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Chapter 1

Introduction

In practical problems in, e.g., healthcare, energy, and logistics, the best course of

action typically depends on unknown or uncertain parameters. For example, in

logistics, optimal delivery routes depend on travel times, which are unknown in

advance; and in healthcare, workforce schedules need to account for patient influx,

which is unpredictable. In such situations, scenario analysis may be of use to de-

termine which parameters are crucial, and how they affect the optimal solution. In

general, however, scenario analysis cannot be used to obtain solutions that perform

well overall, e.g., on average. A powerful alternative for coping with parameter un-

certainty in decision problems is offered by the stochastic programming (SP) mod-

elling paradigm. Indeed, the practical relevance of SP is well-established [71], and

confirmed by a wide range of applications in, e.g., telecommunications, environ-

mental control, and finance, see also [32] and [86].

SP models typically involve integer restrictions on the decision variables for

sensible modelling. In particular, such restrictions arise naturally when modelling

indivisibilities, and they can be used to represent, e.g., routing, scheduling, and

location decisions. The downside of the additional modelling flexibility provided

by integer decision variables is that the resulting models are significantly harder to

solve than their continuous counterparts. Indeed, integer decision variables intro-

duce non-convexities in the model, and thus we cannot directly use the rich toolbox

of convex optimization to develop efficient solution methods.

In this thesis, we consider so-called two-stage mixed-integer recourse (MIR)

models, which are of the form

min
x

c�x + Eω [v(ω, x)] (1.1)
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2 Chapter 1

s.t. Ax ≥ b

x ∈ X,

where x ∈ Rn is a vector of decision variables, b ∈ Rn and c ∈ Rn are parameter

vectors, the matrix A has appropriate dimension, ω is a random vector, and v(ω, x)

is the optimal value of a mixed-integer program (MIP) that depends on ω and x,

to be defined in Section 1.2. The function v represents the costs that result from

adapting to parameter uncertainty. In this model, the decisions x are subject to

linear constraints Ax ≥ b, and possible non-negativity and integer restrictions im-

posed by X ⊂ Rn. Furthermore, the corresponding costs c�x + v(ω, x) are exposed

to parameter uncertainty: they depend on the random vector ω, which explicitly

models a vector of uncertain parameters. To be specific, the realization of ω is not

known at the time that we have to choose x, but we do assume that the probability

distribution of ω is known at that time. Finally, the objective in (1.1) is to minimize

the total expected costs.

1.1 Approach and main contribution

State-of-the-art solution methods for two-stage MIR models are typically restricted

to special cases, or limited in their use from a computational point of view. Before

elaborating on the challenges of solving two-stage MIR models and the current

state-of-the-art in Sections 1.2 and 1.3, respectively, we describe the main contri-

bution of this thesis on a high level. In particular, we develop computationally

efficient algorithms for solving the two-stage MIR model (1.1). The key difficulty

of solving (1.1) is that the recourse function Q(x) = Eω [v(ω, x)], x ∈ Rn, is in gen-

eral non-convex. In order to overcome this difficulty, we approximate the original

model by one that is easier to solve, and we guarantee the performance of the res-

ulting approximate solution. To be specific, we derive convex approximations Q̂

of Q, and we use them to obtain an approximate solution x̂ by solving

min
x

{c�x + Q̂(x) : Ax ≥ b, x ∈ X}, (1.2)

which is obtained from (1.1) by replacing Eω [v(ω, x)] by Q̂(x). The advantage is

that (1.2) features a convex objective function, and thus it is easier to solve com-

pared to the original model (1.1). Of course, without further restrictions on Q̂,

we do not expect to obtain good solutions for (1.1) by solving the approximating
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model (1.2). For example, if Q̂ is not a close approximation of Q, then an optimal

solution x̂ of (1.2) may be far from optimal in (1.1).

A natural approach, therefore, is to use convex approximations Q̂ that closely

approximate Q. Indeed, if the approximation error supx |Q(x) − Q̂(x)| is small,

then x̂ is expected to perform well or even near-optimal in (1.1). That is why we

derive error bounds on the approximation error, which can be directly used to guar-

antee the performance of x̂ in (1.1). In particular, we propose novel types of convex

approximations and derive corresponding error bounds. A key feature of the con-

vex approximations that we propose is that they are suitable for fast computations.

As a result, the approximating model (1.2) lends itself well to effective decompos-

ition strategies, enabling us to develop tractable algorithms for computing a cor-

responding optimal solution x̂. Furthermore, we show that our error bounds carry

over to the performance of x̂ in the original model. In particular, x̂ is near-optimal

in (1.1) if the variability of the random parameters in the model is large.

Clearly, if Q is highly non-convex, then it is not possible to derive a convex

approximation that closely approximates Q, and thus we cannot obtain provably

good solutions by using this approach. We, therefore, also consider an alternative

approach for guaranteeing the performance of x̂. To be specific, in Chapter 5, we

only use convex approximations Q̂ of Q such that Q̂ is a lower bound of Q. As a res-

ult, the approximating model (1.2) is a convex relaxation of the original model (1.1),

which is easier to solve and provides a lower bound on the optimal value of (1.1).

In fact, this lower bound is sharp if Q̂ is the convex envelope of Q, defined as

the greatest convex function that defines a lower bound of Q. Then, we say that

the convex relaxation is exact, and moreover, every optimal solution of the original

problem is also optimal in the convex relaxation. That is why we derive a sequence

of convex lower bounding approximations of Q that converges uniformly to its

convex envelope.

1.2 Two-stage mixed-integer recourse models

1.2.1 Definition and background

Two-stage MIR models are mathematically sound reformulations of deterministic

MIPs, where some of the constraint parameters are random variables. To see this,

consider the mixed-integer linear programming problem

min
x

c�x
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s.t. Ax ≥ b

Tx ≥ h

x ∈ X,

where x ∈ Rn is a vector of decision variables subject to the linear constraints

Ax ≥ b and Tx ≥ h, and where the vector c ∈ Rn contains the corresponding

unit costs. Furthermore, the right-hand side vectors b and h are real-valued, and

the matrices A and T have appropriate dimensions. In deterministic optimization,

all data elements are known at the time that we have to choose x. Here, however,

we assume that the parameters T and h that define the constraints Tx ≥ h are

uncertain at that time. The SP approach is to assume that T and h are governed by

an underlying random vector ω, whose support Ω and probability distribution are

assumed to be known, resulting in the random goal constraints T(ω)x ≥ h(ω).

Of course, the resulting optimization model is ill-defined. After all, the inter-

pretation of the random goal constraints is unclear if ω is a random vector. In

fact, two-stage MIR models arise if we assume that infeasibilities with respect to

T(ω)x ≥ h(ω) can be repaired after observing ω, by choosing recourse actions y ∈
Rn2 such that

Wy ≥ h(ω)− T(ω)x,

where the recourse matrix W models the repair technology. The resulting model pos-

sesses a two-stage structure: in the first stage, we choose x, and after observing ω,

we choose the recourse actions y in such a way that we minimize the costs q�y of

repairing infeasibilities, by solving the second-stage problem

v(ω, x) = min
y

q�y

s.t. Wy ≥ h(ω)− T(ω)x

y ∈ Y,

where Y may impose non-negativity and integer restrictions on the recourse ac-

tions y, i.e., Y = Z
p
+ × R

n2−p
+ ; see also Example 1.1 for an illustrative example.

In the two-stage model, the total costs resulting from the decision x comprise

the immediate costs c�x and the random second-stage costs v(ω, x). It follows that
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the problem of minimizing the total expected costs can be stated compactly as

min
x

{c�x + Q(x) : Ax ≥ b, x ∈ X}, (1.3)

where the recourse function Q, defined as

Q(x) = Eω

[
min

y

{
q�y : Wy ≥ h(ω)− T(ω)x, y ∈ Z

p
+ × R

n2−p
+

}]
, x ∈ Rn,

(1.4)

represents the expected second-stage costs. In Chapter 5, we derive results that also

hold for a more general formulation, where the cost vector q and recourse matrix W

are allowed to depend on ω and thus random. For the sake of exposition, however,

we assume fixed recourse throughout this introduction, i.e., the cost vector q and

recourse matrix W are deterministic. In Example 1.1 below, we consider a nurse

scheduling problem which satisfies this fixed recourse assumption.

Example 1.1 (adapted from [40]). Consider the problem of scheduling nurses in

a hospital, where the number of available nurses should at all times be sufficient

to handle demand, which depends on patient volume. For practical reasons, how-

ever, the schedule has to be determined several weeks in advance, when the patient

volume is still uncertain. We assume that the schedule covers a one-week period,

and that nurses can be scheduled according to a number of shifts, e.g., day-, late-,

or night-shifts, which cover, say, eight consecutive hours.

To model this problem, let T and S denote the set of hours of the week and

the set of shifts, respectively, and let ust = 1 if shift s includes hour t, and ust = 0

otherwise, s ∈ S , t ∈ T . In addition, ht denotes the demand for nurses in hour t, t ∈
T . If xs represents the number of nurses that is scheduled according to shift s, s ∈ S ,

then the constraint that the number of available nurses should satisfy demand reads

∑
s∈S

ustxs ≥ ht, t ∈ T .

The issue is, of course, that the schedule has to be determined well in advance, but

ht is not known with full certainty at that time.

Prior to the start of the planning period, however, an updated demand fore-

cast becomes available, and the schedule is adjusted accordingly. For simplicity,

we assume that the updated demand forecast is accurate, and thus we can model

demand as a random vector with elements ht(ω), t ∈ T , whose realizations are
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revealed after deciding the initial schedule. After learning the updated demand

forecast, we have the option of scheduling additional nurses according to a set of

shifts S′. That is, the recourse actions, denoted by ys, describe the number of nurses

that we assign to shift s, s ∈ S′. Let qs denote the corresponding unit costs, and let

wst = 1 if shift s includes hour t, and wst = 0 otherwise, s ∈ S′, t ∈ T . Then, the

second-stage problem of adjusting the schedule can be represented as

v(ω, x) = min
y ∑

s∈S′
qsys

s.t. ∑
s∈S′

wstys ≥ ht(ω)− ∑
s∈S

ustxs

ys ∈ Z+ ∀s ∈ S′,

where the integer restrictions on ys model the indivisibility of nurses. ♦

1.2.2 Structural properties

Structural properties of two-stage MIR models are crucial for designing corres-

ponding solution methods that are computationally efficient. We review such prop-

erties, and to this end, we consider the value function v of the second-stage prob-

lem, defined as

v(ω, x) = min
y

{
q�y : Wy ≥ h(ω)− T(ω)x,

y ∈ Z
p
+ × R

n2−p
+

}
, ω ∈ Ω, x ∈ Rn. (1.5)

The behaviour of this value function as a function of the right-hand side vector

h(ω)− T(ω)x has been studied extensively, see, e.g., [12] or [85]. Before we state

these results, we first need assumptions on the recourse data to ensure that for

every first-stage decision x, the second-stage costs v(ω, x) are finite with probabil-

ity 1. To motivate this, note that if v(ω, x) = +∞ with positive probability, then the

decision x may result in irreparable infeasibilities with respect to the random goal

constraints, and thus should be considered infeasible. This situation is undesirable

from a computational point of view, and thus we exclude it by assuming complete

recourse, see Definition 1.1.

Definition 1.1. The recourse is complete if and only if for every s ∈ Rm, there exists

a y ∈ Y such that Wy ≥ s. Then, v(ω, x) < +∞ for every ω ∈ Ω and x ∈ Rn.
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The other extreme where v(ω, x) = −∞ with positive probability results in an

unbounded model if x is feasible, and thus we exclude it. To this end, we consider

the linear programming (LP) dual of the second-stage problem (1.5), and we as-

sume that its feasible region {λ ≥ 0 : λW ≤ q} is non-empty. Then, we say that

the recourse is sufficiently expensive, see Definition 1.2.

Definition 1.2. The recourse is sufficiently expensive if there exists a dual multi-

plier λ ≥ 0 such that λW ≤ q. Then, v(ω, x) > −∞ with probability 1 for every

ω ∈ Ω and x ∈ Rn.

Throughout, we assume that the recourse is complete and sufficiently expens-

ive, so that v is finite-valued. Then, finiteness of v carries over to Q(x) = Eω [v(ω, x)]

under the technical assumption that the random data (h(ω), T(ω)) satisfy the weak

covariance condition, see Definition 1.3.

Definition 1.3. The random data (h(ω), T(ω)) satisfy the weak covariance condi-

tion if Eω ||h(ω)|| < ∞ and Eω ||T(ω)|| < ∞.

Theorem 1.1 (Schultz [65]). Consider the mixed-integer recourse function Q, defined as

Q(x) = Eω [min
y

{q�y : Wy ≥ h(ω)− T(ω)x, y ∈ Z
p
+ × R

n2−p
+ }], x ∈ Rn.

Assume that the recourse is complete and sufficiently expensive, the elements of W are

rational, and the random data (h(ω), T(ω)) satisfy the weak covariance condition. Then,

(i) Q is finite-valued and lower semi-continuous on Rn, and

(ii) if the elements of h(ω) and T(ω) follow continuous distributions, then Q is continu-

ous.

The structural properties of Q in Theorem 1.1 guarantee that, under mild as-

sumptions, the two-stage MIR model (1.3) is well-defined. Indeed, the lower semi-

continuity of Q ensures that (1.3) is feasible, bounded, and admits an optimal solu-

tion, provided that the first-stage feasible region {x ∈ X : Ax ≥ b} is non-empty

and compact, see, e.g., [7].

Typically, efficient solution methods for two-stage MIR models rely crucially on

additional (stronger) properties of Q, such as convexity, which only hold in special

cases. In particular, if the recourse is continuous, i.e., if no integer restrictions are

imposed on the recourse actions, then such properties follow directly from standard

linear programming (LP) theory. To be specific, assuming complete and sufficiently
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expensive recourse, strong LP-duality implies that

v(ω, x) = max
λ

{λ�[h(ω)− T(ω)x] : λW ≤ q, λ ≥ 0},

and it follows that v(ω, x) is a convex polyhedral function of x. To see this, note that

the dual feasible region Λ := {λ ≥ 0 : λW ≤ q} is polyhedral, and by assumption,

non-empty and bounded. Hence, v(ω, x) is the pointwise maximum of finitely

many affine functions:

v(ω, x) = max
k=1,...,K

λ�
k {h(ω)− T(ω)x},

where λk, k = 1, . . . , K, are the extreme points of Λ. Moreover, if the random data

satisfy the weak covariance condition, then Q(x) = Eω [v(ω, x)] inherits these prop-

erties of v(ω, x), see Theorem 1.2.

Theorem 1.2 (Shapiro et al. [71]). Consider the continuous recourse function Q, defined

for x ∈ Rn as Q(x) = Eω [v(ω, x)], where

v(ω, x) = min
y

{q�y : Wy ≥ h(ω)− T(ω)x, y ≥ 0}. (1.6)

Assume that the recourse is complete and sufficiently expensive, and the random data

(h(ω), T(ω)) satisfy the weak covariance condition.

(i) Q is a finite-valued, convex, continuous, and subdifferentiable function on Rn,

(ii) a subgradient of Q at x̄ ∈ Rn is given by

−Eω

[
λ�

ω T(ω)
]
∈ ∂Q(x̄),

where λω is a vector of optimal dual multipliers of the second-stage problem (1.6)

with x = x̄, and

(iii) if ω follows a finite discrete distribution, then Q is a convex polyhedral function on

Rn.

The convexity of Q in Theorem 1.2 enables the use of techniques from convex

optimization to efficiently solve continuous recourse models, see also Section 1.3.1.

If integer restrictions are imposed on the recourse actions y, however, then convex-

ity of Q is lost, see, e.g., [54], resulting in significant computational challenges.

From the perspective of computational complexity, however, the difficulties

posed by integer recourse actions are dominated by those caused by the curse of
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dimensionality. Indeed, even in the absence of integer restrictions on y, solving the

MIR model (1.3) is an arduous task. For example, if the random parameters in the

model follow continuous distributions, then the problem of evaluating Q(x) for a

single value of x is already #P-hard in general [38], as it requires computing a com-

plicated multidimensional integral. This difficulty is not mitigated, however, if we

assume instead that the random parameters follow independent discrete distribu-

tions [29]. The main issue is that the number of realizations of the random para-

meters, referred to as scenarios, is exponential in the input size, and thus a single

evaluation of Q requires solving exponentially many subproblems.

This issue carries over to the computation of the optimal solution and value of

the corresponding recourse problem. To see this, suppose that ω follows a finite

discrete distribution with mass points ωs and corresponding probabilities ps, s =

1, . . . , S. Then, the two-stage MIR model (1.1) is equivalent to the following large-

scale deterministic equivalent (LSDE) program,

min c�x + ∑
s

psq�ys

s.t. Ax ≥ b

T(ωs)x + Wys ≥ h(ωs) ∀s = 1, . . . , S

x ∈ X, ys ∈ Y ∀s = 1, . . . , S,

where ys represents a copy of the recourse actions y corresponding to the realization

ωs, s = 1, . . . , S. In general, off-the-shelf solvers are of limited use for solving the

LSDE program, as its input size depends linearly on the number of scenarios, which

is typically (exponentially) large. In practice, however, the extent of this difficulty

depends largely on the presence of integer restrictions on the recourse actions y.

It turns out, indeed, that the LSDE program permits effective decomposition if the

recourse is continuous, by exploiting the special properties of Q in Theorem 1.2.

1.3 Solution methods

1.3.1 Decomposition

Decomposition methods use a divide-and-conquer strategy to efficiently solve two-

stage MIR models, where the problem is decomposed into many subproblems that

are much smaller, and thus easier to solve. For example, the dual decomposition

approach in [24] introduces copies xs of the first-stage variables x to the LSDE pro-
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gram for each scenario, and dualizes the non-anticipativity restrictions, which en-

force that xs = xs′ for s 	= s′, by penalizing violations in the objective function. The

advantage is that the resulting relaxation decomposes into S subproblems, one for

each scenario, which can be solved separately.

We, however, focus on Benders’ decomposition [15], which is widely used to

solve (two-stage) MIR models, see, e.g., [31, 72, 84] and surveys in [43, 68]. Here,

we briefly outline the main idea. That is, we reformulate the MIR model (1.3) as

min
x,θ

{c�x + θ : Ax ≥ b, θ ≥ Q(x)}, (1.7)

and we approximate the constraint θ ≥ Q(x) by optimality cuts of the form θ ≥ ψt(x),

where ψt is an affine function such that ψt ≤ Q, t ∈ T . The advantage of using af-

fine optimality cuts is that the master problem (MP), defined as

min
x,θ

{c�x + θ : Ax ≥ b, θ ≥ ψt(x) ∀t ∈ T }, (MP)

is a linear program and thus can be solved efficiently. Moreover, (MP) is a relaxa-

tion of the original problem (1.7), and thus, if an optimal solution (x̄, θ̄) of (MP) is

feasible in (1.7), i.e., if θ̄ ≥ Q(x̄), then (x̄, θ̄) is also optimal in (1.7). If, on the other

hand, θ̄ < Q(x̄), then we add a constraint θ ≥ ψ(x) to (MP), in order to cut away

(x̄, θ̄), and we resolve (MP).

A prime example of Benders’ decomposition for MIR models is the L-shaped

method by Van Slyke and Wets [84], which solves continuous recourse problems

by exploiting the convexity of Q in Theorem 1.2. In particular, if u ∈ ∂Q(x̄) is a

subgradient of Q at x̄, then an optimality cut for Q is given by

Q(x) ≥ ψ(x) := Q(x̄) + u�(x − x̄) ∀x ∈ Rn,

which is tight for Q at x̄, i.e., ψ(x̄) = Q(x̄). Moreover, we can efficiently obtain ψ

by using the expression for a subgradient of Q in Theorem 1.2. Finally, if ω fol-

lows a finite discrete distribution, then finite convergence can be established under

mild conditions [43]. Indeed, we only need a finite number of optimality cuts to

completely describe Q, because Q is a convex polyhedral function.

The L-shaped method cannot be used to solve general two-stage MIR models,

because convexity of Q is lost if integer restrictions are imposed on the recourse

actions [54]. Typically, Benders’ decomposition algorithms that solve general MIR

models combine ideas from the L-shaped method and deterministic mixed-integer
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programming. For example, Carøe and Tind [26] generalize the L-shaped method

to general MIR models, by underestimating Q in terms of non-affine optimality cuts,

which are computed by using generalized duality for MIPs. In particular, they

recover Q in terms of so-called Gomory functions, a class of non-convex functions

that involve rounding of the decision variables, see also [18]. As a result, however,

the generalized L-shaped method is of limited practical use, because the resulting

master problem is highly non-convex, and thus hard to solve.

That is why alternative Benders’ decomposition algorithms for MIR models

typically use affine optimality cuts to underestimate Q, similar to the original L-

shaped method. The rationale is to preserve the convexity of the master problem,

which enables computationally efficient Benders’ decomposition. The downside

is, however, that such solution methods are limited to special classes of MIR mod-

els. The reason is that Q is non-convex and thus cannot be described completely

in terms of affine optimality cuts. For example, the Benders’ decomposition algo-

rithms in [8, 31, 44, 48, 49, 51, 53, 69, 70, 72, 89] solve two-stage MIR models with

binary first-stage decisions and mixed-integer second-stage decisions, and the al-

gorithm in [88] requires pure integer decisions in both stages for convergence. To

date, indeed, there do not exist computationally efficient Benders’ decomposition

algorithms for two-stage MIR models that can handle general mixed-integer vari-

ables in both stages. We, therefore, propose to apply Benders’ decomposition in a

fundamentally different way by using novel convexification techniques.

1.3.2 Convexification

Our approach is to convexify the recourse function, so that we can use Benders’

decomposition in a computationally efficient way. To be specific, we use a convex

approximation Q̂ of Q, and we solve the resulting approximating model:

min
x

{c�x + Q̂(x) : Ax ≥ b, x ∈ X}. (1.8)

Our reasoning is that the convexity of Q̂ ensures that Benders’ decomposition can

be used to efficiently solve (1.8), similar to the original L-shaped method. Moreover,

if Q̂ is the convex envelope of Q, then the approximating problem (1.8) defines an

exact relaxation of the original two-stage MIR model (1.3). That is, their optimal

values coincide, and under mild assumptions, the solution obtained by solving (1.8)

is also optimal in (1.3). For this reason, we derive a family of affine optimality cuts

that yield the convex envelope of Q, and we use these scaled cuts in a Benders’
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decomposition that solves general MIR models.

Alternatively, we use a convex approximation Q̂ that is not necessarily a lower

bound of Q, but one that closely approximates Q. The justification is that the result-

ing approximate solution x̂ is a good solution of the original model if the approxim-

ation error supx |Q(x)− Q̂(x)| is small. Indeed, we are able to guarantee the quality

of x̂ by deriving error bounds on this approximation error. This idea is not new, and

it was in fact proposed by Van der Vlerk [80] for the special case of simple integer

recourse (SIR) models. Over the years, the convex approximations methodology

received significant attention in the literature, see [41, 59, 60, 61, 62, 81, 82, 83] and

the survey in [58], but this progress is mainly limited to special cases of MIR mod-

els. For example, see [41] for SIR models, and [59, 61, 81] for pure integer recourse

models with a totally unimodular recourse matrix.

A notable exception is the shifted LP-relaxation in [60], which is developed for

two-stage MIR models with mixed-integer decision variables in both stages. The

practical use of the shifted LP-relaxation Q̂ is limited, however, because the com-

putations that are required in a corresponding Benders’ decomposition algorithm

cannot be carried out efficiently. In particular, evaluating Q̂(x) and a subgradient

u ∈ ∂Q̂(x) for a single value of x is infeasible from a computational point of view.

That is why we propose novel convex approximations for general two-stage MIR

models, which do lend themselves to efficient Benders’ decomposition.

1.4 Outline

In this thesis, we propose novel solution methods for two-stage MIR models that

are inspired by Benders’ decomposition. In particular, in Chapters 2-4, we derive

new types of convex approximations and corresponding error bounds, and we use

these results to construct approximate Benders’ decomposition algorithms, whereas

in Chapter 5, we use exact Benders’ decomposition. In the remainder, we discuss

these chapters in more detail.

In Chapter 2, we derive an error bound for the shifted LP-relaxation approx-

imation of SIR models by Romeijnders et al. [61]. This error bound improves the

original error bound by Romeijnders et al., which depends on the total variation of

the pdf f of the underlying random variable ω. In order to achieve this, we also

take into account information on the higher-order derivatives of f . To be specific,

our improved error bound decreases as the total variation of these derivatives de-

creases. In fact, we derive a hierarchy of error bounds that becomes sharper as we
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take into account more higher-order derivatives. For SIR models, these results dir-

ectly imply sharper performance guarantees for the solution obtained by solving

the shifted LP-relaxation.

In the subsequent chapters, we consider a much larger class of two-stage MIR

models: we allow general mixed-integer decision variables in both stages. In par-

ticular, in Chapters 3 and 4, we operationalize the use of convex approximations

for this class of models by deriving convex approximations that are suitable for

efficient Benders’ decomposition.

Our approach in Chapter 3 is to approximate the mixed-integer second-stage

feasible regions by relaxing the integer restrictions on the recourse actions and

adding pseudo-valid cutting planes. That is, we use cutting planes that are affine in

the first-stage decision variables. The advantage is that the approximating model

can be interpreted as a continuous recourse model and thus it can be solved directly

by using the L-shaped method. In general, however, this approximating model is

not exact, since, contrary to traditional cutting planes for MIPs, pseudo-valid cut-

ting planes may cut away feasible solutions and are allowed to be overly conser-

vative. That is why we guarantee the quality of the approximation by deriving an

error bound which is similar to the error bound for the shifted LP-relaxation in [60],

that is valid if the cutting planes are exact on a grid of first-stage solutions.

In Chapter 4, we develop a complementary approximation scheme that can be

used if such a family of cutting planes is not available. In particular, we propose

the so-called generalized α-approximations Q̂α for two-stage MIR models, whose

definition depends on Gomory relaxations of the second-stage problems. Moreover,

we derive a corresponding error bound which is similar to the one in Chapter 3. The

main advantage of the generalized α-approximation over the shifted LP-relaxation

in [60] is that it permits fast computations. Indeed, we construct a loose Benders’

decomposition algorithm, which efficiently solves the corresponding approximating

model. We refer to our decomposition algorithm as loose, because the optimality

cuts that we use to underestimate Q̂α are in general not tight. Therefore, the result-

ing solution x̂ is not necessarily optimal in the approximating problem. We are able

to prove, nonetheless, that our error bound for the generalized α-approximations

carries over to the performance of x̂ in the original model.

In Chapters 3 and 4, we also conduct extensive numerical experiments to empir-

ically assess the proposed convex approximations. Overall, they yield good candid-

ate solutions, and in line with our performance guarantees, we obtain near-optimal

solutions if the variability of the random parameters in the model is large. Their
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performance is less good, however, if this variability is small. The reason is that the

original MIR model is then highly non-convex and thus the approximation error of

our convex approximations is large.

That is why, in Chapter 5, we propose a Benders’ decomposition algorithm

which solves general two-stage MIR models, even if the underlying recourse func-

tion Q is highly non-convex. In order to achieve this, we derive a new family of

optimality cuts for Q. These scaled cuts can be applied recursively, similar to cut-

ting plane techniques for deterministic MIPs. In fact, we prove that a recursive

application of our scaled cuts yields the convex envelope of Q in the limit. That

is, the scaled cuts define an exact relaxation of the original model, and thus they

can be used to obtain the optimal solution, in general. Indeed, numerical exper-

iments confirm the superior performance of Benders’ decomposition with scaled

cuts compared to traditional optimality cuts.

Finally, in Chapter 6, we conclude by summarizing our findings and discussing

possible avenues for future research.
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Chapter 2

Higher-order total variation

bounds for expectations of

periodic functions and simple

integer recourse

approximations

We derive bounds on the expectation of a class of periodic functions using the total vari-

ations of higher-order derivatives of the underlying probability density function. These

bounds are a strict improvement over those of Romeijnders et al. [61], and we use them to

derive error bounds for convex approximations of simple integer recourse models. In fact,

we obtain a hierarchy of error bounds that become tighter if the total variations of additional

higher-order derivatives are taken into account. Moreover, each error bound decreases if

these total variations become smaller. The improved bounds may be used to derive tighter

error bounds for convex approximations of more general recourse models involving integer

decision variables.

This chapter is based on the journal publication [79].
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18 Chapter 2

2.1 Introduction

Consider the two-stage recourse model with random right-hand side

η∗ := min
x

{
cx + Q(z) : Ax ≥ b, z = Tx, x ∈ X ⊂ R

n1
+

}
, (2.1)

where the recourse function Q is defined for the tender variables z ∈ Rm as

Q(z) := Eω [v(ω − z)] ,

and the value function v is defined for s ∈ Rm as

v(s) := min
y

{
qy : Wy ≥ s, y ∈ Y ⊂ R

n2
+

}
.

This model describes a two-stage decision problem under uncertainty. The uncer-

tainty arises from the random vector ω of which the distribution is known. In the

first stage, a decision x has to be made while the realization of ω is not yet available,

whereas in the second stage, the realization of ω is known and recourse actions y

can be taken to repair infeasibilities of the random constraints Tx ≥ ω. The model is

called an integer recourse model if Y = Z
n2
+ . If in addition W = Im, then the model

is referred to as a simple integer recourse (SIR) model. More general formulations

of (2.1) exist, with uncertainty in the technology matrix T and cost parameters q,

see, e.g., the textbooks [16, 71].

Throughout this chapter, we make the following assumptions, which guarantee

that Q is finite everywhere.

(i) The recourse is complete: for all s ∈ Rm, there exists a y ∈ Y such that Wy ≥ s,

so that v(s) < ∞.

(ii) The recourse is sufficiently expensive; v(s) > −∞ for all s ∈ Rm.

(iii) E[|ωi|] is finite for all i = 1, . . . , m.

Recourse models are highly relevant in practice, as demonstrated by numer-

ous applications in problems where uncertainty plays a role. Areas of application

include energy, telecommunication, production planning, and environmental con-

trol see, e.g., [32, 86]. Furthermore, integrality restrictions on the recourse actions

arise naturally when modelling real-life situations, for example to capture on/off

decisions or batch size restrictions.
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Unfortunately, solving integer recourse problems is generally time-consuming

and practically impossible, because the recourse function Q is in general non-convex

(Rinnooy Kan and Stougie [54]). Traditional solution methods typically combine

ideas from deterministic mixed-integer programming and stochastic continuous

programming, see, e.g., [4, 24, 31, 49, 67, 44, 69, 88], and the survey papers [58,

66, 68].

However, in this chapter we focus on an alternative solution methodology in-

troduced by van der Vlerk [80]. His approach is to approximate the non-convex

recourse function Q by a convex approximation Q̂, obtaining an approximating

model for (2.1). The advantage is that the approximating model can be solved ef-

ficiently using known convex optimization techniques to obtain an approximate

solution (x̂, ẑ) for (2.1).

In the literature, convex approximations are typically derived by simultaneously

modifying the underlying recourse structure (Y, q, W) and the distribution of the

random vector ω. For example, Klein Haneveld et al. [41] propose the so-called

α-approximations for SIR models, van der Vlerk [81] studies a class of convex ap-

proximations for the general integer case, and Romeijnders et al. [61] propose a con-

vex approximation, the shifted LP-relaxation, for integer recourse problems with a

totally unimodular (TU) recourse matrix W. The latter approximation is general-

ized to the general mixed-integer recourse case by Romeijnders et al. [60].

To guarantee the performance of the approximating solution (x̂, ẑ) in the ori-

ginal model (1), Romeijnders et al. [59] show that for every approximation Q̂,

cx̂ + Q(ẑ)− η∗ ≤ 2 ||Q̂ − Q||∞ := 2 sup
z∈R

|Q̂(z)− Q(z)|.

That is, the absolute optimality gap of (x̂, ẑ) is at most 2‖Q̂ − Q‖∞. For this reason,

bounds on ‖Q̂ − Q‖∞ are used to guarantee the quality of the approximating solu-

tion (x̂, ẑ). Such error bounds are derived by Klein Haneveld et al. [41] and by

Romeijnders et al. [59] for various types of convex approximations. They are ex-

pressed in terms of the total variations of the marginal probability density func-

tions (pdf) of the random right-hand side vector ω. For general mixed-integer and

TU integer recourse models, Romeijnders et al. [60] and Romeijnders et al. [61],

respectively, derive similar error bounds by making use of periodicity in the differ-

ence of the underlying value functions of the recourse function Q and its convex

approximation Q̂. In this way, bounds on ‖Q̂ − Q‖∞ are obtained by deriving total

variation bounds on the expectation of periodic functions. Since we also exploit this
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relationship between expectations of periodic functions and the difference between

Q̂ and Q, we explain this relationship in more detail in Section 2.2.

Romeijnders et al. [61] use worst-case analysis to prove that their error bounds

are tight for certain piecewise constant pdf. For other pdf, there may be a consid-

erable difference between the error bound and the actual error as shown by nu-

merical experiments on a fleet allocation and routing problem and on an invest-

ment problem in stochastic activity networks (Romeijnders et al. [62]). Motivated

by these observations, we improve the erorr bounds of Romeijnders et al. [61] by

using information on the higher-order derivatives of the underlying pdf of the ran-

dom variables in the model. To be specific, we use that the total variation of the

higher-order derivatives of the underlying pdf can be used to improve the error

bound. The intuition behind our approach is that by imposing restrictions on the

higher-order derivatives of the underlying pdf we are able to exclude the piecewise

constant pdf, which have jump discontinuities.

To obtain these error bounds we improve the existing bounds on the expectation

of periodic functions by Romeijnders et al. [61] using higher-order total variations,

i.e., total variations of the higher-order derivatives of the underlying marginal pdfs.

This is the main contribution of this chapter since these bounds may be used to im-

prove error bounds of convex approximations for mixed-integer recourse models

in general. We illustrate their potential by improving error bounds for the shifted

LP-relaxation approximation of SIR models by Romeijnders et al. [61]. The im-

proved error bounds decrease with the total variations of the underlying pdf and

its higher-order derivatives.

The remainder of this chapter is organized as follows. Section 2.2 describes in

more detail the relationship between error bounds for the shifted LP-relaxation of

integer recourse models and bounds on the expectation of periodic functions. In

Section 2.3, we improve bounds on the expectation of a class of periodically mono-

tone functions, and in Section 2.4 we illustrate how these results can be applied in

the setting of SIR models. In Section 2.5 we conclude and summarize our results.

2.2 Total variation error bounds

In this section, we describe parts of the procedure employed by Romeijnders et al.

[61] to derive an error bound for the so-called shifted LP-relaxation approximation Q̂

of Q for TU integer recourse models. The idea behind this approximation is to

simultaneously relax the integrality restrictions in the model and to perturb the
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random right-hand side vector ω.

Definition 2.1. The shifted LP-relaxation Q̂ of the mixed-integer recourse function Q

is defined as

Q̂(z) := Eω

[
min

y

{
qy : Wy ≥ ω +

1
2

em − z, y ∈ R
n2
+

}]
, z ∈ Rm,

where em is the m-dimensional all-one vector.

The shifted LP-relaxation is a special case of the convex approximation for gen-

eral two-stage mixed-integer recourse models by Romeijnders et al. [60]. Here, we

focus on the one-dimensional SIR case. Partly this is for simplicity, but we are also

inspired by the fact that Romeijnders et al. [61] derive an error bound for the TU

integer recourse case using one-dimensional results. Setting q = 1 and W = 1, the

integer recourse function Q reduces to

Q(z) = Eω

[
�ω − z+

]
, z ∈ R,

where �· denotes the round-up function and �s+ := max{0, �s}, s ∈ R. The

shifted LP-relaxation then becomes

Q̂(z) = Eω

[
(ω − z + 1/2)+

]
, z ∈ R.

Since ||Q̂ − Q||∞ is the quantity of interest, consider

sup
z∈R

∣∣∣Q̂(z)− Q(z)
∣∣∣ = sup

z∈R

∣∣∣E [ψ (ω − z + 1/2)]
∣∣∣, (2.2)

with underlying difference function ψ(t) := (t)+ − �t − 1/2+, see Figure 2.1.

If we ignore the positive part operators and define

ϕ(t) := t − �t − 1/2 , (2.3)

then ϕ is a periodic function with period p = 1 and mean value ν = p−1
∫ p

0 ϕ(t)dt =

0. The function ψ, however, is only half-periodic, that is

ψ(t) =

⎧⎨
⎩

0, t ≤ 0,

ϕ(t), t ≥ 0.
(2.4)

Romeijnders et al. [61] use this property to derive error bounds for the shifted
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Figure 2.1. The difference function ψ.

LP-relaxation. Similarly, Romeijnders et al. [60] make use of asymptotic periodicity

results for mixed-integer programs to find error error bounds for the general mixed-

integer recourse case.

The error bounds are based on a worst-case approach with respect to the total

variation |Δ| f of the underlying pdf f of ω, since the expectation in (2.2) is intract-

able in general. The following definition of total variation is taken directly from

Romeijnders et al. [61].

Definition 2.2. Let f : R → R be a real-valued function, and let I ⊂ R be an

interval. Let Π(I) denote the set of all finite ordered sets P = {x1, . . . , xN+1} with

x1 < · · · < xN+1 in I. Then, the total variation of f on I, denoted |Δ| f (I), is defined

as

|Δ| f (I) = sup
P∈Π(I)

Vf (P),

where

Vf (P) =
N

∑
i=1

| f (xi+1)− f (xi)|.

Write |Δ| f := |Δ| f (R). A function f is said to be of bounded variation if |Δ| f is

finite.

The worst-case approach adopted by Romeijnders et al. [61] is to derive a bound,
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for any bounded periodic function ϕ and B ∈ R with B > 0, on

M(ϕ, B) := sup
f∈F

{
E f [ϕ(ω)] : |Δ| f ≤ B

}
,

where F denotes the set of all continuous pdf of bounded variation. This bound

is used to derive an error bound on ‖Q̂ − Q‖∞ in (2.2), presented in Theorem 2.1

below. We will improve the bounds on the expectation of periodic and half-periodic

functions, which directly leads to an improved error bound for SIR models.

Theorem 2.1. Consider the simple integer recourse function Q defined as

Q(z) = Eω

[
�ω − z+

]
, z ∈ R,

and its shifted LP-relaxation approximation Q̂, defined as

Q̂(z) = Eω

[(
ω − z +

1
2

)+
]

, z ∈ R,

where ω is a continuous random variable with pdf f of bounded variation. Then

sup
z∈R

∣∣∣Q̂(z)− Q(z)
∣∣∣ ≤ 1

2
h(|Δ| f ),

where

h(t) =

⎧⎪⎨
⎪⎩

t
8 , 0 < t ≤ 4,

1 − 2
t , t ≥ 4.

Proof. See Romeijnders et al. [61].

Romeijnders et al. [61] show that there exist piecewise constant pdf for which

the error bound in Theorem 1 is tight. For example, for B ≥ 4, the pdf f̂ : R → R

defined as

f̂ (x) =

⎧⎨
⎩

B
2 , 0 < x ≤ 2

B ,

0, otherwise,
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satisfies |Δ| f̂ = B and

sup
z∈R

∣∣∣Q̂(z)− Q(z)
∣∣∣ = 1

2
h(|Δ| f̂ ).

Remark 2.1. Observe that f̂ can be interpreted as a pdf with |Δ| f̂ ′ = +∞.

In the next sections we will assume that f is continuously differentiable and that

its derivative f ′ is of bounded variation. In this way, we exclude piecewise constant

densities such as f̂ . By using the higher-order total variations of f we are able to

derive tighter bounds.

2.3 Improving bounds on the expectation of periodic

functions

In this section, we improve the bounds on the expectation of periodic functions

derived by Romeijnders et al. [61] for the class of point-symmetric periodic func-

tions (see Definition 2.7). Next to that, we improve bounds on the expectation of

half-periodic functions ψ : R → R, which are of the form

ψ(x) =

⎧⎨
⎩

0, x < 0,

ϕ(x), x ≥ 0,
(2.5)

where ϕ is a point-symmetric periodic function.

The organization of this section is as follows. In Section 2.3.1, we consider

packed densities, a concept introduced by Romeijnders et al. [61] which we general-

ize to higher-order derivatives. Next, in Section 2.3.2, we introduce point-symmetric

periodic functions, the class of periodic functions for which we are able to derive res-

ults. In Section 2.3.3 we use the concept of bound propagation to derive a hierarchy

of total variation bounds. In Section 2.3.4, we present bounds on the expectation of

periodic and half-periodic functions.

2.3.1 Higher-order derivatives of packed densities

The main contribution of this chapter is to generalize the results by Romeijnders

et al. [61] to higher-order derivatives. The key insight here is that including in-

formation on the total variation and the maximum norm of higher-order derivat-

ives of the underlying pdf leads to improved expectation bounds. We generalize
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several definitions by Romeijnders et al. [61] to allow for these elements to be in-

cluded in our analysis. They consider the set F containing all one-dimensional pdf

of bounded variation. In Definition 2.3, we introduce the sets Fn, n ∈ N, which

satisfy the relationship F ⊃ F0 ⊃ F1 ⊃ . . . .

Definition 2.3. Let Fn denote the set of one-dimensional pdf f , such that the first

n derivatives of f exist, are continuous, and are of bounded variation. Denote the

k-th derivative of f by f (k) and write f = f (0).

Definition 2.4. For all bounded integrable functions ϕ : R → R and positive con-

stants B := (B0, . . . , Bn) and C := (C0, . . . , Cn) define Mn as

Mn(ϕ, B, C) := sup
f∈Fn

{ ∣∣∣E f [ϕ(ω)]
∣∣∣ : |Δ| f (k) ≤ Bk,

|| f (k)||∞ ≤ Ck, for k = 0, . . . , n
}

,

where || · ||∞ denotes the maximum norm defined as

|| f ||∞ := max
t∈R

| f (t)|.

Remark 2.2. In Definition 2.4, we could have suppressed the constants C0, . . . , Cn,

since an upper bound Bk on |Δ| f (k) directly implies an upper bound Bk
2 on || f (k)||∞.

However, these bounds may be larger than Ck so that by including these constants

we may obtain tighter bounds.

The main goal of this section is to derive a bound on Mn(ϕ, B, C). This is useful,

because such a bound can be used to derive performance guarantees for convex

approximations of mixed-integer recourse functions. We derive such bounds for

periodic and half-periodic functions ϕ. The key objects of our analysis are packed

densities, introduced by Romeijnders et al. [61], which are functions defined on

[0, p] such that for either periodic of half-periodic functions φ with period p,

E f [ϕ(ω)] =
∫ p

0
ϕ(x) fp(x)dx.

For periodic functions ϕ, Romeijnders et al. [61] define this packed density as

fp(x) := ∑
k∈Z

f (x + pk), x ∈ [0, p].

Intuitively, fp(x) represents the sum of the densities corresponding to ϕ(x) and
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ϕ(x + pk) for every k ∈ Z \ {0}. For half-periodic functions ϕ, however, we require

an alternative packed density, which we call the half-packed density. This packed

density does not include the values of f (x + pk) for k < 0, since ϕ is only half-

periodic and thus ϕ(x + pk) = 0 for k < 0. Definition 2.5 below contains the

definitions of both the original and the new packed density.

Definition 2.5. For all f ∈ F0 and p ∈ R with p > 0, define the classical packed

density fp : [0, p] → R as

fp(x) := ∑
k∈Z

f (x + pk), x ∈ [0, p]

Further, define the half-packed density f̂p : [0, p] → R as

f̂ p(x) =
∞

∑
k=0

f (x + pk), x ∈ [0, p].

Remark 2.3. Note that the half-packed density does not integrate to one in general,

as opposed to the classical packed density. As a result, the half-packed density

cannot be interpreted as a pdf.

Remark 2.4. We define the (higher-order) derivatives of the classical packed dens-

ity and the half-packed density at the endpoints of the closed interval [0, p] by their

one-sided derivatives, provided that they exist.

Romeijnders et al. [61] show that the total variation of f can be used to bound

the total variation of fp on [0, p]. Interestingly, similar bounds can be derived for

the total variation of half-packed densities f̂ p on [0, p]. Moreover, similar bounds

also hold for higher-order derivatives f (k), k = 1, . . . , n, of f .

Lemma 2.1. Let n ∈ N be given and let f ∈ Fn. Consider its corresponding classical

packed density fp and half-packed density f̂p, as in Definition 2.5. Then, for k = 0, . . . , n,

(i) f (k)p and f̂ (k)p exist and are continuous on [0, p],

(ii) f (k)p (0) = f (k)p (p) and f̂ (k)p (0) = f̂ (k)p (p) + f (k)(0), and

(iii) |Δ| f (k)p ([0, p]) ≤ |Δ| f (k) and |Δ| f̂ (k)p ([0, p]) ≤ |Δ| f (k) − | f (k)(0)|.

Moreover, for all bounded integrable periodic functions ϕ with period p, and half-periodic
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functions ψ of the form

ψ(x) =

⎧⎪⎨
⎪⎩

0, x < 0,

ϕ(x), x ≥ 0,

(iv) E f [ϕ(ω)] =
∫ p

0 ϕ(x) fp(x)dx and E f [ψ(ω)] =
∫ p

0 ϕ(x) f̂ p(x)dx.

Proof. We refer to the proof of corresponding properties involving packed densities

in Romeijnders et al. [61].

Observe that the properties involving the classical packed density generalize

readily to higher-order derivatives. With respect to the half-packed density, notice

the additional terms f (k)(0) and −| f (k)(0)| in properties (ii) and (iii), respectively.

These terms result from the fact that the half-packed density only sums over the

non-negative integers.

In our analysis in the next sections, we will initially not make a distinction be-

tween the classical packed density and the half-packed density. This is possible

because they belong to the broader class of packed densities, which we introduce

in Definition 2.6.

Definition 2.6. For a given n ∈ N and p ∈ R with p > 0, let g : [0, p] → R be an

n times continuously differentiable function such that its first n derivatives are of

bounded variation on the interval [0, p]. Assume γk := g(k)(p)− g(k)(0) is bounded

for k = 0, . . . , n. Then g is referred to as a packed density with discontinuities

γ = (γ0, . . . , γn).

Indeed, from Lemma 2.1 it follows directly that both the classical and the half-

packed density are packed densities with discontinuities γ = (0, . . . , 0) and ( f (0)(0),

. . . , f (n)(0)), respectively. Considering property (iv) in Lemma 2.1, we are inter-

ested in the quantity

D(ϕ, g) :=
∫ p

0
ϕ(x)g(x)dx, (2.6)

for a periodic function ϕ and a packed density g of Definition 2.6. It equals the

expectation of a periodic function if g is a classical packed density, in which case the

discontinuities corresponding to g are γ = (0, . . . , 0). Furthermore, for ϕ defined

as in (2.3), the quantity D(ϕ, g) is equal to the approximation error of the shifted-

LP relaxation of a simple integer recourse model if g is a half-packed density, f̂ p of

Definition 5, with γ = ( f (0)(0), . . . , f (n)(0)).
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2.3.2 Point-symmetric periodic functions

We restrict our attention to point-symmetric periodic functions, a concept we introduce

in Definition 2.7, since the underlying periodic function that arises when studying

the shifted LP-relaxation for TU integer recourse models is point-symmetric peri-

odic with period p = 1. However, our results apply to all point-symmetric periodic

functions ϕ with period p > 0.

Definition 2.7. A periodic function ϕ : R → R with period p satisfying

ϕ(x) = −ϕ(p − x),

or equivalently

ϕ(x) =
1
2
(ϕ(x)− ϕ(p − x)),

for all x ∈ [0, p] is said to be point-symmetric periodic, or a PSP(p) function.

For a packed density g of Definition 2.6 and a PSP(p) function ϕ, we are able

to derive an upper bound on D(ϕ, g). The first step we take in obtaining such a

bound is to prove in Lemma 2.2 that there exists a function gp that is symmetric in

the same sense as ϕ and carries all relevant information of g for computing D(ϕ, g).

Moreover, the total variation of gp on [0, p] does not exceed that of g on [0, p]. Next,

in Lemma 2.3, we obtain bounds on higher-order derivatives of gp by combining

the symmetry of gp with the mean-value theorem. In Section 2.3.3, we translate

these bounds into a single bound on gp, a process we refer to as bound propagation.

Lemma 2.2. Let n ∈ N and p ∈ R with p > 0 be given. Let ϕ : R → R be a PSP(p)

function. For a packed density g of Definition 2.6, define gp : [0, p] → R as

gp(x) :=
1
2
(g(x)− g(p − x)), x ∈ [0, p]. (2.7)

Then,

(i) D(ϕ, g) =
∫ p

0
ϕ(x)gp(x)dx = 2

∫ p/2

0
ϕ(x)gp(x)dx

and for all integers k satisfying 0 ≤ k ≤ n,

(ii) |Δ|g(k)p ([0, p]) ≤ |Δ|g(k)([0, p]).
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Proof. For property (i), note that it follows from a substitution that

∫ p

0
ϕ(x)g(x)dx =

∫ p

0
ϕ(p − x)g(p − x)dx = −

∫ p

0
ϕ(x)g(p − x)dx,

where the latter equality holds since ϕ is a PSP(p) function. Using (iv) in Lemma

2.1 we have

D(ϕ, g) =
∫ p

0
ϕ(x)g(x)dx

=
1
2

∫ p

0
ϕ(x)g(x)dx +

1
2

∫ p

0
ϕ(x)g(x)dx

=
1
2

∫ p

0
ϕ(x)g(x)− 1

2

∫ p

0
ϕ(x)g(p − x))dx

=
∫ p

0
ϕ(x)gp(x)dx,

and thus the first equality in (i) holds. To prove the second equality in (i), note that

∫ p

0
ϕ(x)gp(x)dx =

∫ p/2

0
ϕ(x)gp(x)dx +

∫ p

p/2
ϕ(x)gp(x)dx,

where the second term on the right-hand side can be rewritten as

∫ p/2

0
ϕ(p − x)gp(p − x)dx =

∫ p/2

0
ϕ(x)gp(x)dx.

To prove (ii) we make use of standard properties the total variation of functions.

Define l : R → R as l(x) := g(p − x). We have

|Δ|g(k)p ([0, p]) = |Δ|
(

1
2

(
g(k) + (−1)kl(k)

))
([0, p])

=
1
2
|Δ|(g(k) + (−1)kl(k))([0, p])

≤ 1
2

(
|Δ|g(k)([0, p]) + |Δ|l(k)([0, p])

)
=

1
2

(
|Δ|g(k)([0, p]) + |Δ|g(k)([0, p])

)
= |Δ|g(k)([0, p]),

where the second equality holds since for every closed interval I ⊂ R, |Δ|(α f )(I) =

|α||Δ| f (I), for scalar α and f of bounded variation, and where the inequality fol-

lows from |Δ|( f + g)(I) ≤ |Δ| f (I) + |Δ|g(I) for f and g of bounded variation.
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We now state and prove a number of properties of gp that we will use to prove

the results in Sections 2.3.3 and 2.3.4. We make a distinction between odd and even-

order derivatives of gp, because they share different properties.

Lemma 2.3. For a given n ∈ N and p ∈ R with p > 0, let g : [0, p]→ R be a packed

density with discontinuities γk := g(k)(0)− g(k)(p), k = 0, . . . , n. Define gp : [0, p]→ R

as gp(x) := 1
2 (g(x)− g(p − x)). Then, for all even k, 0 ≤ k ≤ n,

(i) g(k)p (p/2) = 0,

(ii) g(k)p (0) = −g(k)p (p) =
γk
2

, and

(iii)
∣∣∣g(k)p (x)

∣∣∣ ≤ wk :=
|γk|+ |Δ|g(k)([0, p])

4
for all x ∈ [0, p].

Furthermore, for all odd k, 1 ≤ k ≤ n,

(iv) there exist xk ∈ (0, p/2], such that g(k)p (xk) = − γk−1
p , and

(v)
∣∣∣g(k)p (x)

∣∣∣ ≤ wk :=
|γk−1|

p
+

|Δ|g(k)([0, p])
2

for all x ∈ [0, p].

Proof. Note that from the definition of gp,

g(k)p (x) =
1
2

(
g(k)(x) + (−1)k+1g(k)(p − x)

)
, k = 0, . . . , n, x ∈ R,

so that,

g(k)p (x) = (−1)k+1g(k)p (p − x). (2.8)

Properties (i) and (ii) then follow directly.

To prove property (iv) we make use of the mean-value theorem and property

(ii). Together they imply that there exists a ck ∈ (0, p) such that

g(k)p (ck) =
− γk−1

2 − γk−1
2

p − 0
= −γk−1

p
.

The existence of xk ∈ (0, p/2] as in property (iv) then follows from the symmetry

of odd-order derivatives, see (2.8).

We will prove (iii) by contradiction using property (ii) in Lemma 2.2. Fix an

even k and assume for contradiction that
∣∣∣g(k)p (t∗)

∣∣∣ > wk for some t∗ ∈ [0, p/2).
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This implies that

∣∣∣g(k)p (t∗)
∣∣∣ > |γk|

2
,

because, as a consequence of (ii), |Δ|g(k)([0, p]) ≥ |γk|.
Consider the partition P = {0, t∗, p − t∗, p}. Following the notation introduced

in Definition 2.2, we have for this partition,

V
g(k)p

(P) = 4
∣∣∣g(k)p (t∗)

∣∣∣± |γk| > 4wk ± |γk| ≥ |Δ|g(k)([0, p]),

where the equality is due to equation (2.8) and property (ii). We thus find a contra-

diction with Lemma 2.2, property (ii).

Property (v) follows in a similar fashion, since by combining (iv) with (2.8) it is

possible to arrive at a contradiction with property (ii) in Lemma 2.2 if (v) does not

hold.

2.3.3 Bound propagation

In this section, we use the bounds on g(k)p , k = 0, . . . , n, in Lemma 2.3 to derive a

single tighter bound on gp as defined in (2.7) for a given packed density g with

known discontinuities (γ0, . . . , γn). We use information on the total variation of g

and its higher-order derivatives to bound gp. Clearly, we obtain tighter bounds if

we include information on more higher-order derivatives of g.

For illustration, suppose that information is available on g and g(1). Given a

bound on |Δ|g, property (iii) in Lemma 2.3 directly yields a uniform bound on

|gp(x)| for x ∈ [0, p], denoted w0. An additional bound on |Δ|g(1) yields a bound

on |g(1)p (x)|, denoted w1, using property (v) in Lemma 2.3. The latter bound can be

used to improve the bound on |gp(x)| itself, using the concept of bound propaga-

tion, which we will now demonstrate.

Let q(x) be such that
∣∣∣g(1)p (x)

∣∣∣ ≤ q(x) for x ∈ [0, p/2]. Using that gp (p/2) = 0

according to property (i) in Lemma 2.3, and that

∣∣gp(x)
∣∣ = ∣∣gp(x)

∣∣− ∣∣gp (p/2)
∣∣

≤
∣∣gp(x)− gp (p/2)

∣∣
≤
∫ p/2

x

∣∣∣g(1)p (s)
∣∣∣ ds

≤
∫ p/2

x
q(s)ds,
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we obtain an upper bound on |gp(x)|. Similarly we can extrapolate around x = 0

and use the fact that gp(0) =
γ0
2 to obtain

|gp(x)| ≤ |γ0|
2

+
∫ x

0
q(s)ds.

This means that we can transform an upper bound q(x) on |g(1)p (x)| for all x ∈
[0, p/2] into an upper bound on |gp(x)| for every x ∈ [0, p/2]. We formalize this

transformation by defining an operator T that maps the upper bound q on |g(1)p |
into an upper bound Tq on |gp|. This operator is defined as,

(Tq)(x) := min
{

w0,
|γ0|

2
+
∫ x

0
q(s)ds,

∫ p/2

x
q(s)ds

}
, x ∈ [0, p/2] ,

and includes the uniform upper bound w0 on |gp| as defined in Lemma 3 (iii). From

the analysis above it follows that |gp(x)| ≤ (Tq)(x) for x ∈ [0, p/2]. Note that

(Tq)(x) provides a tighter bound than the bound based on |Δ|g alone, which is

given by w0.

We generalize this idea to higher-order derivatives by introducing appropriate

operators in Definition 2.8. The idea is that a bound q on |gn
p| may be propog-

ated in dynamic programming fashion to obtain a bound T · · · Tq on |gp|. In our

case, however, we have to define two operators T1 and T2 since the process of

bound propagation is different for odd and even higher-order derivatives. In Defin-

ition 2.9, we use these operators to define functions qn
0 , n ∈ N, which represent a

bound on
∣∣gp(x)

∣∣ based on information on the first n derivatives of g. Intuitively,

including more derivatives should lead to sharper bounds. This intuition is con-

firmed in Corollary 2.1.

Definition 2.8. For a given p > 0, a function q : [0, p/2] → R, and parameters

w > 0 and γ ∈ R, define the operators T1
w,γ and T2

w,γ by

(T1
w,γq)(x) := min

{
w,

|γ|
p

+ max
{∫ x

0
q(s)ds,

∫ p/2

x
q(s)ds

}}
, x ∈ [0, p/2] ,

and

(T2
w,γq)(x) := min

{
w,

|γ|
2

+
∫ x

0
q(s)ds,

∫ p/2

x
q(s)ds

}
, x ∈ [0, p/2] .

Definition 2.9. Let n ∈ N and p > 0 be given. Let wk > 0 and γk ∈ R, k = 0, . . . , n,

be given constants. Define qn
n : [0, p/2] → R as qn

n(x) := wn. For k < n, define
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qn
k : [0, p/2] → R using backward recursion as

qn
k :=

⎧⎨
⎩

T1
wk ,γk−1

qn
k+1, if k is odd,

T2
wk ,γk

qn
k+1, if k is even.

Before we are ready to prove that qn
0 yields a bound on |gp|, we need some

elementary properties of the operators introduced in Definition 2.8. In Lemma 2.4,

we prove that Tj, j = 1, 2, are non-negative and monotone operators.

Lemma 2.4. Let p > 0 be given. Let q, q̃ : [0, p/2] → R be non-negative functions such

that q̄ ≥ q. Then for all w > 0 and γ ∈ R,

(i) Tj
w,γq is a non-negative function, j = 1, 2, and

(ii) Tj
w,γ q̄ ≥ Ti

w,γq, j = 1, 2.

Proof. Property (i) follows directly from the non-negativity of q. Property (ii) is a

direct consequence of q̄ ≥ q.

Proposition 2.1. Let n ∈ N and p > 0 be given. Let g : [0, p] → R be a packed density

with discontinuities (γ0, . . . , γn). Define gp : [0, p] → R as gp(x) := 1
2 (g(x)− g(p −

x)). For k = 0, . . . , n, define

wk :=

⎧⎪⎨
⎪⎩

|γk−1|
p + |Δ|g(k)([0,p])

2 , if k is odd,

|γk |+|Δ|g(k)([0,p])
4 , if k is even.

,

so that wk denotes a uniform bound on
∣∣∣g(k)p

∣∣∣. Define qn
k , k = 0, . . . , n, as in Definition 2.9.

Then,

∣∣gp(x)
∣∣ ≤ qn

0 (x), x ∈ [0, p/2] .

Proof. The non-negativity of Tj, j = 1, 2, implies that qn
k , k = 0, . . . , n, are non-

negative functions. We prove the stronger claim

|g(k)p (x)| ≤ qn
k (x), (2.9)

for all x ∈ [0, p/2], for k = 0, . . . , n using backward induction.

For k = n, the inequality in (2.9) follows directly from property (iii) and (iv)

in Lemma 2.3. For the induction step, assume (2.9) holds for k = m + 1, with
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0 ≤ m < n. We consider odd and even m separately. For even m, we have to show

that

∣∣∣g(m)
p (x)

∣∣∣ ≤ (T2
wm ,γm qn

m+1)(x), x ∈ [0, p/2] .

Since

(T2
wm ,γm qn

m+1)(x) = min
{

wm,
|γm|

2
+
∫ x

0
qn

m+1(s)ds,
∫ p/2

x
qn

m+1(s)ds
}

,

it suffices to show that for all x ∈ [0, p/2],

∣∣∣g(m)
p (x)

∣∣∣ ≤ wm, (2.10)

∣∣∣g(m)
p (x)

∣∣∣ ≤ |γm|
2

+
∫ x

0
qn

m+1(s)ds, (2.11)

and

∣∣∣g(m)
p (x)

∣∣∣ ≤ ∫ p/2

x
qn

m+1(s)ds. (2.12)

The induction step for even m then follows by combining (2.10), (2.11), and (2.12).

The inequality in (2.10) is due to property (iii) in Lemma 2.3. To prove (2.11), we

use that

∣∣∣g(m)
p (x)

∣∣∣− ∣∣∣g(m)
p (0)

∣∣∣ ≤ ∣∣∣g(m)
p (x)− g(m)

p (0)
∣∣∣ = ∣∣∣∣

∫ x

0
g(m+1)

p (s)ds
∣∣∣∣ ,

by the triangle inequality. Using the induction hypothesis and the fact that qn
m+1 is

a non-negative function, we obtain

∣∣∣g(m)
p (x)

∣∣∣− ∣∣∣g(m)
p (0)

∣∣∣ ≤ ∫ x

0
qn

m+1(s)ds.

Then, (2.11) follows by inserting g(m)
p (0) = γm

2 by Lemma 2.3 (ii), and rearran-

ging terms. The inequality in (2.12) can be proved in a similar manner as (2.11)

by applying the triangle inequality to
∣∣∣g(m)

p (p/2)− g(m)
p (x)

∣∣∣. We conclude that the

induction step holds for even m.
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For odd m, we have to show that

∣∣∣g(m)
p (x)

∣∣∣ ≤ (T1
wm ,γm−1

qn
m+1)(x), x ∈ [0, p/2] .

By definition,

(T1
wm ,γm−1

qn
m+1)(x)

= min
{

wm,
|γm−1|

p
+ max

{∫ x

0
qn

m+1(s)ds,
∫ p/2

x
qn

m+1(s)ds
}}

,

so that it suffices to show for all x ∈ [0, p/2] that

∣∣∣g(m)
p (x)

∣∣∣ ≤ wm, (2.13)

and

∣∣∣g(m)
p (x)

∣∣∣ ≤ |γm−1|
p

+ max
{∫ x

0
qn

m+1(s)ds,
∫ p/2

x
qn

m+1(s)ds
}

. (2.14)

The inequality in (2.13) follows directly from property (v) in Lemma 2.3. To

prove (2.14) we make use of in Lemma 2.3 (iv), which states that there exists xm ∈
(0, p/2] such that g(m)

p (xm) = − γm−1
p . By the triangle inequality,

∣∣∣g(m)
p (x)

∣∣∣− ∣∣∣g(m)
p (xm)

∣∣∣ ≤ ∣∣∣g(m)
p (x)− g(m)

p (xm)
∣∣∣ = ∣∣∣∣

∫ x

xm
g(m+1)

p (s)ds
∣∣∣∣ .

Together with the induction hypothesis, this yields

∣∣∣g(m)
p (x)

∣∣∣− ∣∣∣g(m)
p (xm)

∣∣∣ ≤ ∣∣∣∣
∫ x

xm
qn

m+1(s)ds
∣∣∣∣ .

To arrive at (2.14), we make the following observation

∣∣∣∣
∫ x

xm
qn

m+1(s)ds
∣∣∣∣ = max

{∫ x

xm
qn

m+1(s)ds,
∫ xm

x
qn

m+1(s)ds
}

≤ max
{∫ x

0
qn

m+1(s)ds,
∫ p/2

x
qn

m+1(s)ds
}

,

where the inequality holds since xm ∈ (0, p/2] and qn
m+1 is non-negative. This

completes the induction step for odd m, and the proof of (2.9).

We now present a corollary of Lemma 2.4, which states the intuitive result that
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the bounds on gp become sharper if more higher-order derivatives are included.

Corollary 2.1. Let n ∈ N and p > 0 be given. Let γk and wk > 0, k = 0, . . . , n, be given

constants. Define ql
0, l = 0, . . . , n, as in Definition 2.9. Then,

q0
0 ≥ q1

0 ≥ · · · ≥ qn
0 .

Proof. Fix an l ∈ {1, . . . , n}. We will use backward induction to prove that ql−1
k ≥ ql

k

for k = 0, . . . , l − 1. The claim then follows by setting k = 0.

It follows directly from the definition of qn
k that ql−1

l−1 ≥ ql
l−1. For the induc-

tion step, suppose that ql−1
k ≥ ql

k for some k, 0 < k ≤ l − 1. It follows from the

monotonicity of Tj, j = 1, 2, that ql−1
k−1 ≥ ql

k−1, completing the proof.

2.3.4 Error bounds

We are now ready to state the main results of this section. In Theorem 2.2, we for-

mulate an improved bound on the expectation of PSP(p) functions and Theorem 2.3

states the bound on the expectation of half-periodic functions where the underlying

periodic function is PSP(p).

Theorem 2.2. Let n ∈ N and p > 0 be given. Let ϕ : R → R be a PSP(p) function and

let B = (B0, . . . , Bn) and C = (C0, . . . , Cn) be positive constants. Then, for Mn defined as

Mn(ϕ, B, C) := sup
f∈Fn

{ ∣∣∣E f [ϕ(ω)]
∣∣∣ : |Δ| f (k) ≤ Bk,

|| f (k)||∞ ≤ Ck, for k = 0, . . . , n
}

,

there holds

Mn(ϕ, B, C) ≤ 2
∫ p/2

0
|ϕ(x)| qn

0 (x)dx,

where qn
0 is defined as in Definition 2.9, with γk = 0, k = 0, . . . , n, and

wk =

⎧⎪⎨
⎪⎩

Bk
2 , if k is odd,

Bk
4 , if k is even.

Proof. For a given PSP(p) function ϕ and pdf f ∈ Fn, we know from Lemma 2.1
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that

∣∣∣E f [ϕ(ω)]
∣∣∣ = ∣∣∣∣

∫ p

0
ϕ(x) fp(x)dx

∣∣∣∣ ,

where fp denotes the classical packed density corresponding to f . The function fp

is a packed density with discontinuities γ = (0, . . . , 0). Lemma 2.2 informs us that

∣∣∣E f [ϕ(ω)]
∣∣∣ = 2

∣∣∣∣
∫ p/2

0
ϕ(x)gp(x)dx

∣∣∣∣ ,

where gp(x) = 1
2 ( fp(x)− fp(p − x)). This implies

∣∣∣E f [ϕ(ω)]
∣∣∣ ≤ 2

∫ p/2

0
|ϕ(x)||gp(x)|dx.

By Lemma 2.1, property (iii), we know that Bk is an upper bound on |Δ| f k
p([0, p]),

k = 0, . . . , n. Combining Proposition 2.1 with the monotonicity of the operators Tj,

j = 1, 2, yields that qn
0 is an upper bound on |gp|, completing the proof.

Remark 2.5. Note that the bound presented in Theorem 2.2 is independent of C.

This is because the discontinuities of the classical packed density are zero.

Theorem 2.3. Let n ∈ N and p > 0 be given. Let ψ : R → R be a half-periodic function

defined as

ψ(x) :=

⎧⎪⎨
⎪⎩

0, x < 0,

ϕ(x), x ≥ 0,

where ϕ : R → R is a PSP(p) function. Let B = (B0, . . . , Bn) and C = (C0, . . . , Cn) be

positive constants. Then, for Mn defined as

Mn(ψ, B, C) := sup
f∈Fn

{ ∣∣∣E f [ψ(ω)]
∣∣∣ : |Δ| f (k) ≤ Bk,

|| f (k)||∞ ≤ Ck, for k = 0, . . . , n
}

,

there holds

Mn(ψ, B, C) ≤ 2
∫ p/2

0
|ϕ(x)| qn

0 (x)dx,
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where qn
0 is defined as in Definition 2.9, with γk = Ck, k = 0, . . . , n, and

wk =

⎧⎪⎨
⎪⎩

Ck−1
p + Bk

2 , if k is odd,

Bk
4 , if k is even.

Proof. For a given half-periodic function ψ with underlying PSP(p) function ϕ and

pdf f ∈ Fn, we know from Lemma 2.1 that

∣∣∣E f [ψ(ω)]
∣∣∣ = ∣∣∣∣

∫ p

0
ϕ(x) f̂ p(x)dx

∣∣∣∣ ,

where f̂ p denotes the half-packed density corresponding to f . The function f̂ p is a

packed density with discontinuities γ = ( f (0)(0), . . . , f (n)(0)). Lemma 2.2 informs

us that

∣∣∣E f [ψ(ω)]
∣∣∣ = 2

∣∣∣∣
∫ p/2

0
ϕ(x)gp(x)dx

∣∣∣∣ ,

where gp(x) = 1
2 ( f̂ p(x)− f̂ p(p − x)). This implies

∣∣∣E f [ψ(ω)]
∣∣∣ ≤ 2

∫ p/2

0
|ϕ(x)||gp(x)|dx.

By Lemma 2.1, property (iii), we know that Bk − | f (k)(0)| is an upper bound on

|Δ| f̂ k
p([0, p]), k = 0, . . . , n. Furthermore, |γk| = | f (k)(0)| ≤ Ck. Combining Pro-

position 2.1 with the monotonicity of the operators Tj, j = 1, 2, yields that qn
0 is an

upper bound on |gp|, and the result follows.

2.4 Applications and examples

In this section, we apply the results in Section 2.3 to specific functions. As in Sec-

tion 2.3, we make a distinction between periodic and half-periodic functions. First,

we apply Theorem 2.2 to a particular PSP(p) function. Second, we derive an im-

proved error bound for the shifted LP-relaxation approximation of one-dimensional

SIR models. Since the underlying difference function is half-periodic, we can use

Theorem 2.3 to derive such a bound. This error bound can be generalized to higher-

dimensional SIR models. Finally, we conduct numerical experiments to compare

the performance of the error bound by Romeijnders et al. [61] and the improved

bound derived in this section.
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2.4.1 Point symmetric periodic functions

Here, we derive a bound on the expectation of the underlying periodic function ϕ

for the shifted LP-relaxation for SIR models, defined as ϕ(x) := x − �x − 1
2. Note

that ϕ is a PSP(1) function and that |ϕ(x)| = x for x ∈ [0, 1
2 ]. In the notation of

Theorem 2.2, take n = 1, which is to say that we make use of the total variation of

the underlying pdf and its first derivative. Furthermore, q1
1(x) = B1

2 and

q1
0(x) = min

{
B1

2
x,

B0

4
,

B1

2

(
1
2
− x
)}

Applying Theorem 2.2 yields

M1(ϕ, B0, B1, C0, C1) ≤
∫ 1

2

0
x min

{
B1x,

B0

2
, B1

(
1
2
− x
)}

dx.

Using this, we find that for any f ∈ F1

∣∣∣E f [ϕ(ω)]
∣∣∣ ≤ k(|Δ| f , |Δ| f ′) :=

⎧⎪⎨
⎪⎩

|Δ| f
16

(
1 − |Δ| f

|Δ| f ′

)
, |Δ| f

|Δ| f ′ <
1
2 ,

|Δ| f ′
64 , |Δ| f

|Δ| f ′ ≥
1
2 .

Since this bound holds for all f ∈ F1, it follows that if ω has pdf f ∈ F1, then

sup
z∈R

Eω [ϕ(ω − z)] ≤ k(|Δ| f , |Δ| f ′).

This result is an improvement of the bound by Romeijnders et al. [61], who showed

that

∣∣∣E f [ϕ(ω)]
∣∣∣ ≤ 1

2
h(|Δ| f ) =

⎧⎪⎨
⎪⎩

|Δ| f
16 , 0 < |Δ| f ≤ 4,

1
2 − 1

|Δ| f , |Δ| f ≥ 4.

Note that the improvement is large if |Δ| f ′ is small relative to |Δ| f . We now apply

this result to a range of specific pdf’s.

Example 2.1. Let f denote the pdf of a normally distributed random variable ω

with variance σ2. Then,

|Δ| f = σ−1
√

2/π, and |Δ| f ′ = σ−2

√
8

πe
.
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Observe that the ratio

|Δ| f
|Δ| f ′

= σ

√
e

2

increases linearly in σ. This implies that the improvement over the original total

variation bound is unbounded and increases with σ. We have

∣∣∣E f [ϕ(ω)]
∣∣∣ ≤ k(|Δ| f , |Δ| f ′) =

⎧⎪⎨
⎪⎩

1
16

√
2
π

1
σ

(
1 −

√
e

2 σ
)

, if σ < 1√
e ,

1
32

√
2

πe
1

σ2 , if σ ≥ 1√
e .

Figure 2.2 shows the true value of supz∈R{Eω [ϕ(ω− z)]}, the upper bound 1
2 h(|Δ| f )

derived by Romeijnders et al. [61], and the upper bound k(|Δ| f , |Δ| f ′) based on M1.

Moreover, we include the upper bound based on M2. The latter bound is tractable,

but an analytical expression is cumbersome and does not yield further insights and

is therefore omitted. Note that the bounds based on M1 and M2 provide a tighter

bound compared to 1
2 h(|Δ| f ) for large values of σ. ♦

Figure 2.2. The true value of supz∈R{Eω [ϕ(ω − z)]} (solid), and the upper bounds
based on [61] (dotted), M1 (dashed), and M2 (dash-dotted) as a function of σ, where
ω follows a normal distribution with variance σ2.

Note that our results only apply to continuously differentiable pdf, neverthe-

less, for continuous pdf f that are not continuously differentiable we can still apply

our results by considering the right derivative of f , denoted f ′+, instead of the de-

rivative of f . The reason for this lies in the fact that there exists a continuously
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differentiable approximation f̃ of f such that |Δ| f = |Δ| f̃ , |Δ| f ′+ = |Δ| f̃ ′, and

E f [ϕ(ω − z)] is arbitrarily close to E f̃ [ϕ(ω − z)]. We illustrate this in the next ex-

ample.

Example 2.2. Suppose that ω follows a triangular distribution with support [a, b]

and mode m, a < m < b. See Figure 2.3 for illustration.

Figure 2.3. The probability density function of a random variable following a tri-
angular distribution with support [4, 6] and mode 5 (solid); and support [1, 5] and
mode 2 (dashed).

Denote the pdf of ω by f . Write d := b − a and note that f (m) = 2
d , so that,

|Δ| f =
4
d

,

furthermore,

|Δ| f ′+ =
4

(m − a)(b − m)
.

This leads to

∣∣∣Eω [ϕ(ω)]
∣∣∣ ≤

⎧⎪⎨
⎪⎩

1
4d

(
1 − (m−a)(b−m)

d

)
, if (m − a)(b − m) < 1

2 d,

1
16(m−a)(b−m)

, if (m − a)(b − m) ≥ 1
2 d.

Note that |Δ| f is independent of the mode m, however, changing m does affect

|Δ| f ′+. In fact, for given a and b, |Δ| f ′+ is minimized by m = 1
2 (a + b). Hence, as the
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mode is closer to the midpoint of the support of ω, |Δ| f ′+ is smaller and we obtain

tighter bounds. ♦

2.4.2 Error bound shifted-LP relaxation

In this section, we consider the underlying difference function ψ, defined in (2.4),

for the shifted LP-relaxation for SIR models. Recall that bounds on the expectation

of ψ can be used directly to derive error bounds for the shifted LP-relaxation for

SIR models.

We apply Theorem 2.3 with n = 1 to derive a such a bound. We have ϕ(x) =

x −
⌈

x − 1
2

⌉
. Like in Section 2.4.1, |ϕ(x)| = x for all x ∈ [0, 1

2 ]. Note that q1
1(x) =

C0 +
B1
2 =: D and that

q1
0(x) = min

{
B0

4
,

C0

2
+ Dx, D

(
1
2
− x
)}

.

Hence, by Theorem 2.3,

M1(ψ, B0, B1, C0, C1) ≤
∫ 1

2

0
x min

{
B0

2
, C0 + Dx, D

(
1
2
− x
)}

dx,

where D = 2C0 + B1. Note that for any pdf f ,

|| f ||∞ ≤ |Δ| f
2

,

where equality holds if f is unimodal. For this reason, we take C0 = B0
2 , so that the

resulting bound holds for all pdf f ∈ F1. For unimodal pdf’s the resulting bound

is the tightest bound we can provide, whereas tighter bounds can be derived for

non-unimodal pdf. Simple computations yield

M1(ψ, B0, B1,
B0

2
, C1) ≤

B0

16
S(B0, B1),

where

S(x, y) :=

(
1 − x (2x + 3y)

3 (x + y)2

)
∈ (1/3, 1),
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for positive x and y. We thus have that for any f ∈ F1,

∣∣∣E f [ψ(ω)]
∣∣∣ ≤ |Δ| f

16
S(|Δ| f , |Δ| f ′).

The original bound by Romeijnders et al. [61] is given by |Δ| f
16 , so S(|Δ| f , |Δ| f ′)

represents the improvement over their results. Note that S(|Δ| f , |Δ| f ′) → 1
3 as

|Δ| f ′

|Δ| f → 0, which is to say that the improvement factor converges to three. We return

to this fact in the following example, where we apply our results to a normally

distributed random variable.

Example 2.3. We numerically evaluate ||Q̂ − Q||∞, where Q̂ denotes the shifted-LP

relaxation by Romeijnders et al. [61] as in Definition 2.1, in the one-dimensional SIR

case where ω follows a normal distribution with arbitrary mean and variance σ2,

for σ ∈ [0.2, 4]. We compare the actual error to the error bound based on [61] and

the improved error bounds based on M1 and M2. We omit the analytical expression

for the bound based on M2, which is tractable but cumbersome.

Denote the pdf of ω by f . To compute the (improved) error bounds, we make

use of the expressions for |Δ| f and |Δ| f ′ found in Example 2.1. It follows from these

expressions that

|Δ| f ′

|Δ| f
→ 0

as σ → ∞, which implies that the improvement factor over the original total vari-

ation bound converges to three for large values of σ. Figure 2.4 shows the results

of this numerical experiment. Note that the improvement over the original error

bound increases with σ. ♦
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Figure 2.4. The true value of ||Q̂−Q||∞ (solid), and the upper bounds based on [61]
(dotted), M1 (dashed), and M2 (dash-dotted) in the one-dimensional SIR case as a
function of σ, where ω follows a normal distribution with variance σ2.

2.5 Conclusion

We consider existing convex approximations for two-stage mixed-integer recourse

models. We construct a hierarchy of bounds on the expectation of periodic and

half-periodic functions using total variations of higher-order derivatives of the un-

derlying probability density function. We use these results to derive improved error

bounds for the shifted LP-relaxation of simple integer recourse models. Moreover,

the results presented here may be used to improve error bounds of convex approx-

imations for general mixed-integer recourse model approximations.

There are multiple directions for future research. One extension is to generalize

our results to a to a higher-dimensional setting. A first step in this direction may

be to consider totally unimodular integer recourse models. Another avenue is to

apply the results to a particular application of integer recourse models. Finally, our

results may be extended to a larger class of periodic functions, which may be useful

for other types of convex approximations.
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Chapter 3

Pseudo-valid cutting planes for

two-stage mixed-integer

stochastic programs with

right-hand side uncertainty

We propose a novel way of applying cutting plane techniques to two-stage mixed-integer

stochastic programs with uncertainty in the right-hand side. Instead of using cutting planes

that are always valid, our idea is to apply pseudo-valid cutting planes to the second-stage

feasible regions that may cut away feasible integer second-stage solutions for some scenarios

and may be overly conservative for others. The advantage is that it allows us to use cut-

ting planes that are affine in the first-stage decision variables, so that the approximation is

convex, and can be solved efficiently using techniques from convex optimization. We derive

tight performance guarantees for using particular types of pseudo-valid cutting planes for

simple integer recourse models. Moreover, we show in general that using pseudo-valid cut-

ting planes leads to good first-stage solutions if the total variations of the one-dimensional

conditional probability density functions of the random variables in the model converge to

zero.

This chapter is based on the journal publication [57].
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3.1 Introduction

Many practical problems under uncertainty in, e.g., energy, finance, logistics, and

healthcare involve integer decision variables. Such problems can be modelled as

mixed-integer stochastic programs (MISPs), but are notoriously difficult to solve.

In this chapter, we do not attempt to solve these problems exactly. Instead, we in-

troduce a novel approach to approximately solve two-stage MISPs with uncertainty

in the right-hand side, and we derive performance guarantees for the resulting ap-

proximating solutions.

Traditional solution methods for MISPs combine solution approaches for con-

tinuous stochastic programs and deterministic mixed-integer programs (MIPs). See,

e.g., Ahmed et al. [4] for branch-and-bound, Sen and Higle [69] and Ntaimo [48] for

disjunctive decomposition, Carøe and Schultz [24] for dual decomposition, Laporte

and Louveaux [44] for the integer L-shaped method, and Zhang and Küçükyavuz

[88] for cutting plane techniques. All these solution methods aim at finding the

exact optimal solution for MISPs, but generally have difficulties scaling up to solve

large problem instances. This is not surprising, since contrary to their continuous

counterparts, these MISPs are non-convex in general [54]. This means that efficient

techniques from convex optimization cannot be used to solve these problems.

Based on this observation and inspired by the success of cutting plane tech-

niques for deterministic MIPs [47], we propose to use cutting planes to solve two-

stage MISPs. However, we will use them in a fundamentally different way than in

existing methods for both deterministic and stochastic MIPs. Instead of using exact

cutting planes that are always valid, we propose to use pseudo-valid cutting planes

for the second-stage feasible regions in such a way that the approximating prob-

lem remains convex in the first-stage decision variables, and thus efficient convex

optimization techniques can be used to solve the approximation.

The disadvantage of using pseudo-valid cutting planes is that they may cut

away part of the second-stage feasible region or that they may be overly conser-

vative, so that we significantly over- or underestimate the second-stage costs, re-

spectively. However, for MISPs this may be justified since our aim is not to find the

exact and complete characterization of the integer hulls of the second-stage feasible

regions, but rather to obtain good first-stage decisions. In fact, one of our main

contributions is that we obtain good or even near-optimal first-stage decisions for

pseudo-valid cutting plane approximations in which the cutting planes only need

to be valid for a grid of first-stage decisions.

For simple integer recourse (SIR) models, a special type of MISP, our pseudo-
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valid cutting plane approximation turns out to be equivalent to convex α-approxi-

mations, derived by Klein Haneveld et al. [41] from a completely different perspect-

ive. By reinterpreting these α-approximations using pseudo-valid cutting planes,

we connect two existing solution methodologies for MISPs that use convex approx-

imations and exact cutting planes, respectively. Moreover, this reinterpretation al-

lows us to apply existing performance guarantees derived in Romeijnders et al.

[59] for α-approximations to pseudo-valid cutting plane techniques for SIR mod-

els. Furthermore, we use results from Romeijnders et al. [60] to show for general

MISPs with continuously distributed random right-hand side parameters that the

error of using pseudo-valid cutting plane approximations converges to zero if all

total variations of the one-dimensional conditional probability density functions of

these random parameters converge to zero.

Contrary to the convex approximation derived in [60], our pseudo-valid cut-

ting planes are suitable for solving large-scale MISPs. Indeed, in a numerical case

study we solve large nurse scheduling problems using tight pseudo-valid cutting

planes and obtain first-stage decisions that are close to optimal. Moreover, we de-

rive pseudo-valid mixed-integer Gomory cuts for general two-stage MISPs with

right-hand side uncertainty.

Summarizing, the main contributions of this chapter are as follows.

• We propose a novel solution approach for two-stage MISPs with uncertainty

in the right-hand side by applying pseudo-valid cutting planes to the second-

stage feasible regions.

• We reinterpret α-approximations for SIR models as pseudo-valid cutting plane

approximations, connecting two existing solution methodologies for MISPs,

and yielding a tight error bound for applying pseudo-valid cutting planes to

SIR models.

• We derive a performance guarantee for applying pseudo-valid cutting planes

to general MISPs with continuous distributions and uncertainty in the right-

hand side.

• We derive pseudo-valid mixed-integer Gomory cuts for general MISPs and

derive tight pseudo-valid cutting planes for a nurse scheduling problem.

• We carry out numerical experiments on a nurse scheduling problem and show

that we obtain good first-stage decisions when using pseudo-valid cutting

planes.
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The remainder of this chapter is organized as follows. In Section 3.2 we define

MISPs and explain our pseudo-valid cutting plane approach. In Section 3.3, we re-

interpret α-approximations for SIR models using pseudo-valid cutting planes, and

in Section 3.4 we derive an error bound for pseudo-valid cutting plane approx-

imations for general MISPs. In Section 3.5, we derive pseudo-valid mixed-integer

Gomory cuts, and apply tight pseudo-valid cutting planes to a nurse scheduling

problem. We present numerical experiments for the latter type of cutting planes in

Section 3.6, and we end with a discussion in Section 3.7.

3.2 Problem definition and solution approach

3.2.1 Problem definition

Two-stage MISPs can be interpreted as hierarchical planning problems. In the first

stage, decisions x have to be made before some random parameters ω are known,

whereas in the second stage, decisions y are made after the realizations of these

random parameters ω are revealed. We assume that the probability distribution

of ω is known, with F denoting the cumulative distribution function and Ω the

support of ω. The MISPs that we consider are defined as

η∗ := min
x,z

{
c�x + Q(z) : Ax = b, z = Tx, x ∈ X

}
, (3.1)

where z = Tx ∈ Rm represent tender variables. Moreover, the expected value func-

tion Q represents the expected second-stage costs

Q(z) := Eω [v(ω, z)], z ∈ Rm, (3.2)

where the second-stage value function v is defined as

v(ω, z) := min
y

{
q�y : Wy = ω − z, y ∈ Y

}
, ω ∈ Ω, z ∈ Rm. (3.3)

The second-stage decisions y are also called recourse actions. Indeed, if Tx = ω

represents random goal constraints, then the second-stage optimization problem

v models all possible recourse actions y, and their corresponding costs, to com-

pensate for infeasibilities of these goal constraints. Observe that we only consider

randomness in the right-hand side of these goal constraints. Moreover, we assume

that at least some of the second-stage decision variables yi are restricted to be in-
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teger. This is captured by the feasible regions X ⊂ R
n1
+ and Y ⊂ R

n2
+ that may

impose integrality restrictions on the first- and second-stage decision variables, re-

spectively.

Throughout this chapter we make the following assumptions. The first is often

referred to as the complete recourse assumption, meaning that there always exists a

feasible recourse action y, ensuring that v(ω, z) < +∞ for all ω ∈ Ω and z ∈ Rm.

The second is equivalent to the dual feasible region of the LP-relaxation of v being

non-empty, implying that v(ω, z) > −∞ for all ω ∈ Ω and z ∈ Rm. Together

with the third assumption, these assumptions guarantee that Q(z) is finite for every

z ∈ Rm.

Assumption 3.1. We assume that

• there exists y ∈ Y such that Wy = ω − z for every ω ∈ Ω and z ∈ Rm,

• there exists λ ∈ Rm such that W�λ ≤ q, and

• Eω [|ωi|] < +∞, for all i = 1, . . . , m.

3.2.2 Novel solution approach: pseudo-valid cutting planes

To solve the MISP defined in (3.1), we propose to relax the integrality restrictions

on the second-stage decision variables y and to add pseudo-valid cutting planes to

the second-stage feasible region

Y(ω, z) :=
{

y ∈ Y : Wy = ω − z
}

.

In particular, we assume that the cutting planes are of the form Ŵ(ω)y ≥ ĥ(ω)−
T̂(ω)z, so that they are affine in the tender variables z.

Definition 3.1. Consider the second-stage value function v defined in (3.3). Then,

we call v̂ an affine cutting plane approximation of v if it is of the form

v̂(ω, z) = min
y

{q�y : Wy = ω − z,

Ŵ(ω)y ≥ ĥ(ω)− T̂(ω)z, y ∈ R
n2
+ }, ω ∈ Ω, z ∈ Rm.

Moreover, we define the affine cutting plane approximation Q̂ of the expected value

function Q, defined in (3.2), as Q̂(z) := Eω [v̂(ω, z)], z ∈ Rm.
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The main reason we use cutting planes that are affine in z is that the approxim-

ating value function v̂(ω, z) with feasible region

Ŷ(ω, z) :=

⎧⎨
⎩y ∈ R

n2
+ :

Wy = ω − z

Ŵ(ω)y ≥ ĥ(ω)− T̂(ω)z

⎫⎬
⎭

is convex in z for every fixed ω ∈ Ω, and thus the corresponding approximating

expected value function Q̂ is convex. This means that the MISP in (3.1) with Q

replaced by Q̂ is much easier to solve than the original MISP.

Observation 1. Consider the affine cutting plane approximations v̂ and Q̂ of Defin-

ition 3.1. Then, Q̂ is convex, and v̂(ω, z) is convex in z for every fixed ω ∈ Ω.

Obviously, we cannot expect to obtain a good approximation Q̂ if we arbitrarily

add invalid affine cutting planes. That is why we restrict our attention to so-called

pseudo-valid cutting planes. Such cutting planes are valid on a grid of points z, but

may be invalid for other values of z.

Definition 3.2. Consider the second-stage value function v defined in (3.3). Then,

the cutting planes Ŵ(ω)y ≥ ĥ(ω)− T̂(ω)z are called pseudo-valid for v if there exist

α ∈ Rm and β ∈ Zm such that for all z ∈ α + βZm and for all ω ∈ Ω,

{
y ∈ Z

p2
+ × R

n2−p2
+ : Wy = ω − z

}
⊂
{

y ∈ R
n2
+ : Wy = ω − z,

Ŵ(ω)y ≥ ĥ(ω)− T̂(ω)z
}

. (3.4)

If, in addition, v̂(ω, z) = v(ω, z) for all z ∈ α + βZm and for all ω ∈ Ω, then we call

the pseudo-valid cutting planes tight.

Remark 3.1. With slight abuse of notation we use α + βZm to represent the grid of

points

α + βZm :=
{
(α1 + β1l1, . . . , αm + βmlm) : l ∈ Zm

}
.

There are different classes of exact cutting planes that can be applied as pseudo-

valid cutting planes to two-stage MISPs. For example, in Section 3.5 we derive

pseudo-valid mixed-integer Gomory cuts and tight pseudo-valid cutting planes for

a nurse scheduling problem. However, the main focus of this chapter is not on how

to obtain the pseudo-valid cuts. Instead, we assume that they are given or can be
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iteratively generated by an algorithm, and we consider the performance of using

such pseudo-valid cutting planes.

The performance of these pseudo-valid cutting planes may be surprisingly good,

even if they cut away feasible integer second-stage solutions or admit second-

stage solutions outside the integer hull Ȳ(ω, z) of the second-stage feasible region

Y(ω, z); in these cases, v̂(ω, z) may significantly over- or underestimate v(ω, z),

respectively. However, to obtain good first-stage decisions x, we do not require

v̂(ω, z) to be a good approximation of v(ω, z) for every ω ∈ Ω and z ∈ Rm, but

merely require v̂(ω, z) to be a good approximation of v(ω, z) on average for every

z ∈ Rm. This explains why applying pseudo-valid cutting planes may work for

stochastic MIPs but not for deterministic MIPs.

Using a one-dimensional example, we illustrate a class of pseudo-valid cutting

planes.

Example 3.1. Consider a special case of the second-stage value function defined in

(3.3), given by

v(ω, z) = min
y,u1,u2

qy + ru1 + ru2

s.t. y − u1 + u2 = ω − z (3.5)

y ∈ Z+, u1, u2 ∈ R+,

where 0 < q < r. By rewriting the equality in (3.5) as u2 = ω − z − y + u1, we can

eliminate the variable u2 from the second-stage value function to obtain

v(ω, z) = r(ω − z) + min
y,u1

(q − r)y + 2ru1 (3.6)

s.t. y − u1 ≤ ω − z

y ∈ Z+, u1 ∈ R+.

Since the minimization problem in (3.6) only has two decision variables, y and u1,

we can graphically depict its feasible region Y(ω, z). The left panel in Figure 3.1

shows this feasible region for ω = 2.5 and z = 1, and also depicts the feasible

region of the LP-relaxation of v(ω, z). Clearly, the latter is larger than the integer

hull Ȳ(ω, z) of Y(ω, z).

It is well known that the integer hull Ȳ(ω, z) can be obtained by adding a mixed-

integer rounding (MIR) inequality, so that for every ω ∈ Ω and z ∈ R, the integer
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u1

y y − u1 ≤ ω − z

ω − z

u1

y y − u1 ≤ ω − z

ω − z
�ω� − z

y − (1 − ω + �ω�)−1u1 ≤ �ω� − z

Figure 3.1. Illustration of the feasible region of v(ω, z) of Example 3.1 with ω = 2.5
and z = 1. The feasible region Y(ω, z) is represented by the black dots and the thick
black lines. In the left panel the shaded region corresponds to the feasible region
of the LP-relaxation of v, whereas in the right panel, the MIR inequality is added,
and the dark shaded region represents the integer hull Ȳ(ω, z) of the feasible region
Y(ω, z) of v(ω, z).

hull Ȳ(ω, z) equals

Ȳ(ω, z) :=
{
(y, u1) ∈ R2

+ : y − u1 ≤ ω − z,

y − 1
1 − (ω − z) + �ω − z�u1 ≤ �ω − z�

}
.

The right panel in Figure 3.1 shows Ȳ(ω, z) and this MIR inequality.

Observe that the MIR inequality is not affine in z, which means that it will be

hard to use for optimization purposes. However, if z ∈ Z, then it reduces to

y − 1
1 − ω + �ω�u1 ≤ �ω� − z, (3.7)

which means it is of the form of the affine cutting planes in Definition 3.1. Thus, a

natural idea is to use the cutting planes in (3.7), also when z /∈ Z. In the latter case

the cutting planes are not always valid. However, it is not hard to show that these

cutting planes are pseudo-valid and tight.

Figure 3.2 shows the approximating feasible region

Ŷ(ω, z) =
{
(y, u1) ∈ R2

+ : y − u1 ≤ ω − z, y − 1
1 − ω + �ω�u1 ≤ �ω� − z

}
,

for z = 0.5 and ω = 1.5, 1.75, 2, 2.25. We observe that for ω = 2, the approximating
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MIR inequality coincides with the constraint y − u ≤ ω − z, so that Ŷ(ω, z) is equal

to the feasible region of the LP-relaxation of v(ω, z), and thus admits solutions out-

side the integer hull Ȳ(ω, z). For ω = 1.5, on the other hand, the approximating

MIR inequality cuts away feasible integer solutions. For ω = 1.75 and ω = 2.25 we

see a combination of both.

In Section 3.5.2 we numerically assess the performance of the pseudo-valid cut-

ting plane approximation

v̂(ω, z) := r(ω − z)

+ min
y,u1

{
(q − r)y + 2ru1 : (y, u1) ∈ Ŷ(ω, z)

}
, ω ∈ Ω, z ∈ R, (3.8)

and show that for a normally distributed random variable ω ∼ N(μ, σ2), Q̂ is a good

approximation of Q for medium to large values of the standard deviation σ. ♦

3.3 Pseudo-valid cutting planes for simple integer re-

course models

In this section we show that existing convex approximations for simple integer re-

course (SIR) models can be interpreted as pseudo-valid cutting plane approxima-

tions. SIR models are introduced by Louveaux and Van der Vlerk [45], and can be

considered the most simple version of a MISP as defined in (3.1). For ease of expos-

ition, we consider here the one-sided and one-dimensional version of SIR, where

the second-stage value function v is defined as

v(ω, z) = min
y

{
qy : y ≥ ω − z, y ∈ Z+

}
, ω ∈ Ω, z ∈ R.

Observe that we can derive a closed-form expression for v since for every ω ∈ Ω

and z ∈ R , the optimal solution is y∗ = �ω − z+ := max{0, �ω − z}, and thus

v(ω, z) = q �ω − z+. Clearly, v(ω, z) is a non-convex function of z because of the

round-up operator.

We, however, focus on the feasible region Y(ω, z) = {y ∈ Z+ : y ≥ ω − z} and

its integer hull

Ȳ(ω, z) =
{

y ∈ R+ : y ≥ �ω − z
}

, ω ∈ Ω, z ∈ R.

Here, the cutting plane y ≥ �ω − z makes the original constraint y ≥ ω − z re-
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u1

y y − u1 ≤ ω − z

ω − z
�ω� − z

ω = 1.5, z = 0.5
u1

y y − u1 ≤ ω − z

ω − z

�ω� − z

ω = 1.75, z = 0.5

u1

y y − u1 ≤ ω − z

ω − z

ω = 2, z = 0.5
u1

y y − u1 ≤ ω − z

ω − z�ω� − z

ω = 2.25, z = 0.5

Figure 3.2. Illustration of the feasible region of v(ω, z) of Example 3.1 with z = 0.5
and ω = 1.5, 1.75, 2, and 2.25. The feasible region Y(ω, z) is represented by the
black dots and the thick black lines. The dotted line represents the pseudo-valid
MIR inequality defined in (3.7), and the shaded regions the approximating feasible
region Ŷ(ω, z).
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dundant. Similar to Example 3.1, this exact cutting plane is not affine in z and thus

not suitable for optimization purposes. However, if z ∈ Z, then the cutting plane

is equivalent to y ≥ �ω − z, which we can use as a pseudo-valid cutting plane

for z /∈ Z. In fact, y ≥ �ω − z is a tight pseudo-valid cutting plane. We define a

family of tight pseudo-valid cutting plane approximations v̂α, each of them using

the cutting plane y ≥ �ω − α+ α − z that is exact for z ∈ α + Z.

Definition 3.3. For every α ∈ R, define the pseudo-valid cutting plane approxim-

ation v̂α for the SIR second-stage value function v as

v̂α(ω, z) = min
y

{
qy : y ≥ �ω − α+ α − z, y ∈ R+

}

= q
(
�ω − α+ α − z

)+
, ω ∈ Ω, z ∈ R.

Moreover, define the corresponding pseudo-valid cutting plane approximation Q̂α

for the SIR expected value function Q as Q̂α(z) = qEω [(�ω − α+ α − z)+], z ∈ R.

Surprisingly, the pseudo-valid cutting plane approximation Q̂α equals the α-

approximations of Klein Haneveld et al. [41], derived from a completely different

perspective. They first identify all probability distributions of ω for which the ex-

pected value function Q is convex. This turns out to be all continuous distribu-

tions with probability density function f satisfying f (s) = G(s + 1)− G(s), s ∈ R,

for some cumulative distribution function G with finite mean. For all other distri-

butions, they use this condition to generate an approximating density function f̂ ,

resulting in a convex approximation Q̂ of Q. Selecting G(s + 1) = F(�s − α+ α),

s ∈ R, yields the α-approximation Q̂α(z) := qEω [(�ω − α + α − z)+], z ∈ R,

equivalent to the pseudo-valid cutting plane approximation of Definition 3.3.

In this section, we reinterpret Q̂α as a pseudo-valid cutting plane approxima-

tion, connecting the convex approximation solution philosophy, introduced by Van

der Vlerk [80] and continued in among others [41, 59, 60, 61, 82, 83] and in Chap-

ter 2, with exact cutting plane techniques for MISPs, studied in, e.g., [13, 20, 25, 31,

35, 50, 53, 70, 73, 88]. This is particularly relevant, since performance guarantees are

available for using convex approximations that may be used for pseudo-valid cut-

ting plane approximations. In fact, for SIR models, Romeijnders et al. [59] derive

an upper bound on ‖Q − Q̂α‖∞ := supz∈R |Q(z) − Q̂α(z)| for every α ∈ R, that

depends on the total variation of the probability density function f of the random

variable ω.
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Definition 3.4. Let f : R → R be a real-valued function and let I ⊂ R be an

interval. Let Π(I) denote the set of all finite ordered sets P = {x1, . . . , xN+1} with

x1 < · · · < xN+1 in I. Then, the total variation of f on I, denoted |Δ| f (I), is defined

as

|Δ| f (I) = sup
P∈Π(I)

Vf (P),

where Vf (P) = ∑N
i=1 | f (xi+1)− f (xi)|. We write |Δ| f := |Δ| f (R).

Theorem 3.1. Consider the SIR expected value function Q(z) = qEω [�ω − z+], z ∈ R,

and its pseudo-valid cutting plane approximation Q̂α(z) = qEω [(�ω − α − α − z)+],

z ∈ R , for α ∈ R . Then, for every continuous random variable ω with probability density

function f , we have

‖Q − Q̂α‖∞ ≤ qh(|Δ| f ),

where h : [0, ∞) �→ R is defined as

h(|Δ| f ) =

⎧⎪⎨
⎪⎩

|Δ| f /8, |Δ| f ≤ 4,

1 − 2/|Δ| f , |Δ| f ≥ 4.

Proof. See Romeijnders et al. [59].

Remark 3.2. Romeijnders et. al [59] actually derive an error bound for the α-approx-

imations of Van der Vlerk [83] for integer recourse models with totally unimodular

recourse matrix W. Also these α-approximations can be interpreted as tight pseudo-

valid cutting plane approximations.

Theorem 3.1 shows that the error bound is smaller for lower values of the total

variation |Δ| f of the probability density function f of ω. For unimodal density

functions, such as the normal density function in Example 3.2 below, this total vari-

ation |Δ| f is small if the variance of the random variable ω is large. Thus, in general

we conclude from Theorem 3.1 that the larger the variability of the random variable

in the model, the better the pseudo-valid cutting plane approximation.

Example 3.2. Let ω be a normal random variable with mean μ and standard devi-

ation σ. Then, the probability density function f of ω is given by

f (x) =
1√

2πσ2
exp

{
− (x − μ)2

2σ2

}
, x ∈ R,
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which is unimodal with mode μ, and thus has total variation |Δ| f = 2 f (μ) =

σ−1
√

2/π. Hence, if the standard deviation σ increases, then the total variation |Δ| f

of f decreases, and thus the upper bound on ‖Q − Q̂α‖∞ in Theorem 3.1 decreases.

In other words, if the standard deviation is large, then Q̂α is a close approximation

of Q, and thus the resulting approximating first-stage decision x̂α will be good. ♦

3.4 Pseudo-valid cutting plane approximations for gen-

eral MISPs

In this section we consider tight pseudo-valid cutting plane approximations Q̂ for

general MISPs, and we derive an upper bound on ‖Q − Q̂‖∞ for the case that the

random right-hand side vector is continuously distributed . We use ‖Q − Q̂‖∞ to

measure the error of the approximation Q̂, since it can be used to bound the op-

timality gap, c� x̂ + Q(x̂)− η∗, of the approximating solution x̂ obtained by solving

(3.1) with Q replaced by Q̂. Indeed, Romeijnders et al. [59] show that for any ap-

proximation Q̂, we have

c� x̂ + Q(x̂)− η∗ ≤ 2‖Q − Q̂‖∞.

We prove that for tight pseudo-valid cutting plane approximations Q̂, the error

‖Q − Q̂‖∞ vanishes if the total variations of the one-dimensional conditional prob-

ability density functions of the random vector ω in the model go to zero. For ex-

ample, for normally distributed ω this means that the solutions obtained by using

tight pseudo-valid cutting planes are good if the variance of ω is large enough.

The final result is Theorem 3.2, which is conveniently stated here below. If the

pseudo-valid cuts are not tight, then we use Q̂ to derive a lower bound for Q in

Corollary 3.1.

Definition 3.5. For every i = 1, . . . , m and t ∈ Rm, we let t−i ∈ Rm−1 denote the

vector t without its i-th component.

Definition 3.6. For every i = 1, . . . , m and t−i ∈ Rm−1, define the i-th conditional

density function fi(·|t−i) of the m-dimensional joint pdf f as

fi(ti|t−i) =

⎧⎪⎨
⎪⎩

f (t)
f−i(t−i)

, f−i(t−i) > 0,

0, f−i(t−i) = 0,
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where f−i represents the joint density function of ω−i, the random vector obtained

by removing the i-th element of ω.

Definition 3.7. Let Hm denote the set of all m-dimensional joint pdfs f whose con-

ditional density functions fi(·|t−i) are of bounded variation.

Theorem 3.2. Consider the mixed-integer recourse function Q and its tight pseudo-valid

cutting plane approximation Q̂. Then, under Assumption 3.1, there exists a constant

C ∈ R with C > 0 such that for all ω with pdf f ∈ Hm,

‖Q − Q̂‖∞ ≤ C
m

∑
i=1

Eω−i

[
|Δ| fi(·|ω−i)

]
.

If all components of the random vector ω are independent, then |Δ| fi(·|ω−i) =

|Δ| fi for every i = 1, . . . , m and ω−i ∈ Rm−1, and thus the error bound in The-

orem 3.2 reduces to C ∑m
i=1 |Δ| fi, where |Δ| fi is the total variation of the marginal

probability density function fi of ωi, i = 1, . . . , m. Hence, if the components of ω

are independent and normally distributed, then the error bound in Theorem 3.2 is

small if the standard deviations of the components of ω are large, see Example 3.2.

In the next corollary, we derive a lower bound for Q that holds irrespective of

whether the pseudo-valid cuts are tight or not.

Corollary 3.1. Consider the mixed-integer recourse function Q and its pseudo-valid cut-

ting plane approximation Q̂. Then, under Assumption 3.1, there exists a constant C ∈ R

with C > 0 such that for all ω with pdf f ∈ Hm and z ∈ Rm,

Q(z) ≥ Q̂(z)− C
m

∑
i=1

Eω−i

[
|Δ| fi(·|ω−i)

]
.

Since Q̂ is typically strictly larger than the LP-relaxation QLP of Q, it follows

that Corollary 3.1 defines a better lower bound on Q than QLP, at least if the second

right-hand side term vanishes. Such a better lower bound may be useful in, e.g., a

branch-and-bound algorithm if some of the first-stage decision variables are integer

or binary.

Remark 3.3. Theorem 3.2 and Corallary 3.1 provide a performance guarantee for

pseudo-valid cutting plane approximations of MISPs with continuous distributions

only. However, for practical computations these continuous distributions are typ-

ically discretized, e.g., using a sample average approximation (SAA) [42], to deal
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with the high-dimensional integrals in the expected value function. Since Q̂ is

essentially a continuous stochastic program, the additional error that we incur by

discretizing continuous distributions is thus the same as for standard continuous

stochastic programs with continuous distributions. Moreover, if the discretization

is fine enough, then the discretized version of Q̂ will be sufficiently close to the ori-

ginal pseudo-valid cutting plane approximation Q̂ with continuous distributions

[37].

The proofs of Theorem 3.2 and Corollary 3.1 are postponed to Section 3.4.4.

First, however, we discuss preliminary results required for these proofs. In par-

ticular, in Section 3.4.1 we review properties of the mixed-integer value function

v(ω, z), in Section 3.4.2 we show that a tight pseudo-valid cutting plane approx-

imation v̂(ω, z) is affine in z on parts of its domain, and in Section 3.4.3 we derive

bounds on v̂. The proofs of our auxiliary lemmas and propositions in these sections

are postponed to Appendix 3.A.

3.4.1 Properties of mixed-integer value functions

Let B be a dual feasible basis matrix of the LP-relaxation vLP of v. Then, we can

rewrite vLP as

vLP(ω, z) = min
yB ,yN

q�B yB + q�NyN

s.t. ByB + NyN = ω − z (3.9)

yB ∈ Rm
+, yN ∈ R

n2−m
+ ,

where yB denote the basic variables and yN the non-basic variables. Using the

equality in (3.9) to solve for the basic variables yB, we obtain the equivalent repres-

entation

vLP(ω, z) = q�B B−1(ω − z) + min
yN

q̄�NyN (3.10)

s.t. B−1(ω − z)− B−1NyN ≥ 0

yN ∈ R
n2−m
+ ,

with reduced costs q̄�N := q�N − q�B B−1N ≥ 0. Obviously, it is optimal to select

the non-basic variables yN equal to zero in the minimization problem in (3.10) if

B−1(ω − z) ≥ 0. The latter condition can conveniently be rewritten as ω − z ∈ Λ,

where the simplicial cone Λ is defined as Λ := {t ∈ Rm : B−1t ≥ 0}. Thus, if
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ω − z ∈ Λ, then

vLP(ω, z) = q�B B−1(ω − z).

This result holds for every dual feasible basis matrix B. In fact, the basis decom-

position theorem of Walkup and Wets [85] shows that there exist basis matrices Bk

and corresponding simplicial cones Λk := {t ∈ Rm : B−1
k t ≥ 0}, k = 1, . . . , K, such

that these cones Λk cover Rm, the interiors of these cones Λk are mutually disjoint,

and vLP(ω, z) = q�Bk
B−1

k (ω − z) for ω − z ∈ Λk for every k = 1, . . . , K.

Romeijnders et al. [60] prove a similar result for the mixed-integer value function

v, involving the same basis matrices Bk and simplicial cones Λk, k = 1, . . . , K. They

show that there exist distances dk ≥ 0 such that if ω − z ∈ Λk and ω − z has at least

Euclidean distance dk to the boundary of Λk, then

v(ω, z) = q�Bk
B−1

k (ω − z) + ψk(ω − z),

where ψk is a Bk-periodic function, see Definition 3.8 below. The first term is the

same as the LP-relaxation vLP, and thus the second term can be interpreted as

the additional costs of having integer variables instead of continuous ones. The-

orem 3.3 summarizes these results.

Definition 3.8. Let B ∈ Zm×m be an integer matrix. Then, a function ψ : Rm �→ R

is called B-periodic if and only if ψ(z) = ψ(z + Bl) for every z ∈ Rm and l ∈ Zm.

Definition 3.9. Let Λ ⊂ Rm be a closed convex cone and let d ∈ R with d > 0 be

given. Then, we define Λ(d) as

Λ(d) :=
{

s ∈ Λ : B(s, d) ⊂ Λ
}

,

where B(s, d) := {t ∈ Rm : ‖t − s‖ ≤ d} is the closed ball centered at s with radius

d. We can interpret Λ(d) as the set of points in Λ with at least Euclidean distance d

to the boundary of Λ.

Theorem 3.3. Consider the mixed-integer value function

v(ω, z) = min
{

q�y : Wy = ω − z, y ∈ Z
p2
+ × R

n2−p2
+

}
, z ∈ Rm,

where W is an integer matrix, and v(ω, z) is finite for all ω ∈ Ω and z ∈ Rm by Assump-

tion 3.1. Then, there exist dual feasible basis matrices Bk of vLP, k = 1, . . . , K, simplicial
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cones Λk := {t ∈ Rm : B−1
k t ≥ 0}, distances dk ≥ 0, and bounded Bk-periodic functions

ψk such that

•
K⋃

k=1

Λk = Rm,

• (int Λk) ∩ (int Λl) = ∅ for every k, l ∈ {1, . . . , K} with k 	= l, and

• v(ω, z) = q�Bk
B−1

k (ω − z) + ψk(ω − z) for every ω − z ∈ Λk(dk).

Proof. See [60].

3.4.2 Linearity regions of pseudo-valid cutting plane approxima-
tions

Consider a tight pseudo-valid cutting plane approximation v̂(ω, z). Moreover, let

k = 1, . . . , K be given and consider a fixed ω ∈ Ω. Theorem 3.3 shows that for all

z ∈ Rm with ω − z ∈ Λk(dk), i.e., for all z ∈ ω − Λk(dk), the mixed-integer value

function v is given by

v(ω, z) = q�Bk
B−1

k (ω − z) + ψk(ω − z).

Since ψk is Bk-periodic there exist values of β for which ψk(ω − z) = ψk(ω − α) for

all z ∈ α + βZm; see the proof of Proposition 3.1. Let β be such a value. Then, for

all z ∈ ω − Λk(dk) and z ∈ α + βZm, we have v̂(ω, z) = v(ω, z), and thus the tight

pseudo-valid cutting plane approximation v̂ equals

v̂(ω, z) = q�Bk
B−1

k (ω − z) + ψk(ω − α). (3.11)

Thus, for a fixed ω ∈ Ω, the tight pseudo-valid cutting plane approximation v̂(ω, z)

is affine in z over a grid of points in ω − Λk(dk). Since v̂(ω, z) is convex in z, we

intuitively expect v̂(ω, z) to satisfy (3.11) for points outside the grid in ω − Λk(dk)

as well. Lemma 3.1 confirms our intuition.

Lemma 3.1. Let v : Rm �→ R be a convex function and let C ⊂ Rm be a compact convex

set with extreme points zj ∈ C, j = 1, . . . , J, and interior point z0 ∈ C. Suppose that

there exist a ∈ Rm and b ∈ R such that v(zj) = a�zj + b for all j = 0, . . . , J. Then,

v(z) = a�z + b for all z ∈ C.

To apply Lemma 3.1 to v̂(ω, z) we introduce hyperrectangles Cl(α, β) that have

extreme points on the grid α + βZm.
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Definition 3.10. Let α ∈ Rm and β ∈ Rm be given. For every l ∈ Zm, we define the

hyperrectangle Cl(α, β) as

Cl(α, β) :=
m

∏
i=1

[
αi + βi(li − 1), αi + βi(li + 1)

]
.

For every value of α, β ∈ Rm and l ∈ Zm, the hyperrectangle Cl(α, β) ⊂ Rm is

convex. Moreover, all its extreme points and the interior point (α1 + β1l1, . . . , αm +

βmlm) are on the grid α + βZm. Thus, if Cl(α, β) ⊂ ω − Λk(dk), then we can apply

Lemma 3.1 to v̂(ω, ·) with C := Cl(α, β) to conclude that v̂(ω, z) satisfies (3.11) for

all z ∈ Cl(α, β), and thus v̂(ω, z) is affine in z over Cl(α, β). Applying Lemma 3.1 for

all Cl(α, β) that are completely contained in ω −Λk(dk), we can show that v̂(ω, z) is

affine in z over at least ω − Λk(dk + 2‖β‖). This is true since the diameter of Cl(α, β)

is 2‖β‖, and Λk(dk + 2‖β‖) represents all points in Λk with at least Euclidean dis-

tance dk + 2‖β‖ to the boundary of Λk. Thus, for every z ∈ ω −Λk(dk + 2‖β‖) there

exists a hyperrectangle Cl(α, β) ⊂ ω − Λk(dk) that contains z. Here, the diameter

of Cl(α, β) is defined as

max
z1,z2

{
‖z1 − z2‖ : z1, z2 ∈ Cl(α, β)

}
= 2‖β‖.

Proposition 3.1 shows all linearity regions of v̂(ω, z) for fixed ω ∈ Ω. These are

subsets of the domain of v̂(ω, ·) on which v̂(ω, z) is affine in z.

Proposition 3.1. Consider a tight pseudo-valid cutting plane approximation v̂(ω, z) as

defined in Definition 3.2, and let Λk, k = 1, . . . , K, denote the simplicial cones from The-

orem 3.3. Then, under Assumption 3.1, for every k = 1, . . . , K, there exists a distance

d′k ≥ 0 such that if ω − z ∈ Λk(d′k), then

v̂(ω, z) = q�Bk
B−1

k (ω − z) + ψk(ω − α). (3.12)

3.4.3 Bounds on the value function of a pseudo-valid cutting plane
approximation

Proposition 3.1 defines v̂(ω, z) on the linearity regions Λk(d′k). In fact, on these

linearity regions, v(ω, z) = q�Bk
B−1

k (ω − z) + ψk(ω − z) and v̂(ω, z) = q�Bk
B−1

k (ω −
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z) + ψk(ω − α), so that the difference between the two equals

v(ω, z)− v̂(ω, z) = ψk(ω − z)− ψk(ω − α), z ∈ ω − Λk(d′k).

This difference is Bk-periodic and bounded, since ψk is a bounded Bk-periodic func-

tion by Theorem 3.3. These properties will be exploited to derive an error bound

for tight pseudo-valid cutting plane approximations Q̂ in Section 3.4.4.

Outside the linearity regions, i.e., on N := Rm\⋃K
k=1 Λk(d′k), we cannot prove

such properties for v(ω, z) and v̂(ω, z). However, we can show that the difference

between the two is bounded. That is, there exists R ∈ R such that

‖v − v̂‖∞ := sup
ω,z

|v(ω, z)− v̂(ω, z)| ≤ R.

To prove this result we use that N can be covered by finitely many hyperslices Hj,

j ∈ J , see [60].

Definition 3.11. Let δ > 0 and normal vector a ∈ Rm\{0} be given. Then, the

hyperslice H(a, δ) is defined as

H(a, δ) := {z ∈ Rm : 0 ≤ a�z ≤ δ}.

However, before we derive an upper bound on ‖v− v̂‖∞, we first derive a lower

bound and upper bound on the value function v̂(ω, z) of the tight pseudo-valid cut-

ting plane approximation. The lower bound follows directly from Proposition 3.1

and the fact that v̂(ω, z) is convex in z for every fixed ω ∈ Ω.

Lemma 3.2. Consider a tight pseudo-valid cutting plane approximation v̂(ω, z) as defined

in Definition 3.2. Then, under Assumption 3.1, we have for every ω ∈ Ω and z ∈ Rm that

v̂(ω, z) ≥ max
k=1,...,K

{
q�Bk

B−1
k (ω − z) + ψk(ω − α)

}
.

The lower bound of v̂(ω, z) in Lemma 3.2 is not only valid on the linearity re-

gions of v̂(ω, ·), but also on ω − N . We will show that the difference between

v̂(ω, z) and this lower bound is bounded. Again, we use the fact that v̂(ω, z) is

convex in z for every fixed ω ∈ Ω.

Lemma 3.3. Consider a tight pseudo-valid cutting plane approximation v̂(ω, z) as defined
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in Definition 3.2. Then, under Assumption 3.1, there exists R′ ∈ R such that

v̂(ω, z)− max
k=1,...,K

{
q�Bk

B−1
k (ω − z) + ψk(ω − α)

}
≤ R′. (3.13)

Now we are ready to prove an upper bound on ‖v − v̂‖∞. The idea of the proof

is that we can use Lemma 3.2 and 3.3 to bound ‖v̂− vLP‖∞, where the LP-relaxation

vLP(ω, z) of v(ω, z) is equal to

vLP(ω, z) = max
k=1,...,K

{
q�Bk

B−1
k (ω − z)

}
, (3.14)

and the maximum difference between v and vLP is known.

Proposition 3.2. Consider a tight pseudo-valid cutting plane approximation v̂(ω, z) as

defined in Definition 3.2. Then, under Assumption 3.1, there exists R ∈ R such that

‖v − v̂‖∞ ≤ R.

3.4.4 Proof of error bound

In this section we give the proofs of Theorem 3.2 and Corollary 3.1. Whereas the

focus in Sections 3.4.2 and 3.4.3 was on v̂(ω, z) as a function of z for fixed ω ∈
Ω, we now consider the difference v(ω, z) − v̂(ω, z) as a function of ω for fixed

z ∈ Rm. This is because Q(z) − Q̂(z) = Eω [v(ω, z) − v̂(ω, z)], z ∈ Rm, and thus

v(ω, z)− v̂(ω, z) can be interpreted as the underlying difference function for fixed

z ∈ Rm. Based on Propositions 3.1 and 3.2, we know for tight pseudo-valid cutting

plane approximations v̂(ω, z) that for ω ∈ z + Λk(d′k), k = 1, . . . , K,

v(ω, z)− v̂(ω, z) = ψk(ω − z)− ψk(ω − α),

and for ω ∈ z +N ,

∣∣∣v(ω, z)− v̂(ω, z)
∣∣∣ ≤ R.

We will use these two main properties to derive an upper bound for ‖Q − Q̂‖∞

that depends on the total variations of the one-dimensional conditional probability

density functions of the random variables in the model.
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Proof of Theorem 3.2. Combining Theorem 3.3 and Proposition 3.1, there exist basis

matrices Bk, corresponding simplicial cones Λk, distances d′k ≥ 0, and bounded

Bk-periodic functions ψk such that for ω − z ∈ Λk(d′k),

v(ω, z)− v̂(ω, z) = ψk(ω − z)− ψk(ω − α).

Moreover, by Proposition 3.2, there exists R ∈ R such that ‖v − v̂‖∞ ≤ R.

Fix z ∈ Rm and consider the difference v(ω, z)− v̂(ω, z) as a function of ω. We

will use that for ω ∈ z + Λk(d′k), this difference is Bk-periodic, and for ω ∈ z +N ,

it is bounded by R. In fact, using Theorems 4.6 and 4.13 in [60] we can show that

there exist constants D > 0 and C′
k > 0, k = 1, . . . , K, such that

P{ω ∈ z +N} ≤ D
m

∑
i=1

Eω−i

[
|Δ| fi(·|ω−i)

]
, (3.15)

and for every k = 1, . . . , K,

∣∣∣∣∣
∫

z+Λk(d′k)
(ψk(t − z)− ψk(t − α)) f (t)dt

∣∣∣∣∣ ≤ C′
k

m

∑
i=1

Eω−i

[
|Δ| fi(·|ω−i)

]
. (3.16)

Then,

|Q(z)− Q̂(z)| =
∣∣∣∣
∫

Rm
(v(t, z)− v̂(t, z)) f (t)dt

∣∣∣∣
≤
∣∣∣∣
∫

z+N
(v(t, z)− v̂(t, z)) f (t)dt

∣∣∣∣
+

K

∑
k=1

∣∣∣∣∣
∫

z+Λk(d′k)
(v(t, z)− v̂(t, z)) f (t)dt

∣∣∣∣∣
≤ RP{ω ∈ z +N}+

K

∑
k=1

∣∣∣∣∣
∫

z+Λk(d′k)
(v(t, z)− v̂(t, z)) f (t)dt

∣∣∣∣∣ .

Applying the bound in (3.15) to the first term and the bounds in (3.16) to the second

term, we obtain

|Q(z)− Q̂(z)| ≤ RD
m

∑
i=1

Eω−i

[
|Δ| fi(·|ω−i)

]
+

K

∑
k=1

C′
k

m

∑
i=1

Eω−i

[
|Δ| fi(·|ω−i)

]

= C
m

∑
i=1

Eω−i

[
|Δ| fi(·|ω−i)

]
,

where the constant C is defined as C := RD + ∑K
k=1 C′

k.
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Proof of Corollary 3.1. Since (3.4) holds for the pseudo-valid cutting plane approx-

imation v̂(ω, z), it follows immediately that there exist α ∈ Rm and β ∈ Zm such

that for all z ∈ α + βZm and ω ∈ Ω,

v̂(ω, z) ≤ v(ω, z).

This implies for example that (3.12) holds with “≤” instead of “=”. Thus, analog-

ously to the proof of Theorem 3.2 we are able to show that there exists a constant

C ∈ R with C > 0 such that for all ω with pdf f ∈ Hm, and for all z ∈ Rm,

Q̂(z)− Q(z) ≤ C
m

∑
i=1

Eω−i

[
|Δ| fi(·|ω−i)

]
. (3.17)

Notice that this upper bound does not necessarily apply to Q(z)− Q̂(z) since the

pseudo-valid cuts are not necessarily tight. The claim follows by rearranging terms

in (3.17).

3.5 Examples of pseudo-valid cutting planes

In this section we consider examples of pseudo-valid cutting plane approximations.

We derive pseudo-valid mixed-integer Gomory cuts in Section 3.5.1, and a tight

pseudo-valid cutting plane approximation for a nurse scheduling problem in Sec-

tion 3.5.2.

3.5.1 Pseudo-valid mixed-integer Gomory cuts

Consider the second-stage value function

v(ω, z) := min
yB ,yN

{
q�B yB + q�NyN : ByB + NyN = ω − z,

yB ∈ YB, yN ∈ YN

}
, ω ∈ Ω, z ∈ Rm,

where similar as in Section 3.4.1, we let B denote a dual feasible basis matrix of the

LP-relaxation of v. Multiplying the equality constraint in v(ω, z) by e�i B−1, where

ei is the i-th unit vector, we obtain

yBi + e�i B−1NyN = e�i B−1(ω − z), (3.18)
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where yBi denotes the i-th basic variable. Let w̄ij denote the j-th component of

the vector e�i B−1N, let yNj denote the j-th non-basic variable, and let ri(ω, z) :=

e�i B−1(ω − z) −
⌊
e�i B−1(ω − z)

⌋
. If the i-th basic variable yBi is restricted to be

integer, then we can derive from (3.18) the exact mixed-integer Gomory cut

∑
j∈J1

min
{ w̄ij −

⌊
w̄ij
⌋

ri(ω, z)
,

1 − w̄ij +
⌊
w̄ij
⌋

1 − ri(ω, z)

}
yNj

+ ∑
j∈J2

max
{ w̄ij

ri(ω, z)
,

−w̄ij

1 − ri(ω, z)

}
yNj ≥ 1, (3.19)

where J1 denotes the index set of integer non-basic variables yNj and J2 the index

set of continuous non-basic variables yNj ; see, e.g., [9].

Obviously, the exact mixed-integer Gomory cut in (3.19) is not affine in z, among

others since ri(ω, z) is not affine in z. However, if z ∈ βZm, where β := |det(B)|e
with e the m-dimensional all-one vector, then under the assumption that W is in-

teger, we can show that ri(ω, z) = ri(ω, 0), and thus the mixed-integer Gomory cut

in (3.19) does not depend on z. This is true, since for such z, we have e�i B−1z =

e�i
(

det(B)−1adj(B)
)

z ∈ Z, and thus

ri(ω, z) = e�i B−1(ω − z)−
⌊

e�i B−1(ω − z)
⌋

= e�i B−1ω −
⌊

e�i B−1ω
⌋
= ri(ω, 0).

Similarly, if z ∈ α + βZm with β := |det(B)|e, then ri(ω, z) = ri(ω, α). Thus,

replacing ri(ω, z) by ri(ω, α) in (3.19) yields an approximate mixed-integer Gomory

cut that does not depend on z and is valid for all ω and for all z on a grid of points

α + βZm. Hence, the approximate mixed-integer Gomory cut

∑
j∈J1

min
{ w̄ij −

⌊
w̄ij
⌋

ri(ω, α)
,

1 − w̄ij +
⌊
w̄ij
⌋

1 − ri(ω, α)

}
yNj

+ ∑
j∈J2

max
{ w̄ij

ri(ω, α)
,

−w̄ij

1 − ri(ω, α)

}
yNj ≥ 1, (3.20)

is pseudo-valid and thus satisfies the assumptions of Corollary 3.1. This implies

that we can use these pseudo-valid mixed-integer Gomory cuts to obtain a strictly

better (approximate) lower bound of Q than QLP, as we illustrate in Example 3.3

below.
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Example 3.3. Consider an adjusted version of the MISP in [67], given by

min
x∈X

−3
2

x1 − 4x2 + Q(x),

where X = [0, 5]2 and Q(x) = Eω [v(ω, x)] with

v(w, x) = min
y,u,ν

− 16y1 − 19y2 − 23y3 − 28y4 + 50ν1 + 50ν2

s.t. 2y1 + 3y2 + 4y3 + 5y4 + u1 − ν1 = ω1 − x1

6y1 + y2 + 3y3 + 2y4 + u2 − ν2 = ω2 − x2

y ∈ Z4
+, u, ν ∈ R2

+.

Similar as in [67], the random vector ω follows a discrete uniform distribution on

{5, 5.5, . . . , 15} × {5, 5.5, . . . , 15}, and thus the support Ω of ω consists of 441 scen-

arios. Different variants of this problem are considered in, e.g., [4, 24, 31, 53, 73].

We use (3.20) to derive pseudo-valid mixed-integer Gomory cuts for Q. To be

precise, we derive pseudo-valid mixed-integer Gomory cuts from those dual feas-

ible basis matrices B that are optimal for the LP-relaxation vLP of v for at least one

pair of ω ∈ Ω and x ∈ X. These basis matrices turn out to be

B1 =

⎛
⎝2 3

6 1

⎞
⎠ , B2 =

⎛
⎝2 0

6 1

⎞
⎠ , and B3 =

⎛
⎝3 1

1 0

⎞
⎠ .

Since both columns of B1 and only the first column of B2 and B3 correspond to

integer second-stage variables, we derive four pseudo-valid mixed-integer Gomory

cuts: two corresponding to B1 and one corresponding to B2 and B3.

Since the first-stage decision vector x is two-dimensional, we are able to depict

both Q and QLP graphically in Figure 3.3. Moreover, we also show four pseudo-

valid cutting plane approximations Q̂, obtained by iteratively adding an additional

pseudo-valid mixed-integer Gomory cut. From Figure 3.3 we observe that already

by adding a single pseudo-valid mixed-integer Gomory cut we significantly im-

prove the LP-relaxation lower bound QLP of Q. Moreover, this lower bound im-

proves further if we add additional pseudo-valid mixed-integer Gomory cuts. No-

tice that Q̂ is indeed an approximate lower bound, since for Q̂ with three or four

cuts, the function Q̂ may exceed the original expected value function Q. However,

Corollary 3.1 guarantees that supx∈X{Q̂(x)− Q(x)} cannot be too large.
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Q̂(x) (4 cuts)

Figure 3.3. The expected value function Q of Example 3.3, its LP-relaxation QLP,
and four pseudo-valid cutting plane approximations Q̂ with a different number of
pseudo-valid mixed-integer Gomory cuts.

Finally, in Figure 3.4 we show the approximation error

‖Q − Q̂‖∞ := sup
x∈X

|Q(x)− Q̂(x)|

for the four pseudo-valid cutting plane approximations Q̂ with respect to the in-

tegrality gap ‖Q − QLP‖∞ of QLP. We observe that this integrality gap reduces by

almost 20% if we add a single pseudo-valid mixed-integer Gomory cut. Moreover,

by adding all four cuts, the approximation error of Q̂ reduces to approximately 50%

of that of QLP. ♦

3.5.2 Nurse scheduling problem

In this section we apply tight pseudo-valid cutting planes to a nurse scheduling

problem, introduced by Kim and Mehrotra [40]. In this problem, a regular work
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0 1 2 3 4

Number of cuts added

50%

75%

100% ‖Q − Q̂‖∞

‖Q − QLP‖∞
× 100%

Figure 3.4. The relative approximation errors of the pseudo-valid cutting plane
approximations Q̂ of Example 3.3.

schedule for the nurses is determined in the first stage, resulting in a number zt

of available nurses per time period t = 1, . . . , T. This regular work schedule is

determined before the random demand ωt for nurses per time period is known.

Thus, it may turn out that we have a shortage or surplus of nurses in some of the

time periods. In this case, it is possible to add or subtract nurse shifts, consisting

of several consecutive time periods, after the demands ωt are known. Moreover,

we penalize any remaining nurse shortages and nurse surpluses using unit penalty

costs per time period. The corresponding second-stage value function v is given by

v(ω, z) = min
y,u1,u2

q�y + r�1 u1 + r�2 u2 (3.21)

s.t. Wy − u1 + u2 = ω − z

y ∈ Z
n2
+ , u1, u2 ∈ RT

+,

where y ∈ Z
n2
+ represents the possibility to add or subtract nurse shifts, and W

is a {−1, 0, 1}-matrix, modelling which time periods are contained in which shift.

Kim and Mehrotra [40] show that W is a totally unimodular matrix. Moreover, they

show that if z ∈ ZT , then the cutting planes Wy − D̂(ω)u1 ≤ �ω� − z, with D̂(ω)
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the diagonal matrix with t-th diagonal component D̂tt(ω) equal to

D̂tt(ω) =
1

1 − ωt + �ωt�
, t = 1, . . . , T,

are valid for all ω ∈ Ω. In particular, combined with the constraints Wy− u1 + u2 =

ω − z, they completely define the integer hull Ȳ(ω, z) of the feasible region Y(ω, z)

of v(ω, z). That is, for every ω ∈ Ω and z ∈ ZT ,

Ȳ(ω, z) =
{
(y, u1, u2) ∈ R

n2+2T
+ : Wy − u1 + u2 = ω − z,

Wy − D̂(ω)u1 ≤ �ω� − z
}

.

If we assume, contrary to [40], that z is not necessarily integral, then we may use

the cutting planes Wy− D̂(ω)u1 ≤ �ω�− z to derive the tight pseudo-valid cutting

plane approximation

v̂(ω, z) = min
y,u1,u2

q�y + r�1 u1 + r�2 u2 (3.22)

s.t. Wy − u1 + u2 = ω − z

Wy − D̂(ω)u1 ≤ �ω� − z

y ∈ R
n2
+ , u1, u2 ∈ RT

+.

Since the cutting planes are valid for all z ∈ α + βZm, with α = 0 and β = e, and for

all ω ∈ Ω, they are indeed pseudo-valid and tight. Hence, by Theorem 3.2 the error

of the corresponding tight pseudo-valid cutting plane approximation Q̂ converges

to zero if all total variations of one-dimensional conditional pdf of ω converge to

zero. In Example 3.4 below, we numerically show the actual performance of this

approximation for the one-dimensional second-stage value function of Example 3.1

in Section 3.2, which can be considered a special case of (3.21).

Example 3.4. Consider the second-stage value function v(ω, z) of Example 3.1,

v(ω, z) = r(ω − z) + min
y,u1

(q − r)y + 2ru1

s.t. y − u1 ≤ ω − z

y ∈ Z+, u1 ∈ R+,

and its tight pseudo-valid cutting plane approximation defined in (3.8). Let ω be a

normal random variable with mean μ and standard deviation σ. Then, as shown
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0 1 2 3 4 σ

‖Q − Q̂‖∞ ↑

0.5

1.0

Figure 3.5. The maximum difference between Q and its pseudo-valid cutting plane
approximation Q̂ of Example 3.4, with q = 1 and r = 2, as a function of the standard
deviation σ of a normal random variable ω.

in Example 3.2, the total variation |Δ| f of the probability density function f of ω

equals |Δ| f = σ−1
√

2/π. Figure 3.5 shows ‖Q − Q̂‖∞, the maximum difference

between the expected value function Q and its tight pseudo-valid cutting plane

approximation Q̂, as a function of the standard deviation σ for q = 1 and r = 2. We

observe that this difference decreases if σ increases. This is in line with Theorem 3.2,

since the total variation |Δ| f of a normal probability density function f decreases if

the standard deviation σ increases. ♦

3.6 Numerical case study

In this section we evaluate the performance of the tight pseudo-valid cutting planes

derived for the nurse scheduling problem in Section 3.5.2. This nurse scheduling

problem is adapted from [40] so that all first-stage decision variables are continu-

ous instead of integer. For small problem instances we compute the optimality gap

of our pseudo-valid cutting plane approximation, and for larger problem instances

we compare our approximation with two benchmark approximations. All compu-

tations are carried out on a single Intel Xeon E5 2680v3 core (2.5 GHz).

3.6.1 Experimental design

Similar as in Kim and Mehrotra [40], the regular nurse schedule that we have to

determine is a weekly repeating nurse scheduling for a 12-week period in which

nurses work in shifts of 8 or 12 hours. Moreover, there are three possible employ-

ment types for nurses: full-time, part-time, and casual. See [40] for the details.
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The normalized costs for regular nurses are 1 per hour. In the second-stage,

nurse shifts can be cancelled for free, but they can only be added at a cost of 1.5 per

hour. Moreover, the unit penalty costs r1 and r2 from (3.21) are 0 and 104 for each

time period, respectively. In this way, demand for nurses should be met either by

the regular workforce or by adding nurse shifts in the second-stage to avoid high

penalty costs.

The demand for nurses ωt during time period t is determined by the patient

volume ξt and the nurse-to-patient ratio. Similar as in [40], we use a nurse-to-

patient ratio of 1:4 from 8AM to 4PM and 1:5 for the remainder of the day. For

the distribution of the patient volume ξt, we differ from [11], and consider both

normal and uniform distributions with mean μt := E[ξt] ∈ {25, 75, 125} and stand-

ard deviation σt ∈ {0.5, 1, 2, 5, 10, 19}. We assume that all ξt are identically and

independently distributed. We include μt = 125 and σt = 19 since Kim and Mehro-

tra [40] report these statistics for actual patient volume data. Moreover, we note

that in our experiments we truncate the patient volume if necessary, so that it is

always nonnegative.

We test the performance of our tight pseudo-valid cutting plane approxima-

tion on both small and large problem instances of this nurse scheduling problem.

In the small problem instances a 3-day regular nurse schedule has to be determ-

ined, taking into account 100 scenarios for future patient volume, sampled from

the abovementioned distributions. The large problem instances correspond to the

12-week nurse scheduling problem with 1000 scenarios. These problems instances

have the same size as those in [40].

3.6.2 Solution methods

For both small and large problem instances we solve the pseudo-valid cutting plane

approximation from (3.22). We do so using a standard L-shaped algorithm [84],

yielding the approximating solution x̂0. The solution is called x̂0 since the pseudo-

valid cutting planes in (3.22) can be considered a special case of the family of

pseudo-valid cutting planes

Wy − D̂(ω − α)u1 ≤ �ω − α�+ α − z,

with α = 0. We, however, also compute the pseudo-valid cutting plane solutions

x̂α for 100 different values of α, and let x̂∗ denote the best solution among those.

The different values for α that we use are α = 0.01ke, k = 1, . . . , 100, where e is the
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all-one vector.

For the small nurse scheduling problems we solve their large-scale deterministic

equivalent MIP, and we let x∗ denote the best found solution within 12 hours of

computation time. We also obtain the MIP optimality gap corresponding to x∗. If

this gap is zero, then x∗ is the optimal solution. Alternatively, we could have used

a state-of-the-art solution method, such as, e.g., [53], to obtain the exact optimal

solution. However, the MIP optimality gaps that we obtain by solving the large-

scale deterministic equivalent MIP are relatively small already.

The larger problem instances cannot be solved to optimality within reasonable

time limits. For these instances we compute two benchmark approximations. The

first is the LP-relaxation in which the integrality conditions on the second-stage

variables y are relaxed, and the second is the expected-value model in which the

random patient volumes are replaced by their mean values. We denote the res-

ulting solutions by xLP and xμ, respectively. The solution of the LP-relaxation is

obtained using a similar L-shaped algorithm as for the pseudo-valid cutting plane

approximation. The expected-value model is a relatively small MIP that can easily

be solved to optimality. For each problem instance, both small and large, we ded-

icate at most 12 hours of computation time to obtaining each candidate solution.

3.6.3 Performance measures

For the small problem instances we report in-sample costs, out-of-sample costs,

and running times of x̂0 and x̂∗. The in-sample costs are based on the 100 gener-

ated scenarios for that problem instance, whereas the out-of-sample costs are based

on a new sample of 106 scenarios. We also report the relative difference (in %) with

the in-sample and out-of-sample costs of x∗. The in-sample difference represents

the optimality gap in the 100-scenario problem. However, since not all problem

instances could be solved to optimality, we use the MIP optimality gap of x∗ to

compute lower and upper bounds on the optimality gaps of x̂0 and x̂∗. For the lar-

ger problem instances we do not report these optimality gaps, but only the normal-

ized in-sample costs of the pseudo-valid cutting plane solutions and the benchmark

solutions.

The running times for x̂∗ for the small problem instances represent the time

required to solve the 100 pseudo-valid cutting plane approximations in series. For

the large problem instances, however, we report the maximum computing time

over all 100 approximations. This is the time required to obtain x̂∗ if all pseudo-

valid cutting plane approximations are solved in parallel. We actually used parallel
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computing over 24 cores to obtain x̂∗.

3.6.4 Numerical results

Table 3.1 shows the results for the small problem instances. We observe that the

overall performance of the pseudo-valid cutting plane solutions x̂0 and x̂∗ is very

good, both for the normal and uniform distribution. In fact, in most of the prob-

lem instances the in-sample optimality gap for x̂∗ is below 1%. The optimality

gaps are smaller for larger values of the standard deviation σ. This is in line with

Theorem 3.2 since the total variation of both the normal and uniform probability

density function is smaller if σ is larger.

For small values of the standard deviation, i.e., σ ≤ 2, and for μ = 25, we

observe that the optimality gap of x̂0 can be quite high. In these cases we do not

recommend to use this pseudo-valid cutting plane approximation. It turns out,

however, that the optimality gap can be significantly reduced, in particular when σ

is small, by considering multiple pseudo-valid cutting plane approximations with

different values for α, and to select the best among them. Indeed, the in-sample

optimality gap of x̂∗ never exceeds 4%.

Compared to the optimal in-sample solution x∗, the out-of-sample performance

of the pseudo-valid cutting plane solutions x̂0 and x̂∗ is better than their in-sample

performance. In fact, in some cases the out-of-sample costs of x̂∗ are actually lower

than those for x∗. In general, we conclude that for larger values of the standard

deviation, i.e., σ ≥ 5, the out-of-sample performance of x̂∗ is equivalent to that of

x∗.

Finally, we note from Table 3.1 that the pseudo-valid cutting plane solutions are

obtained extremely fast for the small problem instances. Indeed, the running times

for x̂0 are below 10 seconds, and to obtain x̂∗, the best of 100 different pseudo-valid

cutting plane solutions, takes at most 16 minutes. In contrast, the optimal solution

x∗ could not be computed within 12 hours for most of the small problem instances.

Table 3.2 shows the results for the large problem instances. We observe that

both pseudo-valid cutting plane solutions x̂0 and x̂∗ consistently outperform the

benchmark solutions xLP and xμ, both for the normal and uniform distribution.

Similar as for the small problem instances, x̂∗ can be significantly better than x̂0, in

particular for small values of the standard deviation σ. For large values of σ, we

observe that the solution xLP of the LP-relaxation is almost as good as the pseudo-

valid cutting plane solutions x̂∗ and x̂0. Since x̂∗ and x̂0 are close to optimal for

the small problem instances in these cases, we conjecture that x̂∗, x̂0, and xLP are all



571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan
Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021 PDF page: 84PDF page: 84PDF page: 84PDF page: 84

76 Chapter 3

Table 3.1. Numerical results for the small nurse scheduling problems.

Running times In-sample costs Out of sample costs
(seconds) (percentage gap) (percentage gap)

μ σ x̂0 x̂∗ x̂0 x̂∗ x̂0 x̂∗

Normally distributed patient volume

25 0.5 1.9 124.3 456 (10.9% - 11.0%) 425 (3.4% - 3.5%) 456 (9.9%) 426 (2.7%)
25 1.0 1.6 177.4 456 (5.9% - 6.4%) 443 (2.9% - 3.3%) 456 (4.8%) 444 (2.0%)
25 2.0 1.8 246.2 474 (1.8% - 3.2%) 473 (1.7% - 3.0%) 474 (0.7%) 475 (0.9%)
25 5.0 3.3 401.9 558 (1.3% - 3.6%) 555 (0.9% - 3.1%) 559 (0.5%) 557 (0.1%)
25 10.0 3.9 415.3 686 (0.6% - 2.8%) 683 (0.2% - 2.4%) 688 (-0.1%) 688 (-0.1%)
25 19.0 4.2 434.7 919 (0.4% - 2.0%) 917 (0.2% - 1.8%) 924 (0.0%) 923 (-0.2%)

75 0.5 2.0 154.5 1230 (3.2% - 3.3%) 1196 (0.4% - 0.4%) 1230 (2.9%) 1197 (0.2%)
75 1.0 2.9 253.8 1248 (3.1% - 3.3%) 1214 (0.3% - 0.5%) 1248 (2.7%) 1216 (0.1%)
75 2.0 2.1 302.9 1252 (0.5% - 1.0%) 1249 (0.3% - 0.8%) 1253 (0.2%) 1250 (-0.1%)
75 5.0 5.6 517.8 1337 (0.5% - 1.4%) 1334 (0.3% - 1.2%) 1340 (0.2%) 1337 (0.0%)
75 10.0 8.0 676.8 1466 (0.5% - 1.3%) 1464 (0.3% - 1.2%) 1471 (0.2%) 1468 (0.0%)
75 19.0 6.9 713.2 1698 (0.1% - 1.1%) 1697 (0.0% - 1.0%) 1705 (0.0%) 1705 (0.0%)

125 0.5 2.0 158.2 2016 (2.3% - 2.3%) 1985 (0.7% - 0.7%) 2016 (2.1%) 1986 (0.6%)
125 1.0 1.7 242.2 2016 (1.3% - 1.4%) 2003 (0.6% - 0.7%) 2016 (1.0%) 2004 (0.4%)
125 2.0 2.6 337.3 2034 (0.4% - 0.7%) 2033 (0.4% - 0.7%) 2034 (0.2%) 2035 (0.2%)
125 5.0 5.4 572.7 2118 (0.3% - 0.9%) 2115 (0.2% - 0.8%) 2119 (0.1%) 2118 (0.1%)
125 10.0 7.8 807.3 2246 (0.3% - 0.8%) 2243 (0.1% - 0.7%) 2248 (0.0%) 2248 (0.0%)
125 19.0 9.6 915.0 2478 (0.1% - 0.7%) 2477 (0.0% - 0.7%) 2486 (0.0%) 2485 (0.0%)

Uniformly distributed patient volume

25 0.5 1.3 112.0 456 (13.0% - 13.0%) 418 (3.6% - 3.6%) 456 (12.7%) 418 (3.3%)
25 1.0 1.8 173.2 456 (9.4% - 9.4%) 433 (3.9% - 3.9%) 456 (9.0%) 433 (3.5%)
25 2.0 1.7 196.4 472 (6.5% - 6.5%) 458 (3.3% - 3.3%) 471 (5.7%) 458 (2.8%)
25 5.0 4.2 335.9 547 (4.4% - 4.8%) 533 (1.6% - 2.0%) 548 (3.9%) 533 (1.1%)
25 10.0 4.8 410.0 663 (1.9% - 3.4%) 652 (0.3% - 1.7%) 664 (1.1%) 656 (-0.1%)
25 19.0 6.7 513.4 868 (0.4% - 2.1%) 866 (0.1% - 1.8%) 875 (0.2%) 871 (-0.3%)

75 0.5 1.6 128.6 1224 (3.4% - 3.4%) 1189 (0.5% - 0.5%) 1224 (3.3%) 1189 (0.4%)
75 1.0 2.2 187.6 1248 (4.3% - 4.3%) 1201 (0.4% - 0.4%) 1248 (4.1%) 1201 (0.2%)
75 2.0 1.8 264.6 1248 (2.0% - 2.0%) 1226 (0.2% - 0.2%) 1248 (1.8%) 1226 (0.0%)
75 5.0 3.3 385.6 1320 (1.2% - 1.3%) 1311 (0.5% - 0.6%) 1320 (1.0%) 1311 (0.3%)
75 10.0 6.2 602.6 1441 (0.8% - 1.4%) 1436 (0.4% - 1.0%) 1444 (0.5%) 1438 (0.1%)
75 19.0 7.7 720.4 1649 (0.4% - 1.1%) 1647 (0.2% - 1.0%) 1654 (0.1%) 1653 (0.0%)

125 0.5 1.8 127.7 2016 (2.7% - 2.7%) 1978 (0.7% - 0.7%) 2016 (2.6%) 1978 (0.7%)
125 1.0 1.6 196.6 2016 (2.0% - 2.0%) 1993 (0.8% - 0.8%) 2016 (1.9%) 1993 (0.7%)
125 2.0 2.4 269.9 2032 (1.4% - 1.4%) 2018 (0.7% - 0.7%) 2031 (1.3%) 2018 (0.6%)
125 5.0 4.8 482.8 2107 (1.1% - 1.2%) 2093 (0.4% - 0.5%) 2108 (1.0%) 2093 (0.3%)
125 10.0 6.8 614.4 2222 (0.6% - 1.0%) 2212 (0.1% - 0.5%) 2225 (0.4%) 2216 (0.0%)
125 19.0 6.9 774.4 2429 (0.3% - 0.7%) 2427 (0.2% - 0.7%) 2435 (0.1%) 2432 (0.0%)
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close to optimal in the corresponding large problem instances as well.

With respect to the running times we observe that the pseudo-valid cutting

plane approximation can typically be solved much faster than the LP-relaxation.

We emphasize that both solution methods are implemented using the same stand-

ard version of the L-shaped algorithm. Further analysis of the computational res-

ults shows that computing xLP requires much more master iterations than comput-

ing x̂0, explaining the surprising difference in running times.

3.7 Discussion

We consider a new solution method for solving two-stage mixed-integer stochastic

programs (MISPs) with uncertainty in the right-hand side. Instead of applying

exact cuts to the second-stage feasible regions that are always valid, we propose to

use pseudo-valid cutting planes that are affine in the first-stage decision variables.

The advantage is that the approximating problem, that uses these pseudo-valid

cuts, is convex, and thus it is much easier to solve than the original MISP.

For simple integer recourse (SIR) models, we show that the α-approximations of

Klein Haneveld et al. [41] can be interpreted as pseudo-valid cutting plane approx-

imations. A direct consequence of this result is that we obtain an error bound on

the quality of the solution obtained using pseudo-valid cutting planes for SIR mod-

els. For general MISPs we derive a similar bound for so-called tight pseudo-valid

cutting plane approximations. We show that the error of using such approxima-

tions converges to zero if the total variations of the one-dimensional conditional

probability density functions in the model converge to zero.

For general MISPs we also derive pseudo-valid mixed-integer Gomory cuts,

and for a nurse scheduling problem we derive pseudo-valid cutting planes that are

tight. Numerical experiments for the latter type of cutting planes show that we are

able to find good first-stage decisions, also for large-scale problems. In line with

the error bound that we derive, the performance of the pseudo-valid cutting planes

is better if the standard deviations of the random variables in the model are larger.

A direction for future research is to derive problem-specific pseudo-valid cut-

ting planes for applications of two-stage MISPs. Moreover, tighter error bounds

may be derived for these problem-specific cutting plane approximations using the

special structure of the problems, similar as for simple integer recourse models. Al-

ternatively, error bounds may be derived for pseudo-valid cutting planes for two-

stage MISPs with discretely distributed random right-hand side vectors. Another
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Table 3.2. Numerical results for the large nurse scheduling problems.

Running times (seconds) In-sample costs (normalized)

μ σ x̂∗ x̂0 xLP xμ x̂∗ x̂0 xLP xμ

Normally distributed patient volume

25 0.5 4942 1063 11289 85 100.0 107.2 110.8 116.0
25 1.0 6019 1130 11101 82 100.0 102.9 108.0 111.4
25 2.0 7791 1998 12285 87 100.0 100.0 104.1 105.7
25 5.0 8937 5672 13340 89 100.0 100.3 100.8 105.4
25 10.0 10190 7626 12388 84 100.0 100.0 100.3 106.7
25 19.0 12407 12407 13123 87 100.0 100.1 100.1 107.6

75 0.5 4907 1275 10720 85 100.0 102.7 104.5 106.4
75 1.0 8471 2307 11394 85 100.0 102.7 103.6 104.8
75 2.0 7151 1853 12722 78 100.0 100.3 102.0 102.5
75 5.0 9231 7153 12385 90 100.0 100.3 100.4 102.4
75 10.0 14060 9105 13395 83 100.0 100.1 100.1 103.1
75 19.0 22212 17905 13866 85 100.0 100.1 100.1 104.4

125 0.5 5168 1112 11160 88 100.0 101.5 102.3 103.4
125 1.0 7091 1137 12254 84 100.0 100.6 101.8 102.5
125 2.0 7718 2070 13476 92 100.0 100.0 101.0 101.3
125 5.0 7529 6909 12279 85 100.0 100.1 100.2 101.4
125 10.0 10768 7081 13650 88 100.0 100.0 100.1 102.0
125 19.0 13524 11636 13521 85 100.0 100.0 100.1 103.0

Uniformly distributed patient volume

25 0.5 5346 1210 11183 85 100.0 109.1 113.0 118.2
25 1.0 5507 1017 10797 77 100.0 105.3 111.1 114.1
25 2.0 6827 1722 10854 82 100.0 102.8 108.8 107.9
25 5.0 7719 5891 12549 89 100.0 102.8 103.6 109.3
25 10.0 9591 6075 13206 89 100.0 101.6 101.2 110.6
25 19.0 13995 10704 13572 72 100.0 100.6 100.4 111.7

75 0.5 5223 1093 10500 94 100.0 102.9 105.3 107.1
75 1.0 5617 1837 11594 86 100.0 103.9 105.0 106.1
75 2.0 7215 1278 11497 82 100.0 101.8 104.3 103.9
75 5.0 9031 3717 13427 76 100.0 100.7 101.6 103.9
75 10.0 10096 6199 12944 82 100.0 100.4 100.4 104.7
75 19.0 11780 10728 14084 89 100.0 100.2 100.2 106.3

125 0.5 5520 1027 10944 90 100.0 101.9 102.7 103.8
125 1.0 5636 1072 11824 86 100.0 101.1 102.4 103.1
125 2.0 6980 2030 12666 91 100.0 100.6 102.0 101.8
125 5.0 8013 5897 13650 86 100.0 100.7 100.9 102.4
125 10.0 8627 6290 13286 95 100.0 100.5 100.4 103.1
125 19.0 13637 8684 13872 86 100.0 100.2 100.1 104.4
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future research direction is to combine exact and pseudo-valid cutting planes to ob-

tain more accurate approximations at the expense of increasing the computational

effort of solving the approximation.

Appendix 3.A Postponed proofs

Proof of Lemma 3.1. Since C is a compact convex set, every z ∈ C can be written as a

convex combination of its extreme points:

z =
J

∑
j=1

μjzj,

with ∑J
j=1 μj = 1, and μj ≥ 0, j = 1, . . . , J. Since v is convex, this implies that for all

z ∈ C

v(z) = v
( J

∑
j=1

μjzj
)
≤

J

∑
j=1

μjv(zj) =
J

∑
j=1

μj(a�zj + b) = a�z + b. (3.23)

To prove that also v(z) ≥ a�z + b for all z ∈ C, assume for contradiction that there

exists z̄ ∈ C such that v(z̄) < a� z̄ + b. Since C is convex and z0 is an interior point

of C there exists ε > 0 such that ẑ := z0 + ε(z0 − z̄) ∈ C. This point ẑ is defined in

such a way that z0 can be written as a convex combination of z̄ and ẑ:

z0 =
1

1 + ε
ẑ +

ε

1 + ε
z̄.

Since v is convex, this implies that

v(z0) ≤ 1
1 + ε

v(ẑ) +
ε

1 + ε
v(z̄)

<
1

1 + ε
(a� ẑ + b) +

ε

1 + ε
(a� z̄ + b) = a�z0 + b, (3.24)

where we use that v(z̄) < a� z̄ + b by assumption and v(ẑ) ≤ a� ẑ + b by (3.23).

Since (3.24) contradicts the assumption that v(z0) = a�z0 + b, we conclude that

v(z) = a�z + b for all z ∈ C.

Proof of Proposition 3.1. Since v̂(ω, z) = v(ω, z) for all ω ∈ Ω and z ∈ α + βZm, it

follows from Theorem 3.3 that for every k = 1, . . . , K, there exists dk such that for
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all ω ∈ Ω and z ∈ α + βZm with ω − z ∈ Λk(dk),

v̂(ω, z) = q�Bk
B−1

k (ω − z) + ψk(ω − z).

Fix ω ∈ Ω. Then, ψk(ω − z) is Bk-periodic in z and thus ψk(ω − z) = ψk(ω −
z − det(Bk)l) for every l ∈ Zm by Lemma 4.8 in [60]. Define δk := det(Bk)β ∈
Zm and let l ∈ Zm be given, and consider the hyperrectangle Cl(α, δk). Let zj,

j = 1, . . . , J, denote its extreme points and let z0 := (α1 + δk
1l1, . . . , αm + δk

mlm) be

an interior point. If Cl(α, δk) ⊂ ω − Λk(dk), then we can apply Lemma 3.1 with

a := −q�Bk
B−1

k , b := q�Bk
B−1

k ω + ψk(ω − α), and C := Cl(α, δk) to conclude that

v̂(ω, z) = q�Bk
B−1

k (ω − z) + ψk(ω − α) for all z ∈ Cl(α, δk). Since the diameter of

Cl(α, δk) is 2‖δk‖, we conclude that the result holds for all ω − z ∈ Λk(dk + 2‖δk‖).
Indeed, ω − z will be in ω − Cl(α, δk) for some l ∈ Zm. The claim now follows by

defining d′k := dk + 2‖δk‖.

Proof of Lemma 3.2. Fix ω ∈ Ω. Then, by Proposition 3.1 it follows that for every

k = 1, . . . , K,

v̂(ω, z) = q�Bk
B−1

k (ω − z) + ψk(ω − α), z ∈ ω − Λk(d′k).

Since v̂(ω, z) is convex in z, and affine on ω − Λk(d′k), we can derive a subgradient

inequality for each k = 1, . . . , K:

v̂(ω, z) ≥ q�Bk
B−1

k (ω − z) + ψk(ω − α), z ∈ Rm.

Combining these inequalities over all k = 1, . . . , K, yields the desired result.

Proof of Lemma 3.3. Fix ω ∈ Ω. By Proposition 3.1, there exist distances d′k ≥ 0 such

that for every k = 1, . . . , K,

v̂(ω, z) = q�Bk
B−1

k (ω − z) + ψk(ω − α), z ∈ ω − Λk(d′k).

Thus, on the linearity regions ω − Λk(d′k), v̂(ω, z) equals its lower bound from

Lemma 3.2. Therefore, we only have to show (3.13) for z ∈ ω −N . To this end,

let z ∈ ω −N be given. Since N can be covered by finitely many hyperslices, there

exist aj ∈ Rm\{0} and δj > 0, j ∈ J , such that

N ⊂
⋃

j∈J
Hj,
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where Hj := H(aj, δj), j ∈ J . We will construct points z1 and z2 in the linearity

regions of v̂(ω, ·), so that z is a convex combination of z1 and z2. Then, we can use

that v̂(ω, z) is convex in z to derive an upper bound on v̂(ω, z) in terms of v̂(ω, z1)

and v̂(ω, z2). Since z1 and z2 are in the linearity regions, these values are known.

To construct such z1 and z2, let d ∈ Rm\{0} be a direction of unit length not

parallel to any of the hyperslices Hj, and thus not orthogonal to any of the normal

vectors aj, j ∈ J . Then, a�j d 	= 0, j ∈ J , and ‖d‖ = 1. We consider the line through

z with direction d and define the halflines L1 and L2 as

L1 := {z + μd : μ ∈ R+} and L2 := {z − μd : μ ∈ R+}.

Since the direction d is not parallel to any of the hyperslices, we have L1 	⊂ ⋃
j∈J Hj

and L2 	⊂ ⋃
j∈J Hj, and thus Li ∩ (ω − ⋃K

k=1 Λk(d′k)) 	= ∅, i = 1, 2. This means

that it is possible to select z1, z2 ∈ ω −⋃K
k=1 Λk(d′k) on L1 and L2, respectively, with

minimal distance to z:

zi := arg minz′

{
‖z − z′‖ : z′ ∈ Li ∩

(
ω −

K⋃
k=1

Λk(d′k)
)}

, i = 1, 2.

Since z is on the line segment between z1 to z2, we can write z as a convex combin-

ation z = μz1 + (1 − μ)z2 of z1 and z2 with μ ∈ [0, 1]. We will use the convexity of

v̂(ω, ·) to derive an upper bound on v̂(ω, z). Here, we will assume without loss of

generality that z1 ∈ ω − Λk1(d′k1
) and z2 ∈ ω − Λk2(d′k2

) with k1, k2 ∈ {1, . . . , K}.

We obtain

v̂(ω, z) ≤ μv̂(ω, z1) + (1 − μ)v̂(ω, z2)

= μ
(

q�Bk1
B−1

k1
(ω − z1) + ψk1(ω − α)

)
+ (1 − μ)

(
q�Bk2

B−1
k2

(ω − z2) + ψk2(ω − α)
)

.

To obtain the bound in (3.13) on the difference between v̂(ω, z) and its lower bound,

we subtract this lower bound from both the left- and right-hand side of the inequal-

ity above. Defining k∗ := arg maxk=1,...,K{q�Bk
B−1

k (ω − z) + ψk(ω − α)}, the differ-

ence between v̂(ω, z) and its lower bound can then be bounded by

μ
(

q�Bk1
B−1

k1
(ω − z1) + ψk1(ω − α)− q�Bk∗

B−1
k∗ (ω − z)− ψk∗(ω − α)

)
+ (1− μ)

(
q�Bk2

B−1
k2

(ω − z2) + ψk2(ω − α)− q�Bk∗
B−1

k∗ (ω − z)− ψk∗(ω − α)
)

.
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Since k1 and k2 are not necessarily the maximizing index for

max
k=1,...,K

{q�Bk
B−1

k (ω − z) + ψk(ω − α)},

we may replace k∗ by k1 and k2, respectively, to obtain after straightforward sim-

plifications,

v̂(ω, z)− max
k=1,...,K

{
q�Bk

B−1
k (ω − z) + ψk(ω − α)

}
≤ μq�Bk1

B−1
k1

(z − z1)

+ (1 − μ)q�Bk2
B−1

k2
(z − z2).

We will bound the right-hand side in terms of the distance ‖z1 − z2‖ between z1

and z2. Here, we use λ∗
i := maxk=1,...,K |q�Bk

(Bk)
−1ei|, for i = 1, . . . , m, where ei is

the i-th unit vector. We have

v̂(ω, z)− max
k=1,...,K

{
q�Bk

B−1
k (ω − z) + ψk(ω − α)

}
≤ μ

m

∑
i=1

λ∗
i |z1

i − zi|

+ (1 − μ)
m

∑
i=1

λ∗
i |z2

i − zi|

≤ μ
m

∑
i=1

λ∗
i ‖z1 − z‖

+ (1 − μ)
m

∑
i=1

λ∗
i ‖z2 − z‖

≤ ‖z1 − z2‖
m

∑
i=1

λ∗
i , (3.25)

where the last inequality holds since z is on the line segment between z1 to z2, and

thus ‖z1 − z‖ ≤ ‖z1 − z2‖ and ‖z2 − z‖ ≤ ‖z1 − z2‖.

It remains to derive an upper bound on ‖z1 − z2‖. To do so, observe that ω − z is

on the line segment ω − L between ω − z1 and ω − z2. Moreover, this line segment

is completely contained in the union of the hyperslices Hj, j ∈ J . Hence, letting

L(L) denote the length of line segment L, we have

‖z1 − z2‖ = ‖(ω − z1)− (ω − z2)‖

= L
(
(ω − L) ∩ (

⋃
j∈J

Hj)
)

= L
( ⋃

j∈J
((ω − L) ∩ Hj)

)
≤ ∑

j∈J
L
(
(ω − L) ∩ Hj

)
.
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To find L((ω − L) ∩ Hj), observe that ẑ ∈ L satisfies ẑ = z − μ̂d for some μ̂ ∈ R.

Moreover, ω − ẑ ∈ Hj := H(aj, δj) if 0 ≤ a�j (ω − z + μ̂d) ≤ δj, or equivalently if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−a�j (ω − z)

a�j d
=: μ ≤ μ̂ ≤ μ :=

δj − a�j (ω − z)

a�j d
, if a�j d > 0,

δj − a�j (ω − z)

a�j d
=: μ ≤ μ̂ ≤ μ :=

−a�j (ω − z)

a�j d
, if a�j d < 0.

Then, L((ω − L) ∩ Hj) = (μ − μ)‖d‖ =
δj

|a�j d| , where we use that ‖d‖ = 1. Thus, by

defining

R′ :=
( m

∑
i=1

λ∗
i

)(
∑
j∈J

δj

|a�j d|

)
,

the claim follows from combining ‖z1 − z2‖ ≤ ∑j∈J
δj

|a�j d| and (3.25).

Proof of Proposition 3.2. Consider the LP-relaxation vLP(ω, z) of v(ω, z) as defined

in (3.14). Then, by, e.g., [19] and [27], there exists R′′ such that ‖v − vLP‖∞ ≤ R′′.

Moreover, by combining Lemma 3.2 and 3.3, we conclude that ‖vLP − v̂‖∞ ≤ R′ +

maxk=1,...,K sups∈Rm |ψk(s)|. If we define R := R′′+R′+maxk=1,...,K sups∈Rm |ψk(s)|,
then

‖v − v̂‖ ≤ ‖v − vLP‖+ ‖vLP − v̂‖ ≤ R′′ + R′ + max
k=1,...,K

sup
s∈Rm

|ψk(s)| =: R,

where the first inequality follows from the triangle inequality. Moreover,

sups∈Rm |ψk(s)| is finite for every k = 1, . . . , K, since by Theorem 3.3 the function

ψk is bounded for every k = 1, . . . , K.
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Chapter 4

A loose Benders’

decomposition algorithm for

approximating two-stage

mixed-integer recourse models

We propose a new class of convex approximations for two-stage mixed-integer recourse

models, the so-called generalized alpha-approximations. The advantage of these convex ap-

proximations over existing ones is that they are more suitable for efficient computations.

Indeed, we construct a loose Benders’ decomposition algorithm that solves large problem

instances in reasonable time. To guarantee the performance of the resulting solution, we

derive corresponding error bounds that depend on the total variations of the probability

density functions of the random variables in the model. The error bounds converge to zero if

these total variations converge to zero. We empirically assess our solution method on several

test instances, including the SIZES and SSLP instances from SIPLIB. We show that our

method finds near-optimal solutions if the variability of the random parameters in the model

is large. Moreover, our method outperforms existing methods in terms of computation time,

especially for large problem instances.

This chapter is based on the journal publication [77].
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86 Chapter 4

4.1 Introduction

Consider the two-stage mixed-integer recourse model with random right-hand side

η∗ := min
x

{
cx + Q(x) : Ax = b, x ∈ X ⊆ R

n1
+

}
, (4.1)

where the recourse function Q is defined as

Q(x) := Eω

[
min

y

{
qy : Wy = ω − Tx, y ∈ Y ⊆ R

n2
+

}]
, x ∈ X. (4.2)

This model represents a two-stage decision problem under uncertainty. In the first

stage, a decision x has to be made here-and-now, subject to deterministic con-

straints Ax = b and random goal constraints Tx = ω. Here, ω is a continuous

or discrete random vector whose probability distribution is known. In the second

stage, the realization of ω becomes known and any infeasibilities with respect to

Tx = ω have to be repaired. This is modelled by the second-stage problem

v(ω, x) := min
y

{
qy : Wy = ω − Tx, y ∈ Y ⊆ R

n2
+

}
. (4.3)

The objective in this two-stage recourse model is to minimize the sum of immediate

costs cx and expected second-stage costs Q(x) = Eω [v(ω, x)], x ∈ X.

Frequently, integrality restrictions are imposed on the first- and second-stage

decisions. That is, X and Y are of the form X = Z
p1
+ × R

n1−p1
+ and Y = Z

p2
+ ×

R
n2−p2
+ . Such restrictions arise naturally when modelling real-life problems, for

example to model on/off decisions or batch size restrictions. The resulting model

is called a mixed-integer recourse (MIR) model. Such models have many practical

applications in for example energy, telecommunication, production planning, and

environmental control, see e.g. [32] and [86].

While MIR models are highly relevant in practice, they are notoriously difficult

to solve. The reason is that Q is in general non-convex if integrality restrictions

are imposed on the second-stage decision variables y, see [54]. Therefore, stand-

ard techniques for convex optimization cannot be used to solve these models. In

contrast, if Y = R
n2
+ , then Q is convex and efficient solution methods are available,

most notably the L-shaped method in [84] and variants thereof.

Because of the non-convexity of Q, traditional solution methods for MIR mod-

els typically combine ideas from deterministic mixed-integer programming and
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stochastic continuous programming, see e.g. [13, 24, 31, 44, 49, 53, 67, 69, 88], and

the survey papers [58, 66, 68]. We, however, use a fundamentally different ap-

proach to deal with the non-convex recourse function Q. Instead of solving the

original MIR model in (4.1), we solve an approximating problem in which Q is re-

placed by a convex approximation Q̂ of Q. This convex approximation Q̂ does not

have to be a lower bound of Q. The resulting approximating optimization problem

is given by

η̂ := min
x

{
cx + Q̂(x) : Ax = b, x ∈ X

}
. (4.4)

Because Q̂ is convex, we can use efficient techniques from convex optimization to

solve the optimization problem in (4). Indeed, this optimization problem is con-

vex if all first-stage variables x ∈ X are continuous, and it is a MIP with a convex

objective if some of these first-stage variables are integer. Thus, compared to tradi-

tional solution methods, we are able to solve similar-sized problems much faster,

and solve larger problem instances. In fact, we demonstrate this in our numer-

ical experiments on problem instances available from [67] and SIPLIB [5], and on

randomly generated problem instances.

Obviously, the optimal solution x̂ of the approximating problem in (4.4) is not

necessarily optimal for the original MIR model in (4.1). That is why we guarantee

the quality of the approximating solution x̂, by deriving an error bound on

||Q − Q̂||∞ := sup
x

|Q(x)− Q̂(x)|.

This error bound directly gives us an upper bound on the optimality gap of x̂:

cx̂ + Q(x̂)− η∗ ≤ 2||Q − Q̂||∞,

see [59].

Convex approximations and corresponding error bounds have been derived for

many different classes of models. The idea to use convex approximations Q̂ for the

non-convex mixed-integer recourse function Q dates back to [80], in which van der

Vlerk proposes to use α-approximations for the special case of simple integer re-

course (SIR) models. These α-approximations are obtained by perturbing the prob-

ability distribution of the random vector ω. Klein Haneveld et al. [41] derive an

error bound for the α-approximations that depends on the total variations of the

marginal density functions of the random variables in the SIR model.
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More convex approximations have been described for more general classes of

problems. For example, in [83] and [81], van der Vlerk extends the α-approximations

to a class of MIR models with a single recourse constraint, and to integer recourse

models with a totally unimodular (TU) recourse matrix, respectively. Furthermore,

Romeijnders et al. [61] derive an error bound for the latter approximation, and they

derive a tighter error bound for the shifted LP-relaxation approximation for the same

class of problems. The quality of the convex approximations for TU integer re-

course models is assessed empirically in [62], and it turns out that they perform

well if the variability of the random parameters in the model is large enough.

Romeijnders et al. [60] generalize the shifted LP-relaxation to general two-stage

MIR models, and they derive a corresponding asymptotic error bound. This error

bound converges to zero if the variability of the random parameters in the model

increases. In Chapter 3, we derive similar error bounds for convex approximations

that fit into a specific framework. In this framework, convex approximations are

defined using pseudo-valid cutting planes for the second-stage feasible regions. Their

idea is to only use cutting planes which are affine in the first-stage decision vari-

ables, so that the corresponding expected value function is convex. In general, the

approximations are not exact, since pseudo-valid cutting planes cut away feasible

solutions and are allowed to be overly conservative. Nevertheless, a similar error

bound as for the shifted LP-relaxation has been derived if the pseudo-valid cutting

planes are tight. That is, if they are exact on an entire grid of first-stage solutions.

Both the shifted LP-relaxation of [60] and the cutting plane framework of Chap-

ter 3, however, cannot be applied directly to efficiently solve MIR models in general.

This is because the shifted LP-relaxation is very difficult to compute in general, as

discussed in [60], and furthermore, the asymptotic error bound in the cutting plane

framework of Chapter 3 only applies for tight pseudo-valid cutting planes, which

are only available in special cases, e.g. for SIR models. That is why we propose

an alternative class of convex approximations for general two-stage MIR models,

the so-called generalized α-approximations. They are derived by exploiting prop-

erties of Gomory relaxations [34] of the second-stage mixed-integer programming

problems.

Contrary to the shifted LP-relaxation, the generalized α-approximations, de-

noted by Q̂α, can be solved efficiently. In fact, we develop a so-called loose Benders’

decomposition algorithm to solve the approximating model in (4.4) with Q̂ = Q̂α.

Our Benders’ decomposition is called loose, because we derive optimality cuts

for Q̂α which are in general not tight at the current solution. While these loose
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optimality cuts are in general not sufficient to find the optimal solution x̂ of the

approximating model in (4.4), we prove that they are tight enough in the sense

that a similar performance guarantee applies to the solution obtained by the loose

Benders’ decomposition as to x̂.

Summarizing, our main contributions are as follows.

• We propose a new class of convex approximations for general two-stage MIR

models, which are based on Gomory relaxations of the second-stage prob-

lems. These generalized α-approximations can be solved efficiently, and a

similar error bound as for the shifted LP-relaxation applies to the generalized

α-approximations.

• We derive a loose Benders’ decomposition algorithm to (approximately) solve

the approximating model with the generalized α-approximations. This is the

first efficient algorithm for solving non-trivial convex approximations of gen-

eral two-stage MIR models.

• We prove that the solution obtained by the loose Benders’ decomposition al-

gorithm has a similar performance guarantee as the exact solution to the gen-

eralized α-approximations.

• We carry out extensive numerical experiments on 41 test instances from the

literature and on 240 randomly generated instances, and show that using

our loose Benders’ decomposition algorithm we obtain good solutions within

reasonable time, also for large problem instances, in particular when the vari-

ability of the random parameters in the model is large.

The remainder of this chapter is organized as follows. In Section 4.2, we discuss

the shifted LP-relaxation of [60] and its corresponding error bound. In Section 4.3,

we present the generalized α-approximations and an efficient algorithm for solv-

ing the corresponding approximating problem. Section 4.4 contains the proof of

the performance guarantee for the loose Benders’ decomposition algorithm. In Sec-

tion 4.5, we report on numerical experiments to evaluate the performance of our

algorithm. Finally, we conclude in Section 4.6.

Throughout, we make the following assumptions. Assumptions (A2)-(A4) guar-

antee that Q(x) is finite for all x ∈ X such that Ax = b.

(A1) The first-stage feasible region X := {x ∈ X : Ax = b} is bounded.

(A2) The recourse is relatively complete: for all ω ∈ Rm and x ∈ X , there exists a

y ∈ Y such that Wy = ω − Tx, so that v(ω, x) < ∞.
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(A3) The recourse is sufficiently expensive: v(ω, x) > −∞ for all ω ∈ Rm and

x ∈ X .

(A4) E[|ωi|] is finite for all i = 1, . . . , m.

(A5) The recourse matrix W is integer.

4.2 Existing convex approximations of mixed-integer

recourse functions

In this section, we review the shifted LP-relaxation approximation of [60] and its

corresponding error bound. First, however, we review results on asymptotic peri-

odicity in mixed-integer linear programming in Section 4.2.1. We do so since these

results are not only used to derive the shifted LP-relaxation in Section 4.2.2, but also

to derive the generalized α-approximations in Section 4.3.1.

4.2.1 Asymptotic periodicity in mixed-integer programming

In order to derive convex approximations of the MIR function Q we analyze the

value function v of the second-stage problem, defined as

v(ω, x) = min
y

{
qy : Wy = ω − Tx, y ∈ Z

p2
+ × R

n2−p2
+

}
. (4.5)

In particular, LP-duality implies that the LP-relaxation vLP(ω, x) of v(ω, x) is poly-

hedral in the right-hand side vector ω − Tx:

vLP(ω, x) = max
k=1,...,K

λk(ω − Tx),

where λk, k = 1 . . . , K, are the extreme points of the dual feasible region {λ : λW ≤
q}. Romeijnders et al. [60] derive a similar characterization of v(ω, x) in terms of lin-

ear and periodic functions by exploiting so-called Gomory relaxations. We briefly

discuss these Gomory relaxation, before stating the characterization of v(ω, x) in

Lemma 4.1.

The Gomory relaxation of v(ω, x) is defined for any dual feasible basis matrix

of vLP(ω, x). Let B denote such a matrix and let N be such that W ≡
(

B N
)

,

meaning equality up to a permutation of the columns. Let yB and yN denote the

second-stage variables corresponding to the columns in B and N, respectively, and
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qB and qN their corresponding cost parameters. The Gomory relaxation vB is ob-

tained by relaxing the non-negativity constraints of the basic variables yB. Romeijn-

ders et al. [60] derive the following expression for vB:

vB(ω, x) = qBB−1(ω − Tx) + ψB(ω − Tx),

where

ψB(s) := min
{

q̄NyN : B−1(s − NyN) ∈ ZpB × RnB ,

yN ∈ Z
pN
+ × R

nN
+

}
, s ∈ Rm, (4.6)

and q̄N = qN − qB(B−1)N. Moreover, they show that

v(ω, x) = vB(ω, x) = qBB−1(ω − Tx) + ψB(ω − Tx)

if ω − Tx ∈ Λ := {t : B−1t ≥ 0}, and if the distance of ω − Tx to the boundary

of Λ is sufficiently large, see Definition 4.1. We say that v(ω, x) is asymptotically

periodic, since ψB is a B-periodic function, i.e., ψB(s+ Bl) = ψB(s) for every s ∈ Rm

and l ∈ Zm, see [60].

Definition 4.1. Let Λ ⊂ Rm be a closed convex set and let d ∈ R with d > 0 be

given. Then, we define Λ(d) as

Λ(d) := {s ∈ Λ : B(s, d) ⊂ Λ},

where B(s, d) := {t ∈ Rm : ||t − s||2 ≤ d} is the closed ball centered at s with

radius d. We can interpret Λ(d) as the set of points in Λ with at least Euclidean

distance d to the boundary of Λ.

Lemma 4.1. [60, Theorem 2.9] Consider the mixed-integer programming problem

v(ω, x) := min
y

{
qy : Wy = ω − Tx, y ∈ Z

p2
+ × R

n2−p2
+

}
,

where W is an integer matrix, and v(ω, x) is finite for all ω ∈ Rm and x ∈ Rn. Then,

there exist dual feasible basis matrices Bk of vLP, k = 1, . . . , K, closed convex polyhedral

cones Λk := {t ∈ Rm : (Bk)−1t ≥ 0}, distances dk, Bk-periodic functions ψk, and

constants wk such that we have the following:
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(i)
K⋃

k=1

Λk = Rm.

(ii) (int Λk) ∩ (int Λl) = ∅ for every k, l ∈ {1, . . . , K} with k 	= l.

(iii) If ω − Tx ∈ Λk(dk), then

v(ω, x) = vLP(ω, x) + ψk(ω − Tx) = qBk (Bk)−1(ω − Tx) + ψk(ω − Tx),

where ψl ≡ ψk if qBk (Bk)−1 = qBl (Bl)−1.

(iv) 0 ≤ ψk(ω − Tx) ≤ wk for all ω ∈ Rm and x ∈ Rn1 , k = 1, . . . , K.

Lemma 4.1 (iii) shows that if ω − Tx ∈ Λk(dk) for some k = 1, . . . , K, then

v(ω, x) is equal to the sum of the LP-relaxation vLP(ω, x) and ψk(ω − Tx). Hence,

ψk(ω − Tx) can be interpreted as the additional costs resulting from the integrality

restrictions on the decision variables y. For a discussion on how to obtain dk or how

to represent Λk(dk) using a system of linear inequalities we refer to [60].

4.2.2 The shifted LP-relaxation approximation

Lemma 4.1 shows why the second-stage value function is not convex in x. On

regions of its domain it is the sum of a linear function qBk (Bk)−1(ω − Tx) and a

periodic function ψk(ω − Tx). Clearly the periodic part is causing v to be non-

convex. That is why the shifted LP-relaxation is obtained by replacing this periodic

part ψk(ω − Tx) by a constant Γk for every k = 1, . . . , K, with Γk defined as

Γk := p−m
k

∫ pk

0
· · ·

∫ pk

0
ψk(x)dx1 . . . dxm, (4.7)

where pk = |det Bk|. The K constants Γk can be interpreted as the averages of

the periodic functions ψk. The shifted LP-relaxation approximation is obtained by

taking the pointwise maximum over all dual feasible basis matrices Bk, k = 1, . . . , K.

Definition 4.2. Define the shifted LP-relaxation approximation Q̃ of the MIR function

Q as Q̃(x) = Eω [ṽ(ω, x)], where

ṽ(ω, x) := max
k=1,...,K

{qBk (Bk)−1(ω − Tx) + Γk},
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where Bk, k = 1, . . . , K, are the dual feasible basis matrices of Lemma 4.1, and Γk is

defined in (4.7).

Romeijnders et al. [60] derive a total variation error bound on the approximation

error ||Q − Q̃||∞ of the shifted LP-relaxation Q̃. This error bound is expressed in

terms of the total variations of the one-dimensional conditional probability density

functions (pdf) of the random vector ω.

Definition 4.3. Let f : R → R be a real-valued function, and let I ⊂ R be an

interval. Let Π(I) denote the set of all finite ordered sets P = {x1, . . . , xN+1} with

x1 < · · · < xN+1 in I. Then, the total variation of f on I, denoted by |Δ| f (I), is

defined as

|Δ| f (I) = sup
P∈Π(I)

Vf (P),

where

Vf (P) =
N

∑
i=1

| f (xi+1)− f (xi)|.

We write |Δ| f := |Δ| f (R).

Definition 4.4. For every i = 1, . . . , m and x−i ∈ Rm−1, define the i-th conditional

density function fi(·|x−i) of the m-dimensional joint pdf f as

fi(xi|x−i) =
f (x)

f−i(x−i)
,

where f−i is the joint pdf of the (m − 1)-dimensional random vector ω−i, which is

equal to ω without its i-th component. Define Hm as the set of all m-dimensional

joint pdf f such that fi(·|x−i) is of bounded variation for all i = 1, . . . , m and x−i ∈
Rm−1.

Theorem 4.1. [60, Theorem 5.1] There exists a constant C > 0 such that for every

continuous random vector ω with joint pdf f ∈ Hm,

sup
x

|Q(x)− Q̃(x)| ≤ C
m

∑
i=1

Eω−i [|Δ| fi(·|ω−i)] . (4.8)

In general, the error bound in Theorem 4.1 may be large, in particular since

the constant C > 0 may be large. Nevertheless, the theorem shows that if the
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total variations of the one-dimensional conditional pdf are small, then Q̃ is a good

approximation of Q. For example, if the components ωi of ω follow independent

normal distributions, with mean μi and variance σ2
i , for i = 1, . . . , m, then the error

bound in (4.8) simplifies to C′ ∑m
i=1 σ−1

i for some C′ > 0; see Example 3.2 for details.

Observe that the error bound goes to zero if σi → ∞ for all i = 1, . . . , m. Thus, the

error of using the shifted LP-relaxation approximation decreases if the variability

of the random parameters in the model increases.

4.3 Loose Benders’ decomposition algorithm for two-

stage mixed-integer recourse models

4.3.1 Generalized α-approximations

To derive the generalized α-approximations Q̂α, we first derive a convex approx-

imation v̂α of the second-stage value function v defined in (4.5), and we define

Q̂α(x) := Eω [v̂α(ω, x)]. Similar as for the shifted LP-relaxation ṽ, we use Lemma 4.1,

i.e., for ω − Tx ∈ Λk(dk),

v(ω, x) = vBk (ω, x) = qBk (Bk)−1(ω − Tx) + ψk(ω − Tx).

However, instead of replacing ψk(ω − Tx) by its average Γk, as is done for the

shifted LP-relaxation, we replace ψk(ω − Tx) by ψk(ω − α) for some α ∈ Rm to

obtain the generalized α-approximation v̂k
α of vBk defined as

v̂k
α(ω, x) = qBk (Bk)−1(ω − Tx) + ψk(ω − α),

and we define the generalized α-approximation v̂α of v as

v̂α(ω, x) = max
k

v̂k
α(ω, x).

The difference compared to the shifted LP-relaxation seems small: the con-

stants Γk are replaced by ψk(ω − α). From a computational point of view, however,

this difference is significant. This is because the constants Γk are the averages over

ψk, and in general need to be obtained by computing a multi-dimensional integ-

ral of a mixed-integer value function. For a fixed ω and α, however, the value of

ψk(ω − α) is obtained by solving a single mixed-integer programming problem of

the same size as the second-stage problem. In fact, we need to solve the Gomory
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relaxation discussed in Section 4.2.1, which can be done in polynomial time if all

second-stage variables are integer [34].

Definition 4.5. For α ∈ Rm, we define the generalized α-approximation Q̂α of Q as

Q̂α(x) := Eω

[
max

k=1,...,K
{λk(ω − Tx) + ψk(ω − α)}

]
, x ∈ Rn1 ,

with λk := qBk (Bk)−1 and ψk := ψBk , where Bk, k = 1, . . . , K, are the dual feasible

basis matrices of Lemma 4.1.

Remark 4.1. The generalized α-approximations are a generalization of the α-ap-

proximations defined for TU integer recourse models [61], which arise if y ∈ Z
p
+ and

if the second-stage constraints are of the form Wy ≥ ω − Tx, where W is a TU

matrix. Indeed, for these models, we have ψk(s) = λk(�s − s), see [60], and thus

Q̂α(x) = Eω

[
max

k=1,...,K
λk(�ω − α+ α − Tx)

]
,

which is the expression for the α-approximations for TU integer recourse models

in [61].

It turns out that we can derive a similar error bound for the generalized α-ap-

proximations as for the shifted LP-relaxation.

Theorem 4.2. There exists a constant C > 0, such that for every α ∈ Rm and for every

continuous random vector ω with joint pdf f ∈ Hm,

sup
x

|Q(x)− Q̂α(x)| ≤ C
m

∑
i=1

Eω−i [|Δ| fi(·|ω−i)] .

Proof. See Appendix 4.A.

Theorem 4.2 states that the approximation error of Q̂α goes to zero as the total

variations Eω−i [|Δ| fi(·|ω−i)], i = 1, . . . , m, all go to zero. This error bound is inde-

pendent of α, i.e., Q̂α is a good approximation of the true MIR function Q for any

α ∈ Rm.

An interesting difference between the generalized α-approximations and the

shifted LP-relaxation of Section 4.2.2 is that the approximating value function v̂α

is not convex in ω for fixed x ∈ Rn1 . Indeed, v̂α is only convex in x for every

fixed ω, but this is sufficient to guarantee that the generalized α-approximation Q̂α

is convex. In contrast, the value function ṽ of the shifted LP-relaxation is convex
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in both ω and x. We illustrate these properties in Example 4.1. In this example,

we also illustrate the difference between the generalized α-approximations and the

pseudo-valid cutting plane approximation of Chapter 3.

Example 4.1. Consider the second-stage mixed-integer value function v defined as

v(ω, x) := min{y1 + 2y2 + 2y3 : y1 + y2 − y3 = ω − x, y1 ∈ Z+, y2, y3 ∈ R+}.

We use this example, since it also appears in [60] and in Chapter 3, allowing us

to compare the generalized α-approximations to the shifted LP-relaxation and a

pseudo-valid cutting plane approximation.

-3 -2 -1 0 1 2 x

v(ω, x)

1

2

3

4

(a) ω = 0.3

-3 -2 -1 0 1 2 ω

v(ω, x)

1

2

3

4

(b) x = −1.3

v(ω, x) v̂α(ω, x) ṽ(ω, x) v̂c(ω, x)

Figure 4.1. The value function v and the approximating value functions ṽ, v̂c,
and v̂α, where α = 0. The left figure shows v(ω, x), v̂α(ω, x), and v̂c(ω, x), as a
function of x, whereas the right figure shows v(ω, x), v̂α(ω, x), and ṽ(ω, x) as a
function of ω.

The LP-relaxation of v has two dual feasible basis matrices B1 = [−1] and

B2 = [1]. Thus, K = 2, and straightforward computations yield λ1 = −2, λ2 = 1,

ψ1 ≡ 0, and for every s ∈ R,

ψ2(s) =

⎧⎨
⎩

s − �s�, if s − �s� ≤ 3/4,

3 − 3(s − �s�), if s − �s� ≥ 3/4.

It follows that vLP(ω, x) = max{−2(ω − x), ω − x}. Moreover, for every α ∈ R,

the approximating value function is defined as

v̂α(ω, x) = max{−2(ω − x), ω − x + ψ2(ω − α)}.
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In contrast, the value function ṽ of the shifted LP-relaxation equals

ṽ(ω, x) = max{−2(ω − x), ω − x + 3/8},

since Γ2 :=
∫ 1

0 ψ2(s)ds = 3/8. Finally, the tight pseudo-valid cutting plane approx-

imation v̂c is given by

v̂c(ω, x) = min
y∈R3

+

{y1 + 2y2 + 2y3 : y1 + y2 − y3 = ω − x,

y1 −
1

1 + �ω� − ω
y3 ≤ �ω� − x}.

Figures 4.1a and 4.1b show v(ω, x), v̂α(ω, x), ṽ(ω, x), and v̂c(ω, x) as a function

of x and ω, respectively. They illustrate that v̂α is convex in x for fixed ω, but

not convex in ω for fixed x, respectively. Moreover, Figure 4.1b illustrates a key

difference between ṽ(ω, x) and v̂α(ω, x). Whereas ṽ(ω, x) is obtained by replacing

the periodic part ψ2(ω − x) of v(ω, x) by its average Γ2, we obtain v̂α(ω, x) by

shifting ψ2(ω − x) towards ψ2(ω − α).

Finally, Figure 4.1a shows that v̂α(ω, x) = v̂c(ω, x) for a range of x values. How-

ever, the difference v̂c(ω, x)− v̂α(ω, x) is relatively large if x ∈ (−0.3, 0.7). This is

true in general for tight pseudo-valid cutting plane approximations: there always

exist d̂k such that v̂α(ω, x) = v̂c(ω, x) if ω − Tx ∈ Λk(d̂k). However, the two ap-

proximations may differ if ω − Tx /∈
⋃
k

Λk(d̂k). ♦

4.3.2 Benders’ decomposition for the generalized α-approximations

We solve the approximating problem

η̂α := min
x

{cx + Q̂α(x) : Ax = b, x ∈ X}, (4.9)

using an SAA of Q̂α. Given a sample {ω1, . . . , ωS} of size S from the distribution

of ω, the SAA Q̂S
α of Q̂α is defined as

Q̂S
α(x) :=

1
S

S

∑
s=1

v̂α(ω
s, x), x ∈ X, (4.10)

and the corresponding SAA problem as

η̂S
α := min

x
{cx + Q̂S

α(x) : Ax = b, x ∈ X}. (4.11)
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Since Q̂S
α is convex, we can solve the SAA problem using Benders’ decomposi-

tion [15], i.e., using an L-shaped algorithm [84]. In iteration τ of this algorithm, we

solve (4.11) with Q̂S
α replaced by a convex polyhedral outer approximation Q̂τ

out ≤ Q̂S
α .

This problem is called the master problem

η̂τ := min
x

{cx + Q̂τ
out(x) : Ax = b, x ∈ X}, (4.12)

and its optimal solution xτ is referred to as the current solution at iteration τ. If

Q̂τ
out(xτ) = Q̂S

α(xτ), then the current solution xτ is optimal for the original SAA

problem in (4.11). If not, then we strengthen the outer approximation using an

optimality cut for Q̂S
α of the form

Q̂S
α(x) ≥ βτ+1x + δτ+1, ∀x ∈ X,

which is tight at xτ , i.e., Q̂S
α(xτ) = βτ+1xτ + δτ+1. The outer approximation Q̂τ

out in

iteration τ is the pointwise maximum over all optimality cuts derived in previous

iterations:

Q̂τ
out(x) = max

t=1,...,τ
{βtx + δt}, x ∈ X.

The challenge for the generalized α-approximations, however, is to compute

tight optimality cuts of Q̂S
α . Since

Q̂S
α(xτ) =

1
S

S

∑
s=1

max
k=1,...,K

{λk(ωs − Txτ) + ψk(ωs − α), } x ∈ X,

such tight optimality cuts can be obtained by identifying for each scenario s the

maximizing index kτ
s at xτ , defined as

kτ
s ∈ arg max

k=1,...,K
{λk(ωs − Txτ) + ψk(ωs − α)}, s = 1, . . . , S. (4.13)

However, this is computationally too expensive, since we need to compute ψk(ωs −
α) for all k = 1, . . . , K, and K grows exponentially in the size of the second-stage

problem. Indeed, K is at least as large as the number of dual vertices of the feasible

region of the LP-relaxation vLP of v, of which there are exponentially many.
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4.3.3 Loose Benders’ decomposition for the generalized α-approx-
imations

To overcome this computational challenge we propose to use approximate indices

k̂τ
s defined as

k̂τ
s ∈ arg max

k=1,...,K
λk(ωs − Txτ), s = 1, . . . , S. (4.14)

These indices are computationally tractable since they correspond to the optimal basis

matrix index of the LP-relaxation vLP(ω
s, xτ), defined in (4.5). Hence, they can be

obtained by solving a single LP. Moreover, if the values of ψk(ωs − α) are equal for

all k = 1, . . . , K, then the indices k̂τ
s are optimal in (4.13), i.e., k̂τ

s = kτ
s . In general

however, the indices ks are suboptimal in (4.13), leading to the following definition.

Definition 4.6. Let xτ be given and let k̂τ
s , s = 1, . . . , S, be as in (4.14). We define

the loose optimality cut for Q̂S
α at xτ as

Q̂S
α(x) ≥ 1

S

S

∑
s=1

λk̂τ
s (ωs − Tx) + ψk̂τ

s (ωs − α), x ∈ X.

We use these loose optimality cuts in our loose Benders’ decomposition al-

gorithm, LBDA(α). In this algorithm the outer approximation Q̂τ
out of Q̂S

α is defined

using our loose optimality cuts. The algorithm terminates with tolerance level ε ≥ 0

if Q̂τ
out(xτ) ≥ Q̂τ+1

out (xτ)− ε; then, LBDA(α) reports x̂α = xτ as solution.

A full description of LBDA(α) is given below. Note that the algorithm requires

a lower bound L on Q̂S
α such that Q̂S

α(x) ≥ L for all x ∈ X . Such a lower bound L

exists because of Assumptions (A1)-(A4).

Loose Benders’ decomposition algorithm (LBDA(α))

1: Inputs Parameters: A, b, c, T, q, W. Distribution of ω. Lower bound L on Q̂S
α .

Shift parameter α. Tolerance ε. Sample size S.

2: Output Near-optimal solution x̂α.

3: Initialization

4: Initialize τ = 0 and Q̂τ
out ≡ L.

5: Obtain a sample {ω1, . . . , ωS} of size S from the distribution of ω.

6: Iteration step

7: Solve minx{cx + Q̂τ
out(x) : Ax = b, x ∈ X}.

8: Denote the optimal solution by xτ .

9: for s = 1, . . . , S do



571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan
Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021 PDF page: 108PDF page: 108PDF page: 108PDF page: 108

100 Chapter 4

10: Solve vLP(ω
s, xτ).

11: Denote the optimal basis matrix index by k̂τ
s .

12: Solve v
Bk̂τ

s
(ωs − α, 0).

13: Compute ψk̂τ
s (ωs − α) = v

Bk̂τ
s
(ωs − α, 0)− λk̂τ

s (ωs − α).

14: end for

15: βτ+1 ← − 1
S ∑S

s=1 λk̂τ
s T.

16: δτ+1 ← 1
S ∑S

s=1

{
λk̂τ

s ωs + ψk̂τ
s (ωs − α)

}
.

17: Q̂τ+1
out (x) := max{Q̂τ

out(x), βτ+1x + δτ+1}.

18: Stopping criterion

19: if Q̂τ
out(xτ) ≥ Q̂τ+1

out (xτ)− ε then

20: return x̂α := xτ .

21: stop.

22: else

23: τ ← τ + 1. Go to line 7.

24: end if

The solution x̂α of LBDA(α) is not necessarily ε-optimal for the SAA problem

in (4.11), since LBDA(α) uses the loose optimality cuts of Definition 4.6. If the op-

timality cuts were tight, then Q̂τ+1
out (xτ) = Q̂S

α(xτ) for every iteration τ, and thus the

algorithm would terminate if Q̂τ
out(xτ) ≥ Q̂S

α(xτ)− ε. We, however, show that our

loose optimality cuts are asymptotically tight at xτ : the difference Q̂τ+1
out (xτ)− Q̂S

α(xτ)

converges to zero if the total variations of the one-dimensional conditional pdf of

the random vector ω go to zero and as S → ∞, see Proposition 4.1. In this case, we

are able to prove that the LBDA(α) solution x̂α is near-optimal; see Theorem 3 below

for a bound on the optimality gap cx̂α + Q(x̂α)− η∗. This performance guarantee

is independent of α, and thus it applies if we take, e.g., α = 0. We further explore

selection of α in Section 4.5. The proof of the performance guarantee is postponed

to Section 4.4.2.

Theorem 4.3. Consider the two-stage mixed-integer recourse model

η∗ = min
x

{cx + Q(x) : Ax = b, x ∈ X}.

Let x̂α denote the solution by LBDA(α) with tolerance ε and sample size S. Then, there

exists a constant C > 0 such that for every continuous random vector ω with joint pdf
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f ∈ Hm

cx̂α + Q(x̂α)− η∗ ≤ ε + C
m

∑
i=1

Eω−i [|Δ| fi(·|ω−i)] ,

w.p. 1 as S → ∞.

Theorem 4.3 implies that the optimality gap of x̂α converges to the prespecified

tolerance ε as the total variations of the underlying one-dimensional conditional

pdf go to zero.

4.3.4 Implementation details of LBDA(α)

LBDA(α) can be implemented efficiently if the input size of the second-stage prob-

lem v(ω, x) is moderate. During each iteration τ, we have to solve the LP-relaxation

vLP(ω
s, xτ) and the Gomory relaxation v

Bk̂τ
s
(ωs − α, 0) for each scenario s = 1, . . . , S,

in order to generate a loose optimality cut. If the input size of v(ω, x) is not too

large, then vLP(ω
s, xτ) and v

Bk̂τ
s
(ωs − α, 0) can be solved in reasonable time using

standard LP and MIP solvers, respectively. Moreover, the master problem can be

solved efficiently using a standard LP solver, or MIP solver if some of the first-

stage decision variables are integer. Improved implementations of LBDA(α) using

a multicut approach [17] and regularization techniques [64] are possible. Further-

more, the subproblems v
Bk̂τ

s
(ωs − α, 0), s = 1, . . . , S can be solved in parallel, and

it may be beneficial to solve these subproblems inexactly in the first phase of the

algorithm.

In Section 4.5, we exploit that LBDA(α) can be run multiple times, using differ-

ent values of α. The performance guarantee of LBDA(α) is independent of α and

thus applies to every candidate solution that we obtain in this way. Moreover, we

use in- and out-of-sample evaluation to select the best candidate solution. In our

numerical experiments, we investigate several schemes for selecting the values of

α. Running LBDA(α) multiple times can be done very efficiently by using paral-

lelization and a common warm start. That is, we first apply the L-shaped algorithm

of [84] to the LP-relaxation of the original problem (4.1), in which the integer re-

strictions on the second-stage variables y are relaxed. Next, we run LBDA(α) for

each value of α, and we keep the optimality cuts generated for the LP-relaxation

QLP of Q, which are also valid for Q̂α, for any value of α.
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4.4 Performance guarantee of LBDA(α)

4.4.1 Convergence of sampling and loose optimality cuts

The performance guarantee of LBDA(α) does not follow directly from our error

bound for the generalized α-approximations. The reason is that LBDA(α) uses

sampling and the loose optimality cuts of Definition 4.6 to solve the corresponding

approximating problem. We consider these aspects in Sections 4.4.1.1 and 4.4.1.2,

respectively. In particular, we prove consistency of the SAA and asymptotic tight-

ness of our loose optimality cuts.

4.4.1.1 Consistency of the sample average approximation

Intuitively, the SAA becomes better as the sample size S increases. Indeed, we

show in Lemma 4.2 that the SAA Q̂S
α of Q̂α converges uniformly to Q̂α on X w.p. 1

as S → ∞.

Lemma 4.2. Consider the generalized α-approximation Q̂α and its sample average approx-

imation Q̂S
α . Then,

sup
x∈X

∣∣∣Q̂α(x)− Q̂S
α(x)

∣∣∣→ 0

w.p. 1 as S → ∞, where X = {x ∈ R
n1
+ : Ax ≤ b}.

Proof. See Appendix 4.A.

Corollary 4.1. sup
x∈X

|Q(x)− Q̂S
α(x)| ≤ C

m

∑
i=1

Eω−i [|Δ| fi(·|ω−i)] w.p. 1 as S → ∞.

Proof. Since

sup
x∈X

|Q(x)− Q̂S
α(x)| ≤ sup

x∈X
|Q(x)− Q̂α(x)|+ sup

x∈X
|Q̂α(x)− Q̂S

α(x)|,

the result follows directly by combining Theorem 4.2 and Lemma 4.2.

Corollary 4.1 implies a similar error bound on the difference between the op-

timal values η∗ and η̂S
α of the original MIR problem (4.1) and the SAA problem (4.11),

respectively, see Corollary 4.2.
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Corollary 4.2. Consider the optimal values η∗ and η̂S
α of the MIR problem (4.1) and the

SAA problem (4.11). Then,

η̂S
α − η∗ ≤ C

m

∑
i=1

Eω−i [|Δ| fi(·|ω−i)]

w.p. 1 as S → ∞.

Proof. Since the optimal solution x∗ of (4.1) is feasible but not necessarily optimal

in (4.11), we have

η̂S
α − η∗ ≤ cx∗ + Q̂S

α(x∗)− η∗ = Q̂S
α(x∗)− Q(x∗) ≤ sup

x∈X
|Q(x)− Q̂S

α(x)|.

The result follows directly from Corollary 4.1.

4.4.1.2 Asymptotic tightness of loose optimality cuts

If we derive a loose optimality cut Q̂S
α(x) ≥ βτ+1x + δτ+1 for Q̂S

α at xτ in LBDA(α),

then the gap Q̂S
α(xτ)− (βτ+1xτ + δτ+1) may be positive, since the cut is not neces-

sarily tight at xτ . However, we derive a bound on this gap by considering the index

function

k̂(ω, x) ∈ arg max
k=1,...,K

λk(ω − Tx), ω ∈ Ω, x ∈ X.

Note that k̂(ωs, xτ) = k̂τ
s , i.e., the index function k̂(ω, x) is used to derive our loose

optimality cuts. Based on this index function, we define the lower bounding func-

tion LS
α of Q̂S

α , given by

LS
α(x) :=

1
S

S

∑
s=1

[
λk̂(ωs ,x)(ωs − Tx) + ψk̂(ωs ,x)(ωs − α)

]
, x ∈ X, (4.15)

and we note that LS
α(xτ) is the value of the loose optimality cut at xτ , i.e., LS

α(xτ) =

βτ+1xτ + δτ+1. The function LS
α is a lower bound of Q̂S

α since its corresponding

value function, defined as

να(ω, x) := λk̂(ω,x)(ω − Tx) + ψk̂(ω,x)(ω − α), x ∈ X, (4.16)

is a lower bound of v̂α(ω, x) for all ω ∈ Ω and x ∈ X.

Proposition 4.1 contains a uniform total variation bound on the difference be-
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tween LS
α and Q̂S

α . In order to derive this result, we first analyze the difference

between να and v̂α. It turns out that να equals v̂α on large parts of the domain, see

Lemma 4.3.

Lemma 4.3. Consider the value functions να and v̂α, with να defined in (4.16) and v̂α

defined as

v̂α(ω, x) = max
k=1,...,K

{
λk(ω − Tx) + ψk(ω − α)

}
. (4.17)

Let Λk, k = 1, . . . , K, denote the closed convex cones from Lemma 4.1. Then, there exist

vectors σk ∈ Λk and a constant R > 0 such that

(i) 0 ≤ v̂α(ω, x)− να(ω, x) ≤ R for all ω ∈ Rm and x ∈ Rn1 , and

(ii) ω − Tx ∈ σk + Λk =⇒ να(ω, x) = v̂α(ω, x) = λk(ω − Tx) + ψk(ω − α).

Proof. See Appendix 4.A.

Proposition 4.1. Consider the SAA of the generalized α-approximation Q̂S
α and its lower

bound LS
α , defined in (4.15). There exists a constant C > 0 such that for every continuous

random vector ω with joint pdf f ∈ Hm,

sup
x∈X

∣∣∣Q̂S
α(x)− LS

α(x)
∣∣∣ ≤ C

m

∑
i=1

Eω−i [|Δ| fi(·|ω−i)]

w.p. 1 as S → ∞.

Proof. Define Δ(ω, x) := v̂α(ω, x)− να(ω, x), so that

Q̂S
α(x)− LS

α(x) =
1
S

S

∑
s=1

Δ(ωs, x).

We derive an upper bound on Δ(ω, x), independent of x. We then apply the strong

law of large numbers (SLLN) to obtain the desired result.

If we define M = ∪K
k=1(σk + Λk), where σk and Λk, k = 1, . . . , K, are the vectors

and closed convex cones from Lemma 4.3, then

Δ(ω, x) ≤ ξ(ω, x) :=

⎧⎨
⎩ R, if ω − Tx /∈ M,

0, if ω − Tx ∈ M,

where R is the upper bound on v̂α(ω, x)− να(ω, x) from Lemma 4.3. Moreover, we

can derive a bound on P[ω − Tx ∈ M]. Unfortunately, the random variable ξ(ω, x)
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depends on x. Therefore, we cannot apply the SLLN to

sup
x∈X

1
S

S

∑
s=1

ξ(ωs, x)

if X is infinite. To resolve this, we use that X is bounded. Let D denote the diameter

of TX , i.e., ||Tx − Tx′|| ≤ D for all x, x′ ∈ X . Define M′ ⊂ M as M′ :=
⋃K

k=1(σk +

Λk)(D). Fix an arbitrary x̄ ∈ X. Note that for all x ∈ X ,

ω − Tx̄ ∈ M′ =⇒ ∃k : ω − Tx̄ ∈ (σk + Λk)(D)

=⇒ ∃k : ω − Tx ∈ (σk + Λk) =⇒ ω − Tx ∈ M.

We obtain

Δ(ω, x) ≤ ξ(ω) :=

⎧⎨
⎩ R if ω − Tx̄ /∈ M′

0 if ω − Tx̄ ∈ M′

Note that ξ̄(ω) only depends on a fixed x∗ ∈ X and is independent of x. By the

SLLN,

1
S

S

∑
s=1

ξ̄(ωs) → RP[ω − Tx̄ /∈ M′],

w.p. 1 as S → ∞.

By [60, Lemma 3.9], Rm \M′ can be covered by finitely many hyperslices, that

is,

Rm \M′ ⊂
J⋃

j=1

Hj,

where the hyperslices Hj are defined as

Hj := {x ∈ Rm : 0 ≤ aT
j x ≤ δj},

for some aT
j and δj. By [60, Theorem 4.6], there exists a constant β > 0 such that

P[ω − Tx∗ /∈ M′] ≤ β
m

∑
i=1

Eω−i [|Δ| fi(·|ω−i)] .
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The result now follows from

sup
x∈X

∣∣∣Q̂S
α(x)− LS

α(x)
∣∣∣ = sup

x∈X

1
S

S

∑
s=1

Δ(ωs, x)

≤ 1
S

S

∑
s=1

ξ̄(ωs) → RP[ω − Tx∗ /∈ M′]

≤ C
m

∑
i=1

Eω−i [|Δ| fi(·|ω−i)] ,

w.p. 1 as S → ∞, where C = Rβ.

Proposition 4.1 shows that our loose optimality cuts are asymptotically tight,

since for every iteration τ in LBDA(α) the loose optimality cut for Q̂S
α at xτ is tight

for LS
α at xτ . Hence, if the underlying total variations are small enough and if S is

large enough, then the loose optimality cut is nearly tight for Q̂S
α at xτ .

4.4.2 Error bound on the optimality gap of LBDA(α)

We are now ready to prove the performance guarantee of LBDA(α) in Theorem 4.3.

Intuitively, we are able to derive this bound since (i) our loose optimality cuts are

asymptotically tight, and thus x̂α is near-optimal for the SAA problem with Q̂S
α , (ii)

the SAA Q̂S
α converges uniformly to Q̂α, and (iii) Theorem 4.2 contains a uniform

error on the difference between Q̂α and Q.

Proof. of Theorem 4.3 Let x̂α denote the solution returned by LBDA(α). Since x̂α :=

xτ is the current solution in the final iteration τ of the algorithm, it follows that x̂α

is a minimizer of

min
x

{cx + Q̂τ
out(x) : Ax = b, x ∈ X}.

Moreover, since Q̂τ
out ≤ Q̂S

α , it follows that cx̂α + Q̂τ
out(x̂α) ≤ η̂S

α , and thus, by re-

arranging terms and adding Q̂S
α on both sides,

cx̂α + Q̂S
α(x̂α)− η̂S

α ≤ Q̂S
α(x̂α)− Q̂τ

out(x̂α). (4.18)

The right-hand side of (4.18) represents an upper bound on the optimality gap of x̂α

in the SAA problem (4.11). The termination criterion of LBDA(α) guarantees that
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this upper bound is not too large. Indeed, at termination it holds that

Q̂τ
out(x̂α) ≥ Q̂τ+1

out (x̂α)− ε ≥ LS
α(x̂α)− ε,

and thus the upper bound in (4.18) reduces to

cx̂α + Q̂S
α(x̂α)− η̂S

α ≤ Q̂S
α(x̂α)− LS

α(x̂α) + ε

≤ sup
x∈X

|Q̂S
α(x)− LS

α(x)|+ ε. (4.19)

In the end, however, we are not interested in the optimality gap of x̂α in the SAA

problem (4.11) but in the optimality gap

cx̂α + Q(x̂α)− η∗

of x̂α in the original MIR problem (4.1). Adding and subtracting both Q̂S
α(x̂α) and

η̂S
α , and using (4.19), yields

cx̂α + Q(x̂α)− η∗ = (cx̂α + Q(x̂α)− η̂S
α ) + (Q(x̂α)− Q̂S

α(x̂α)) + (η̂S
α − η∗)

≤ sup
x∈X

|Q̂S
α(x)− LS

α(x)|+ ε + sup
x∈X

|Q(x)− Q̂S
α(x)|+ η̂S

α − η∗.

Applying Corollaries 4.1 and 4.2, and Proposition 4.1, we conclude that there exists

a constant C > 0 such that

cx̂α + Q(x̂α)− η∗ ≤ C
m

∑
i=1

Eω−i [|Δ| fi(·|ω−i)] + ε,

w.p. 1 as S → ∞.

The performance guarantee for LBDA(α) in Theorem 4.3 is a worst-case bound.

For many problem instances, the actual performance may be much better. In Sec-

tion 4.5, we assess the performance of LBDA(α) empirically on a wide range of test

instances.

4.5 Numerical experiments

We test the performance of LBDA(α) on problem instances from the literature and

on randomly generated instances, see Sections 4.5.2 and 4.5.3, respectively. In par-

ticular, we consider (variations of) an investment planning problem in [67], and
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two classes of problem instances available from SIPLIB [5], namely the SIZES prob-

lem [39] and the stochastic server location problem (SSLP) [50]. First, however, we

describe the set-up of our numerical experiments in Section 4.5.1.

4.5.1 Set-up of numerical experiments

In our numerical experiments, we compare LBDA(α) to several benchmark meth-

ods, in terms of costs, relative optimality gaps, and computations times. Since the

performance of LBDA(α) depends on α, we investigate four different approaches to

select α.

First, we take α equal to the zero vector. Second, we take α = α∗ := Tx∗, where

x∗ is the optimal solution of the original problem. Obviously, for large problem

instances x∗ is unknown, however, we expect that α∗ is a good choice of α since

the generalized α-approximations are obtained by replacing Tx by α in the Gomory

relaxations, and thus Q̂α∗ is a good approximation of Q near the true optimal solu-

tion x∗. We test this for the smaller problem instances for which x∗ is known.

Since α∗, however, typically cannot be computed for larger problem instances,

we also propose an iterative scheme, in which we first obtain x̂α0 by running

LBDA(α0), where α0 is the zero vector. Next, we run LBDA(α1), where α1 := Tx̂α0 .

We extend this scheme to 100 iterations by recursively defining αk+1 := Tx̂αk ,

k = 1, . . . , 100. We then select the best value of α in terms of expected costs, de-

noted by α#. Finally, we apply LBDA(α) multiple times using 100 different values

of α, drawn from an multivariate uniform distribution on [0, 100]m, and we denote

the best value of α in terms of the expected costs by α+.

In order to compare these approaches, note that the expected costs cx + Q(x) of

a candidate solution x can be computed exactly if the random vector ω has a finite

number of realizations, as is the case for the SIZES, SSLP, and investment planning

problems that we consider. Therefore, if the optimal value η∗ is known, then the

relative optimality gap ρ(x), defined as

ρ(x) =
cx + Q(x)− η∗

|η∗| ∗ 100%,

can be computed exactly, and otherwise bounds on ρ(x) can be computed.

In contrast, for our randomly generated instances, we assume that ω is continu-

ously distributed. For these instances, we use the multiple replications procedure

(MRP) [46] with Latin hypercube sampling [14] to obtain 95% confidence upper

bounds on ρ(x). Moreover, we compare the performance of LBDA(α) to a range of
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benchmark solutions, using out-of-sample estimation of cx + Q(x), with a sample

size of 105, which guarantees that the standard errors of our results are sufficiently

small. The benchmark and LBDA(α) solutions are computed using a sample of size

S = 1000.

The first benchmark solution x̄S is obtained by solving the deterministic equi-

valent formulation (DEF) of the corresponding SAA of the original problem (4.1).

The DEF is a large-scale MIP, which, typically, cannot be solved in reasonable time

by standard MIP solvers. Hence we also solve the DEF using a smaller sample size

S′ = 100, resulting in the second benchmark solution x̄S′ .

We obtain three additional benchmark solutions by solving the generalized α-

approximations exactly for α = 0, α = α∗ and α = α+, that is, we find the optimal

solution x∗α of the approximating problem (4.4) with Q̂ = Q̂S
α . We do so by solving

the approximation second-stage problems

max
k=1,...,K

{λk(ω − Tx) + ψk(ω − α)}

by enumeration over k = 1, . . . , K. For this reason, x∗α can only be computed in

reasonable time for small problem instances.

Finally, we consider two trivial benchmark solutions, which we expect to out-

perform significantly. First, we relax the integer restrictions on the second-stage

variables in the SAA of the original problem (4.1), resulting in the benchmark solu-

tion xLP. Second, we solve the Jensen approximation, which replaces the distri-

bution of ω by a degenerate distribution at μ = Eω [ω], and denote the optimal

solution by xμ.

We run our experiments on a single Intel Xeon E5 2680v3 core @2.5GHz with

Gurobi 7.0.2. To ensure a fair comparison between solutions, we use common ran-

dom numbers where possible and we limit the computation time of each algorithm

to two hours.

4.5.2 Test instances from the literature

4.5.2.1 The SIZES problem

We first consider all instances of the SIZES test problem suite [39] from SIPLIB.

These instances have mixed-binary variables in both stages, and differ in the num-

ber of scenarios, namely 3, 5, and 10. The DEF of the largest instance has 341 con-

straints and 825 variables, of which 110 are binary. We refer to [5] for further details.

In Table 4.1, we report the outcomes of LBDA(α) and solving the DEF.
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Table 4.1. The SIZES problem.

Computation time (s) (optimality gap)

DEF LBDA(α)

Instance x∗ α = 0 α = α∗ α = α# α = α+

SIZES3 0.2 (0.0%) 0.2 (0.35%) 0.3 (0.20%) 24.8 (0.32%) 23.8 (0.20%)
SIZES5 1.5 (0.0%) 0.3 (0.44%) 0.6 (0.26%) 34.0 (0.35%) 34.0 (0.14%)
SIZES10 312.1 (0.0%) 0.7 (0.47%) 0.9 (0.08%) 68.6 (0.10%) 53.8 (0.11%)

We observe from Table 4.1 that LBDA(α) performs very well for all choices of α.

Indeed, on every instance, the optimality gaps of all LBDA(α) solutions are below

0.5%, and below 0.2% for α = α+. Moreover, LBDA(α) runs very fast for all in-

stances: for a single value of α, the computation time of LBDA(α) is always below

one second.

Another observation is that LBDA(α#) and LBDA(α+) consistently outperform

LBDA(0), at the expense of additional computation time. Nevertheless, the compu-

tation times of LBDA(α) for α# and α+ are still moderate, and they scale much better

to larger instances than solving the DEF. In particular, the time taken to solve the

DEF grows exponentially as the sample size S increases, whereas the computation

times of LBDA(α) are approximately linear in S. Finally, LBDA(α) performs very

well if α = α∗. However, since α∗ is not known in practice, it is useful to observe

that LBDA(α+) achieves similar performance.

4.5.2.2 The stochastic server location problem

The SSLP instances are more challenging in terms of input size than the SIZES in-

stances. Indeed, the DEF of the largest instance has over 1,000,000 binary decision

variables and 120,000 constraints. Their first- and second-stage problems are pure

binary and mixed-binary, respectively, and ω follows a discrete distribution. A full

problem description can be found in [50], in which the instances are solved using

the D2 algorithm of [69]. See also [1] and [36] for more recent computational experi-

ments on these test instances using other exact approaches. In Table 2 we report the

best known running time for each SSLP instance over all these exact approaches,

along with the outcomes of LBDA(α).

Strikingly, LBDA(α) was able to solve all instances to optimality for α = α+

and α = α∗. Moreover, LBDA(0) and LBDA(α#) solved all instances except for

SSLP 15 45 5, on which both achieved an optimality gap of 0.45%. In terms of com-

putation time, LBDA(0) is clearly preferred to LBDA(α#) and LBDA(α+), while
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Table 4.2. The stochastic server location problem.

Computation time (s) (optimality gap)

Exact approaches LBDA(α)

Instance x∗ α = 0 α = α∗ α = α# α = α+

SSLP 5 25 50 0.51 (0.0%) 0.2 (0.0%) 0.2 (0.0%) 2.8 (0.0%) 2.8 (0.0%)
SSLP 5 25 100 1.01 (0.0%) 0.2 (0.0%) 0.2 (0.0%) 5.3 (0.0%) 5.3 (0.0%)
SSLP 15 45 5 4.32 (0.0%) 1.2 (0.45%) 2.1 (0.0%) 79.3 (0.45%) 13.5 (0.0%)
SSLP 15 45 10 35.32 (0.0%) 2.9 (0.0%) 2.7 (0.0%) 101.5 (0.0%) 10.8 (0.0%)
SSLP 15 45 15 92.72 (0.0%) 4.6 (0.0%) 5.6 (0.0%) 270.7 (0.0%) 105.4 (0.0%)
SSLP 10 50 50 65.72 (0.0%) 0.6 (0.0%) 1.1 (0.0%) 102.0 (0.0%) 48.3 (0.0%)
SSLP 10 50 100 153.32 (0.0%) 1.9 (0.0%) 1.9 (0.0%) 137.0 (0.0%) 121.5 (0.0%)
SSLP 10 50 500 1033.03 (0.0%) 8.7 (0.0%) 8.6 (0.0%) 525.7 (0.0%) 482.1 (0.0%)
SSLP 10 50 1000 2691.02 (0.0%) 13.5 (0.0%) 58.7 (0.0%) 5529.5 (0.0%) 903.5 (0.0%)
SSLP 10 50 2000 4952.02 (0.0%) 55.7 (0.0%) 73.6 (0.0%) 6020.8 (0.0%) 1698.9 (0.0%)

1See [50]. 2See [1]. 3See [36].

achieving similar results. Finally, although directly comparing LBDA(α) to the

other approaches is not completely fair since the algorithms were run on different

machines, it is clear that LBDA(α) is generally faster than exact approaches. Indeed,

LBDA(0) solved all instances in under one minute, and eight out of ten instances

were solved in less than ten seconds, whereas the fastest exact approach required

at least one minute for six out of ten instances, and over one hour for the largest

instance.

4.5.2.3 An investment planning problem

We consider the following problem by Schultz et al. [67],

min
x

{−3/2x1 − 4x2 + Eω [v(ω, x)] : x ∈ [0, 5]2},

where

v(ω, x) = min
y∈Y

{−16y1−19y2−23y3−28y4 : 2y1 + 3y2 + 4y3 + 5y4 ≤ ω1 − x1

6y1 + y2 + 3y3 + y4 ≤ ω2 − x2},

and where the second-stage decision variables are binary, i.e., Y = {0, 1}4, and the

random vector ω = (ω1, ω2) follows a discrete distribution which assigns equal

probabilities to S = 441 equidistant lattice points of [5, 15]2. Schultz et al. consider



571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan
Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021 PDF page: 120PDF page: 120PDF page: 120PDF page: 120

112 Chapter 4

Table 4.3. An investment planning problem.

Computation time (s) (gap to x̂∗)

Instance DEF LBDA(α)

Y T S x̂∗ α = 0 α = Tx̂∗ α = α# α = α+

Z4
+ H 4 0 0.0 (0.0%) 0.0 (0.0%) 0.4 (0.0%) 0.4 (0.0%)

9 0 0.0 (12.9%) 0.0 (0.0%) 0.7 (2.2%) 0.7 (0.1%)
36 0.5 0.0 (5.0%) 0.0 (5.8%) 3.0 (0.5%) 2.9 (0.0%)

121 8.2 0.1 (4.0%) 0.1 (4.0%) 7.6 (4.0%) 7.7 (4.0%)
441 72001 0.3 (3.1%) 0.2 (3.1%) 27.6 (3.1%) 27.8 (3.1%)

1681 72001 0.9 (0.0%) 0.9 (0.0%) 104.4 (0.0%) 105.6 (0.0%)
10201 73971 5.5 (-0.2%) 5.4 (-0.2%) 631.8 (-0.2%) 639.1 (-0.2%)

Z4
+ I2 4 0 0.0 (0.0%) 0.0 (0.0%) 0.3 (0.0%) 0.3 (0.0%)

9 0 0.0 (0.9%) 0.0 (1.0%) 0.8 (0.9%) 0.8 (0.0%)
36 0 0.0 (4.3%) 0.0 (0.9%) 2.9 (0.9%) 2.9 (0.0%)

121 0.5 0.1 (4.0%) 0.1 (2.8%) 9.8 (0.0%) 9.9 (0.0%)
441 20.5 0.3 (0.9%) 0.3 (1.5%) 36.5 (0.2%) 36.1 (0.0%)

1681 72001 1.3 (0.7%) 1.2 (0.1%) 136.1 (0.0%) 138.2 (0.0%)
10201 72691 8.2 (0.3%) 7.9 (0.0%) 864.5 (-0.1%) 883.0 (-0.1%)

{0, 1}4 H 4 0 0.0 (8.8%) 0.0 (8.8%) 0.2 (8.8%) 0.2 (8.8%)
9 0 0.0 (5.0%) 0.0 (5.0%) 0.4 (5.0%) 0.5 (5.0%)

36 0.7 0.0 (1.6%) 0.0 (1.6%) 1.9 (1.6%) 2.0 (1.6%)
121 32.5 0.1 (1.8%) 0.1 (1.8%) 6.7 (1.8%) 6.7 (1.8%)
441 72001 0.3 (2.1%) 0.3 (2.1%) 24.2 (2.1%) 24.3 (2.1%)

1681 72001 0.9 (0.3%) 0.9 (0.3%) 92.0 (0.3%) 91.9 (0.3%)
10201 72041 5.0 (0.1%) 5.1 (0.1%) 554.5 (0.1%) 553.4 (0.1%)

{0, 1}4 I2 4 0 0.0 (1.9%) 0.0 (14.8%) 0.3 (1.9%) 0.3 (0.1%)
9 0 0.0 (1.4%) 0.0 (0.0%) 0.6 (1.4%) 0.7 (0.1%)

36 0 0.0 (5.0%) 0.0 (2.6%) 3.4 (2.0%) 3.3 (1.0%)
121 0.9 0.1 (2.1%) 0.1 (4.7%) 10.7 (1.5%) 11.1 (0.4%)
441 118.3 0.4 (2.5%) 0.4 (0.3%) 41.6 (1.3%) 42.5 (0.4%)

1681 72041 1.8 (0.9%) 1.8 (1.1%) 162.1 (0.9%) 166.5 (0.3%)
10201 72931 10.5 (1.1%) 10.9 (0.9%) 1032.7 (0.8%) 1055.1 (0.0%)

1 DEF could not be solved in time: x̂∗ denotes best solution found by Gurobi.

a second variant of this problem by choosing the technology matrix T as

T = H :=

⎛
⎝2/3 1/3

1/3 2/3

⎞
⎠ ,

whereas in the original formulation, T is the identity matrix I2. For both variants,

we consider S ∈ {4, 9, 36, 121, 441, 1681, 10201} and Y = Z4
+, in addition to Y =

{0, 1}4, as is done in [53]. For each of the resulting 28 instances, Table 4.3 shows

the results of LBDA(α) and solving the DEF. Note that if Gurobi could not solve

an instance within two hours, then we report the gaps to x̂∗, the best solution that

Gurobi was able to find.
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Overall, LBDA(α) performs well on the instances in Table 4.3. In particular, for

α = α# and α = α+, LBDA(α) achieves gaps that are below 2% on 22 and 23 out of

28 instances, respectively. In general, LBDA(α) achieves better results if S is larger.

For example, if Y = {0, 1}4 and T = H, then the gaps are strictly decreasing in

S. This is in line with the performance guarantee of LBDA(α) in Theorem 4.3: if S

is larger, then the distributions of ω1 and ω2 more closely resemble a continuous

uniform distribution on [5, 15], which has small total variation, i.e., the error bound

in Theorem 4.3 is small.

On some instances, LBDA(α) does not consistently perform well for all values

of α. For example, if Y = Z4
+, T = H, and S = 9, then LBDA(α+) and LBDA(0)

achieve gaps of 0.1% and 12.9%, respectively. Furthermore, the instances with Y =

{0, 1}4, T = H, and S ∈ {4, 9} turn out to be difficult instances for LBDA(α): for all

choices of α, the resulting gaps are 8.8% and 5%, respectively.

In fact, for every choice of α, LBDA(α) achieves identical gaps if Y = {0, 1}4

and T = H, but the gaps are much smaller if S ≥ 36, e.g., if S = 10201, then the

gaps are 0.1%. In contrast, there are large differences between the different choices

of α if Y = {0, 1}4 and T = I. For these instances, α = α# and α = α+ outper-

form the other choices of α. However, similar as for the SIZES instances in Sec-

tion 4.5.2.1, there is a trade-off between performance and computation times, since

LBDA(α+) and LBDA(α#) require 100 LBDA(α) runs, which is computationally

more demanding than LBDA(0). Nevertheless, on every instance, the computation

times of LBDA(α) for α ∈ {α#, α+} are below 20 minutes, and below 3 minutes if

S ≤ 1681.

4.5.3 Randomly generated test instances

We generate random MIR problems of the form (4.1), with X = R
n1
+ and

Q(x) = Eω

[
min

y

{
qy : Wy ≥ ω − Tx, y ∈ Z

p
+

}]
, x ∈ X.

In addition, we assume that the components of the random vector ω ∈ Rm fol-

low independent normal distributions with mean 10 and standard deviation σ ∈
{0.1, 0.5, 1, 2, 4, 10}. The parameters c, q, T, and W are fixed, and their elements are

drawn from discrete uniform distributions with supports contained in [1, 5], [5, 10],

[1, 6], and [1, 6], respectively.

The reason that we consider multiple values of the standard deviation σ is that

Theorem 4.3 implies that LBDA(α) performs better as σ increases. This is because
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the total variations of the one-dimensional conditional pdf are small if σ is large,

and thus the error bound on the optimality gap achieved by LBDA(α) is also small.

To prevent noise in the outcomes of our experiments, we compute the average

optimality gaps, costs, and computation times over 20 randomly generated test

instances for each value of σ. We consider test instances of two different sizes,

namely n1 = 10, p = 5, m = 5 (small), and n1 = 100, p = 40, m = 20 (large).

Tables 4.4 and 4.5 display the results for the small and large versions, respectively.

From these results, we observe that LBDA(α) clearly outperforms the sampling

solutions in terms of computation time and scalability to larger problem instances.

In particular, we observe that the computation time of LBDA(α) is of the same order

of magnitude as that of xLP, while it performs significantly better in terms of op-

timality gaps and out-of-sample estimated expected costs. Undeniably, our results

indicate that LBDA(α) can be implemented very efficiently and that it can handle

large MIR problem instances.

In line with the performance guarantee in Theorem 4.3, LBDA(α) performs bet-

ter for larger values of σ. For example, on the small instances, the optimality gaps

achieved by LBDA(0) are strictly decreasing in σ, and for σ = 10.0, LBDA(α+)

outperforms the sampling solution x̄S. A similar observation is true for the op-

timal solution of the generalized α-approximations Q̂α, as we would expect based

on the error bound for Q̂α in Theorem 4.2. Observe, however, that even for large

values of σ, the optimality gaps reported in Table 4.4 for LBDA(α) are relatively

large, i.e., around 3-4%, and that the optimality gaps achieved by e.g. LBDA(α+)

are not strictly decreasing in σ. The reason is that the actual optimality gaps are

likely much smaller than the upper bounds reported in Table 4.4. This is because

they are computed using the MRP, which relies on solving multiple SAAs of the

original problem. Since, however, Gurobi has difficulties solving the DEFs of these

SAAs in reasonable time, especially for large values of σ, the bounds obtained using

the MRP are typically not sharp.

Interestingly, xLP also performs better as σ increases. An explanation is that

our error bound for the generalized α-approximation implies that the MIR func-

tion Q becomes closer to a convex function as σ increases. Thus, since the LP-

relaxation of Q is a convex lower bound of Q, its approximation error is expected

to become smaller as σ increases. Note however, that unlike the generalized α-

approximations, the approximation error of the LP-relaxation does not go to zero.

Indeed, based on our results, LBDA(α) is clearly preferred to xLP, since LBDA(α) con-

sistently outperforms xLP, at the expense of very little additional computation time.
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Furthermore, the results in Tables 4.4 and 4.5 indicate that α = Tx̄S is a good

choice for LBDA(α). Indeed, if α = Tx̄S, then LBDA(α) and x∗α perform similar to

x̄S. For example, on the small instances, they achieve optimality gaps that are on

average within 0.2% and 1.1% of x̄S, respectively. However, since x̄S is difficult

to compute in practice, the use of LBDA(Tx̄S) is limited, whereas LBDA(α+) and

LBDA(α#) can be applied directly. Similar as for the instances in Section 4.5.2.1

and 4.5.2.3, they achieve significantly better results than LBDA(0), at the expense of

higher computation times. In particular, on the large instances, LBDA(α#) performs

2 to 5 times as well as LBDA(0), and on the small instances, LBDA(α+) achieves

optimality gaps that are within 0.6% of x̄S for σ ≥ 0.5. While the computation

times of LBDA(α) increase for α = α+ and α = α# compared to α = 0, they remain

manageable: even the large instances are solved within 26 minutes.

Finally, observe from Table 4.4 that LBDA(α) generally achieves better or similar

performance as x∗α. In other words, the fact that LBDA(α) uses loose optimality cuts

to solve the generalized α-approximations has no negative effect on the solution

quality.

4.6 Conclusion

We consider two-stage mixed-integer recourse models with random right-hand

side. Due to non-convexity of the recourse function, such models are extremely

difficult to solve. We develop a tractable approximating model by using convex

approximations of the recourse function. In particular, we propose a new class of

convex approximations, the so-called generalized α-approximations, and we derive

a corresponding error bound on the difference between these approximations and

the true recourse function. In addition, we show that this error bound is small if the

variability of the random parameters in the model is large. More precisely, the error

bound for the generalized α-approximations goes to zero as the total variations of

the one-dimensional conditional probability density functions of the random right-

hand side vector in the model go to zero.

The advantage of the generalized α-approximations over existing convex ap-

proximations is that it can be solved efficiently. In fact, we describe a loose Bend-

ers’ decomposition algorithm, LBDA(α), which efficiently solves the correspond-

ing approximating model. The quality of the candidate solution x̂α generated by

LBDA(α) in the original model is guaranteed by Theorem 4.3, which states an up-

per bound on the optimality gap of x̂α. This performance guarantee is similar to
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the error bound we prove for the generalized α-approximations. Indeed, we show

that the optimality gap of x̂α is small if the variability of the random parameters in

the model is large.

In addition to this theoretical guarantee on the solution quality, we empiric-

ally assess LBDA(α) on a range of test instances. In particular, we consider the

SIZES and SSLP instances from SIPLIB, an investment planning problem by [67],

and randomly generated instances. We find that LBDA(α) performs well in terms of

computation times, scalability to larger problem instances, and solution quality. In

particular, LBDA(α) is able to solve larger instances than traditional sampling tech-

niques and its computation times scale more favourably in the input size of the in-

stances. In terms of solution quality, LBDA(α) solves the SIZES and SSLP instances

to near optimality and generally performs very well on the investment planning

instances. Moreover, on the randomly generated instances, LBDA(α) performs

similar to traditional sampling techniques and achieves small optimality gaps if

the variability of the random parameters in the model is medium to large.

One avenue for future research is to derive sharper theoretical error bounds for

the generalized α-approximations. While Theorem 4.3 provides conditions under

which our solution method performs well, the quantitative error bound cannot be

computed, as it depends on an unknown and potentially large constant C. A sharp

tractable error bound would be an improvement over our current results. Another

avenue is the extension of our solution method to more general mixed-integer re-

course models, for example by allowing for randomness in the second-stage cost

coefficients q, technology matrix T, or recourse matrix W.

Appendix 4.A Postponed proofs

Proof of Theorem 4.2. Our proof is similar to, e.g., [60, Theorem 5.1] and Theorem 3.2.

Here, we point out the differences. In particular, we show that there exist vectors

σk, k = 1, . . . , K and a constant R > 0, such that

(i) if ω − Tx ∈ σk + Λk, then v(ω, x)− v̂α(ω, x) is zero-mean Bk-periodic, and

(ii) |v(ω, x)− v̂α(ω, x)| ≤ R,

where Λk, k = 1, . . . , K, are the closed convex cones from Lemma 4.1. Property (i)

follows from Lemma 4.1 (iii) and Lemma 4.3 (ii), and the fact that ψk(ω − Tx) −
ψk(ω − α) is zero-mean Bk-periodic.



571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan
Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021 PDF page: 126PDF page: 126PDF page: 126PDF page: 126

118 Chapter 4

In order to prove (ii), we use a similar argument as in [60, Lemma 3.6] and Pro-

position 3.2. It suffices to show that there exists a constant R′ such that |v̂α(ω, x)−
vLP(ω, x)| ≤ R′. We can take R′ = maxk wk, where wk are the upper bounds on ψk

from Lemma 4.1, k = 1, . . . , K.

Proof of Lemma 4.2. Our line of proof is based on [3]. For any ν > 0, consider a finite

set Xν such that for all x ∈ X , there exists an x′ ∈ Xν such that ||x − x′|| ≤ ν. Such

a set Xν exist due to Assumption (A1). Let x ∈ X be given and let x′ ∈ Xν be such

that ||x − x′|| ≤ ν. Note that

|Q̂α(x)− Q̂S
α(x)| ≤ |Q̂α(x)− Q̂α(x′)|+ |Q̂α(x′)− Q̂S

α(x′)|
+ |Q̂S

α(x′)− Q̂S
α(x)|. (4.20)

The first and third term on the right-hand side of (4.20) can be bounded by noting

that both Q̂α and Q̂S
α are Lipschitz continuous. Denote Lipschitz constants of Q̂α

and Q̂S
α by L1 and L2, respectively. We obtain

|Q̂α(x)− Q̂S
α(x)| ≤ (L1 + L2)ν + |Q̂α(x′)− Q̂S

α(x′)|,

which gives

sup
x∈X

∣∣∣Q̂α(x)− Q̂S
α(x)

∣∣∣ ≤ (L1 + L2)ν + sup
x′∈Xν

∣∣∣Q̂α(x′)− Q̂S
α(x′)

∣∣∣ .

The first term (L1 + L2)ν can be made arbitrarily small by letting ν → 0. The result

follows, because for fixed ν, the second term supx′∈Xν

∣∣Q̂α(x′)− Q̂S
α(x′)

∣∣ goes to

zero w.p. 1 as S → ∞. To see this, fix any x′ ∈ Xν, and consider the random

variable

ξ := max
k=1,...,K

{λk(ωs − Tx′) + ψk(ωs − α)}.

Thus, by the SLLN, Q̂S
α(x′) → Q̂α(x′) w.p. 1 as S → ∞. We can apply the SLLN since

E[ξ] exists and is finite by Assumptions (A2)-(A4). The result follows because Xν is

finite.

Proof of Lemma 4.3. It follows from the definitions of v̂α and να that v̂α ≥ να. Moreover,

we can take R = maxk wk, where wk are the upper bounds on ψk, k = 1, . . . , K, from

Lemma 4.1.
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To prove (ii), note that by the Basis Decomposition Theorem in [85], there exist

basis matrices Bk, k = 1, . . . , K, and closed convex cones Λk = {t : (Bk)−1t ≥ 0}
such that ω − Tx ∈ Λk implies k(ω, x) = k, and thus

να(ω, x) = λk(ω − Tx) + ψk(ω − α). (4.21)

It remains to show that there exists σk ∈ Λk such that v̂α(ω, x) = λk(ω − Tx) +

ψk(ω − α) if ω − Tx ∈ σk + Λk. Fix arbitrary l ∈ {1, . . . , K}. It suffices to show that

there exist σkl ∈ Λk such that ω − Tx ∈ σkl + Λk implies that

λk(ω − Tx) + ψk(ω − α) ≥ λl(ω − Tx) + ψl(ω − α). (4.22)

This is because

K⋂
l=1

(σkl + Λk) = σk + Λk

for some σk ∈ Λk. Hence, if ω − Tx ∈ σk + Λk, then

v̂α(ω, x) = max
k=1,...,K

{
λk(ω − Tx) + ψk(ω − α)

}
= λk(ω − Tx) + ψk(ω − α).

To prove (4.22), note that if λk = λl , then by Lemma 4.1 (iii), ψk(ω − α) =

ψl(ω − α), so that (4.22) holds with equality. If λk 	= λl , then λks > λl s for any

s ∈ int(Λk). For sufficiently large γ > 0, we thus have

γ(λks − λl s) ≥ wl .

If we take σkl = γs, then (4.22) holds by observing that ψk(ω − α) ≥ 0 and ψl(ω −
α) ≤ wl .
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Chapter 5

A converging Benders’

decomposition algorithm for

two-stage mixed-integer

recourse models

We propose a new solution method for two-stage mixed-integer recourse models. In con-

trast to existing approaches, we can handle general mixed-integer variables in both stages.

Our solution method is a Benders’ decomposition, in which we iteratively construct tighter

approximations of the expected second-stage cost function using a new family of optimality

cuts. We derive these optimality cuts by parametrically solving extended formulations of

the second-stage problems using deterministic mixed-integer programming techniques. We

establish convergence by proving that the optimality cuts recover the convex envelope of

the expected second-stage cost function. Finally, we demonstrate the potential of our ap-

proach by conducting numerical experiments on several investment planning and capacity

expansion problems.

5.1 Introduction

Frequently, practical problems in, e.g., healthcare, energy, manufacturing, and lo-

gistics involve both uncertainty and integer decision variables. A powerful model-

ling tool for such problems is the class of two-stage mixed-integer recourse (MIR)

This chapter is based on the journal publication [78].
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models [86, 32], but these models are notoriously hard to solve [29]. Typically, MIR

models are solved using decomposition algorithms inspired by Benders’ decom-

position [15, 43]. However, existing decomposition approaches can only handle

special cases of MIR models, or they are not attractive from a computational point

of view. In this chapter, we develop a computationally efficient Benders’ decom-

position algorithm which solves general two-stage MIR models. In order to achieve

this, we propose a new family of optimality cuts for MIR models, i.e., supporting

hyperplanes which describe the expected second-stage cost function. The advant-

age of our so-called scaled cuts over existing optimality cuts is twofold. First, we

prove that scaled cuts can be used to recover the convex envelope of the expected

second-stage cost function in general, i.e., we do not require assumptions on the

first- and second-stage decision variables. Second, scaled cuts can be computed ef-

ficiently using state-of-the-art techniques for deterministic mixed-integer programs

(MIPs).

In a decomposition algorithm, optimality cuts are used to iteratively construct

tighter outer approximations of the expected second-stage cost function. A prime ex-

ample is the L-shaped method in [84], which efficiently solves continuous recourse

models. We, however, focus on MIR models with mixed-integer second-stage de-

cisions, which are much harder to solve, since the expected mixed-integer second-

stage cost function is non-convex, and thus the rich toolbox of convex optimization

cannot be used. It turns out that this difficulty is mitigated if the first-stage decision

variables are pure binary. In fact, there is an array of decomposition algorithms de-

veloped for this special case [8, 31, 44, 48, 49, 51, 53, 69, 70, 72, 89]. However, these

algorithms suffer from a positive duality gap when applied to MIR models with gen-

eral mixed-integer first-stage variables, since they use optimality cuts which are in

general not tight, see [24] and [73]. A notable exception is the algorithm in [88]

for MIR models with pure integer first- and second-stage decision variables, but

their approach does not apply to general mixed-integer variables. Existing solution

methods for general MIR models are of limited practical use, since they branch on

continuous first-stage variables [4, 24, 73], or they introduce auxiliary first-stage

integer decision variables [6, 26].

Similar as in traditional decomposition algorithms for MIR models, we iterat-

ively improve an outer approximation of the expected second-stage cost function.

In contrast to traditional approaches, however, the optimality cuts that are used to

update the outer approximation from one iteration to the next depend on the cur-

rent outer approximation. More precisely, we propose a recursive scheme to update
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the outer approximation, in which we solve extended formulations of the second-

stage subproblems, whose definitions depend on the outer approximation in the

current iteration. In this way, we derive non-linear optimality cuts for the non-

convex second-stage cost functions, which we use to improve the current outer ap-

proximation. The problem is, of course, that non-linear optimality cuts introduce

non-convexities in the master problem, which presents computational challenges.

However, by transforming the non-linear optimality cuts, we obtain linear cuts for

the expected second-stage cost function, which we refer to as scaled cuts.

We show that the coefficients of our scaled cuts are the optimal solutions of a

static robust optimization problem with a mixed-integer uncertainty set, and use

efficient row generation and cutting plane techniques to solve them, similar as in

robust optimization and deterministic mixed-integer programming, respectively.

Moreover, we prove that scaled cuts recover the convex hull of the expected second-

stage cost function. In particular, we consider the scaled cut closure of a given outer

approximation, defined as the pointwise supremum of all scaled cuts that we can

compute using the current outer approximation, and we prove that the sequence

of outer approximations defined by recursively computing the scaled cut closure

converges to the convex envelope of the expected second-stage cost function. In

addition, we prove that the scaled cut closure of a convex polyhedral outer approx-

imation remains convex polyhedral. In other words, the scaled cut closure can be

described using finitely many scaled cuts.

We use scaled cuts to develop a Benders’ decomposition algorithm which solves

two-stage MIR models with general mixed-integer variables in both stages. In this

way, we close the duality gap of traditional optimality cuts. Since scaled cuts are

linear in the first-stage decision variables, our Benders’ decomposition algorithm

is computationally efficient. In particular, we do not introduce auxiliary variables

or require spatial branching of the first-stage feasible region for convergence. We

do use a novel cut-enhancement technique to speed up convergence of the scaled

cuts. The idea is to use the current outer approximation to identify solutions that

cannot be optimal. Doing so allows us to construct stronger scaled cuts that do

not have to be valid for these suboptimal solutions. We empirically test the quality

of scaled cuts by conducting numerical experiments on variants of an investment

planning problem (IPP) by Schultz et al. [67] and the DCAP problem instances [2]

from SIPLIB [5]. Our results show that scaled cuts outperform traditional optim-

ality cuts: they are able to significantly reduce the relative optimality gap between

the best available lower and upper bound of traditional Benders’ decomposition
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algorithms. Indeed, on the IPP instances and the DCAP instances, we respectively

achieve an average 93% and 45% reduction of this optimality gap compared to tra-

ditional optimality cuts, and, moreover, we achieve a zero optimality gap on 18 out

of 24 IPP instances.

Summarizing, our main contributions are the following.

• We derive a new family of optimality cuts for MIR models, the scaled cuts,

and we propose efficient strategies to compute these cuts.

• Using these scaled cuts, we develop a computationally efficient Benders’ de-

composition algorithm for MIR models with general mixed-integer variables

in both stages.

• We prove that scaled cuts can be used to recover the convex envelope of the

expected second-stage cost function.

• We propose an optimality cut-enhancement technique, which we use to speed

up convergence of scaled cuts and to reduce the duality gap of traditional

cuts.

• We conduct numerical experiments to test our scaled cuts, and we show that

our (enhanced) scaled cuts can be used to close or significantly reduce the

duality gap of traditional optimality cuts.

The remainder of this chapter is organized as follows. In Section 5.2, we form-

ally introduce MIR models and review solution approaches. Next, we introduce

scaled cuts and develop our Benders’ decomposition algorithm in Section 5.3, and

we describe several strategies to compute scaled cuts in Section 5.4. Section 5.5

concerns the proof of convergence of the scaled cuts. We report on our numerical

experiments in Section 5.6, and we conclude in Section 5.7.

Notation: Throughout, conv(U) denotes the convex hull of a set U. For a func-

tion f : U �→ R ∪ {∞}, we define its convex envelope co( f ) : conv(U) �→ R and

its closed convex envelope co( f ) : conv(U) �→ R as the pointwise supremum of

all convex, respectively affine, functions majorized by f . In addition, we define

dom( f ) = {x ∈ U : f (x) < ∞}. Finally, for any U′ ⊆ U, we denote by epiU′( f ) the

epi-graph of f restricted to U′, i.e., epiU′( f ) := {(x, θ) ∈ U′ × R : θ ≥ f (x)}, and

we write epi( f ) = epiU( f ).
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5.2 Problem description and literature review

5.2.1 Problem description

Two-stage recourse models explicitly model parameter uncertainty by a random

vector ω whose realization is unknown when a first-stage decision x has to be

made. In contrast, the second-stage decision vector y is allowed to depend on

the realization of ω, denoted ω, referred to as a scenario. We assume that the

probability distribution of ω is known, and we denote its support by Ω. A pos-

sible interpretation is that the first-stage decision corresponds to a long-term, stra-

tegic decision, concerning, e.g., facility location or investment planning, whereas

the second-stage decisions are short-term in nature, corresponding to, e.g., routing

adjustments or reordering decisions. We consider two-stage recourse models of the

form

η∗ := min
x

{c�x + Eω[vω(x)] : Ax = b, x ∈ X}, (5.1)

where the second-stage costs vω(x) are defined as

vω(x) := min
y

{q�ω y : Wωy = hω − Tωx, y ∈ Y}, x ∈ X, ω ∈ Ω, (5.2)

and vω(x) = ∞ if x /∈ X, where X := {x ∈ X : Ax = b}. Note that we consider

randomness in all data elements of the second-stage problem. Furthermore, the sets

X and Y may impose integer restrictions on the first- and second-stage decision

variables, i.e., X = Z
p1
+ × R

n1−p1
+ and Y = Z

p2
+ × R

n2−p2
+ . The resulting model is

called a two-stage mixed-integer recourse model.

Throughout, we make the following assumptions.

(A1) For every ω ∈ Ω and x ∈ X, we have −∞ < vω(x) < ∞.

(A2) The support Ω of ω is finite.

(A3) The first-stage feasible region X is non-empty and bounded.

(A4) The components of A, b, and Wω, ω ∈ Ω are rational, and for every ω ∈ Ω,

the probability P(ω = ω) is rational.

Assumption (A1) is known as relatively complete and sufficiently expensive re-

course, and together with (A2) implies that Eω[vω(x)] is finite for every x ∈ X.

Furthermore, Assumption (A2) excludes the case where ω follows a continuous
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distribution. Nevertheless, continuous distributions are typically approximated by

finite discrete distributions, e.g., using sample average approximation [42]. Finally,

the assumptions in (A3) and (A4) guarantee that X is compact and X̄ := conv(X) is

a polytope [28, Theorem 1]. In addition, by (A4) the second-stage cost functions vω,

ω ∈ Ω are lower semi-continuous (lsc) on X̄ [65], and thus, using that X̄ is compact,

vω is bounded from below on X̄ [7, Theorem 3.7].

5.2.2 Decomposition for MIR models

If the number of scenarios |Ω| is large, then the MIR model in (5.1) is very difficult

to solve directly due to its size. That is why Benders’ decomposition [15] is widely

used to solve MIR models, because it decomposes (5.1) into many much smaller

subproblems. A Benders’ decomposition algorithm maintains an outer approxim-

ation Q̂out : X̄ �→ R of the expected second-stage cost function Q(x) := Eω[vω(x)],

i.e., Q̂out(x) ≤ Q(x) ∀x ∈ X. The corresponding relaxation of (5.1) defined as

min
x

{c�x + Q̂out(x) : x ∈ X} (MP)

is referred to as the master problem, and an optimal solution x̄ of (MP) is known

as the current solution. Typically, Q̂out is convex polyhedral, and thus (MP) can

be solved efficiently. Note that if Q̂out(x̄) = Q(x̄), then x̄ is also optimal in the

original problem (5.1). If, however, Q̂out(x̄) < Q(x̄), then the outer approximation

is strengthened using an optimality cut for Q:

Q(x) ≥ α − β�x ∀x ∈ X,

which is such that α − β� x̄ > Q̂out(x̄), i.e., the outer approximation is strictly im-

proved at x̄. Next, the master problem (MP) is resolved using the strengthened

outer approximation. We summarize Benders’ decomposition for MIR models in

Algorithm 2. Throughout, we maintain a lower- and upper bound LB and UB on

η∗, i.e., LB ≤ η∗ ≤ UB.

Algorithm 2 Benders’ decomposition for MIR models.

1: Initialization

2: Q̂out ≡ L, where Q(x) ≥ L ∀x ∈ X.

3: LB ← −∞, UB ← ∞.

4: Iteration step

5: Solve (MP), denote optimal solution by x̄ (current solution).
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6: LB ← c� x̄ + Q̂out(x̄).

7: UB ← min
{

c� x̄ + Q(x̄), UB
}

8: Compute optimality cut Q(x) ≥ α − β�x ∀x ∈ X.

9: Stopping criterion

10: if UB − LB < ε then stop: return x̄

11: else

12: Add optimality cut to (MP):

Q̂out(x) ← max
{

Q̂out(x), α − β�x
}

, x ∈ X.

13: Go to line 5.

14: end if

Typically, optimality cuts are tight for Q at the current solution x̄, i.e., α− β� x̄ =

Q(x̄), which ensures that the outer approximation strictly improves at x̄, and as a

result, we find a different solution in the next iteration. In some cases, however, the

optimality cuts are not tight at x̄, see, e.g., [89], and thus the algorithm may stall.

Therefore, in a practical implementation of Algorithm 2, we stop in these cases if

the outer approximation improves by less than ε at x̄, i.e., if Q̂out(x̄) > α − β� x̄ − ε,

and on termination, we return the best incumbent solution that we encountered

during the algorithm.

An important observation is that Algorithm 2 allows for decomposition by scen-

ario: optimality cuts for Q can be computed by aggregating optimality cuts for the

second-stage cost functions vω, ω ∈ Ω. For example, the L-shaped method in [84],

which solves continuous recourse models, uses optimality cuts of the form

vω(x) ≥ αω − β�
ω x ∀x ∈ X, ω ∈ Ω, (5.3)

where αω and βω depend on the dual multipliers of the second-stage subproblems.

Taking expectations then yields the optimality cut Q(x) ≥ Eωαω −Eωβ�
ωx ∀x ∈ X.

In fact, Benders’ decomposition algorithms that generalize the L-shaped method to

more general classes of MIR models typically use the same strategy to compute op-

timality cuts, i.e., cuts of the form (5.3) are aggregated to derive optimality cuts for

Q. We review such generalizations in Section 5.2.2.1. However, if optimality cuts

are computed by aggregating cuts of the form (5.3), then the resulting Benders’ de-

composition algorithm is not able to solve MIR models with general mixed-integer

variables in both stages, as we explain in Section 5.3. Therefore, in Section 5.3.1, we
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develop a modified Benders’ decomposition algorithm by proposing a new family

of optimality cuts which is suited for general MIR models.

5.2.2.1 Generalizations to mixed-integer recourse

If the recourse is continuous, i.e., if Y = R
n2
+ , then the L-shaped method converges

to the optimal solution, since the expected second-stage cost function Q is a convex

polyhedral function. In contrast, if Y is a mixed-integer set, then Q is in general not

convex, or even continuous, see, e.g., [65]. Therefore, the L-shaped method does

not readily generalize to broader classes of MIR models. However, Laporte and

Louveaux [44] show that if the first-stage decisions are binary, i.e., if X = Bn1 , then

there exists a finite family of optimality cuts which describe Q. In other words,

there exists a convex polyhedral outer approximation Q̂out of Q defined on X̄ such

that Q̂out(x) = Q(x) ∀x ∈ X. They use this result to develop the integer L-shaped

algorithm for MIR models with X = Bn1 , see also [8].

In fact, there exists a wide range of algorithms generalizing the L-shaped method

to the special case where X = Bn1 , that typically use techniques for deterministic

MIPs. For example, the algorithms in [31, 48, 49, 51, 69, 72] use cutting planes to

derive strong continuous relaxations of the second-stage subproblems. These para-

metric cutting planes depend linearly on the first-stage decision vector x, and thus

they can be re-used in subsequent iterations. Moreover, since the resulting relax-

ation of the second-stage problem is continuous, LP-duality can be used to derive

optimality cuts for the second-stage cost functions. In general, convergence of these

methods is only guaranteed if X = Bn1 , since this condition ensures that the con-

tinuous relaxations defined by the parametric cutting planes are tight. However,

Zhang and Küçükyavuz [88] manage to generalize the approach based on Gomory

cuts in [31] to pure integer MIR models, i.e., X = Z
n1
+ and Y = Z

n2
+ , by identifying

feasible basis matrices of the extended formulation. Moreover, for the case where Y
is a mixed-integer set, Kim and Mehrotra [40] use mixed-integer rounding cuts to

derive tight continuous relaxations for a nurse scheduling problem with a totally

unimodular recourse matrix, and Bansal et al. [13] derive special cases where the

second-stage feasible regions can be convexified via parametric cutting planes.

In another direction, Sen and Sherali [70] use branch-and-bound for MIPs to

obtain a disjunctive characterization of the second-stage cost functions vω, ω ∈ Ω.

They then use techniques from disjunctive programming to construct a convex re-

laxation of vω, and show that their approximation is exact if x is an extreme point

of X̄. As a consequence, the resulting D2-BAC algorithm solves two-stage MIR
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models with X = Bn1 . A different approach is taken by Zou et al. [89], who de-

velop the SDDiP algorithm for multi-stage MIR models with binary state variables.

They construct tight lower-bounding approximation of the second-stage cost func-

tions using Lagrangian cuts, which are computed by solving Lagrangian relaxations

of specific reformulations of the second-stage subproblems. However, Lagrangian

cuts are not tight in case of general mixed-integer state variables.

An alternative to Benders’ decomposition is the dual decomposition algorithm

of Carøe and Schultz [24], which solves the Lagrangian relaxation of the MIR model

in (5.1) obtained by introducing copies of the first-stage variables for each scenario,

and by relaxing the non-anticipativity constraints on the copy variables. Because

the Lagrangian dual bound is in general not tight, Carøe and Schultz propose a

spatial branch-and-bound search, where the first-stage feasible region is partitioned

into smaller subsets in order to determine good global lower and upper bounds.

Similarly, Ahmed et al. [4] and Trapp et al. [76] develop global branch-and-bound

algorithms for the special case where the second-stage problem is pure integer and

the technology matrix Tω is fixed, by analysing level sets of the second-stage cost

functions vω. In addition, spatial branching strategies have also been applied in

Benders’ decomposition to ensure convergence in the case where X is a mixed-

integer set. See, e.g., Qi and Sen [53] and Sherali and Zhu [73], who use parametric

cutting planes to approximate the second-stage cost functions vω at the nodes of the

first-stage branch-and-bound tree, and show that if the partition is sufficiently fine,

then the resulting algorithms converge to the global optimal solution. In general,

however, the practical use of these approaches is limited, since the spatial branch-

and-bound tree may grow very large, if we have to branch on continuous first-stage

variables.

In fact, there does not exist a computationally efficient decomposition algorithm

for two-stage MIR models with general mixed-integer variables in both stages. We

provide this missing link by proposing scaled cuts for MIR models. The advantage

of the resulting Benders’ decomposition algorithm compared to existing solution

methods for general MIR models is that we do not use spatial branching of the

first-stage feasible region or auxiliary integer variables for convergence. In contrast,

Carøe and Tind [26] use auxiliary integer decision variables to capture non-convex

terms in the master problem, which are determined using general duality for MIPs.

Similarly, the stochastic Lipschitz dynamic programming algorithm in [6] intro-

duces binary variables to include non-linear optimality cuts in the master problem.
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5.3 Benders’ decomposition for general MIR models

In this section, we introduce our family of linear optimality cuts for the expected

second-stage cost function Q. Using these so-called scaled cuts, we are able to re-

cover the convex envelope co(Q) of Q, so that we can solve the MIR model in (5.1)

by replacing Q(x) by co(Q)(x) and the feasible region X by its convex hull X̄. That

is, the resulting convex relaxation of the original problem in (5.1), defined as

η̂ := min
x

{c�x + co(Q)(x) : x ∈ X̄}, (5.4)

satisfies η̂ = η∗, and moreover, if x∗ is optimal in the original problem (5.1), then

x∗ is also optimal in (5.4), see, e.g., [74, Proposition 2.4].

In contrast, traditional Benders’ decomposition algorithms for MIR models, see,

e.g., [31, 69, 72], use optimality cuts which, in general, do not yield co(Q). More

precisely, if we compute optimality cuts for Q by aggregating linear cuts vω(x) ≥
αω − β�

ω x ∀x ∈ X for the second-stage cost functions, then we obtain at most

Eω[co(vω)]. However, this expected value of the convex envelope of the second-

stage cost functions vω is not the same as the convex envelope of the expected

second-stage cost function Q. In fact, in general Eω[co(vω)(x)] ≤ co(Q)(x), result-

ing in a duality gap, see also [21, 24]. This gap is zero if X = Bn1 [89, Theorem 1],

but if X is a general mixed-integer set, then the duality gap may be positive, see

Example 5.1.

Remark 5.1. In general, any family of linear optimality cuts for Q yields at most its

closed convex envelope co(Q). However, since Q is lsc and X is compact, we have

that co(Q) = co(Q) [30, Theorem 2.2]. Similarly, co(vω) = co(vω) for every ω ∈ Ω.

Example 5.1. Consider the expected second-stage cost function Q(x) = Eω[vω(x)],

x ∈ [0, 4], where

vω(x) = min
y

{2y : y ≥ ω − x, y ∈ Z+}, x ∈ [0, 4],

and ω is discretely distributed with mass points ω1 = 2.5 and ω2 = 3, both with

probability 1/2. The function Q is known as a simple integer recourse (SIR) func-

tion, see, e.g., [45]. For a given ω and x, the optimal second-stage decision y is

the smallest non-negative integer such that y ≥ ω − x, denoted by �ω − x+,

and thus vω(x) = 2�ω − x+. Furthermore, straightforward computations yield

co(vω1)(x) = 2 max{0, 2.5 − x, 3 − 2x} and co(vω2)(x) = 2 max{0, 3 − x}.
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In general, the difference between co(vω)(x) and vω(x) not equal to zero, and,

moreover, the values of x for which co(vω)(x) = vω(x) are not the same for ω = ω1

and ω = ω2. Indeed, straightforward computations yield that co(vω1)(x) = vω1(x)

only if x ∈ {0, 1/2, 3/2} or x ≥ 5/2, and co(vω2)(x) = vω2(x) if x ∈ {0, 1, 2} or

x ≥ 3. This results in a positive duality gap between co(Q)(x) and Eω[co(vω)(x)],

see Figure 5.1. For example, at x = 1, we have co(Q)(1) = Q(1) = 4, but

Eω[co(vω)(1)] = 3.5, i.e., the duality gap at x = 1 is equal to 1/2. ♦

x1 2 3 4

2

4

6 Q(x) = Eω[vω(x)]

co(Q)(x)

Eωco(vω)(x)

Figure 5.1. The duality gap for MIR models: the difference between co(Q)(x) and
Eωco(vω)(x) in Example 5.1 is in general non-negative, and equal to 1/2 if, e.g.,
x = 1.

The duality gap illustrated in Example 5.1 may be closed using scaled cuts,

which we derive in Section 5.3.1. Indeed, in Section 5.3.2, we show that scaled

cuts can be used to recover co(Q), see Theorem 5.1, and we use them to develop a

Benders’ decomposition algorithm which solves MIR models with general mixed-

integer variables.

5.3.1 Scaled cuts for MIR models

We approximate the expected second-stage cost function Q using linear optimality

cuts, in order to ensure that the master problem can be solved efficiently. Evidently,

we may obtain such cuts by aggregating linear optimality cuts for the second-stage

cost functions of the form vω(x) ≥ αω − β�
ω x ∀x ∈ X, but Example 5.1 illustrates

that the resulting cut

Q(x) ≥ Eωαω − Eωβ�
ωx ∀x ∈ X, (5.5)
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is in general not tight. Instead, we may use non-linear cuts to construct tight non-

convex approximations of vω and Q, but the resulting master problem is highly

non-convex, and thus solving it is in general not realistic from a computational

point of view. That is why we propose to use non-linear optimality cuts for vω,

ω ∈ Ω, and we transform these cuts into linear cuts for Q, thereby maintaining a

tractable master problem. The resulting scaled cuts generally yield stronger outer

approximations than cuts of the form (5.5), and, in fact, they may be used to close

the duality gap illustrated in Example 5.1.

More precisely, we consider cuts for vω, ω ∈ Ω, of the form

vω(x) ≥ αω − β�
ω x − τωφ(x) ∀x ∈ X, (5.6)

where φ : X̄ �→ R is a convex polyhedral function, referred to as a cut-generating

function, and τω ≥ 0. For example, Ahmed et al. [6] derive cuts of the form (5.6)

using φ(x) = ||x − x̄||, where || · || is a norm on Rn1 . We, however, propose to

use φ = Q̂out, where Q̂out is a convex polyhedral outer approximation of Q, i.e.,

Q̂out(x) ≤ Q(x) ∀x ∈ X. The advantage of using φ = Q̂out becomes clear if we take

expectations on both sides of (5.6), yielding

Q(x) ≥ Eωαω − Eωβ�
ωx − Eωτωφ(x) ∀x ∈ X, (5.7)

and use φ(x) ≤ Q(x) and Eωτω ≥ 0 to obtain that Q(x) ≥ Eωαω − Eωβ�
ωx −

EωτωQ(x), which we rearrange as

Q(x) ≥ Eωαω − Eωβ�
ωx

1 + Eωτω
∀x ∈ X.

In particular, this so-called scaled cut is linear in the first-stage decision vector x, and

is therefore suitable for efficient computations, whereas the cut in (5.7) introduces

non-linear, non-convex terms in the master problem, which is undesirable from a

computational point of view.

We formally introduce scaled cuts in Definition 5.1, and in Example 5.2 we illus-

trate how to compute a scaled cut for the SIR model of Example 5.1. Furthermore, in

Section 5.4, we explain how to compute the cut coefficients αω, βω, and τω in (5.6) if

vω is a general mixed-integer second-stage cost function. For technical reasons, we

assume throughout that epi(φ) is a rational polyhedron; if φ satisfies this condition,

we say that φ is a rational convex polyhedral function.

Definition 5.1 (scaled cuts). Let φ : X̄ �→ R be a rational convex polyhedral func-
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tion such that φ(x) ≤ Q(x) ∀x ∈ X, and denote by Πω(φ) the set of cut coefficients

which define optimality cuts of the form (5.6), i.e.,

Πω(φ) := {(α, β, τ) : vω(x) ≥ α − β�x − τφ(x) ∀x ∈ X, τ ≥ 0}, ω ∈ Ω.

If (αω, βω, τω) ∈ Πω(φ) for every ω ∈ Ω, then the optimality cut

Q(x) ≥ Eωαω − Eωβ�
ωx

1 + Eωτω
∀x ∈ X (5.8)

is referred to as a scaled cut.

Example 5.2 (Example 5.1 continued). Consider the SIR function Q of Example 5.1.

Note that Q(x) ≥ 0 and Q(x) ≥ 4 − 2x for every x ∈ [0, 4], and thus an outer

approximation of Q is given by Q̂out(x) = max{0, 4 − 2x}, x ∈ [0, 4]. Therefore,

we can use φ = Q̂out as a cut-generating function to derive a scaled cut for Q at, e.g.,

x̄ = 2. To this end, we compute cuts of the form vω(x) ≥ α− βx− τφ(x) ∀x ∈ [0, 4],

ω ∈ {ω1, ω2}, which are tight at x̄. In particular, it is easy to verify that the cuts

vω1(x) ≥ 10 − 4x − 2φ(x) ∀x ∈ [0, 4], and vω2(x) ≥ 6 − 2x ∀x ∈ [0, 4] are tight at x̄.

Since the cuts for vω1 and vω2 are tight at x̄, the resulting unscaled cut

Q(x) ≥ 1/2(10 − 4x − 2φ(x)) + 1/2(6 − 2x) = 8 − 3x − φ(x) ∀x ∈ [0, 4],

is also tight at x̄ = 2, see Figure 5.2a. We show the corresponding scaled cut

Q(x) ≥ (8 − 3x)/2 ∀x ∈ [0, 4] in Figure 5.2b. Figures 5.2a and 5.2b reveal the

following geometric interpretation of scaled cuts: they pass through those points

where the cut-generating function φ(x) and the unscaled cut α − β�x − τφ(x) in-

tersect. Indeed, if x is such that φ(x) = α − β�x − τφ(x), then

α − β�x
1 + τ

= φ(x) = α − β�x − τφ(x). ♦



571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan
Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021 PDF page: 142PDF page: 142PDF page: 142PDF page: 142

134 Chapter 5

x1 2 3 4

2

4

6 Q(x)

φ(x)

unscaled cut

(a) unscaled cut

x1 2 3 4

2

4

6 Q(x)

φ(x)

scaled cut

(b) scaled cut

Figure 5.2. The left figure shows the unscaled cut Q(x) ≥ 8 − 3x − φ(x) ∀x ∈ [0, 4]
of Example 5.2, where φ(x) = max{0, 4 − 2x}, x ∈ [0, 4]. The right figure shows
the corresponding scaled cut Q(x) ≥ (8 − 3x)/2 ∀x ∈ [0, 4].

5.3.2 Benders’ decomposition with scaled cuts

We propose to solve MIR models using a Benders’ decomposition with scaled cuts,

where in every iteration, we use the current outer approximation Q̂out as the cut-

generating function, i.e., φ = Q̂out. Thus, we use a different cut-generating func-

tion in every iteration of our Benders’ decomposition, since we update the outer

approximation from one iteration to the next.

We will show that a sufficient condition for the outer approximation Q̂out to

improve at the current solution x̄ of the Benders’ decomposition algorithm is that

the non-linear cuts of the non-convex second-stage cost functions vω are tight at x̄,

similar as in Example 5.2. In Lemma 5.1, we derive general sufficient conditions for

the cut-generating function φ so that such a tight non-linear cut exists.

Lemma 5.1. Let x̄ ∈ X be given, and let φ : X̄ �→ R be a rational convex polyhedral

function. If (x̄, φ(x̄)) is an extreme point of conv(epiX(φ)), then there exist α, β, and

τ ≥ 0 such that the optimality cut vω(x) ≥ α − β�x − τφ(x) ∀x ∈ X is tight at x̄, i.e.,

vω(x̄) = α − β� x̄ − τφ(x̄).

Proof. See Appendix 5.A.

To see how we can use scaled cuts to iteratively improve outer approximations

in our Benders’ decomposition algorithm, consider the master problem

η∗ = min
x

{c�x + Q̂out(x) : x ∈ X}, (MP)



571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan
Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021 PDF page: 143PDF page: 143PDF page: 143PDF page: 143

A converging Benders’ decomposition algorithm for two-stage MIR models 135

and note that (MP) has an optimal current solution x̄ such that (x̄, Q̂out(x̄)) is an

extreme point of conv(epiX(Q̂out)). Hence, if φ = Q̂out, then by Lemma 5.1, there

exist cut coefficients (αω, βω, τω) ∈ Πω(φ), such that the corresponding cut for vω

is tight at x̄, i.e., vω(x̄) = αω − β�
ω x̄ − τωφ(x̄), ω ∈ Ω, and thus, if we assume that

Q̂out(x̄) < Q(x̄), then the scaled cut in (5.8) improves Q̂out in x̄, since

Eωαω − Eωβ�
ω x̄

1 + Eωτω
=

Eω[vω(x̄) + τωφ(x̄)]
1 + Eωτω

=
Q(x̄) + Eωτωφ(x̄)

1 + Eωτω
> φ(x̄) = Q̂out(x̄),

where the inequality follows from Q(x̄) > Q̂out(x̄) = φ(x̄).

Moreover, it follows from vω(x̄) = αω − β�
ω x̄ − τωφ(x̄) ∀ω ∈ Ω that the un-

scaled cut Q(x) ≥ Eωαω −Eωβ�
ωx −Eωτωφ(x) is tight at x̄. Note that if Eωτω = 0,

then the resulting scaled cut in (5.8) coincides with both the unscaled cut and the

traditional cut in (5.5). In general, however, it is not true that Eωτω = 0, see Ex-

ample 5.1, and if instead Eωτω > 0, then the scaled cut in (5.8) is not tight at x̄,

unless Q̂out(x̄) = Q(x̄), since

Eωαω − Eωβ�
ω x̄

1 + Eωτω
=

Q(x̄) + Eωτωφ(x̄)
1 + Eωτω

< Q(x̄),

where the inequality is due to Eωτω > 0 and φ(x̄) = Q̂out(x̄) < Q(x̄). In fact,

the larger the scaling factor Eωτω, the less the scaled cut in (5.8) improves the outer

approximation at x̄. As a result, the scaled cut obtained by computing tight non-

linear cuts for vω is not necessarily the dominating scaled cut, i.e., the scaled cut

which yields the most improvement of Q̂out at x̄. In our Benders’ decomposition

algorithm, however, we will use such dominating scaled cuts to iteratively improve

the outer approximation. Therefore, in Section 5.4, we show how to compute such

cuts by solving

ρ∗ := sup
αω ,βω ,τω

{
Eωαω − Eωβ�

ω x̄
1 + Eωτω

: (αω, βω, τω) ∈ Πω(φ) ∀ω ∈ Ω
}

. (5.9)

First, however, we state our main result: we can recover co(Q) via dominating

scaled cuts. In particular, we define the scaled cut closure of a cut-generating

function φ as the pointwise supremum of all scaled cuts corresponding to φ, see

Definition 5.2, and we show that the sequence of outer approximations obtained

by recursively computing the scaled cut closure converges uniformly to co(Q), see
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Theorem 5.1.

Definition 5.2 (Scaled cut closure). Let φ : X̄ �→ R be a rational convex polyhedral

function. Then, the scaled cut closure SCC(φ) : X̄ �→ R of φ is defined as

SCC(φ)(x) := sup
αω ,βω ,τω

{
Eωαω − Eωβ�

ωx
1 + Eωτω

:

(αω, βω, τω) ∈ Πω(φ) ∀ω ∈ Ω
}

, x ∈ X̄.

The definition of the scaled cut closure implies that SCC(φ) can be described

using infinitely many scaled cuts. It turns out, however, that SCC(φ) is convex

polyhedral, see Proposition 5.1, i.e., SCC(φ) is the pointwise supremum of finitely

many optimality cuts. Furthermore, if φ ≤ Q, then SCC(φ) ≤ Q, since the scaled

cuts of Definition 5.1 are valid if φ ≤ Q. However, the scaled cut closure of φ

is defined for an arbitrary convex polyhedral function φ, i.e., we do not require

that φ ≤ Q. This is because we may compute scaled cuts using an inexact outer

approximation of Q, obtained, e.g., by solving the convex approximations of MIR

models proposed in [60] and in Chapter 4. In fact, we prove that for an arbitrary

convex polyhedral approximation φ0 of Q, scaled cuts are able to recover the convex

envelope of max{φ0, Q}.

Proposition 5.1. Let φ : X̄ �→ R be a rational convex polyhedral function. Then, SCC(φ)

is a rational convex polyhedral function.

Proof. See Appendix 5.A.

Theorem 5.1. Let φ0 : X̄ �→ R be a rational convex polyhedral function. Recursively

define the sequence {φk}k≥0 as φk+1 = SCC(φk), k ≥ 0. Then, φk converges uniformly to

co(max{φ0, Q}). In particular, if φ0(x) ≤ Q(x) ∀x ∈ X, then φk → co(Q).

Proof. The proof is postponed to Section 5.5.

Theorem 5.1 implies that if φ0 is defined as, e.g., a trivial lower bound of Q, or

the LP-relaxation of Q, obtained by relaxing the integer restrictions on the second-

stage decision variables y, then we can recover co(Q) using scaled cuts, thereby

solving the MIR model in (5.1). If, however, φ0 is an inexact outer approximation

obtained by solving a convex approximation of (5.1), then we may use scaled cuts

to improve the quality of the resulting solution.
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5.4 Computation of dominating scaled cuts

In this section, we describe how to solve the optimization problem in (5.9) for com-

puting a dominating scaled cut at x̄. Note that solving (5.9) presents a significant

challenge, since it features a non-linear objective function. A natural way to ad-

dress this challenge is to linearise the objective function by introducing a penalty

parameter ρ, penalizing large vales of 1 + Eωτω, yielding

C(ρ) := sup
αω ,βω ,τω

{
Eωαω − Eωβ�

ω x̄ − ρ(1 + Eωτω) :

(αω, βω, τω) ∈ Πω(φ), ω ∈ Ω
}

. (5.10)

For arbitrary values of ρ, this linearised optimization problem merely represents an

approximation of (5.9). However, we claim that if C(ρ) = 0 and if the supremum

in (5.10) is attained by some (αω, βω, τω), i.e.,

Eωαω − Eωβ�
ω x̄ − ρ(1 + Eωτω) = 0, (5.11)

then ρ = ρ∗, and (αω, βω, τω) is optimal in (5.9). To see this, note that if C(ρ) = 0,

then from (5.10), we have that Eωαω −Eωβ�
ω x̄ − ρ(1+Eωτω) ≤ 0 if (αω, βω, τω) ∈

Πω(φ) for every ω ∈ Ω, and thus

Eωαω − Eωβ�
ω x̄

1 + Eωτω
≤ ρ. (5.12)

Since the expression on the left-hand side of (5.12) is the objective function of the

problem in (5.9), an upper bound on its optimal value is given by ρ, and moreover,

we obtain from (5.11) that (αω, βω, τω) attains this upper bound.

Instead of solving (5.9), we thus find ρ such that C(ρ) = 0, and we solve the cor-

responding linearised problem in (5.10) to obtain the dominating scaled cut para-

meters (αω, βω, τω). In Section 5.4.1, we describe how to efficiently solve C(ρ) = 0

for ρ using a fixed point iteration algorithm.

5.4.1 Fixed point iteration algorithm

In particular, we take advantage of several properties of C(·) in Lemma 5.2 below,

namely that C(·) is strictly decreasing, continuous and convex.

Lemma 5.2. Let x̄ ∈ X̄ be given and let φ : X̄ �→ R be a rational convex polyhedral

function. Then,
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(i) the value function C(·) defined in (5.10) is continuous, convex, and strictly decreas-

ing on dom(C) = {ρ : C(ρ) < ∞},

(ii) the supremum in (5.10) is attained if ρ ∈ dom(C),

(iii) for ρ̄ ∈ dom(C), a subgradient of C(·) at ρ̄ is given by −(1 + Eωτω), where τω

corresponds to an optimal solution of the problem in (5.10) with ρ = ρ̄, and

(iv) if x̄ ∈ X, then dom(C) = [φ(x̄), ∞).

Proof. See Appendix 5.A.

Lemma 5.2 shows that if the penalty parameter ρ is not large enough, i.e., if

x̄ ∈ X and ρ < φ(x̄), then we have C(ρ) = ∞. Typically, for ρ = φ(x̄), we have

C(ρ) > 0 and then C(·) continuously decreases until C(ρ) = 0 for ρ = ρ∗. There

are, however, exceptions for which C(ρ) < 0 for all ρ ∈ dom(C), leading to the

following characterization of ρ∗ in Lemma 5.3 that holds in general.

Lemma 5.3. Let x̄ ∈ X̄ be given and let φ : X̄ �→ R be a rational convex polyhedral

function. Then, the optimal value ρ∗ of the problem in (5.9) satisfies

ρ∗ = min
ρ

{ρ : C(ρ) ≤ 0}. (5.13)

In particular, if x̄ ∈ X and ρ∗ > φ(x̄), then ρ∗ is the unique solution of C(ρ) = 0.

Proof. See Appendix 5.A.

To compute the dominating scaled cut parameters for a given x̄ ∈ X in our

Benders’ decomposition, we use an iterative approach to obtain ρ∗. First we com-

pute C(ρ0) for ρ0 = φ(x̄). If C(ρ0) ≤ 0, then we can stop: ρ∗ = ρ0. Otherwise,

we conclude that ρ0 is a lower bound for ρ∗, i.e., ρ0 < ρ∗, since C(·) is strictly de-

creasing. However, since C(·) is convex we can immediately derive a better lower

bound for ρ∗ without any additional computations. This lower bound, denoted ρ1,

is the value of ρ for which the right-hand side of the subgradient inequality

C(ρ) ≥ C(ρ0)− (1 + Eωτω)(ρ − ρ0) ∀ρ ∈ R.

equals 0. That is, ρ1 = ρ0 + C(ρ0)/(1 + Eωτω). Note that ρ1 > ρ0, since C(ρ0) > 0

and 1 + Eωτω > 0.

In general, we iteratively compute ρk, k ≥ 0, using the updating rule

ρk+1 = ρk +
C(ρk)

1 + Eωτω
, (5.14)
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where τω corresponds to an optimal solution of the problem in (5.10) with ρ =

ρk. It follows from convexity of C(·) that the resulting sequence {ρk}k≥0 is non-

decreasing. To see this, substitute ρ = ρk+1 in the subgradient inequality

C(ρ) ≥ C(ρk)− (1 + Eωτω)(ρ − ρk)

to obtain C(ρk+1) ≥ 0, and use the updating rule in (5.14). An additional con-

sequence of C(ρk+1) ≥ 0 is that {ρk}k≥0 is bounded from above by ρ∗. In fact,

Lemma 5.4 establishes that ρk → ρ∗. To prove Lemma 5.4, we need the technical

assumption that C(ρ0) > 0; recall that if C(ρ0) ≤ 0, then we are done, since then

ρ∗ = ρ0.

Lemma 5.4. Let x̄ ∈ X be given and let φ : X̄ �→ R be a rational convex polyhedral

function. Let ρ0 = φ(x̄), and assume that C(ρ0) > 0. Recursively define ρk+1 = ρk +

C(ρk)/(1 + Eωτω), k ≥ 0, where τω corresponds to an optimal solution of the problem

in (5.10) with ρ = ρk. Then, the resulting sequence {ρk}k≥0 is such that ρk → ρ∗,

C(ρk) → 0, and if C(ρk) < δ, then ρk ≥ ρ∗ − δ.

Proof. See Appendix 5.A.

Based on Lemma 5.4, we propose to solve (5.9) using a fixed point iteration

algorithm, in which we iteratively construct the sequence {ρk}k≥0, and we stop if

C(ρk) < δ. Lemma 5.4 ensures that this algorithm is finitely convergent, and that

on termination, ρk ≥ ρ∗ − δ. Moreover, C(ρ) can be computed efficiently using the

expression C(ρ) = Eω[Cω(ρ)], where

Cω(ρ) := sup
α,β,τ

{α − β� x̄ − ρ(1 + τ) : (α, β, τ) ∈ Πω(φ)}, ω ∈ Ω. (5.15)

Thus, we can efficiently parallelize our fixed point iteration algorithm by comput-

ing the quantities Cω(ρ), ω ∈ Ω, in parallel. In Sections 5.4.1.1 and 5.4.1.2, we

describe a primal and dual algorithm to solve (5.15), respectively. To this end, we

first show that Πω(φ) is polyhedral, see Lemma 5.5, and thus (5.15) is equivalent to

a linear programming problem.

Lemma 5.5. Let φ : X̄ �→ R be a rational convex polyhedral function and consider

Πω(φ) = {(α, β, τ) : vω(x) ≥ α − β�x − τφ(x) ∀x ∈ X, τ ≥ 0}. Define

Sφ
ω := {(x, θ, y) ∈ X × R ×Y : θ ≥ φ(x), Wωy = hω − Tωx}.
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Then, Πω(φ) is a rational polyhedron, and

Πω(φ) = {(α, β, τ) : q�ω yi + β�xi + τθi ≥ α ∀i ∈ {1, . . . , d}, τ ≥ 0}, (5.16)

where (xi, θi, yi) ∈ Sφ
ω, i = 1, . . . , d, denote the extreme points of conv(Sφ

ω).

Proof. Recall that Πω(φ) is the set of cut coefficients (α, β, τ) with τ ≥ 0 which

define non-linear optimality cuts for the second-stage cost functions vω of the form

vω(x) ≥ α − β�x − τφ(x) ∀x ∈ X. Since τ ≥ 0, the latter condition is equivalent to

vω(x) ≥ α − β�x − τθ ∀(x, θ) ∈ X × R such that θ ≥ φ(x) (5.17)

By substituting the definition of vω into (5.17), we obtain that (α, β, τ) ∈ Πω(φ)

if and only if q�ω y + β�x + τθ ≥ α for every (x, θ, y) ∈ Sφ
ω. Because the latter

inequality is also valid for conv(Sφ
ω), we obtain that

Πω(φ) = {(α, β, τ) : q�ω y + β�x + τθ ≥ α ∀(x, θ, y) ∈ conv(Sφ
ω)}.

To obtain (5.16), observe that conv(Sφ
ω) is a rational polyhedron [28, Theorem 1]

with one extreme direction, namely (0, 1, 0), and finitely many extreme points.

The expression in (5.16) reveals that

Cω(ρ) = sup
α,β,τ

{α − β� x̄ − ρ(1 + τ) :

q�ω yi + β�xi + τθi ≥ α ∀i ∈ {1, . . . , d}, τ ≥ 0}, (5.18)

i.e., we can compute Cω(ρ) by solving a linear programming problem if all extreme

points of conv(Sφ
ω) are known. In Section 5.4.1.1, we describe a row generation

scheme for solving (5.18) by enumerating a sufficiently rich subset of the extreme

points of conv(Sφ
ω), and in Section 5.4.1.2, we solve the dual problem of (5.18) using

cutting plane techniques.

5.4.1.1 A row generation scheme

In general, the number of extreme points of conv(Sφ
ω) may be very large, and in

those cases directly solving the LP in (5.18) is computationally infeasible. Therefore,

we propose a row generation scheme similar to approaches in robust optimization
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and disjunctive programming, see, e.g., [33, 52, 87]. In this approach, we iteratively

identify extreme points (xi, θi, yi) ∈ Sφ
ω, i = 1, . . . , t, and we solve the resulting

cut-generation master problem

max
α,β,τ

{α − β� x̄ − ρ(1 + τ) :

q�ω yi + β�xi + τθi ≥ α ∀i ∈ {1, . . . , t}, τ ≥ 0}. (CGMP)

We denote the optimal solution of (CGMP) by (αt, βt, τt), and we attempt to identify

a point (xt+1, θt+1, yt+1) ∈ Sφ
ω which violates the inequality q�ω y + βt�x + τtθ ≥ αt

by solving the cut generation subproblem

νt := min
x,θ,y

{q�ω y + βt�x + τtθ − αt : (x, θ, y) ∈ Sφ
ω}, (CGSP)

which is a small-scale MIP. Note that (αt, βt, τt) is feasible and thus optimal in (5.18)

if and only if νt ≥ 0. If νt < 0, then we consider an optimal solution (xt+1, θt+1, yt+1)

of (CGSP) and use it to strengthen (CGMP), i.e., we add the constraint q�ω yt+1 +

β�xt+1 + τθt+1 ≥ α to (CGMP) and resolve (CGMP). Since conv(Sφ
ω) has finitely

many extreme points, finite termination of the row generation scheme is guaran-

teed if (CGSP) returns an optimal solution (xt+1, θt+1, yt+1) which is an extreme

point of conv(Sφ
ω). Indeed, since the objective function of (CGSP) is linear, it has

an optimal solution which is an extreme point of conv(Sφ
ω). Finally, in order to en-

sure that (CGMP) is bounded, we choose (x1, θ1, y1) = (x̄, ρ, ȳ), for some arbitrary

ȳ ∈ {Y : Wωy = hω − Tω x̄}.

Note that in each iteration of the row generation scheme, we have to solve the

small-scale LP and MIP in (CGMP) and (CGSP), respectively, and thus the compu-

tation time strongly depends on the number of iterations required for convergence.

In the worst case, the number of iterations equals the number of extreme points of

conv(Sφ
ω), which can be exponentially large. In general, however, we do not expect

that an exhaustive exhaustive enumeration of all extreme points is required, and in

fact, our numerical experiments indicate that, typically, only a small fraction of the

total number of extreme points needs to be computed before the algorithm termin-

ates. Furthermore, in our fixed point iteration algorithm, we have to obtain Cω(ρ)

multiple times for different values of ρ, and thus we have to run the row genera-

tion scheme repeatedly. This can be done efficiently by implementing a warm start

for the row generation scheme, in which we reuse the points (xi, θi, yi) identified

during one run in subsequent runs. This is possible since the feasible region Sφ
ω
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of (CGSP) does not depend on ρ.

5.4.1.2 Convexification via cutting plane techniques

The second approach we consider for solving the problem in (5.18) is to use cutting

plane techniques to solve its dual LP, which we derive in Lemma 5.6 below. The

advantage of this approach over the row generation scheme in Section 5.4.1.1 is

that it only requires solving small-scale LPs. In general, however, the number of

LPs that need to be solved may be exponentially large, similar to cutting plane

algorithms for deterministic MIPs.

Lemma 5.6. Let φ : X̄ �→ R be a rational convex polyhedral function, let x̄ ∈ X̄ be given,

and consider the value function Cω(ρ) defined in (5.18). Then,

Cω(ρ) = −ρ + min
y

{q�ω y : (x̄, ρ, y) ∈ conv(Sφ
ω)} ∀ρ ∈ dom(Cω). (5.19)

Proof. We will show that the dual of (5.18) is given by the expression in (5.19),

so that the result follows from strong LP duality. In particular, for arbitrary ρ ∈
dom(Cω), the dual of (5.18) is given by

Cω(ρ) = −ρ + min
λi≥0

{
d

∑
i=1

λiq�ω yi :
d

∑
i=1

λi = 1,
d

∑
i=1

λixi = x̄,
d

∑
i=1

λiθi ≤ ρ

}
.

Since (xi, θi, yi), i = 1, . . . , d, are the extreme points of conv(Sφ
ω), the above is equi-

valent to

Cω(ρ) = −ρ + min
θ,y

{
q�ω y : (x̄, θ, y) ∈ conv(Sφ

ω), θ ≤ ρ
}

, (5.20)

and (5.19) follows by noting that it is optimal to select θ = ρ in (5.20).

The problem in (5.19) cannot be solved directly by using an off-the-shelf MIP

solver, since the constraint (x̄, ρ, y) ∈ conv(Sφ
ω) depends parametrically on x̄ and ρ.

That is why we solve the problem in (5.19) by using parametric cutting planes of the

form Ŵωy ≥ ĥω − T̂ωx − rωθ to recover conv(Sφ
ω), i.e.,

conv(Sφ
ω) ⊆ Ŝφ

ω := {(x, θ, y) : Wωy = hω − Tωx,

Ŵωy ≥ ĥω − T̂ωx − rωθ}. (5.21)
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In particular, we use these cutting planes to obtain the following relaxation of (5.19),

Ĉω(ρ) = −ρ + min
y

{q�ω y : (x̄, ρ, y) ∈ Ŝφ
ω}

= −ρ + min
y

{q�ω y : Wωy = hω − Tω x̄, Ŵωy ≥ ĥω − T̂ω x̄ − rωρ}.

(5.22)

Initially, the collection of cutting planes Ŵωy ≥ ĥω − T̂ωx − rωθ is empty, and the

relaxation in (5.22) reduces to the LP-relaxation of the second-stage subproblem.

If the resulting solution ȳ of this relaxation is such that (x̄, ρ, ȳ) ∈ conv(Sφ
ω), then

we are done: ȳ is optimal in (5.19) and Ĉω(ρ) = Cω(ρ). Otherwise, we derive

a parametric cutting plane which separates (x̄, ρ, ȳ) from conv(Sφ
ω), after which

we update Ŝφ
ω and resolve (5.22). Depending on the family of cutting planes that

we use to recover conv(Sφ
ω), this procedure is finitely convergent. In particular, if

we use the Fenchel cuts described in [22], then the resulting algorithm is finitely

convergent [23, Corollary 3.3]. Before discussing further computational aspects of

our cutting plane approach, Lemma 5.7 describes how we can retrieve an optimal

solution (α, β, τ) of the primal problem in (5.18) if we have solved the dual problem

in (5.19).

Lemma 5.7. Let φ : X̄ �→ R be a rational convex polyhedral function, and suppose that

the cutting planes Ŵωy ≥ ĥω − T̂ωx − rωθ satisfy (5.21). Let x̄ ∈ X and ρ ≥ φ(x̄) be

given, and consider the cutting plane relaxation Ĉω(ρ) defined in (5.22), and denote by λω

and πw optimal dual multipliers corresponding to the constraints Wωy = hω − Twx̄ and

Ŵωy ≥ ĥω − T̂ω x̄ − rωρ, respectively. Then,

(α, β, τ) := (λ�
w hω + π�

w ĥω, λ�
ω Tω + π�

w T̂ω, π�
ω rω) (5.23)

is feasible in (5.18), and Ĉω(ρ) = α − β� x̄ − (1 + τ)ρ.

Proof. Since λω and πw are optimal dual multipliers of (5.22), strong LP duality

implies that Ĉω(ρ) = −ρ + λ�
ω (hω − Tωx) + π�

ω (ĥω − T̂ωx − rωθ) and it follows

from the definition of (α, β, τ) that Ĉω(ρ) = α − β� x̄ − (1 + τ)ρ.

Moreover, we prove that (α, β, τ) is feasible in (5.18) by showing that q�ω y +

β�x + τθ ≥ α for every (x, θ, y) ∈ Sφ
ω. Indeed, for arbitrary (x, θ, y) ∈ Sφ

ω, we have

α − β�x − τθ = λ�
ω (hω − Tωx) + π�

ω (ĥω − T̂ωx − rωθ)

≤ λ�
ωWωy + π�

ω Ŵωy ≤ q�ω y,
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where the first inequality is due to πω ≥ 0 and (x, θ, y) ∈ Sφ
ω, so that Wωy =

hω − Tωx and Ŵωy ≥ ĥω − T̂ωx − rωθ, and the latter inequality follows from dual

feasibility and y ≥ 0.

As mentioned earlier, it is possible to solve the problem in (5.19) in finitely many

iterations using Fenchel cuts. In practice, however, computing these Fenchel cuts

takes significant time. That is why it may be advantageous to use other para-

metric cutting planes that can be computed faster, but do not necessarily con-

verge in a finite number of iterations. To generate such cutting planes, note that if

(x̄, ρ, ȳ) /∈ conv(Sφ
ω), then (x̄, ρ, ȳ) does not satisfy the integer restrictions in Sφ

ω, and

thus we can apply ideas from deterministic mixed-integer programming to gener-

ate specific types of cutting planes for Sφ
ω. See, e.g., [10, 11] for (strengthened) lift-

and-project cuts, [9, 88] for Gomory mixed-integer (GMI) cuts, and [53] for multi-

term disjunctive cuts.

In our practical implementation of the cutting plane approach, we accommod-

ate the case where the cutting planes do not converge finitely by stopping after a

pre-specified number of iterations, or if we are unable to cut away a fractional solu-

tion (x̄, ρ, ȳ). Efficient implementations are possible, since each iteration merely

requires solving a small-scale LP, and we may speed up convergence by adding

multiple cutting planes to (5.22) in one iteration, e.g., by generating a round of GMI

cuts. Moreover, since the cutting planes that we use depend parametrically on x

and θ, they can be reused in subsequent iterations of the Benders’ decomposition

algorithm and the fixed point iteration algorithm.

5.5 Proof of convergence

In this section, we prove Theorem 5.1. That is, we show that for any convex poly-

hedral function φ0 : X̄ �→ R, the sequence {φk}k≥0 defined recursively as φk+1 =

SCC(φk), k ≥ 0, converges uniformly to co(max{φ0, Q}). For convenience, we re-

call that the scaled cut closure SCC(φ) is defined as

SCC(φ)(x) = sup
αω ,βω ,τω

{
Eωαω − Eωβ�

ωx
1 + Eωτω

:

(αω, βω, τω) ∈ Πω(φ) ∀ω ∈ Ω
}

, x ∈ X̄,
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where Πω(φ) := {(α, β, τ) : vω(x) ≥ α − β�x − τφ(x) ∀x ∈ X, τ ≥ 0}. We

prove Theorem 5.1 by showing, in Section 5.5.1, that φk converges to a limit func-

tion φ∗ satisfying SCC(φ∗) = φ∗, i.e., φ∗ is a fixed point of the scaled cut closure

operation. Next, in Section 5.5.2, we show that such a fixed point must satisfy

φ∗ = co(max{φ0, Q}), which completes the proof.

In order to obtain these results, we derive an alternative expression for SCC(φ),

as follows,

SCC(φ)(x) = sup
τω≥0

sup
αω ,βω

{
Eω[αω − β�

ωx]
1 + Eωτω

:

vω(x′) + τωφ(x′) ≥ αω − β�
ω x′ ∀x′ ∈ X, ω ∈ Ω

}

= sup
τω≥0

{
Eωco(vω + τωφ)(x)

1 + Eωτω

}
,

where the latter equality follows directly from the definition of the closed convex

envelope. We use this expression to define a mapping T defined on the space of

continuous bounded functions, which is such that Tφ = SCC(φ), see Definition 5.3.

Definition 5.3. Consider the space C(X̄) of continuous bounded functions map-

ping from X̄ to R, equipped with the metric d, defined as

d( f , g) := || f − g||∞ = sup
x∈X̄

| f (x)− g(x)|, f , g ∈ C(X̄),

and define T : C(X̄) �→ C(X̄) as

(T f )(x) = sup
τω≥0

{
Eωco(vω + τω f )(x)

1 + Eωτω

}
, x ∈ X̄, f ∈ C(X̄). (5.24)

In order to see that T maps into C(X̄), i.e., T f ∈ C(X̄) for every f ∈ C(X̄), note

that by (5.24), T f is the pointwise supremum of convex lsc functions, and thus T f

is convex and lsc. Furthermore, since X̄ is a compact polyhedral set, it follows from

Theorem 5.2 below that T f is continuous and bounded, i.e., T f ∈ C(X̄).

Theorem 5.2. [55, Theorem 10.2] If f : D �→ R is a convex lsc function defined on a

convex polyhedral domain D, then f is continuous on D.

Since Tφ = SCC(φ), we can also define the sequence {φk}k≥0 in terms of T.

That is, for a given φ0 ∈ C(X̄) such that φ0 is convex, we define φk+1 := Tφk, k ≥ 0.

Since T maps into C(X̄), it follows that φk+1 = Tφk ∈ C(X̄) for every k ≥ 0, and
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thus φk is well-defined for every k ≥ 0. In addition, φk is convex for every k ≥ 0.

5.5.1 Uniform convergence and fixed points

The main result of this section is Proposition 5.2, which states that φk converges

uniformly to a fixed point of T. In order to prove it, we derive several properties of

the sequence {φk}k≥0 in Lemma 5.8.

Lemma 5.8. Let φ0 ∈ C(X̄) be a convex function, and consider the sequence {φk}k≥0 ⊆
C(X̄) defined by φk+1 := Tφk, k ≥ 0. Then, φk is monotone increasing in k, i.e., φk+1 ≥
φk for every k ≥ 0, and, moreover, φk ≤ co(max{φ0, Q}) for every k ≥ 0.

Proof. We prove monotonicity of φk by showing that T f ≥ f for every convex

f ∈ C(X̄). Indeed, if f ∈ C(X̄) is convex, then

T f ≥ sup
τω≥0

{
Eω[co(vω) + τωco( f )]

1 + Eωτω

}
≥ co( f ) = f ,

where the second inequality follows by letting τω → ∞ for every ω ∈ Ω.

Next, we prove by induction that φk ≤ co(max{φ0, Q}) for every k ≥ 0. Note

that φ0 ≤ co(max{φ0, Q}) follows directly from convexity of φ0. Next, we fix arbit-

rary k ≥ 0, and we assume that φk ≤ co(max{φ0, Q}), so that

φk(x) ≤ max{φ0(x), Q(x)} ∀x ∈ X.

Then, for every x ∈ X,

φk+1(x) = (Tφk)(x)

≤ sup
τω≥0

{
Eω[vω(x) + τωφk(x)]

1 + Eωτω

}

≤ sup
τω≥0

{
Q(x) + Eωτωφk(x)

1 + Eωτω

}
,

≤ sup
τω≥0

{
max{φ0(x), Q(x)}+ Eωτω max{φ0(x), Q(x)}

1 + Eωτω

}

= max{φ0(x), Q(x)}.

Hence, φk+1 ≤ co(max{φ0, Q}), since φk+1 is a convex function majorized by

max{φ0, Q}.

Since the sequence {φk}k≥0 is monotone increasing and bounded, φk converges
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pointwise to some limit function. Indeed, for every x ∈ X̄, the real-valued sequence

{φk(x)}k≥0 is monotone increasing and bounded, and thus convergent. Therefore,

we may define φ∗ as the pointwise limit of φk, i.e., φ∗(x) := limk→∞ φk(x), x ∈ X̄.

We, however, need a stronger type of convergence than pointwise convergence for

the proof of Theorem 5.1, namely uniform convergence: φk converges uniformly

to φ∗ if for every ε > 0, there exists a K ≥ 0 such that ||φk − φ∗||∞≤ ε ∀k ≥ K. In

Proposition 5.2, we obtain that φk converges uniformly to φ∗ by showing that the

pointwise limit φ∗ is continuous. In addition, it then follows from continuity of T,

see Lemma 5.9 below, that φ∗ is a fixed point of T, i.e., Tφ∗ = φ∗.

Lemma 5.9. The mapping T : C(X̄) �→ C(X̄) of Definition 5.3 is continuous on C(X̄).

Proof. See Appendix 5.A.

Proposition 5.2. Let φ0 ∈ C(X̄) be a convex function. Then, the sequence {φk}k≥0

defined by φk+1 = Tφk, k ≥ 0, converges uniformly to its pointwise limit φ∗. Moreover, φ∗

is convex and continuous, and φ∗ is a fixed point of T, i.e., Tφ∗ = φ∗.

Proof. Dini’s theorem [63, Theorem 7.13] states that if a monotone increasing se-

quence of continuous functions converges pointwise to a continuous function, then

the convergence is uniform. Therefore, it suffices to show that φ∗ is continuous

in order to establish that φk converges uniformly to φ∗. We prove that φ∗ is con-

tinuous by noting that monotonicity of φk, see Lemma 5.8, implies that φ∗(x) =

supk≥0 φk(x), i.e., φ∗ is the pointwise supremum of convex continuous functions. It

follows that φ∗ is convex and lsc, and thus, using Theorem 5.2, φ∗ is continuous. In

order to see that φ∗ is a fixed point of T, note that

Tφ∗ = T lim
k→∞

φk = lim
k→∞

Tφk = lim
k→∞

φk+1 = φ∗,

where the second equality follows from the continuity of T in Lemma 5.9.

5.5.2 Properties of fixed points of T

By Proposition 5.2, φk converges uniformly to a fixed point of T. Thus, we may

derive properties of φ∗ by deriving properties of fixed points of T. In particular, in

Proposition 5.3, we show that any convex fixed point f of T is such that f ≥ co(Q).

In order to prove Proposition 5.3, we need the following result.

Lemma 5.10. Assume that f ∈ C(X̄) is convex. If (x̄, θ̄) = (x̄, f (x̄)) is an extreme

point of epi( f ) = {(x, θ) ∈ X̄ × R : θ ≥ f (x)}, then supτω≥0{co(vω + τω f )(x̄)−
τω f (x̄)} ≥ vω(x̄) for every ω ∈ Ω.
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Proof. See Appendix 5.A.

Intuitively, Lemma 5.10 says that if x̄ corresponds to an extreme point of epi( f ),

then the gap between vω(x) + τω f (x) and co(vω + τω f )(x̄) can be made arbitrarily

small by choosing appropriate τω ≥ 0. To see how we can use this result to derive

properties of fixed points of T, assume for the purpose of exposition that there

exists a τω such that co(vω + τω f )(x̄) = vω(x̄) + τω f (x̄) for every ω ∈ Ω. Then,

(T f )(x̄) =
Eω[vω(x̄) + τω f (x̄)]

1 + Eωτω
=

Q(x̄) + Eωτω f (x̄)
1 + Eωτω

,

which reveals that, unless f (x̄) ≥ Q(x̄), we have T f (x̄) > f (x̄), i.e., f is not a fixed

point of T. We prove Proposition 5.3 by formalizing this reasoning.

Proposition 5.3. Let φ0 ∈ C(X̄) be given. Assume that f ∈ C(X̄) is convex and f ≥ φ0.

If f is a fixed point of T, i.e. if T f = f , then f ≥ co(max{φ0, Q}).

Proof. We will show that for every extreme point (x̄, f (x̄)) of epi( f ), we have θ̄ =

f (x̄) ≥ co(max{φ0, Q})(x̄). This suffices to prove f (x) ≥ co(Q)(x) ∀x ∈ X̄, since

Carathéodory’s theorem [56, Theorem 2.29] implies that, for arbitrary x ∈ X̄, the

point (x, f (x)) ∈ epi( f ) can be written as a convex combination of n1 + 2 extreme

points of epi( f ), i.e.,

(x, f (x)) =
n1+2

∑
i=1

λi(xi, f (xi)),

where ∑n1+2
i=1 λi = 1, λi ≥ 0, and (xi, f (xi)) is an extreme point of epi( f ), i =

1, . . . , n1 + 2, and thus

f (x) =
n1+2

∑
i=1

λi f (xi) ≥
n1+2

∑
i=1

λico(max{φ0, Q})(xi) ≥ co(max{φ0, Q})(x),

where we used convexity of co(max{φ0, Q}) to obtain the latter inequality.

We show that f (x̄) ≥ co(max{φ0, Q})(x̄) if (x̄, θ̄) is an extreme point of epi( f )

by proving that (i) x̄ ∈ X, and (ii) f (x̄) ≥ max{φ0(x̄), Q(x̄)} if x̄ ∈ X. We prove

these claims by contradiction. First, suppose that x̄ /∈ X. Then, vω(x̄) = ∞ for

every ω ∈ Ω, and thus, by Lemma 5.10,

sup
τω≥0

{co(vω + τω f )(x̄)− τω f (x)} = ∞ ∀ω ∈ Ω.
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It follows that for every ω ∈ Ω, there exists a τω ≥ 0 such that co(vω + τω f )(x̄)−
τω f (x̄) > f (x̄). But then, for this choice of τω,

(T f )(x̄) ≥ Eωco(vω + τω f )(x̄)
1 + Eωτω

>
Eω[ f (x̄) + τω f (x̄)]

1 + Eωτω
= f (x̄),

which is a contradiction, since T f = f .

Next, suppose that x̄ ∈ X, but f (x̄) < max{φ0(x̄), Q(x̄)}. Since, by assumption,

f (x) ≥ φ0(x), it must be that f (x̄) < Q(x̄). Let δ = Q(x̄)− f (x̄) > 0, and note that

Lemma 5.10 implies that for every ω ∈ Ω, there exists a τω ≥ 0 such that

co(vω + τω f )(x̄)− τω f (x̄) ≥ vω(x̄)− δ/2.

But then,

(T f )(x̄) ≥ Eωco(vω + τω f )(x̄)
1 + Eωτω

≥ Eω[vω(x̄) + τω f (x̄)− δ/2]
1 + Eωτω

=
f (x̄) + δ/2 + Eω[τω f (x̄)]

1 + Eωτω
> f (x̄),

which contradicts T f = f .

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. It suffices to prove that for any convex φ0 ∈ C(X̄) the sequence

{φk}k≥0 defined by φk+1 = Tφk, k ≥ 0, converges uniformly to co(max{φ0, Q}).
Proposition 5.2 implies that φ∗ = limk→∞ φk exists, and φ∗ is a fixed point of T.

Moreover, using Lemma 5.8, we have that φ∗ ≤ co(max{φ0, Q}), and monotonicity

of φk implies that φ∗ ≥ φ0. Thus, by Proposition 5.3, we have φ∗ ≥ co(max{φ0, Q}).
Finally, since max{φ0, Q} is an lsc function defined on a compact domain, we have

co(max{φ0, Q}) = co(max{φ0, Q}) [30, Theorem 2.2], and the result follows.

5.6 Numerical experiments

Theorem 5.1 states that our scaled cuts can be used to recover the convex envel-

ope of the expected second-stage cost function by recursively computing the scaled

cut closure, and thus they can be used to solve general MIR models. Of course,

in practice, we do not compute the full scaled cut closure, but we strengthen the
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outer approximation using a single (dominating) scaled cut in every iteration of

our Benders’ decomposition, in line with Algorithm 2. Therefore, we assess the

performance of scaled cuts on a range of problem instances, namely (variants of)

an investment problem by Schultz et al. [67] in Sections 5.6.3.2 and 5.6.3.3, as well

as the DCAP problem instances by Ahmed and Garcia [2] from SIPLIB [5] in Sec-

tion 5.6.3.4. In addition, in Section 5.6.3.1, we consider a problem instance by Carøe

and Schultz [24], to which we refer as the CS instance, which is known to have a re-

latively large duality gap. Before we discuss our results, we first describe the setup

of our numerical experiments in Section 5.6.1, and in Section 5.6.2, we describe a

cut-enhancement technique which we use to speed up the convergence of scaled

cuts.

5.6.1 Setup of numerical experiments

In our numerical experiments, we compare our Benders’ decomposition algorithm

with scaled cuts to traditional solution approaches in terms of bounds on the op-

timal value, solution quality, and running time. In particular, we use the Lag-

rangian (L) cuts of Zou et al. [89] as a benchmark, since the best-case performance

of the cutting plane algorithms in, e.g., [31] and [53] is the same as the performance

of L cuts, and similarly, the Lagrangian dual bound obtained via dual decomposi-

tion [24] is at most the lower bound obtained by L cuts. We compute L cuts using

the row-generation scheme described in Section 5.4.1.1, with the additional restric-

tion that τ = 0 in (CGMP). In addition, we benchmark our scaled cuts against the

so-called strengthened Benders’ (SB) cuts [89], which can be computed faster than

L cuts, but generally yield weaker lower bounds. Finally, we compare the differ-

ent strategies for computing scaled cuts described in Section 5.4, i.e., we consider

scaled cuts obtained using row generation (S-RG cuts) and cutting plane techniques

(S-CP cuts). For the S-CP cuts, we solve the second-stage subproblems using both

GMI cutting planes as well as L&P cutting planes.

We compare the different types of optimality cuts in terms of the relative optim-

ality gap

UB − LB
|LB| × 100%, (5.25)

where LB and UB denote the best known lower and upper bound on termination

of the Benders’ decomposition in Algorithm 2. In our base implementation of Al-

gorithm 2, we use a pure cutting plane approach to solve the master problem (MP).
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That is, we maintain a single relaxation of (MP), which we update from one it-

eration of our Benders’ decomposition to the next by adding a single dominating

scaled cut, and we use Fenchel cuts [22] to cut away non-integer first-stage solu-

tions. In this case, we refer to the optimality gap in (5.25) as the root node gap. Since

scaled cuts asymptotically yield co(Q), we expect that the root node gap converges

to zero, i.e., that we obtain the optimal solution without branching on the first-stage

decision variables.

In our experiments, we use parallelized implementations of all optimality cut

computation routines, by solving the subproblems for each scenario in parallel. All

our experiments are run on a machine with two Intel Xeon E5 2680v3 CPUs (24

cores @2.5GHz) and 128GB RAM using Gurobi 9.1.1; computation time is limited

to three hours. Furthermore, the tolerance levels ε and δ in the Benders’ decom-

position and the fixed point iteration algorithm are set to 10−4, unless mentioned

otherwise. Finally, in order to prevent numerical instability, we stop Algorithm 2

if the outer approximation improves by less than ε; we terminate our cutting plane

approach for computing Cω(ρ) if more than 25 iterations are required for conver-

gence; and in our row generation scheme for computing S-RG and L cuts, we re-

strict the absolute value of the cut coefficients (α, β, τ) in (CGMP) to be at most

108.

5.6.2 Cut-enhancement technique

The main idea of our cut-enhancement technique is to derive cuts which are only

valid on a subset X′ of the first-stage feasible region X. That is, we consider optim-

ality cuts of the form

Q(x) ≥ α − β�x ∀x ∈ X′ ⊆ X.

Clearly, these optimality cuts are in general at least as strong as cuts which are valid

for every x ∈ X. However, the resulting algorithm is only correct if the optimal

solution x∗ of the MIR model in (5.1) is contained in X′. Thus, in the definition

of X′, we may exclude feasible solutions which cannot be optimal. In particular, in

our Benders’ decomposition for MIR models, see Algorithm 2, we take

X′ = {x ∈ X : c�x + Q̂out(x) ≤ UB},
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where Q̂out is the current outer approximation of Q, and UB is the best known up-

per bound on the optimal value η∗ of the MIR model in (5.1). Indeed, note that if

c�x + Q̂out(x) > UB, then x is not optimal in (5.1), since otherwise Q(x) ≥ Q̂out(x)

and thus c�x + Q(x) > UB. In an alternative implementation, we may use a heur-

istic approach to obtain a candidate solution and a corresponding upper bound

on η∗. Finally, note that the constraint c�x + Q̂out(x) ≤ UB is polyhedral if Q̂out

is a convex polyhedral function, which ensures that our enhancement technique is

computationally feasible.

In our experiments, we use enhanced scaled cuts, referred to as S-RG* cuts to

speed up convergence of our Benders’ decomposition. In addition, we assess the

effect of computing enhanced L and SB cuts, referred to as SB* and L* cuts, respect-

ively, by comparing them to their unenhanced counterparts in terms of the resulting

bounds on η∗. We refer to Table 5.1 for an overview of cut type abbreviations.

Table 5.1. Optimailty cut type abbreviations.

Abbreviationa Optimality cut type

L Lagrangian cut [89]

SB Strengthened Benders’ cut [89]

S-RG Dominating scaled cut (row generation)

S-CP (L&P) Dominating scaled cut (lift-and-project cutting planes)

S-CP (GMI) Domination scaled cut (Gomory mixed-integer cuts)

aStarred abbreviations of cut types, e.g., L* cuts, refer to their enhanced
counterparts.

5.6.3 Results

5.6.3.1 The CS instance

Carøe and Schultz [24] describe a set of MIR problem instances for which the dual-

ity gap is at least 1/16. These instances are defined as

η∗ = min
0≤x≤1

{
3x + Eω

[
min

y∈{0,1}
{−2y : −1/2y ≥ hω − x}

]}
,

where hω follows a discrete symmetric uniform distribution with r realizations for

some even r; the realizations of hω are given by hs
ω = εs and hs+r/2

ω = 1/4 − εs,

where εs ∈ (0, 1/32), s = 1, . . . , r/2, are all distinct. We choose r = 100, and

εs = Δs, s = 1, . . . , r/2, where Δ = 1/32
1+r/2 .

Since the input size of the CS instance is relatively small, we do not use a paral-
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lelized implementation to compute these cuts in order to avoid overhead, we use a

tolerance level ε = 10−6, and we do not use a warm start with Benders’ cuts as de-

scribed in Section 5.6.1, to ensure that the difference in outcomes can be attributed

completely to the different cut types. In our experiments, we compare the different

types of optimality cuts mentioned in Section 5.6.1. For comparison, we do not only

compute the S-CP (L&P) cuts, but we also compute the traditional counterpart of

these cuts, obtained by solving the second-stage problem using L&P cuts, as de-

scribed in [72]. In Table 5.2, we report the resulting lower and upper bounds on η∗,

and the computation time and number of optimality cuts required for convergence

of our Benders’ decomposition.

Table 5.2. CS instance.

Cut type Lower bound Upper bound Computation #cuts (average cut

(gap to η∗ = 0.2482) (gap to η∗ = 0.2482) time generation time)

Traditional cuts

Benders -0.0080 (103.21%) 0.7482 (201.48%) 0.166s 9 (0.003s)

SB -0.0080 (103.21%) 0.7482 (201.48%) 0.344s 9 (0.020s)

Lift-and-project 0.0083 (96.64%) 0.7482 (201.48%) 0.254s 9 (0.011s)

L 0.0083 (96.64%) 0.7482 (201.48%) 0.372s 8 (0.027s)

Scaled cuts

S-CP* (GMI) 0.2482 (0.00%) 0.2488 (0.24%) 0.830s 33 (0.015s)

S-CP* (L&P) 0.2482 (0.00%) 0.2484 (0.09%) 0.771s 17 (0.031s)

S-RG* 0.2482 (0.00%) 0.2482 (0.00%) 3.331s 17 (0.182s)

What is immediately striking from Table 5.2 is that the scaled cuts are able to

completely close the duality gap of traditional cuts, which is relatively large for the

CS instance. In particular, the LB gap of all types of scaled cuts is zero, whereas

traditional cuts have LB gaps of around 100%. In other words, the quality of the

lower bound obtained using traditional cuts is very poor, and can be significantly

improved using scaled cuts. Similarly, the UB gap, which measures the quality of

the incumbent solution, is over 200% if we use traditional cuts, and can be reduced

to zero using S-RG* cuts. We are not able to find the optimal solution using the

S-CP* cuts, but the resulting gaps are very small (less than 0.25%) compared to

traditional cuts.

In terms of computation time, we observe that generating scaled cuts generally

requires more time compared to their traditional counterparts. For example, the av-

erage computation time per cut of S-CP* (L&P) cuts compared to traditional L&P
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cuts has roughly tripled, and S-RG* cuts take over six times as long to compute as

L cuts. Finally, we observe that the row generation scheme for computing scaled

cuts requires significantly more time than the S-CP* cuts. However, we recall that

in general, stronger performance guarantees are available for the S-RG* cuts, since

the row generation scheme computes Cω(ρ) exactly whereas the cutting plane tech-

niques may only yield a lower bound. This is reflected by the non-zero UB gap of

the S-CP* cuts.

5.6.3.2 Small investment planning problems

Schultz et al. [67] consider the following investment planning problem

min
x∈X

{
−3/2x1 − 4x2 + Eω [vω(x)] : x ∈ [0, 5]2

}
,

where X = R2, and

vω(x) = min
y∈Y

{−16y1−19y2−23y3−28y4 : 2y1 + 3y2 + 4y3 + 5y4 ≤ h1
ω − x1

6y1 + y2 + 3y3 + 2y4 ≤ h2
ω − x2},

where Y = {0, 1}4; the random variables h1
ω and h2

ω follow independent discrete

uniform distributions on {5, 5.5, . . . , 15}. This problem, and variants thereof are

frequently used as benchmark instances in the literature, see, e.g., [4, 31, 49, 53].

The variants we consider are obtained by setting X = Z2
+, as well as Y = Z4

+. In

another variant, the technology matrix is given by

Tω = H :=

⎛
⎝2/3 1/3

1/3 2/3

⎞
⎠ ,

whereas in the original problem, Tω = I2. Finally, we vary the distribution of

hω by letting h1
ω and h2

ω follow independent discrete uniform distributions on S

equidistant lattice points of the interval [5, 15], so that |Ω| = S2. Note that in the

original problem, S = 21, we additionally consider S = 11 and S = 101. For the

resulting 24 instances, we compare the SB and L cuts to their enhanced counter-

parts and to the S-CP* (L&P), S-RG, and S-RG* cuts. We report the results for the

instances with X = Z2
+ and X = R2

+ in Tables 5.3 and 5.4, respectively. We do

not report results for S-CP* (GMI) cuts, since similar as for the CS instance, they

perform worse than the S-CP* (L&P) cuts.
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There are several interesting observations to make from these results. First, ob-

serve that our enhanced cuts are able to significantly reduce the root node gaps for

both SB and L cuts, at the expense of very little computational overhead. Indeed,

the SB* cuts reduce the root node gap compared to the SB cuts by an average of

roughly 16%, or 1 percentage point, and the L* cuts improve over the L cuts on 19

out of 24 instances by approximately 40% on average, or 0.6 percentage points. In

fact, on 5 instances, the enhanced L cuts were able to achieve a zero root node gap.

Second, we observe from Tables 5.3 and 5.4 that our scaled cuts clearly outper-

form the traditional cuts, see also Figure 5.3 for a direct comparison of S-RG* cuts

to L cuts. For example, both the S-RG and S-RG* cuts achieve a zero root node gap

for all instances in Table 5.3 and half of the instances in Table 5.4. For the other in-

stances in Table 5.4, the S-RG and S-RG* cuts strictly reduce the root node gap of the

L cuts, by an average of 66% and 71%, respectively. Overall, we prefer the S-RG*

cuts over their unenhanced counterparts, because, in general, they are consider-

ably faster and perform slightly better in terms of root node gaps. For example, the

S-RG* cuts are on average almost three times faster than the S-RG cuts for the in-

stances in Table 5.3. Finally, the S-CP* (L&P) cuts outperform the L cuts on 23 out of

24 instances, reducing the average root node gap from 2.9% to 0.7%, and achieving

a zero root node gap on 13 instances. However, a head-to-head comparison reveals

that the S-RG* cuts are strictly preferred over the S-CP* cuts, because the S-RG* cuts

perform at least as well in terms of both the root node gap and computation time.

1% 2% 3% 4% 5% 6%

1%

2%

3%

Root node gap
S-RG* cuts

Root node gap L cuts

X = Z2
+

X = R2
+

Figure 5.3. Investment planning problems: root node gap of L and S-RG* cuts.
Point size is proportional to the logarithm of the computation time ratio of S-RG*
cuts relative to L cuts.
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Clearly, the tighter gaps of the S-RG* cuts compared to the L cuts are achieved

at the cost of higher computation times. Indeed, the S-RG* cuts are not able to

solve the four instances with X = R2
+ and S = 10201 within the time limit of three

hours, as opposed to the L cuts, and for the remaining instances, the computation

time with S-RG* cuts is typically well over tenfold the computation time with L

cuts. The reason is that, on average, the number of S-RG* cuts required for con-

vergence is roughly ten times the number of L cuts, and, in addition, generating a

single S-RG* cut typically takes five times as long as a single L cut. To analyse this

further, consider Figure 5.4, which breaks down the computation time for generat-

ing a single dominating S-RG* cut.

No warm start Warm start

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
0.0000

0.0005

0.0010

0.0015

Fixed point iteration index

(CGSP)
(CGMP)
Overhead

Computation time per
S-RG* cut per scenario (s)

Figure 5.4. Breakdown of the computation time required to generate a single
dominating S-RG* cut for the investment planning problems (averaged over the
instances). The left figure shows the computation times if the extreme points of
conv(Sφ

ω) identified during previous runs of the fixed point iteration algorithm are
discarded, whereas for the right figure, we use those points to warm-start the row-
generation scheme in subsequent runs of the fixed point iteration algorithm.

First, we observe from Figure 5.4 that most of the computation time for generat-

ing S-RG* cuts is devoted to solving (CGSP), and that in comparison, the time spent

solving (CGMP) is negligible. This is in line with our expectations, since (CGSP)

and (CGMP) are a small-scale MIP and LP, respectively, and they have to be solved

an equal number of times during a run of the row-generation scheme. Second, the

fixed point iteration algorithm spends a significant fraction of the computation time

in the first iteration, and the computation time per iteration strictly diminishes with

the iteration index. The reason is that extreme points of conv(Sφ
ω) identified during

an iteration of the fixed point iteration algorithm are reused in subsequent itera-
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tions, and thus we have to solve the subproblems (CGMP) and (CGSP) less often.

In fact, Figure 5.4 shows that if we reuse the extreme points of conv(Sφ
ω) identified

during a run of the fixed-point iteration algorithm in subsequent runs, then we are

able to compute S-RG* cuts faster, in particular by reducing the time spent in the

first iteration.

5.6.3.3 Large investment planning problems

In order to assess the impact of computation times on the effectiveness of scaled

cuts, we consider larger versions of the original IPP instance. We refer to Ap-

pendix 5.B for the construction of these instances, which vary in the input size of

the first and second-stage subproblems, the number of scenarios, and the integer

restrictions on the decision variables. In particular, we consider n1 ∈ {2, 6, 10},

n2 ∈ {10, 20}, m2 ∈ {5, 10}, and |Ω| ∈ {100, 500}. As before, X is either Z
n1
+ or R

n1
+

and Y is either {0, 1}n2 or Z
n2
+ , resulting in a total of 96 instances by examining all

possible combinations. For these instances, we compare the S-RG* cuts to L cuts in

terms of the resulting root node gap and computation time, see Figure 5.5.

2% 4% 6% 8% 10%

1%

3%

5%

7%

9%

Root node gap

S-RG* cuts

Root node gap L cuts

n1 = 2
n1 = 6
n1 = 10

X = Z
n1
+ X = R

n1
+

Figure 5.5. Large investment planning problems: root node gap of L and S-RG*
cuts. Point size is proportional to the logarithm of the computation time ratio of
S-RG* cuts relative to L cuts.
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0

10

20

0% 25% 50% 75% 100%
Root node gap reduction relative to Lagrangian cuts

Converged within three hours

Out of time

#instances out of 96

Figure 5.6. Performance of S-RG* cuts on the large investment planning problem
instances, measured by the resulting reduction of the root node gap of L cuts.

First, observe from Figure 5.5 that the S-RG* cuts are able to significantly reduce

the root node gap of L cuts. Indeed, a closer inspection reveals that the average

reduction is almost 60%, and that we achieve a zero root node gap on 25 out of

96 instances. Second, the instances with X = R
n1
+ are consistently harder to solve

compared to X = Z
n1
+ : for the former instances, the S-RG* cuts reduce the root

node gap of L cuts from 6.7% to 4.1%, compared to a reduction from 4.6% to 2.1% if

X = Z
n1
+ . Third, the effectiveness of scaled cuts relative to L cuts is less convincing

if n1 = 10 compared to n1 ∈ {2, 6}. An explanation suggested by Figure 5.5 is that

solving the instances with n1 = 10 using S-RG* cuts requires significantly more

computation time than L cuts. In fact, our Benders’ decomposition was able to

converge within three hours of computation time for all 32 instances with n1 = 2,

but only 9 and 4 of the instances with n1 = 6 and n1 = 10, respectively. In addition,

Figure 5.6 clearly shows that if the S-RG* cuts were able to converge, then they

achieved a much larger reduction of the root node gap of L cuts compared to the

instances for which the S-RG* cuts timed out.

An explanation for these notable differences in computation times is offered

by Figure 5.7, which shows the number of row generation iterations required to

generate a dominating scaled cut, i.e., the number of extreme points of conv(Sφ
ω)

identified during a run of the row-generation scheme. Overall, the number of ex-

treme points required for convergence is modest, e.g., even for the relatively large

instances with (n1, n2, m2) = (6, 20, 10), no more than 30 points are required for

convergence on average. In fact, the number of extreme points is relatively stable

as the input size of the second-stage problem varies, but depends strongly on the

number of first-stage variables n1, which reveals why the instances with n1 = 10
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require more computation time compared to n1 ∈ {2, 6}. Finally, Figure 5.7 clearly

shows that the row generation scheme requires more iterations if X = R
n1
+ than if

X = Z
n1
+ , which is in line with our earlier observation that the former instances are

harder to solve.

(2, 10, 5)

(2, 10, 10)

(2, 20, 5)

(2, 20, 10)

(6, 10, 5)

(6, 10, 10)

(6, 20, 5)

(6, 20, 10)

(10, 10, 5)

(10, 10, 10)

(10, 20, 5)

(10, 20, 10)

0 25 50 75
Number of row generation iterations

X = Z
n1
+

X = R
n1
+

(n1, n2, m2)

Figure 5.7. Boxplots of the average number of row generation scheme iterations per
scenario for generating a single dominating scaled cut for the large IPP instances.
The boxplot for each input size (n1, n2, m2) corresponds to eight IPP instances (in-
dicated by dots), with X ∈ {Z

n1
+ , R

n1
+ }, Y ∈ {{0, 1}n2 , Z

n2
+ }, and |Ω| ∈ {100, 500}.

5.6.3.4 The DCAP instances

The DCAP instances in [2] concern a multi-period capacity planning problem, in

which the first-stage decisions pertain to buying resource capacity, and the second-

stage problem is to assign these resources to a set of tasks. In addition, task pro-

cessing requirements are uncertain, which translates to randomness in the recourse

matrix Wω. The instances are larger than the investment planning problem in [67],

and differ in the number of resources, tasks, periods, and scenarios, see Table 5.5.

Furthermore, they have mixed-binary first-stage decision variables, which are used

to model fixed set-up costs that we incur if we buy capacity. As a result, the Bend-

ers’ master problem (MP) is a MIP, which we solve the using a pure cutting plane

approach, similar to the IPP instances. In addition, however, we solve (MP) using
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a branch-and-cut algorithm in which we add at most five Fenchel cuts to solve the

nodal subproblems if the number of leaf nodes is less than eight. Furthermore, we

maintain separate outer approximations for each nodal subproblem to speed up

convergence, since they are potentially stronger than a global outer approximation.

In the resulting Benders’ decomposition algorithms, we solve the DCAP in-

stances by adding optimality cuts according to cut hierarchies: we first exhaust

lower-level optimality cuts before using higher-level cuts. For example, in every

iteration of our Benders’ decomposition, we first use SB* cuts to improve the outer

approximation, and if this fails, we resort to L* cuts. We use the notation SB*+L*

to denote this specific cut hierarchy. In addition, we consider the cut hierarchy

SB*+L*+S-RG*, and we benchmark both hierarchies against stand-alone SB* cuts,

see Table 5.6. Finally, we do not include S-CP* cuts in the comparison, because our

results indicate that they are consistently outperformed by the S-RG* cuts, similar

as for the IPP instances.

Table 5.5. DCAP instances: input size of large-scale deterministic equivalent
model.

Instance #scenarios #constraints #variables #binary #nonzero con-

variables straint coefficients

DCAP 233 200 200 3,006 5,412 5,406 11,412

DCAP 233 300 300 4,506 8,112 8,106 17,112

DCAP 233 500 500 7,506 13,512 13,506 28,512

DCAP 243 200 200 3,606 7,212 7,206 14,412

DCAP 243 300 300 5,406 10,812 10,806 21,612

DCAP 243 500 500 9,006 18,012 18,006 36,012

DCAP 332 200 200 2,406 4,812 4,806 10,212

DCAP 332 300 300 3,606 7,212 7,206 15,312

DCAP 332 500 500 6,006 12,012 12,006 25,512

DCAP 342 200 200 2,806 6,412 6,406 13,012

DCAP 342 300 300 4,206 9,612 9,606 19,512

DCAP 342 500 500 7,006 16,012 16,006 32,512
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Table 5.6. DCAP instances: optimality gaps

LB gap - UB gapa (computation timeb).

MP: Fenchel cutting planes MP: Branch-and-cut

Instance SB* SB*+L* SB*+L*+S-RG* SB*+L*+S-RG*

DCAP 233 200 26.78% - 3.68% (7s) 0.12% - 2.49% (359s) 0.01% - 0.45% (2,238s) 0.00% - 0.00% (617s)

DCAP 233 300 27.86% - 6.78% (10s) 0.10% - 0.20% (435s) 0.02% - 0.13% (9,468s) 0.02% - 0.11% (1,177s)

DCAP 233 500 30.24% - 11.12% (8s) 0.04% - 0.46% (551s) 0.00% - 0.07% (1,551s) 0.00% - 0.00% (527s)

DCAP 243 200 22.80% - 1.31% (4s) 0.04% - 0.15% (943s) 0.01% - 0.15% (2,160s) 0.00% - 0.14% (2,102s)

DCAP 243 300 22.69% - 1.39% (8s) 0.10% - 0.54% (552s) 0.03% - 0.37% (3h) 0.03% - 0.26% (8,442s)

DCAP 243 500 23.30% - 0.88% (12s) 0.12% - 0.47% (4,252s) 0.04% - 0.24% (3h) 0.02% - 0.15% (5,885s)

DCAP 332 200 44.53% - 51.42% (2s) 0.21% - 0.59% (261s) 0.06% - 0.38% (3h) 0.02% - 0.39% (3h)

DCAP 332 300 44.79% - 28.42% (1s) 0.18% - 0.25% (793s) 0.06% - 0.25% (3h) 0.04% - 0.72% (3h)

DCAP 332 500 47.61% - 18.18% (1s) 0.13% - 0.52% (1,306s) 0.08% - 0.52% (2,236s) 0.47% - 0.43% (3h)

DCAP 342 200 40.89% - 9.59% (6s) 0.12% - 7.21% (1,382s) 0.07% - 3.69% (3,535s) 0.12% - 1.76% (3h)

DCAP 342 300 40.92% - 7.15% (5s) 0.11% - 3.64% (1,958s) 0.04% - 2.33% (7,115s) 0.22% - 0.26% (3h)

DCAP 342 500 38.20% - 6.71% (14s) 0.09% - 3.05% (3,390s) 0.05% - 1.55% (7,087s) 0.03% - 0.29% (3h)

aThe LB and UB gaps are defined as (η∗ − LB)/|η∗| × 100% and (UB − η∗)/|η∗| × 100%, respectively.
bWe report 3h if the time limit of three hours is exceeded.

We observe from the results in Table 5.6 that both cut hierarchies clearly out-

perform the stand-alone SB* cuts, and that our scaled cuts yield are able to reduce

the LB and UB gaps of traditional cuts. Indeed, if we solve (MP) using a pure cut-

ting plane approach, then the average LB gap of SB* cuts reduces from 34% to 0.4%

by including LR* cuts in the hierarchy, and further reduces to 0.1% if we also in-

clude S-RG* cuts. In addition, we are able to find better incumbent solutions: the

average UB gap resulting from SB* cuts reduces from 12% to 1.6% and 0.8% if we

additionally include LR* and S-RG* cuts in the hierarchy, respectively. A direct

comparison of the pure cutting planes approach to the branch-and-cut approach

for solving (MP) indicates that we typically obtain better candidate solutions if we

solve the master problem using a B&C approach: the UB gap improves on 9 out of

12 instances compared to a pure cutting plane approach, and the average UB gap

reduces from over 0.8% to less than 0.4%. In terms of computation time, however,

neither approach strictly outperforms the other. For example, the branch-and-cut

approach converges faster on the DCAP 233 and DCAP 243 instances, but, in con-

trast to the cutting plane approach, is not able to solve the DCAP 342 instances

within three hours of computation time.
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5.7 Conclusion

We propose a new family of optimality cuts which can be used to solve general two-

stage mixed-integer recourse (MIR) models. These so-called scaled cuts are derived

by solving extended formulations of the second-stage subproblems. In contrast to

existing optimality cuts, scaled cuts can be used to recover the convex envelope of

the expected second-stage cost function in general. That is, we allow for general

mixed-integer decision variables in both stages, and we do not make restrictive as-

sumptions regarding the uncertain parameters in the model, e.g., we do not require

that the problem exhibits fixed recourse. We describe efficient primal and dual sub-

routines for computing our scaled cuts, which are based on vertex enumeration and

cutting planes techniques, respectively, and we propose a novel cut-enhancement

technique to accelerate the convergence of our scaled cuts. To demonstrate the

effectiveness of the (enhanced) scaled cuts, we solve a number of MIR problem in-

stances from the literature, and we find that we are able to improve significantly

over existing optimality cuts in terms the resulting optimality gap at the expense of

additional computation time.

One avenue for future research is the extension to multi-stage MIR models and

to problems with non-linear cost functions, such as quadratic or conic MIR models.

An alternative direction is to compute scaled cuts using inexact lower bounds for

the expected second-stage cost function, which can be obtained by solving convex

approximations of the original MIR model. Typically, such inexact lower bounds

are relatively inexpensive to generate, and thus they may be used to speed up the

convergence of our scaled cuts.

Appendix 5.A Postponed proofs

The proofs of Lemmas 5.1-5.4 and Proposition 5.1 are not only postponed to the

appendix for ease of presentation, they also depend on the characterizations of the

set Πω(φ) and the function Cω(ρ) in Lemmas 5.5 and 5.6 in Section 5.4, respectively.

The proofs of these lemmas are independent of the results in Section 5.3. The proofs

of Lemmas 5.1-5.4 can be read in the same order as they appear in the main text.

We only remark that the proof of Proposition 5.1 depends on Lemma 5.3 and is for

this reason given after the proof of that lemma.
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Proof of Lemma 5.1. We have to show that

sup
α,β,τ

{α − β� x̄ − τφ(x̄) : (α, β, τ) ∈ Πω(φ)} = vω(x̄), (5.26)

and that the supremum in (5.26) is attained by some (α, β, τ) ∈ Πω(φ). In the proof,

we will use the definition of Cω(ρ) in (5.15), which we repeat here for convenience,

Cω(ρ) = sup
α,β,τ

{α − β� x̄ − (1 + τ)ρ : (α, β, τ) ∈ Πω(φ)}. (5.27)

In particular, it also suffices to show that Cω(φ(x̄)) = −φ(x̄) + vω(x̄), and that the

supremum in (5.27) with ρ = φ(x̄) is attained.

We first show that the problem in (5.27) is feasible and bounded, so that the cor-

responding supremum is attained, using the polyhedrality of Πω(φ) from Lemma

5.5. Feasibility follows from the fact that vω is bounded from below, which is a con-

sequence of Assumptions (A3) and (A4). Boundedness follows from the definition

of Πω(φ), which implies that

Cω(φ(x̄)) ≤ −φ(x̄) + vw(x̄) < ∞,

where the latter inequality follows from x̄ ∈ X and Assumption (A1). In the re-

mainder of the proof, we show that Cω(φ(x̄)) ≥ −φ(x̄) + vω(x̄).

In particular, we use the dual representation of Cω(ρ) in Lemma 5.6 to obtain

that

Cω(φ(x̄)) = −φ(x̄) + min
y

{q�ω y : (x̄, φ(x̄), y) ∈ conv(Sφ
ω)},

where

Sφ
ω := {(x, θ, y) ∈ X × R ×Y : θ ≥ φ(x), Wωy = hω − Tωx},

and we show that q�ω y ≥ vω(x̄) for every y such that (x̄, φ(x̄), y) ∈ conv(Sφ
ω). Fix

such y arbitrarily, and let (xi, θi, yi) ∈ Sφ
ω, i = 1, . . . , d, denote the extreme points of

conv(Sφ
ω). Then, there exist λi ≥ 0, i = 1, . . . , d and μ1 ≥ 0, for which

(x̄, φ(x̄), y) =
d

∑
i=1

λi(xi, θi, yi) + (0, μ1, 0),
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and ∑d
i=1 λi = 1. Noting that (xi, θi) ∈ epiX(φ), and using the assumption that

(x̄, φ(x̄)) is an extreme point of conv(epiX(φ)) it follows that (xi, θi) = (x̄, φ(x̄)) for

every i = 1, . . . , d. The desired inequality then follows:

q�ω y =
d

∑
i=1

λiq�ω yi ≥
d

∑
i=1

λivω(xi) =
d

∑
i=1

λivω(x̄) = vω(x̄),

where the inequality follows from feasibility of yi in vω(xi) = miny∈Y{q�ω y : Wωy =

hω − Tωxi}.

Proof of Lemma 5.2. We first show that C(·) is convex and continuous on dom(C),

and that the supremum in (5.10) is attained for all ρ ∈ dom(C). We use the expres-

sion C(ρ) = Eω[Cω(ρ)], where Cω(ρ) is defined in (5.27), and we use the polyhed-

ral representation of Πω(φ) in Lemma 5.5 to obtain that

Cω(ρ) = sup
α,β,τ

{α − β� x̄ − ρ(1 + τ) :

q�ω yi + β�xi + τθi ≥ α ∀i ∈ {1, . . . , d}, τ ≥ 0}, (5.28)

where (xi, θi, yi), i = 1, . . . , d, are the extreme points of conv(Sφ
ω). In particu-

lar, since the LP in (5.28) is feasible and bounded for all ρ ∈ dom(Cω), the cor-

responding supremum is attained, and the corresponding value function Cω(·)
is convex and continuous on dom(Cω) for every ω ∈ Ω. It then follows from

C(ρ) = Eω[Cω(ρ)] and

dom(C) =
⋂

ω∈Ω

dom(Cω), (5.29)

that C(·) is convex and continuous on dom(C), and that the corresponding su-

premum is attained.

To see that C(·) is strictly decreasing on dom(C), fix ρ1, ρ2 ∈ dom(C) such that

ρ1 < ρ2. We know that there exist (αω, βω, τω) ∈ Πω(φ), ω ∈ Ω, such that

C(ρ2) = Eωαω − Eωβ�
ω x̄ − (1 + Eωτω)ρ2,

and, using the definition of C(ρ1), we obtain

C(ρ1) ≥ Eωαω − Eωβ�
ω x̄ − (1 + Eωτω)ρ1,
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from which it follows that C(ρ1) > C(ρ2), using that ρ1 < ρ2 and Eωτω ≥ 0.

To prove (iii), fix ρ̄ ∈ dom(C), and let (αω, βω, τω) be an optimal solution

of (5.10) with ρ = ρ̄. We have to show that

C(ρ) ≥ C(ρ̄)− (1 + Eωτω)(ρ − ρ̄) ∀ρ ∈ R.

This follows directly by substituting C(ρ̄) = Eωαω − Eωβ�
ω x̄ − ρ̄(1 + Eωτω) and

using the definition of C(ρ) in (5.10).

Finally, to show that dom(C) = [φ(x̄), ∞) if x̄ ∈ X, we will prove the slightly

more general expression

dom(C) = {ρ : (x̄, ρ) ∈ conv(epiX(φ))}, (5.30)

for arbitrary x̄ ∈ X̄, which reduces to dom(C) = [φ(x̄), ∞) if x̄ ∈ X, since then

(x̄, ρ) ∈ conv(epiX(φ)) if and only if ρ ≥ φ(x̄). We prove (5.30) from (5.29), by

showing that dom(Cω) = {ρ : (x̄, ρ) ∈ conv(epiX(φ))} for every ω ∈ Ω. To do so,

we use expression for the dual LP of (5.28) from Lemma 5.6, which we repeat here

for convenience:

min
y

{q�ω y : (x̄, ρ, y) ∈ conv(Sφ
ω)}. (5.31)

In particular, we show that the dual LP in (5.31) is bounded and feasible if and

only if (x̄, ρ) ∈ conv(epiX(φ)). In fact, the dual LP is bounded for all ρ ∈ R as a

consequence of Assumption (A1). To see that the dual problem is feasible if and

only if (x̄, ρ) ∈ conv(epiX(φ)), suppose that (x̄, ρ) ∈ conv(epiX(φ)), i.e., there exist

λi ≥ 0, and (xi, θi) ∈ epiX(φ), i = 1, . . . , d′, such that ∑d′
i=1 λi = 1 and

(x̄, ρ) =
d′

∑
i=1

λi(xi, θi).

It follows from Assumption (A1) that there exist yi such that (xi, θi, yi) ∈ Sφ
ω, i =

1, . . . , d′, and as a result

(
x̄, ρ,

d′

∑
i=1

λiyi

)
=

d′

∑
i=1

λi(xi, θi, yi) ∈ conv(Sφ
ω),

and thus y := ∑d′
i=1 λiyi is feasible in (5.31). The converse claim can be proved in a

similar way.
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Proof of Lemma 5.3. Using the definition of ρ∗ in (5.9), we have

ρ∗ =min
ρ

{
ρ : ρ ≥ Eωαω − Eωβ�

ω x̄
1 + Eωτω

∀(αω, βω, τω) ∈ Πω(φ), ω ∈ Ω

}

=min
ρ

{
ρ : Eωαω − Eωβ�

ω x̄ − ρ(1 + Eωτω) ≤ 0 ∀(αω, βω, τω) ∈

Πω(φ), ω ∈ Ω
}

,

and using the definition of C(ρ), we obtain ρ∗ = minρ{ρ : C(ρ) ≤ 0}. Sup-

pose now that x̄ ∈ X and ρ∗ > φ(x̄). It follows from ρ∗ > φ(x̄) and (5.13) that

C(φ(x̄))> 0, and thus ρ∗ is the unique solution of C(ρ) = 0, since C(·) is continu-

ous and strictly decreasing on dom(C) = [φ(x̄), ∞), see Lemma 5.2.

Proof of Lemma 5.4. We first show that C(ρk) → 0, which suffices to show that ρk →
ρ∗, since C(·) is continuous by Lemma 5.2, and ρ∗ is the unique solution of C(ρ) = 0

by Lemma 5.3.

In order to prove that C(ρk) → 0, we rewrite the updating rule in (5.14) as

ρk+1 − ρk =
C(ρk)

1 + Eωτω,k
, (5.32)

in which we use the notation τω,k to emphasize that τω depends on the iteration,

i.e., τω,k corresponds to an optimal solution of the problem in (5.27) with ρ = ρk. By

construction, the sequence {ρk} is non-decreasing and bounded, and thus conver-

gent. Therefore, taking limits on both sides of (5.32) yields

0 = lim
k→∞

C(ρk)

1 + Eωτω,k
,

and thus, we have to show that 1 + Eωτω,k is eventually bounded over k. That is, it

suffices to show that there exists a τ̄ such that τω,k ≤ τ̄ for all k ≥ 1 and ω ∈ Ω.

We derive such a τ̄ by using that Πω(φ) is polyhedral, see Lemma 5.5. In partic-

ular, let (αi
ω, βi

ω, τi
ω), i = 1, . . . , d, and (α̂

j
ω, β̂

j
ω, τ̂

j
ω), j = 1, . . . , r denote the extreme

points and directions of Πω(φ), respectively, ω ∈ Ω. Since Cω(ρ0) < ∞ it must be

that α̂
j
ω − β̂

j�
ω x̄ − ρ0(1 + τ̂

j
ω) ≤ 0, since otherwise it would be possible to improve

the objective in (5.27) with ρ = ρ0 without bound. Furthermore, we have that

ρk > ρ0 for every k ≥ 1, since {ρk}k≥0 is increasing, and ρ1 > ρ0 by the assumption

that C(ρ0) > 0. It follows that α̂
j
ω − β̂

j�
ω x̄ − ρk(1 + τ̂

j
ω) < 0 for every k ≥ 1, and

thus any optimal solution of the problem in (5.27) with ρ = ρk, k ≥ 1, is a convex

combination of the extreme points (αi
ω, βi

ω, τi
ω), i = 1, . . . , d, of Πω(φ). Hence, we
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can take τ̄ = maxω∈Ω maxi=1,...,d τi
ω.

Finally, we show that if C(ρk) < δ, then ρk ≥ ρ∗ − δ. To this end, let (αω, βω, τω)

be such that (αω, βω, τω) ∈ Πω(φ) for every ω ∈ Ω, and C(ρ∗) = Eωαω −Eωβ�
ω x̄−

(1 + Eωτω)ρ∗, and use the definition of C(ρk) to obtain that

C(ρk) ≥ Eωαω − Eωβ�
ω x̄ − (1 + Eωτω)ρk.

It follows that

C(ρk)− C(ρ∗) ≥ (1 + Eωτω)(ρ
∗ − ρk) ≥ ρ∗ − ρk,

and we obtain ρ∗ − ρk ≤ δ by substituting C(ρ∗) = 0 and C(ρk) ≤ δ, as desired.

Proof of Proposition 5.1. We will show that there exists a finite collection of optimality

cuts

SCC(φ)(x) ≥ αk − β�
k x ∀x ∈ X̄, k = 1, . . . , K,

defined by rational data, which completely describe SCC(φ), i.e., for every x̄ ∈ X̄,

there exist rational αk and βk, such that SCC(φ)(x̄) = αk − β�
k x̄. To this end, fix

arbitrary x̄ ∈ X̄, and note that SCC(φ)(x̄) = ρ∗, where ρ∗ is the optimal value of

the problem in (5.9). By Lemma 5.3, we know that ρ∗ = minρ{ρ : C(ρ) ≤ 0},

where C(ρ) is defined as in (5.10). In particular, C(ρ∗) ≤ 0, and we distinguish two

cases: C(ρ∗) = 0, and C(ρ∗) < 0.

If C(ρ∗) = 0, then by Lemma 5.2, the optimal value ρ∗ of the problem in (5.9)

is attained by some (αω, βω, τω), where for every ω ∈ Ω, (αω, βω, τω) ∈ Πω(φ) at-

tains the optimal value Cω(ρ∗) of (5.27). Furthermore, since the feasible region Πω(φ)

of (5.27) is a rational polyhedron by Lemma 5.5, and the objective function is lin-

ear, it follows that the optimal value Cω(ρ∗) is in fact attained by one of the finitely

many rational extreme points of Πω(φ), and thus we assume, without loss of gen-

erality, that (αω, βω, τω) is a rational extreme point of Πω(φ), ω ∈ Ω. By definition

of SCC(φ), we have

SCC(φ)(x) ≥ Eωαω − Eωβ�
ωx

1 + Eωτω
∀x ∈ X̄. (5.33)

and, in addition, (Eωαω −Eωβ�
ω x̄)/(1+Eωτω) = ρ∗ = SCC(φ)(x̄), i.e., the optim-

ality cut in (5.33) is valid and tight at x̄. Moreover, the cut in (5.33) corresponds to

one of the finitely many combinations of rational extreme points of Πω(φ), ω ∈ Ω.



571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan
Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021 PDF page: 178PDF page: 178PDF page: 178PDF page: 178

170 Chapter 5

In order to analyse the case where C(ρ∗) < 0, we first show that

ρ∗ = min
ρ

{ρ : C(ρ) < ∞}. (5.34)

To see this, suppose for contradiction that there exists a ρ′ < ρ∗ such that C(ρ′) <

∞. But then, it must be that C(ρ′) > 0, since ρ∗ = minρ{ρ : C(ρ) ≤ 0}, and

thus the continuity of C(·) established in Lemma 5.2 implies that there exists a ρ′′ ∈
(ρ′, ρ∗) such that C(ρ′′) = 0, which is a contradiction. Then, using the expression

for dom(C) in (5.30), we obtain from (5.34) that

ρ∗ = min
ρ

{ρ : (x̄, ρ) ∈ conv(epiX(φ))}, (5.35)

and using similar reasoning for arbitrary x ∈ X̄, we have that

SCC(φ)(x) ≥ min
ρ

{ρ : (x̄, ρ) ∈ conv(epiX(φ))} ∀x ∈ X̄.

Thus, if we define Eφ as the set of cut coefficients which define valid inequalities

for conv(epiX(φ)), i.e.,

Eφ := {(α, β) : θ + β�x ≥ α ∀(x, θ) ∈ conv(epiX(φ))},

then every (α, β) ∈ Eφ defines an optimality cut of the form

SCC(φ)(x) ≥ α − β�x ∀x ∈ X̄. (5.36)

In addition, using (5.35) and that the function φ is convex polyhedral, we obtain

ρ∗ = max
α,β

{α − β� x̄ : (α, β) ∈ Eφ}, (5.37)

i.e., if (α, β) is optimal in (5.37), then the cut in (5.36) is tight at x̄. Moreover, the

maximum in (5.37) is attained by one of the finitely many rational extreme points

of Eφ, since Eφ is a rational polyhedron. To see this, use [28, Theorem 1] to obtain

that conv(epiX(φ)) is a rational polyhedron, and note that

Eφ = {(α, β) : θi + β�xi ≥ α, i = 1, . . . , d},

where (xi, θi), i = 1, . . . , d, denote the (rational) extreme points of conv(epiX(φ)),

see, e.g., [52].



571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan571203-L-bw-vdLaan
Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021Processed on: 13-12-2021 PDF page: 179PDF page: 179PDF page: 179PDF page: 179

A converging Benders’ decomposition algorithm for two-stage MIR models 171

Proof of Lemma 5.9. We show that T is Lipschitz continuous with Lipschitz constant

equal to 1, i.e., ||T f − Tg||∞ ≤ || f − g||∞ for all f , g ∈ C(X̄). Indeed, for arbitrary

f , g ∈ C(X̄), we have

||T f − Tg||∞ = sup
x∈X̄

∣∣∣∣ sup
τω≥0

{
Eωco(vω + τω f )(x)

1 + Eωτω

}

− sup
τω≥0

{
Eωco(vω + τωg)(x)

1 + Eωτω

} ∣∣∣∣
≤ sup

x∈X̄
sup
τω≥0

∣∣∣∣
{

Eω [co(vω + τω f )(x)− co(vω + τωg)(x)]
1 + Eωτω

} ∣∣∣∣
≤ sup

τω≥0

{
Eω||co(vω + τω f )− co(vω + τωg)||∞

1 + Ewτω

}

≤ sup
τω≥0

{
Eωτω

1 + Ewτω

}
|| f − g||∞

= || f − g||∞,

where the final inequality follows from the fact that ||co( f )− co(g)||∞ ≤ || f − g||∞.

To see this, let δ = || f − g||∞, and fix x ∈ X̄. Note that

co( f )(x)− δ ≤ f (x)− δ ≤ g(x).

Because co( f )− δ is convex and lsc, it follows that

co( f )(x)− δ ≤ co(g)(x).

Analogously, we can show that co(g)(x)− δ ≤ co( f )(x), and the result follows.

Proof of Lemma 5.10. We have to prove that for every ε > 0 there exists τω ≥ 0 such

that co(vω + τ f )(x̄) ≥ vω(x̄) + τ f (x̄) − ε. We will do so by showing that there

exist α, β, and τ ≥ 0 such that (i) vω(x) + τ f (x) ≥ α − β�x ∀x ∈ X, and (ii)

α − β� x̄ ≥ vω(x̄) + τ f (x̄)− ε. The claim then follows by letting ε → 0.

Let ε > 0 be given and define v+ω : epi( f ) �→ R as v+ω (x, θ) = vω(x), (x, θ) ∈
epi( f ). We prove that α, β, and τ ≥ 0 satisfying (i) and (ii) exist by showing that

co(v+ω )(x̄, θ̄) = vω(x̄). Then, by definition of co(v+ω ), there exist α′, β′, and τ′ such

that

v+ω (x, θ) ≥ α′ − β′�x − τ′θ ∀(x, θ) ∈ epi( f ), (5.38)
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and

α′ − β′� x̄ − τ′ θ̄ ≥ vω(x̄)− ε. (5.39)

Note that (5.38) implies that vω(x) ≥ α′ − β′�x − τ′ f (x) ∀x ∈ X since v+ω (x, θ) =

vω(x) and (x, f (x)) ∈ epi( f ) ∀x ∈ X. In addition, (5.39) implies that, α′ − β′� x̄ −
τ′ f (x̄) ≥ vω(x̄)− ε, since θ̄ = f (x̄). Thus, we may take (α′, β′, τ′) = (α, β, τ).

It remains to show that co(v+ω )(x̄, θ̄) = vω(x̄). Note that v+ω is lsc, since vω is lsc

and epi( f ) is a closed set. Analogous to [56, Corollary 3.47], it follows that co(v+ω )

is lsc, and as a result, co(v+ω ) = co(v+ω ). In addition, since (x̄, θ̄) is an extreme point

of epi( f ), we have co(v+ω )(x̄, θ̄) = v+ω (x̄, θ̄) [75, Corollary 3]. Hence, co(v+ω )(x̄, θ̄) =

co(v+ω )(x̄, θ̄) = v+ω (x̄, θ̄) = vω(x̄).

Appendix 5.B Construction of large IPP instances

The large IPP instances that we consider are of the form

min
x∈X

{
c�x + Eω

[
min
y∈Y

{q�ωy : Wωy ≤ hω − Tωx, y ∈ Y}
]

: x ∈ [0, 5]n1

}
, (5.40)

where X is either R
n1
+ or Z

n1
+ and Y is either {0, 1}n2 or Z

n2
+ . Furthermore, the

components of the cost vector c and the distributions of the stochastic elements

(hω, Tω, qω, Wω) are chosen in such a way that we obtain balanced problems with

a non-trivial solution. In particular, the elements of c are evenly spaced on the

interval [−5,−1], i.e., the i-th element of c is given by ci = −1 − 4 i−1
n1−1 ; the right-

hand side vector hω follows a uniform continuous distribution on [5, 15]; and the

elements of the second-stage cost vector qω and the recourse matrix Wω follow uni-

form discrete distributions on −5n1 + [−10, 0] and [1, 6], respectively. Finally, the

technology matrix Tω follows a uniform two-point distribution where the outcomes

T1
ω and T2

ω are m2 × n1 matrices, whose (i, j)-th elements are given by

T1
ω,i,j =

⎧⎨
⎩

1/α, if min{m2 − n1, 0} ≤ i − j ≤ max{m2 − n1, 0}

0, otherwise,
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and

T2
ω,i,j =

⎧⎨
⎩

2/β, if min{m2 − n1, 0} ≤ i − j ≤ max{m2 − n1, 0}

1/β, otherwise,

where

α = 1 + min{n1 − 1, |m2 − n1|, max{n1 − m2, 0}+ i − 1, max{m2, n1} − i},

and β = α + m2. For example, if n1 = m2, then T1
ω is the identity matrix, and T2

ω

is the square matrix such that the off-diagonal and diagonal elements are given by

1/(m2 + 1) and 2/(m2 + 1), respectively. This choice ensures that the rows of Tω

sum to one, so that the resulting large IPP instances satisfy the complete recourse

assumption in (A1).

In our experiments, we draw a sample of size S ∈ {100, 500} from the joint dis-

tribution of (hω, Tω, qω, Wω) and we solve the resulting sample average approxim-

ation of (5.40), which is obtained by replacing the distribution of (hω, Tω, qω, Wω)

with the empirical distribution of the sample.
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Chapter 6

Summary and conclusion

A wide range of practical decision problems in, e.g., manufacturing, inventory

management, and environmental control involve uncertainty. We can model such

problems as two-stage mixed-integer recourse (MIR) models, which explicitly cap-

ture parameter uncertainty, and permit integer decision variables for sensible mod-

elling. We develop solution methods for such two-stage MIR models, which are of

the form

min
x

{c�x + Eω [v(ω, x)] : Ax ≥ b, x ∈ X},

where X ⊂ Rn imposes possible non-negativity and integer restrictions on the de-

cision vector x, and the second-stage cost function v is defined as

v(ω, x) := min
y

{
q�y : Wy ≥ h(ω)− T(ω)x, y ∈ Z

p2
+ × R

n2−p2
+

}
,

ω ∈ Ω, x ∈ Rn.

Briefly, the problem is to choose a first-stage decision x such that the resulting total

expected costs, consisting of the immediate costs c�x and the expected second-

stage costs Q(x) = Eω [v(ω, x)], are minimized. The second-stage costs v(ω, x)

are defined in terms of a mixed-integer program whose parameters depend on the

first-stage decision x and the random vector ω, which explicitly models parameter

uncertainty. The main difficulty in solving two-stage MIR models is that the re-

course function Q is in general non-convex, and thus we cannot directly use efficient

convex optimization techniques. We overcome this difficulty by using convexific-

ation. That is, we derive a convex approximating model that lends itself well to
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effective decomposition strategies and thus is easier to solve. Indeed, we develop

computationally efficient decomposition algorithms that solve the approximating

model, and moreover, we derive performance guarantees to obtain provably good,

or even near-optimal, solutions of the original model.

In fact, we describe two complementary convexification approaches. Our first

approach is to obtain an approximating model by replacing the recourse function Q

by a convex approximation Q̂ that closely approximates Q. That is, we construct Q̂

such that the approximation error supx |Q(x)− Q̂(x)| is small, and in addition, we

derive a corresponding error bound. In this way, we guarantee the quality of the

solution x̂ obtained by solving the corresponding approximating model. Indeed,

an error bound on the approximation error directly translates into a performance

guarantee for x̂.

If the recourse function Q is highly non-convex, however, then it does not admit

a close approximation by a convex function, motivating our complementary con-

vexification approach. The idea is to solve a convex relaxation of the original model

which is defined in terms of optimality cuts that underestimate Q. In particular, we

derive a family of optimality cuts whose closure asymptotically converges to the

convex envelope of Q. The advantage of using such optimality cuts is that the re-

laxation defined in terms of this convex envelope is exact: we are able to obtain the

optimal solution of two-stage MIR models, in general. In the remainder, we de-

scribe the main findings of each chapter separately, and subsequently, we discuss

our main contributions and directions for future research.

In Chapter 2, we consider the so-called shifted LP-relaxation approximation de-

rived by Romeijnders et al. [61] for the special class of simple integer recourse (SIR)

models. In particular, we derive a hierarchy of corresponding error bounds, which

depend on the total variations |Δ| f and |Δ| f (k), k ≥ 1, of the probability density

function (pdf) f of the right-hand side vector h(ω), and its higher-order derivat-

ives f (k). To be specific, we obtain sequentially tighter error bounds as we include

more higher-order derivatives of f . In this way, we provide sharper performance

guarantees for the solution obtained by solving the shifted LP-relaxation. Interest-

ingly, we strictly improve the original error bound in [61], which depends only on

|Δ| f . For example, we are able to improve it by up to a factor three if we also in-

clude the total variation |Δ| f ′ of the first derivative f ′ of the pdf f . Moreover, this

improvement factor approaches three if the ratio |Δ| f ′/|Δ| f is close to zero. This

condition holds if, e.g., f is the density of a normally distributed random variable

whose standard deviation is large.
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In Chapter 3, we construct new convex approximations of the recourse func-

tion Q for general two-stage MIR models with a fixed technology matrix T(ω). The

idea is to approximate the second-stage feasible regions by using pseudo-valid cut-

ting planes, which are affine in the first-stage decisions x. The rationale of using

affine cutting planes is that the corresponding approximating model can be solved

efficiently, because the resulting approximation v̂(ω, x) of v(ω, x) is convex, and

thus Q̂(x) := Eω [v̂(ω, x)] is convex as well. The drawback is that, in general, the

second-stage cost approximation v̂(ω, x) is not exact, because pseudo-valid cutting

planes may either cut away feasible solutions, or they are potentially overly conser-

vative. Our philosophy is, however, to use pseudo-valid cutting planes such that

the approximation v̂(ω, x) is good on average. Indeed, we are able to derive an error

bound on the approximation error supx |Q(x)− Q̂(x)| if the pseudo-valid cutting

planes are tight, i.e., if they are exact on a grid of first-stage decisions. In particular,

we show that the pseudo-valid cutting plane approximation Q̂ closely approxim-

ates Q if the total variations of the underlying one-dimensional conditional pdf are

small. Moreover, we derive tight pseudo-valid cutting planes for SIR models as

well as for a nurse scheduling problem, and we use them to demonstrate the ap-

plicability of our approach. Indeed, we obtain good approximate solutions for an

array of nurse scheduling problem instances, and, in line with our error bound,

the pseudo-valid cutting planes yield better results if the variability of the random

parameters in the model is larger.

In Chapter 4, we propose an alternative type of convex approximations, the so-

called generalized α-approximations, and we derive a corresponding error bound,

which is similar to the one in Chapter 3. A key feature of the generalized α-ap-

proximations Q̂α is that the computations required for a corresponding Benders’

decomposition algorithm can be carried out efficiently. Indeed, we derive a family

of loose optimality cuts, i.e., supporting hyperplanes which define a lower bound

for Q̂α, that can be computed fast, and we use them to develop the loose Bend-

ers’ decomposition algorithm (LBDA). Our optimality cuts are called loose, because

the resulting polyhedral lower bound is in general not tight for the generalized

α-approximations, and as a result, the solution x̂ identified by LBDA is not neces-

sarily optimal in the approximating model corresponding to Q̂α. Nevertheless, we

show that our error bound for Q̂α carries over to the performance of x̂ in the ori-

ginal two-stage MIR model. Indeed, numerical experiments confirm that we find

good solutions if the underlying one-dimensional conditional pdf have small total

variations.
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In Chapter 5, we propose a family of optimality cuts for Q that define a corres-

ponding convex polyhedral lower bound, and we use these scaled cuts to develop a

Benders’ decomposition algorithm that solves general two-stage MIR models. The

main insight is that non-affine cuts for the second-stage cost functions v(ω, x) can

be transformed into affine cuts for Q(x) = Eω [v(ω, x)], which enables efficient de-

composition. In particular, if φ is an arbitrary lower bound of Q, i.e., if φ ≤ Q, then

non-affine cuts of the form

v(ω, x) ≥ α(ω)− β(ω)�x − τ(ω)φ(x) ∀ω ∈ Ω, x ∈ Rn,

where τ(ω) ≥ 0 ∀ω ∈ Ω, yield the following scaled cut

Q(x) ≥ Eω [α(ω)− β(ω)�x]
1 + Eωτ(ω)

∀x ∈ Rn,

which is affine in x. We show that a recursive application of our scaled cuts, where

φ is defined as the pointwise maximum of previously computed optimality cuts,

yields the convex envelope of Q in the limit, i.e., the family of scaled cuts is suf-

ficiently rich to identify the optimal solution. Indeed, numerical experiments in-

dicate that we are able to obtain provably good solutions and that we consistently

outperform benchmark solution methods in terms of solution quality.

Discussion and future research directions

The recurring theme of Chapters 2-5 is convexification: we propose approximate

and exact techniques for convexifying the recourse function Q that are comple-

mentary. Indeed, the exact convexification techniques of Chapter 5 are well-suited

if Q is highly non-convex, whereas the use of convex approximations is justified

if Q can be approximated closely by a convex function. One limitation is that, a

priori, it is not clear which solution method is best-suited to solve a given MIR

problem instance. Therefore, an opportunity for future research is to combine the

approximate and exact convexification techniques. For example, we may use the

scaled cuts of Chapter 5 to reduce the approximation error of the convex approxim-

ations that we develop in Chapters 3 and 4. As a result, we potentially find better

approximate solutions and correspondingly, we obtain stronger performance guar-

antees. Alternatively, we may compute our scaled cuts by using an approximate

lower bound of Q that we obtain via approximate convexification techniques. By

doing so, we speed up convergence of the scaled cuts, at the expense of introducing
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approximation error, and thus the resulting Benders’ decomposition may converge

to suboptimal solutions.

Another approach is to determine a priori which convexification strategy is ap-

propriate by deriving sharp, tractable error bounds for the convex approximations

of Chapters 3 and 4: if such error bounds are small, then Q admits a close convex

approximation, whereas otherwise Q is likely highly non-convex, justifying the use

of exact convexification. In fact, this links to a second limitation of the results in

this thesis: the error bounds that we derive in Chapters 3 and 4 are in general in-

tractable, and they significantly overstate the actual approximation error.

In this respect, one possible direction is to extend the error bounds of Chapter 2,

which apply to one-dimensional SIR model approximations, to the convex approx-

imations of general MIR models of Chapters 3 and 4. The key insight of Chapter 2

is that the error bound in [61] for the shifted LP-relaxation of SIR models can be

improved by using the total variations of the higher-order derivatives of the under-

lying pdf. In particular, we are able to derive stronger bounds on the expectation

of special types of periodic functions, which directly translate into error bounds

for the shifted LP-relaxation. Interestingly, the error bounds that we derive for the

pseudo-valid cutting plane approximation and the generalized α-approximation of

Chapters 3 and 4, respectively, are also obtained by proving that the underlying

difference function is asymptotically periodic. Thus, it remains to investigate if

the higher-order total variation bounds on the expectation of periodic functions in

Chapter 2 can be generalized to the more general periodic functions that arise as

difference functions in Chapters 3 and 4.

Another avenue for future research is to construct a tight family of pseudo-valid

cutting planes for general MIR models. In Chapter 3, we derive such cutting planes

for a nurse scheduling problem, as well as the special class of SIR models, but they

are not available in general. In this sense, the loose Benders’ decomposition al-

gorithm of Chapter 4 complements the pseudo-valid cutting plane methodology,

as we can use LBDA if tight pseudo-valid cutting planes are not available. Thus, a

direct comparison of the two approaches would be interesting.

Finally, it is worthwhile to investigate if the proposed convexification techniques

can be extended to more general types of MIR models, such as multi-stage models,

or models that feature non-linear, e.g., conic or quadratic, cost functions.
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Samenvatting en conclusie
(summary and conclusion in
Dutch)

Een breed scala aan praktische beslissingsproblemen met betrekking tot, bijvoor-
beeld, productie, voorraadbeheer, en milieubeheer brengt onzekerheid met zich
mee. Dergelijke problemen kunnen worden gemodelleerd als twee-stadia gemengd
geheeltallige recourse (mixed-integer recourse, MIR) modellen, die expliciet para-
meteronzekerheid modelleren en geheeltallige beslissingsvariabelen toestaan om
tot een steekhoudend model te komen. We ontwikkelen oplossingsmethoden voor
dergelijke twee-stadia MIR modellen, die geformuleerd zijn als

min
x

{c�x + Eω [v(ω, x)] : Ax ≥ b, x ∈ X},

waar X ⊂ Rn niet-negativiteits- en geheeltalligheidsrestricties kan opleggen op de
beslissingsvector x, en waar de tweedestadiumkostenfunctie v is gedefinieerd als

v(ω, x) := min
y

{
q�y : Wy ≥ h(ω)− T(ω)x, y ∈ Z

p2
+ × R

n2−p2
+

}
,

ω ∈ Ω, x ∈ Rn.

In het kort is het probleem om de eerstestadiumbeslissing x zodanig te kiezen
dat de resulterende totale verwachte kosten, bestaande uit de directe kosten c�x
en de verwachte tweedestadiumkosten Q(x) = Eω [v(ω, x)], worden geminimali-
seerd. De tweedestadiumkosten v(ω, x) zijn gedefinieerd in termen van een ge-
mengd geheeltallig programmeringsprobleem, waarvan de parameters afhangen
van de eerstestadiumbeslissing x en de stochastische vector ω, die expliciet para-
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meteronzekerheid modelleert. De voornaamste moeilijkheid in het oplossen van
twee-stadia MIR modellen is dat de recourse functie Q in het algemeen niet convex
is, waardoor we niet direct efficiënte technieken van convexe optimalisatie kunnen
toepassen. We omzeilen deze moeilijkheid door middel van convexificatie. Dat wil
zeggen, we leiden een convex benaderingsmodel af dat zich goed leent voor ef-
fectieve decompositietechnieken en dus makkelijker op te lossen is. Dit stelt ons
in staat om computationeel efficiënte decompositie-algoritmes te ontwikkelen die
het benaderingsmodel oplossen. Bovendien leiden we kwaliteitsgaranties af om
zo aantoonbaar goede, of zelfs bijna-optimale, oplossingen te verkrijgen voor het
oorspronkelijke model.

In feite beschrijven we twee complementaire aanpakken gebaseerd op convexi-
ficatie. Onze eerste aanpak is om een benaderingsmodel te verkrijgen door de
recourse functie Q te vervangen door een convexe benadering Q̂ die Q dicht be-
nadert. Met andere woorden, we construeren Q̂ zodanig dat de benaderingsfout
supx |Q(x)− Q̂(x)| klein is en we leiden een bijbehorende bovengrens af. Op deze
manier garanderen we de kwaliteit van de oplossing x̂ die verkregen is door het
benaderingsmodel op te lossen. Een bovengrens op de benaderingsfout vertaalt
zich inderdaad direct naar een kwaliteitsgarantie voor x̂.

Als de recourse functie Q echter sterk niet-convex is, dan kan Q niet goed bena-
derd worden door een convexe functie, hetgeen onze complementaire aanpak mo-
tiveert. Het idee is om een convexe relaxatie van het oorspronkelijke model op te
lossen, die gedefinieerd is in termen van optimaliteitssneden (optimality cuts) die Q
van beneden begrenzen. Om precies te zijn, we leiden een familie van optimaliteits-
sneden af waarvan de afsluiting, oftewel het puntsgewijze maximum, in asympto-
tische zin convergeert naar de convexe omhulling van Q. Het voordeel van deze
optimaliteitssneden is dat de relaxatie gedefinieerd in termen van deze convexe
omhulling exact is, wat ons in staat stelt om de optimale oplossing te verkrijgen
van algemene twee-stadia MIR modellen. In het resterende gedeelte beschrijven
we de voornaamste bevindingen van elk hoofdstuk afzonderlijk, om daarna onze
hoofdbijdragen en richtingen voor toekomstig onderzoek te bespreken.

In Hoofdstuk 2 beschouwen we de zogenoemde verschoven LP-relaxatiebena-
dering (shifted LP-relaxation approximation) afgeleid door Romeijnders et al. [61]
voor de speciale klasse van enkelvoudig geheeltallige recourse (simple integer re-
course, SIR) modellen. In het bijzonder, we leiden een hiërarchie van bijbehorende
foutbegrenzingen af, die afhangen van de totale variaties |Δ| f en |Δ| f (k), k ≥ 1, van
de kansdichtheidsfunctie f van het rechterlid h(ω), en de hogere-orde afgeleiden
f (k) van f . Om specifiek te zijn, we verkrijgen successievelijk sterkere foutbegren-
zingen naarmate we meer hogere orde afgeleiden van f meenemen. Op die manier
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leiden we scherpere kwaliteitsgaranties af voor de oplossing verkregen door de
verschoven LP-relaxatie op te lossen. Een interessante observatie is dat we de oor-
spronkelijke foutbegrenzing in [61], die enkel afhangt van |Δ| f , strikt verbeteren.
Bijvoorbeeld, onze foutbegrenzing is tot een factor drie kleiner als we ook de totale
variatie |Δ| f ′ van de eerste afgeleide f ′ van f meenemen. Bovendien nadert deze
verbeteringsfactor drie naarmate de verhouding |Δ| f ′/|Δ| f nagenoeg nul is. Aan
deze voorwaarde is voldaan als, bijvoorbeeld, f de kansdichtheidsfunctie is van
een normaal verdeelde stochast met grote standaardafwijking.

In Hoofdstuk 3 construeren we nieuwe convexe benaderingen van de recourse
functie Q voor algemene twee-stadia MIR modellen waarvan de technologie ma-
trix T(ω) deterministisch is. Het idee is om het toegelaten gebied van het twee-
destadiumprobleem af te schatten door middel van pseudovalide sneden (cutting
planes), die affien zijn in de eerstestadiumbeslissingen x. De onderliggende re-
denering is dat affiene sneden leiden tot een benaderingsmodel dat efficiënt kan
worden opgelost, omdat de resulterende benadering v̂(ω, x) van v(ω, x) convex is,
en daarmee ook Q̂(x) = Eω [v̂(ω, x)]. Het nadeel is dat de benadering v̂(ω, x) van
de tweedestadiumkosten in het algemeen niet exact is, omdat pseudovalide sne-
den mogelijk toegelaten oplossingen wegsnijden, of overmatig conservatief kun-
nen zijn. Onze gedachtegang is, echter, om pseudovalide sneden te gebruiken zo-
danig dat de benadering v̂(ω, x) gemiddeld genomen goed is. Hierdoor zijn we in
staat om een bovengrens af te leiden op de benaderingsfout supx |Q(x) − Q̂(x)|,
mits de pseudovalide sneden scherp zijn, oftewel als ze exact zijn op een rooster
van eerstestadiumbeslissingen. In het bijzonder laten we zien dat de benadering Q̂
gebaseerd op pseudovalide sneden een goede benadering is van Q als de totale
variaties van de onderliggende ééndimensionale voorwaardelijke kansdichtheids-
functies klein zijn. Bovendien leiden we pseudovalide sneden af voor SIR modellen
en voor een probleem aangaande het roosteren van verplegers, en we gebruiken ze
om de toepasbaarheid van onze aanpak aan te tonen. We verkrijgen inderdaad
benaderingsoplossingen van hoge kwaliteit voor een scala aan instanties van het
roosterprobleem. Daarnaast observeren we dat, in lijn met onze foutbegrenzing,
de pseudovalide sneden beter werken als de variabiliteit van de stochastische pa-
rameters in het probleem groter is.

In Hoofdstuk 4 stellen we een alternatieve convexe benadering voor, de zoge-
noemde gegeneraliseerde α-benaderingen, en leiden we een bijbehorende foutbe-
grenzing af, die vergelijkbaar is met de foutbegrenzing uit Hoofdstuk 3. Een be-
langrijke eigenschap van de gegeneraliseerde α-benaderingen Q̂α is dat de bereke-
ningen die nodig zijn in een bijbehorend Benders’ decompositie-algoritme efficiënt
kunnen worden uitgevoerd. Dit blijkt uit het feit dat we een familie van snel uit-
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rekenbare losse optimaliteitssneden afleiden, oftewel ondersteunende hypervlak-
ken die een ondergrens definiëren voor Q̂α, en dat we die gebruiken om het losse
Benders’ decompositie-algoritme (LBDA) te ontwikkelen. We noemen onze optimali-
teitssneden los, omdat de resulterende polyhedrale ondergrens voor de gegenera-
liseerde α-benaderingen Q̂α in het algemeen niet scherp is. Als gevolg daarvan is
de oplossing x̂ niet per se optimaal in het bijbehorende benaderingsmodel. Deson-
danks laten we zien dat onze foutbegrenzing voor Q̂α ook geldt voor de kwaliteit
van x̂ in het oorspronkelijke model. Numerieke experimenten bevestigen dat we in-
derdaad goede oplossingen verkrijgen als de totale variaties van de onderliggende
ééndimensionale voorwaardelijke kansdichtheidsfuncties klein zijn.

In Hoofdstuk 5 beschrijven we een familie van optimaliteitssneden die een con-
vex polyhedrale ondergrens voor Q definiëren, en we gebruiken deze geschaalde
sneden (scaled cuts) om een Benders’ decompositie-algoritme te ontwikkelen dat
algemene twee-stadia MIR modellen oplost. Het belangrijkste inzicht is dat niet-
affiene cuts voor de tweedestadiumkostenfuncties v(ω, x) vertaald kunnen worden
naar affiene cuts voor Q(x) = Eω [v(ω, x)], hetgeen efficiënte decompositie mogelijk
maakt. In het bijzonder, als φ een willekeurige ondergrens is voor Q, oftewel als
φ ≤ Q, dan verkrijgen we uit niet-affiene cuts van de vorm

v(ω, x) ≥ α(ω)− β(ω)�x − τ(ω)φ(x) ∀ω ∈ Ω, x ∈ Rn,

waar τ(ω) ≥ 0 ∀ω ∈ Ω, de volgende scaled cut

Q(x) ≥ Eω [α(ω)− β(ω)�x]
1 + Eωτ(ω)

∀x ∈ Rn,

welke affien is in x. We bewijzen dat een recursieve toepassing van onze geschaalde
sneden, waar φ gedefinieerd is als het puntsgewijze maximum van eerder bere-
kende geschaalde sneden, in de limiet convergeert naar de convexe omhulling
van Q. Met andere woorden, de familie van geschaalde sneden is voldoende rijk
om de optimale oplossing te identificeren. Numerieke experimenten laten inder-
daad zien dat we aantoonbaar goede oplossingen verkrijgen, en dat we systema-
tisch betere resultaten behalen vergeleken met benchmarkmethodes in termen van
oplossingskwaliteit.

Discussie en richtingen voor vervolgonderzoek

Het terugkerende thema van Hoofdstukken 2-5 is convexificatie: we beschrijven
exacte en inexacte technieken om de recourse functie Q te convexificeren, die com-
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plementair zijn. In het bijzonder zijn de exacte convexificatietechnieken uit Hoofd-
stuk 5 geschikt als Q sterk niet-convex is, waar het gebruik van convexe benaderin-
gen gerechtvaardigd is als Q dicht kan worden benaderd door een convexe functie.
Een beperking is dat het a priori niet duidelijk is welke oplossingsmethode het
meest geschikt om een gegeven MIR probleeminstantie op te lossen. Een richting
voor vervolgonderzoek is daarom om de exacte en inexacte technieken te combine-
ren. Bijvoorbeeld, we kunnen de geschaalde sneden van Hoofdstuk 5 gebruiken om
de benaderingsfout van de convexe benaderingen uit Hoofdstukken 3 en 4 te ver-
kleinen. Hierdoor vinden we potentieel betere benaderingsoplossingen en daarmee
verkrijgen we betere bijbehorende kwaliteitsgaranties. Een alternatief is om onze
geschaalde sneden te berekenen met een inexacte ondergrens voor Q die verkregen
is door middel van inexacte benaderingstechnieken. Op deze manier versnellen we
de convergentie van de geschaalde sneden, ten koste van het meebrengen van een
eventuele benaderingsfout, waardoor de resulterende Benders’ decompositie naar
een suboptimale oplossing kan convergeren.

Een andere aanpak is om a priori te bepalen welke convexificatiestrategie het
meest geschikt is door scherpe, uitrekenbare foutbegrenzingen af te leiden voor
de convexe benaderingen uit Hoofdstukken 3 en 4. Inderdaad, als dergelijke fout-
begrenzingen klein zijn, dan laat Q een goede convexe benadering toe, waar an-
ders Q waarschijnlijk sterk niet-convex is, hetgeen exacte convexificatietechnieken
rechtvaardigt. Dit relateert aan een andere beperking van de resultaten in dit proef-
schrift, namelijk dat de foutbegrenzingen op de benaderingsfout die we afleiden in
Hoofdstukken 3 en 4 in het algemeen niet uit te rekenen zijn, en de daadwerkelijke
benaderingsfout significant overschatten.

In dit opzicht is een mogelijke richting om de foutbegrenzing uit Hoofdstuk 2,
die van toepassing zijn op ééndimensionale SIR modellen, te generaliseren naar de
convexe benaderingen van algemene MIR modellen uit Hoofdstukken 3 en 4. Het
belangrijkste inzicht van Hoofdstuk 2 is dat de foutbegrenzing in [61] voor de ver-
schoven LP-relaxatiebenadering van SIR modellen verbeterd kan worden door de
totale variaties van hogere order afgeleiden van de onderliggende kansdichtheids-
functies te gebruiken. In het bijzonder, we zijn in staat om sterkere grenzen af te
leiden op de verwachting van speciale soorten periodieke functies, die direct ver-
taald kunnen worden naar foutbegrenzingen voor de verschoven LP-relaxatie. Een
interessante observatie is dat de foutbegrenzingen die we afleiden voor de bena-
dering gebaseerd op pseudovalide sneden en de gegeneraliseerde α-benaderingen
uit Hoofdstukken 3 en 4 ook zijn verkregen door te bewijzen dat de onderliggende
verschilfunctie asymptotisch periodiek is. Een relevante open vraag is daarom of
de grenzen op de verwachting van periodieke functies in termen van hogere orde
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totale variaties uit Hoofdstuk 2 gegeneraliseerd kunnen worden naar de meer alge-
mene periodieke functies die naar voren komen als verschilfuncties in Hoofdstuk-
ken 3 en 4.

Een andere richting voor vervolgonderzoek is om een familie van scherpe pseu-
dovalide sneden te construeren voor algemene MIR modellen. In Hoofdstuk 3
leiden we dergelijke sneden af voor een probleem aangaande het roosteren van
verplegers, alsmede voor de speciale klasse van SIR modellen, maar ze zijn niet
voorhanden in het algemene geval. In dit opzicht complementeert het losse Ben-
ders’ decompositie-algoritme uit Hoofdstuk 4 de methodologie van pseudovalide
sneden, daar we LBDA kunnen gebruiken als pseudovalide sneden niet voorhan-
den zijn. Een directe vergelijking van de twee aanpakken zou daarom interessant
zijn.

Ten slotte is het de moeite waard om te onderzoeken of de voorgestelde convexi-
ficatietechnieken uitgebreid kunnen worden naar meer algemene klassen van MIR
modellen, zoals multi-stadia modellen, of modellen met niet-lineare, bijvoorbeeld
conische of kwadratische, kostenfuncties.
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