by at least 2.01% compared with other algorithms.

Figure 11 shows that the algorithm in this article has

better convergence performance. The simpler model and

the formulation of task priority weights can enable each

task to be traversed by each robot. Through comparison,

we used the profit value for task allocation and optimiza-

tion, which could ensure the rapid speed of GOER as well

as convergence. At the same time, we found that as the

number of tasks increases, the superiority of this method

decreases. At the same time, compared with other algo-

rithms, GOER algorithm has a higher complexity, and the

higher complexity is because the traversal optimization

process of finite set is more sensitive to the change of the

number of tasks, so GOER algorithm is not suitable for

processing massive data. The computational resources that

need to be consumed in the case of massive data are

extremely high. For a limited set, such as the workshop

environment simulated in the article, GOER model could

improve reliability and reduce response time.

The number of robots required for the same task. When we

used the same method in subsection “Maximum response

time” on different tasks, the minimum number of robots

needed and the necessary data settings are the same as in

subsection “Experimental setup and data initialization”.

The results are shown in Table 7. The GOER model needs

3% fewer robots completing the same number of tasks than

the other four algorithms. As the number of robots

increases, the advantages of the model are getting smaller

and smaller. This is because the model is under the condi-

tion of priority task constraints. First, all robots need to

traverse all the tasks to obtain the global optimal value.

In this way, the smallest robot could complete the most

tasks, avoiding robots’ waiting. Besides, the variance and

error rate of this model are 1.1% and 2% less than the other

three methods, respectively. The Hungarian algorithm
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allocates through combination and arranges and combines

according to the actual number of robots and the number of

tasks. Hence, the number of robots used is the largest.

Auction algorithms and game theory both consider the

maximum number of robots used to a certain extent. Still,

due to the low model efficiency and poor global optimality,

robots will wait. Therefore, in the case of completing the

same task, the model(GOER) in this article requires the

smallest number of robots, which is more suitable for actual

life and production needs.

Total distance to perform tasks. In the experiment, under the

same number of tasks, the number of robots is the minimum

number of robots corresponding to each algorithm in

Table 7. When the number of tasks is 10, the number of

robots using Hungarian, auction and game algorithm is 3,

and the number of robots using GOER algorithm is 2. As

can be seen from Table 8, the total distance of GOER

model is 12.3% smaller than that of the other three algo-

rithms. However, with the increase of the number of robots,

the advantages of GOER model are not obvious compared

with the other four methods. When the number of robots is

100, the total distance of the model in this article is reduced

by at least 9.8% compared with the total distance of the

other three methods.

This is because the article adopts the Manhattan dis-

tance to calculate the tasks and the distance between the

robot, in addition this article puts the distance between

the robot and tasks as part of the largest profit, when get

the global optimal value takes into consideration the dis-

tance of driving robot to perform tasks, set up the task

priority, consider whether the robot power to meet the

Table 7. The maximum number of robots used to complete the same task.

Number of tasks 10 20 30 40 50 60 70 80 90 100

Number of robots Hungarian 3 7 10 14 18 22 25 30 35 40
Auction 3 6 9 13 15 20 24 28 31 36
Game 3 5 8 12 15 18 19 25 29 34
GOER 2 4 6 9 12 15 17 22 26 33

Figure 11. (a) Response time of Hungarian algorithm. (b) Response time of auction algorithm. (c) Response time of game theory.
(d) Response time of GOER.
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requirements of the mission. The distance is considered

before the task assignment, so the total distance of the task

in this article is the minimum. Hungarian algorithm com-

bination, auction algorithm bidding campaign, and Nash

equilibrium in game theory do not take distance as the

primary factor, and they all use Euclidean distance, so

the maximum driving distance of the robot in this article

is the minimum.

For using the Manhattan distance to calculate the dis-

tance between tasks and robots, in addition this article put

the distance between the robot and tasks as part of the

largest profit, when get the global optimal value takes into

consideration the distance of driving robot to perform tasks,

set up the task priority, consider whether the robot power to

meet the requirements of the mission. The distance is con-

sidered before the task assignment, so the total distance of

the task in this article is the minimum. Hungarian algorithm

combination, auction algorithm bidding campaign, and

Nash equilibrium in game theory do not take distance as

the primary factor, and they all use Euclidean distance,

so the maximum driving distance of the robot in this article

is the minimum.

Maximum reVENUE value. As can be seen from Figure 12,

after the profitability becomes stable, we compare the four

methods and find that GOER has the largest profitability of

650, followed by Auction method with a profitability of

623, Game method with a profitability of 618, and

Hungarian method with the lowest profit ability. Which

value is 598. Therefore, compared with the other three

scenarios, the GOER model has the most massive global

return value and the fastest convergence speed. The reve-

nue value is one of the important parameters of the experi-

ment. Therefore, the revenue value reflects the feasibility

of the four methods in the textile production workshop. The

revenue value is the largest and represents the maximum

utilization efficiency of the robot.

Analysis of experimental results. In terms of the maximum

response time, compared with other algorithms, the GOER

algorithm proposed in this article can shorten the maximum

response time by at least 1.6% and reduce the maximum

deviation by at least 2.01%, which is more stable than other

algorithms. In the case of the same number of target tasks,

the GOER algorithm needs fewer robots to complete the

target task, which means that the robot is more efficient in

use. The maximum return of GOER algorithm is 12%
higher than that of other algorithms on average, which

indicates the high return of GOER algorithm. This article

compares the GOER algorithm with the other three algo-

rithms in terms of the maximum response time, the mini-

mum number of robots, and the maximum profit value, and

all the results show that the GOER algorithm is superior to

the other algorithms, which proves the superiority of the

GOER algorithm.

Conclusion

In this article, a profit global optimal evaluation model of

multi-objective, multi-task, multi-robot is proposed. This

model is able to traverse all tasks and obtain a global opti-

mal profit value for task allocation. The GOER has a good

real-time executive, general applicability, optimality and

high efficiency. First, the goal set and task set are defined.

Second, the multi-task and robot revenue model is devel-

oped. Last, the multi-task and multi-robot global revenue

model is defined. To verify the effectiveness and scalability

of this model, we first used the GOER model to conduct

ROS simulation experiments. Then we compared the

GOER model with the Hungarian algorithm, auction algo-

rithm, and game theory. We utilized four indicators to

compare: maximum response time, total distance to per-

form tasks, number of robots used for the same task, and

maximum profit value. Three indicators of the GOER

model are better than the other three algorithms.

Figure 12. Comparison of task revenue status.

Table 8. Average maximum driving distance of robot.

Number of tasks 10 20 30 40 50 60 70 80 90 100

Hungarian 293.2 413.2 540.8 647.8 769.8 871.2 979.6 1159.8 1298.6 1409.3
Auction 289.9 398.8 539.4 641.2 762.5 865.3 971.8 1152.9 1293.2 1403.2
Game 284.5 394.5 537.8 634.6 758.2 860.1 968.5 1149.5 1285.3 1395.9
GOER 279.8 387.1 528.6 635.8 746.3 851.3 968.3 1143.2 1276.9 1387.3
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This article is a phased work summary of our research.

In practical applications, there are many deficiencies. First

of all, the workload changed randomly. For example, in an

infinite unknown environment, tasks changed dynamically

with time. So the ability of dynamic response needs further

verification. Moreover, we limited the current response

experiments to single-digit robots and a small number of

tasks. There was no useful analysis and evaluation of the

impact on the GOER for the communication problems

caused by the increase of hardware equipment.
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