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Background and purpose: Large radiotherapy (RT) planning imaging datasets with consistently contoured
cardiovascular structures are essential for robust cardiac radiotoxicity research in thoracic cancers. This
study aims to develop and validate a highly accurate automatic contouring model for the heart, cardiac
chambers, and great vessels for RT planning computed tomography (CT) images that can be used for
dose-volume parameter estimation.
Materials and methods: A neural network model was trained using a dataset of 127 expertly contoured
planning CT images from RT treatment of locally advanced non-small-cell lung cancer (NSCLC) patients.
Evaluation of geometric accuracy and quality of dosimetric parameter estimation was performed on 50
independent scans with contrast and without contrast enhancement. The model was further evaluated
regarding the clinical acceptability of the contours in 99 scans randomly sampled from the RTOG-0617
dataset by three experienced radiation oncologists.
Results: Median surface dice at 3 mm tolerance for all dedicated thoracic structures was 90% in the test
set. Median absolute difference between mean dose computed with model contours and expert contours
was 0.45 Gy averaged over all structures. The mean clinical acceptability rate by majority vote in the
RTOG-0617 scans was 91%.
Conclusion: This model can be used to contour the heart, cardiac chambers, and great vessels in large
datasets of RT planning thoracic CT images accurately, quickly, and consistently. Additionally, the model
can be used as a time-saving tool for contouring in clinic practice.
© 2021 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 165 (2021) 52-59 This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Cardiac toxicity associated with radiotherapy of lung cancer
patients has been a focus of research since correlations between
cardiac dose and overall survival (OS) emerged from studies such
as the RTOG-0617 [1,19,20], and after similar relationships had
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mean absolute error; NCI, national cancer institute; NCTN, National Clinical Trials
Network; NSCLC, non-small cell lung cancer; NTCP, normal tissue complication
probability; OAR, organ at risk; OS, overall survival; PA, pulmonary artery; RA, right
atrium; RC, requires corrections; RL, right lung; RT, radiotherapy; RV, right
ventricle; SVC, superior vena cava.
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been found for breast cancer and lymphoma patients [2]. A 2019
systematic review [3] analyzed the association between whole-
heart dosimetric parameters and outcomes in 22 studies, including
5614 unique non-small cell lung cancer (NSCLC) patients, and
observed statistically significant associations in multivariable anal-
yses only in 10 cases. Additionally, no specific parameter was con-
sistently related with OS or cardiac events across multiple studies.
Only five of the analyzed articles investigated relationships
between 0S and dosimetric parameters of specific cardiac sub-
structures [4-8]. However, statistically significant relationships
were found in all of these, namely, regarding dose to the pul-
monary artery (PA), superior vena cava (SVC), and heart base. Later
studies have continued to report findings related to dose to sub-
structures and outcomes [9]. Other developments also suggest that
sparing of the heart and other large blood reservoirs reduces dose

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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to the blood pool, which may decrease the probability of lym-
phopenia [10]. Therefore, current cardiac radiotoxicity literature
remains inconclusive, with research presently shifting more
towards investigating potential radiosensitive cardiac substruc-
tures and dose to the blood pool.

Cardiac toxicity research is limited in part by the availability of
accurate and consistent contours for cardiovascular structures
[11]. In this sense, automatic contouring tools can potentially offer
a solution to contour cardiovascular structures in larger datasets
[12,13]. Payer et al. [14] developed a cardiac contouring model that
achieved an average of 90% volumetric Dice for the heart substruc-
tures [15]. Unfortunately, there was no evaluation of the clinical
acceptability of these automatic contours. Furthermore, the algo-
rithm was developed using Computed Tomography (CT) images
acquired following a coronary CT angiography protocol that do
not represent those found in radiotherapy planning regarding
acquisition parameters or patient anatomy (absence of tumor).
Other models such as those trained with images from breast cancer
patients [16] are unlikely to generalize as well for lung cancer
patient images which regularly contain tumors close to the heart.
Despite the current state of the art for automatic cardiac contour-
ing in lung cancer patients reporting high accuracies for the whole
heart, the cardiac chambers and the great vessels [17,18], it still
lacks in clinical validation. Specifically, model accuracy has been
evaluated in datasets of only a few dozens of patients, often from
a single institute and dosimetric parameter estimation and clinical
acceptability has either not been evaluated [17], or only evaluated
at the same scale [18]. Impact of adjacency of the tumor to the con-
toured structures has also not been reported. However, due to the
high anatomical variability of tumors and the perturbation they
can cause on the surrounding anatomy, tumor adjacency is a major
confounding factor for automatic contouring and should also be
evaluated.

We aim to improve automatic cardiac contouring accuracy for
RT planning CTs by employing a 3D Deep Learning (DL) model with
a newly introduced inductive bias, while providing extensive clin-
ical validation results using a multi-institutional dataset and eval-
uating clinical acceptability in the RTOG-0617 dataset [1,19,20].
Active learning was used to improve model generalizability and
an evaluation of the impact of tumor adjacency to the contoured
structure on model accuracy is provided.

Methods

Data

For model development, two independent datasets, RUMC [21]
and ML1 [22], were used and are described in detail in Table 1. A
clinical acceptability study was then performed on a dataset sam-
pled from the RTOG-0617 data [1,19,20].

The RUMC dataset [21] consisted of 157 RT planning 3D CT
scans from 157 patients treated for irresectable advanced stage
NSCLC at the Radboud University Medical Center between 2008
and 2014. The heart and the cardiac chambers of all CT scans were
manually delineated by an expert radiation oncologist with more
than ten years of experience (RW) following Feng et al. [23]. The
great vessels were delineated (see Supplemental Material, Sec-
tion 1), and independently verified by a radiation oncologist
(RW). The expert contours of the heart (HT), left ventricle (LV),
right ventricle (RV), left atrium (LA), right atrium (RA), aorta
(AQ), PA, SVC, and inferior vena cava (IVC), were used as the
ground truth for our automatic contouring model. To evaluate
the impact of adjacency between the tumor and these structures
on contouring accuracy, tumor-structure adjacency was automati-
cally assessed using the expert contours and the planning gross
tumor volumes (GTVs) (including irradiated lymph nodes, see
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Table 1). The dataset was randomly split on a patient-level into a
training, validation, and test subset, composed of 111, 16, and 30
patients, respectively. For the training and test subsets, scans were
stratified by specific scanner types and patient sex.

The public ML1 dataset consisted of 422 non-contoured 3D CT
scans from 422 stage [-Illb NSCLC patients acquired for RT plan-
ning at the MAASTRO clinic [22]. This dataset was used to intro-
duce multi-institutionality to the test data and to identify
problematic cases to be fed back to the model for fine-tuning. On
that basis, we selected 20 problematic cases by predicting the
heart contour with a preliminary model on the entire dataset
and visually choosing the patients for which the predictions were
problematic, cases of generalized failure or with systematic errors,
excluding outliers with severe artifacts, pericardial effusion, or
pneumectomy. Subsequently, all structures were manually con-
toured and independently verified by an expert radiation oncolo-
gist (RW) (procedure shown in Fig. SM2.1). The addition of these
scans to the test set biases the contour accuracy results negatively.
However, these should also have the highest potential to increase
the model's generalizability after fine-tuning in the test set before
it being used to contour the clinical acceptability study data (see
Section 2.2).

Model

For the automatic contouring algorithm, we implemented the
DL architecture proposed by Nikolov et al. [24] using Pytorch 1.4
[25]. This architecture, inspired by the original U-net architecture
|26], was used by Nikolov et al. to achieve expert-level contouring
accuracy for multiple head-and-neck Organs at Risk (OAR)s in
planning CT volumes. Compared to the conventional U-net and
3D U-net [27] architectures, there are some notable differences.
Instead of 3-4 contracting and expanding levels, this architecture
consists of 8 such levels and is therefore capable of more complex
abstractions. This depth is made possible by the skip-connections
present in each contracting and expanding module, which promote
residual learning, improving training efficiency and attenuating the
vanishing gradients problem. To further increase the receptive
field, the lowest level consists of a fully-connected block rather
than a convolutional block. A detailed description of the model
architecture can be found in Nikolov et al. [24]. With respect to
the approach of Nikolov et al., the model used in this study
included an additional inductive bias in the output layer, as this
improved training efficiency and validation accuracy. Other differ-
ences include the loss function, post processing, and the use of
active learning. All of these are elaborated upon in the ensuing text
and the Supplemental Material.

The model takes 3D inputs of size 21 x 512 x 512, slices, rows,
and columns and outputs the segmentation map of 11 labels: HT,
LV, RV, LA, RA, AO, PA, SVC, IVC, Left Lung (LL), and Right Lung
(RL). Prediction of the LL and RL was included as an extra supervi-
sory signal for regularization purposes, using the planning con-
tours as the ground truth. A new inductive bias was introduced
to drive the model towards predicting masks for the substructures,
LV, RV, LA, and RA, within the predicted mask for the HT by multi-
plying their output probabilities with the HT probability. Addition-
ally, all structures except the HT were constrained to not overlap
with each other by using a softmax layer. Cross entropy was used
as the loss function. The formal definition of the output layer and
the loss function can be found in Section 2 of the Supplemental
Material.

The neural network weights were optimized using RAdam [28].
To avoid overfitting, training was stopped when volumetric Dice,
Dice,,, peaked in the RUMC validation set. We then used this
model to contour the test set (30 RUMC scans + 20 ML1 scans).
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Table 1
Dataset characteristics.
RUMC ML1 Total
Total Train Validation Test Total Test

Patients 157 111 16 30 422 20 579

Scans 157 111 16 30 422 20 579

Manually Delineated 157 111 16 30 20 20 177

Gender Males 89 62 9 18 290 17 379
Females 68 49 7 12 132 3 200

Contrast Enhanced 155 110 16 29 145 9 300

Scanner Philips Brilliance Big Bore 122 88 13 21 0 0 122
SIEMENS Emotion Duo 18 14 1 3 0 0 18
SIEMENS SOMATOM 15 9 1 5 0 0 15
SIEMENS Biograph40 2 0 1 1 184 7 186
Canon XiO 0 0 0 0 97 7 97
SIEMENS Sensation Open 0 0 0 0 111 5 111
SIEMENS Sensation 16 0 0 0 0 25 3 25
SIEMENS Sensation 10 0 0 0 0 4 0 4

Tumor Adjacency HT 122 89 11 22 - 11 -
LV 15 10 0 5 - 5 -
RV & 2 0 0 - 2 -
LA 113 87 8 18 - 9 -
RA 22 18 0 4 - 1 -
AO 133 96 11 26 - 11 -
PA 147 103 14 30 - 14 -
svC 118 88 10 20 - 8 -
IvC 5 4 0 1 - 0 -

RUMC and ML1 dataset characteristics important for contouring accuracy. The RUMC dataset was randomly split into training, validation, and test set. The test set was
stratified by sex and specific scanner types. Of all ML1 data, 20 scans were visually selected for the test set due to generalized failure or systematic errors from a preliminary
cardiac contouring model, excluding those with severe artifacts, pericardial effusion, or pneumectomy. Tumor was considered adjacent to an ROl if the volume of both
structures, taken from the planning gross tumor volume (GTV) and the manual contours, respectively, were in direct contact. The GTV included irradiated lymph nodes.
Contrast labels in the ML1 dataset were automatically estimated from the HU distribution in the AO and visually confirmed in the 20 test set cases.

For a detailed description of the training procedure, see Section 2 of
the Supplemental Material.

The quality of the automatic segmentations was evaluated
against the expert contours using Dicey,, and surface Dice,
Dicegyrface [24]. Unlike Dice,,, Dicegyface is Not biased towards struc-
tures with small surface-to-volume ratios and accounts for con-
touring uncertainty. A tolerance of 3 mm was used for Dicegyrace
computation, which corresponds to the typical longitudinal scan
resolution in our datasets. To evaluate the model’'s usefulness for
dosimetric feature computation, we compared the dose-volume
parameters of each structure computed using the expert contours
against those computed using the automatic contours. Namely, the
difference between the Dose Volume Histograms (DVHs) com-
puted with both contours was evaluated using the mean absolute
error (MAE). This consisted in sampling both DVHs in 5 Gy inter-
vals starting from 5 Gy up to the maximum dose and computing
the absolute error for each of those points.

A fine-tuning step was performed after the aforementioned
quantitative evaluation by adding the 50 test scans to the training
and validation sets and continuing training from the previously
optimized point (see Supplemental Material, Section 2). This fine-
tuning step allowed the model to also learn from the 20 problem-
atic cases chosen from the ML1 dataset. These included several
examples of non-contrast CTs which were lacking in the training
and validation sets (Table 1). The fine-tuned version of the model
was used in the clinical acceptability study.

Evaluation of clinical acceptability

To evaluate the automatic contours’ clinical acceptability, an
internal reader study was set up using the Grand Challenge soft-
ware [29]. One hundred CT images from the RTOG-0617 dataset
were selected at random and automatically contoured using our
model. One patient was excluded due to a postprocessing artifact
in the base of the heart in the original image. The entire volumes,
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with the superimposed contours, were displayed one at a time in
the axial view. Three expert radiation oncologists rated the con-
tours individually (RW, JB with 30 plus years of experience, and
DS with 20 plus years of experience). For each image, the readers
were asked to rate each contour as (i) “Requires corrections. Large,
obvious errors” (#RCLE), (ii) “Requires corrections. Minor errors”
(#RCME), (iii) “Clinically acceptable. Errors not clinically signifi-
cant” (#CANSE), or (iv) “Clinically acceptable. Contours are highly
accurate” (#CAHA). Here, “clinically acceptable” was defined as
acceptable for use in treatment planning.

The decision of providing four labels, two acceptable and two
requiring corrections was driven by two goals: having each con-
tour labeled as acceptable or not and simultaneously giving the
possibility of differentiating contours within the acceptable and
requiring corrections categories. At the end of the reader study,
each contour had been given one evaluation by each radiation
oncologist. If at least two of them were acceptable (#CANSE or
#CAHA) then the contour was considered acceptable. This majority
vote methodology was defined before the reader study started,
hence the inclusion of three radiation oncologists in the study.
Due to the nature of this methodology, some accepted contours
were labeled non-acceptable by one radiation oncologist. The atlas
|23] on which the expert heart contours for the RUMC and ML1 test
set were based, was provided to each reader. The readers did not
discuss between themselves any specifics related to the study or
the contour evaluations and were aware that the contours were
made by an automatic algorithm.

Results

Table 2 presents the median Diceg, . at 3 mm tolerance,
DicCesyfacei3mm. and Diceyy for all structures in the RUMC test set
and the ML1 dataset (quartile information in Tables SM4.1 and
SM4.2). The median of the average Dicegysacelzmm for all structures
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Table 2
Median surface Dice and volumetric Dice scores for all structures in the RUMC test set and the ML1 dataset.
HT LV RV LA RA AO PA SvC IvC Mean

Dicegyface|3mm RUMC - 0.95 0.92 0.88 0.91 0.88 0.99 0.97 0.96 0.88 0.92
CE 0.96 0.92 0.88 0.91 0.88 0.99 0.97 0.96 0.88 0.92

NCE 0.74 0.71 0.68 0.81 0.63 0.74 0.90 0.65 0.11 0.66

ML1 - 0.89 0.83 0.79 0.83 0.86 0.93 0.92 0.88 0.69 0.85

CE 091 0.87 0.86 0.84 0.88 0.97 0.97 0.90 0.82 0.90

NCE 0.88 0.82 0.70 0.82 0.80 0.77 0.87 0.87 0.61 0.75

Test set (RUMC + ML1) - 0.94 0.88 0.88 0.87 0.87 0.99 0.96 0.93 0.82 0.90

CE 0.94 0.92 0.88 0.90 0.88 0.99 0.97 0.95 0.88 0.91

NCE 0.87 0.77 0.69 0.82 0.77 0.76 0.89 0.86 0.59 0.75

Diceyg, RUMC - 0.96 0.93 0.89 0.88 0.88 0.95 091 0.88 0.78 0.89
CE 0.96 0.93 0.89 0.88 0.88 0.95 0.92 0.88 0.78 0.89

NCE 0.89 0.82 0.82 0.85 0.73 0.75 0.83 0.54 0.03 0.70

ML1 - 0.95 0.90 0.84 0.86 0.87 0.92 0.89 0.82 0.63 0.86

CE 0.95 091 0.88 0.89 0.90 0.95 0.92 0.86 0.78 0.89

NCE 0.94 0.90 0.75 0.84 0.85 0.80 0.87 0.77 0.54 0.77

Test set (RUMC + ML1) - 0.95 0.92 0.88 0.87 0.88 0.94 0.91 0.86 0.74 0.88

CE 0.96 0.92 0.89 0.89 0.88 0.95 0.92 0.88 0.78 0.89

NCE 0.94 0.87 0.78 0.85 0.85 0.79 0.86 0.76 045 0.77

Median surface Dice at 3 mm tolerance, Diceyfacezmm. and volumetric Dice, Dice,y, scores for all 9 structures in the entire test set and independently for the 30 patients of the
RUMC test set and the 20 patients of the ML1 dataset. Results for contrast enhanced (CE) and non-contrast enhanced (NCE) CTs are also given independently.

Table 3
Tumor adjacency effect on surface dice.

ROI Tumor Adjacency to ROI

With Without D Occurrence (%)
HT 0.957 0.955 0.981 72
LV 0.922 0.923 0.470 17
RV - 0.893 - 0
LA 0917 0912 0.946 62
RA 0.898 0.882 0.548 14
AO 0.993 0.990 0.728 86
PA 0.972 - - 100
SVC 0.951 0.972 0.126 69
vc 0.910 0.878 0.676 3

Median Surface Dice at 3 mm tolerance for all structures, split by presence of tumor
adjacency to the respective ROl in contrast enhanced CT scans of the RUMC test set.
Difference between groups evaluated for statistical significance using a double-
sided Mann-Whitney U test. Percentage of adjacency occurrence is also reported.

in the RUMC and ML1 datasets was, respectively, 0.92 and 0.85.
Contrast enhancement was the largest contributor to contouring
accuracy in the test set. The median average Dicesysfacesmm i CON-
trast enhanced scans was 0.91, while for non-contrast enhanced
scans it was 0.75. The highest median Dicesyfacezmm SCOTES Were
achieved for the HT (0.94), AO (0.99), PA (0.96), and SVC (0.93).

Adjacency of tumors to the heart and vessels also affected con-
tour accuracy. Table 3 shows how Dic€sfacepmm Was affected by
tumor adjacency in contrast CTs in the RUMC dataset for all struc-
tures. Contour accuracy was considerably affected by tumor adja-
cency in the SVC (p=0.126), but the model seemed robust
against adjacency to the remaining structures.

Fig. 1 shows the predicted contours and the expert contours for
the scan with median average Dicegyfacezmm OVer all structures. Fig-
ure SM5.1 shows representative cases where the model did not
perform as desired. For further inspection, all model predictions
in the public ML1 dataset can be found at https://github.com/Fer-
nandesMG/WHS_ResUNET.

Fig. 2A shows the absolute difference between the mean dose
computed with the expert contours and the mean dose computed
with the model contours for each structure in the RUMC test set.
The largest median absolute difference observed for the mean dose
was 1.11 Gy for the LA (HT: 0.28 Gy, LV: 0.08 Gy, RV: 0.24 Gy, RA:
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0.35 Gy, AO: 0.24 Gy, PA: 0.72 Gy, SVC: 1.00 Gy, IVC: 0.10 Gy). No
statistically significant difference was found between the two con-
tour groups in a Wilcoxon signed-rank test for the investigated
parameters, including mean dose (lowest p = 0.843 for RV), 2nd
percentile dose, Dy, (lowest p = 0.599 for SVC), or 98th percentile
dose, Dggy, (lowest p = 0.715 for SVC).

Fig. 2B shows the MAE between the DVHs computed with the
expert and manual contours for each instance of the test set and
ROI in the RUMC test set. The structure with the highest median
MAE was the IVC (2,79%), which correlates with what was found
for contouring accuracy, while for the other structures median
MAE was equal to or less than 2% (HT: 0.48%, LV: 0.56%, RV:
1.64%, LA: 2.02%, RA: 1.43%, AO: 0.48%, PA: 1.09%, SVC: 1.49%).

Fig. 3 shows the clinical acceptability reader study results in the
99 scans of the RTOG-0617 dataset. A contour was regarded as
acceptable if at least two of the three radiation oncologists’ evalu-
ations where either #CANSE or #CAHA. Clinical acceptability for all
structures was as follows: Heart: 97%, LV: 100%, RV: 96%, LA: 98%,
RA: 96%, AQ: 88%, PA: 87%, SVC: 67% IVC: 90%. Also presented in
Fig. 3 is the percentage of each of the four evaluations for the cases
elected as clinically acceptable (CA).

Discussion

The geometric accuracy results show that our model is capable
of consistently and accurately identifying and contouring the heart,
cardiac chambers, and great vessels in different levels of noise,
contrast, resolution, and in scans acquired in multiple institutes
from stages [-I1Ib NSCLC patients. We observed that most discrep-
ancies between the model and the manual contours occurred
either in contour cut-off points or when there was adjacency
between a tumor and a structure. Differences in contour cut-off
points were partly due to the difficulty in identifying the contour
cut-off landmarks. Errors caused by the adjacency of tumors were
due to low contrast between the tumors and the structures and
anatomical perturbation caused by the tumor. The latter was par-
ticularly true for the SVC, which is more deformed by the tumor
than the PA or the AO due to its thinner walls. Given tumor ana-
tomic variability, this limitation could, in the future, be alleviated
by performing active learning with slices where tumor adjacency
is present, particularly with regards to the SVC, as the target.

Generalizability to other images used for radiotherapy planning
such as 4D CT time averages was not evaluated in this study. These
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Fig. 1. Axial plane examples of the automatic contours for the patient with median surface Dice at 3 mm tolerance, averaged over all structures. Difference to the expert

contours in shade.

images typically differ the most from 3D CT scans in terms of the
type and amount of respiratory motion artifacts present in the
lungs and tumor. Thus, the model should be able to generalize its
cardiac contouring performance to 4D CT averages as it has also
been observed in preliminary results of future work.

In this study, a uniform tolerance of 3 mm for Dicesyrace Was
used for each structure. Ideally, this tolerance would reflect the
actual accepted variability over the surface of each structure such
that Dicegy e Tepresented the fraction of the automatic contour
within the acceptable limits. Estimating this tolerance in our data-
set was not possible because only one manual contour was avail-
able per scan. From Lorenzen et al. [30], the average
interobserver contouring variability for the heart when using
guidelines is larger at the base - up to 2 cm- and in the right-
posterior area - up to 1 cm - being mostly bellow 0.5 cm through-
out the remaining surface area. From this literature, a uniform
3 mm tolerance seems a reasonable middle-ground between the
reported ranges of interobserver contouring variability.

Compared to experts, our model appears to achieve similar or
better geometric accuracy scores for the heart and cardiac cham-
bers. For instance, our test set mean overlap results were: HT:
+3%, LV: — 1%, RV: +13% when compared to those achieved by
seven experts against panel reviewed gold standards in contrast
CTs, following the same contouring atlas used in our study [23].

Regarding the presented dosimetric parameters in the RUMC
dataset, the significance of the automatic contouring errors
depends on the intended application of those dosimetric parame-
ters. Feng et al. [23] also evaluated how differences in expert con-
tours against a gold standard reflected in mean dose differences in
four breast cancer patients with a prescribed total dose of 50 Gy:
HT: 0.14 + 0.14 Gy, LV: 0.15 * 0.14 Gy, RV: 0.46 £ 0.37 Gy. These
results are comparable to ours for NSCLC patients (Fig. 2A), which
underwent treatments with a prescribed total dose of 66 Gy. Visual
inspection of the high error outliers showed that the biggest rela-
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Absolute mean dose difference (Gy)

HT

LV RV LA RA

Fig. 2A. Absolute difference between the mean dose computed with the automatic
contours and the expert contours for each structure in the RUMC test set. The blue
cross sign represents points where there was adjacency between the tumor and the
respective ROI, the gray plus sign represents no adjacency. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this
article).
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HT LV RV LA RA AO PA SVC

IVC

Fig. 2B. Mean Absolute Error (MAE) between the same parameters sampled from
the Dose Volume Histograms (DVHs) computed with the automatic contour relative
to those from the DVHs computed with the expert contours for each structure in the
RUMOC test set. These parameters were sampled from both DVHs in intervals of 5 Gy
starting from 5 Gy until the maximum dose in both DVHs had been surpassed (i.e.,
V5, V10, and so on).

tive differences in dosimetric parameters resulted from contouring
differences in the high dose-gradient regions of the imaged vol-
ume. Because most tumors in our dataset were located near the
base of the heart, contouring errors in that region contributed dis-
proportionally more to errors in the computed dosimetric param-
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eters than similar contouring errors in the low gradient regions
of the imaged volume, either far from the tumor or adjacent to it.

One of the advantages of using an automatic contouring model
is that intra- and inter-observer variability is eliminated. This is a
major benefit when compared to choosing a group of experts to
contour a dataset because systematic contour differences between
experts might be reflected in systematic differences in the dosi-
metric parameters and all other computations made using those
contours [31]. Moreover, these algorithms can be easily deployed
in any given institute, avoiding the time and monetary costs of
manual contouring following the same atlas and contouring direc-
tions. Given this and the achieved dosimetric parameter estimation
results, the model presented in this study is ideal for consistently
contouring large datasets of planning CTs for cardiac toxicity
research and development of robust NTCP models.

Our reader study results showed moderate acceptability rates
for the SVC and high acceptability rates for all other structures.
This is particularly significant since the RTOG-0617 is a multi-
institutional dataset, which represents the typical scan and
anatomical variability found in clinic, including a high percentage
of non-contrast enhanced images. The improvement observed for
non-contrast-enhanced images implies that the fine-tuning step
on the test set had a noticeably positive effect on contouring. The
lower acceptability rates of the SVC contours were due to cut-off
errors in the cranial region of the vessel and the previously men-
tioned deformation caused by the tumor. Note also that the AO
and PA contours, while receiving one of the highest percentages
of highly accurate grades as well as highest Dicegygace/zmm and dosi-
metric parameter estimation scores, did not rank as high in the
majority vote for acceptability (Fig. 3). This implies that when
the model commits contouring errors for the vessels, they are often
large relative to those committed for the cardiac chambers and the
heart (i.e., failing to identify the structure vs. failing to accurately
follow an edge, respectively). Of note is also the potential bias asso-
ciated with the readers not being blind to the nature of the con-
tours. This is difficult to avoid given that the source of the
contours (manual versus automatic) can frequently be derived by
their intrinsic characteristics (for example high-frequency artifacts

RTOGO0617 Clinically Acceptable (CA) rates by majority vote (%)

100 5
80 —
60 —
40 -
20 —
0 E -+ 5 —— — - — N
HT W RV LA RA  AO PA SVCIVC

™ Highly Accurate

Non-Significant Errors I Minor Errors B Obvious Errors

Fig. 3. Contour Clinically Acceptable (CA) rates on the 99 randomly selected scans from the RTOG-0617 dataset, evaluated by three experienced radiation oncologists. For
each scan, CA rates were determined by majority vote: highly accurate (#CAHA) and non-significant errors (#CANSE) answers counted with a CA vote. Minor Errors (#RCME)
and obvious errors (#RCOE) answers counted with a “Requires Corrections” vote. A contour was elected as CA if at least two of the three votes were CA. Of all contours elected

as acceptable, the percentages of each of the four evaluations are stacked.
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are rare in manual contours). Given the high clinical acceptability
rates achieved in the reader study, our model could also potentially
be used as a starting point for contouring in clinical practice as a
time-saving tool.

Conclusion

In this study, we developed a DL model for automatic contour-
ing of the heart, cardiac chambers, and great vessels. Active learn-
ing was used to take advantage of the public ML1 dataset, which
increased the heterogeneity of the training set. Our extensive clin-
ical validation showed that this model performed well in geomet-
ric contouring accuracy, dosimetric parameter estimation, and
clinical acceptability evaluation in multi-institutional datasets
reflective of the day-to-day scans acquired in clinic. This includes
non-contrast enhanced images and cases where tumor adjacency
to the cardiovascular structures is present. Thus, this model can
contribute to the availability of high-quality cardiovascular con-
tours to further cardiac radiotoxicity research in large datasets.

Funding

None.

Data Availability Statement

The model is stored in a private repository and will be shared
upon request to the corresponding author. The prediction results
in the public ML1 dataset are available in GIF format at: https://
github.com/FernandesMG/WHS_ResUNET. The RUMC dataset is
not publicly available due to legal and privacy reasons.

Conflict of Interest

Miguel Garrett Fernandes: None.
Johan Bussink: None.

Barbara Stam: None.

Robin Wijsman: None.

Dominic A. X. Schinagl: None.
Jonas Teuwen: None.

René Monshouwer: None.

Acknowledgments

This manuscript was prepared using data from Datasets
NCT00533949-D1, NCT00533949-D2, and NCT00533949-D3 from
the NCTN/NCORP Data Archive of the National Cancer Institute’s
(NCI's) National Clinical Trials Network (NCTN). Data were origi-
nally collected from clinical trial NCT number NCT00533949
RTOG-0617. All analyses and conclusions in this manuscript are
the sole responsibility of the authors and do not necessarily reflect
the opinions or views of the clinical trial investigators, the NCTN,
the NCORP or the NCL

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.radonc.2021.10.008.

References

[1] Bradley JD, Paulus R, Komaki R, et al. Standard-dose versus high-dose
conformal radiotherapy with concurrent and consolidation carboplatin plus
paclitaxel with or without cetuximab for patients with stage IlIA or IlIB non-
small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial p.

58

Lancet Oncol https://doi.org/10.1016/S1470-2045(14)
71207-0.
Darby SC, Cutter DJ, Boerma M, et al. Radiation-related heart disease: current

knowledge and future prospects Int ] Radiat Oncol Biol Phys 2010;76:656-65.
.2009.09.064.

2015;16:187-99.

[2

Zhang TW, Snir ], Boldt RG et al. Is the Importance of heart dose overstated in
the treatment of non-small cell lung cancer? A systematic review of the
literature. Int ] Radiat Oncol Biol Phys 2019;104:582-9. https://doi.org/
10.1016/i.ijrobp.2018.12.044.

McWilliam A, Kennedy J, Hodgson C, Vasquez Osorio E, Faivre-Finn C, van Herk

M. Radiation dose to heart base linked with poorer survival in lung cancer

patients. Eur | Cancer 2017;85:106-13. https://doiorg/10.1016/j.

€jca.2017.07.053.

Stam B, Peulen H, Guckenberger M, et al. Dose to heart substructures is

associated with non-cancer death after SBRT in stage I-1l NSCLC patients.

Radiother Oncol 2017;123:370-5. https://doi.org/10.1016/j.

radonc.2017.04.017.

Vivekanandan S, Landau DB, Counsell N, et al. The impact of cardiac radiation

dosimetry on survival after radiation therapy for non-small cell lung cancer.

Int ] Radiat Oncol 2017;99:51-60. https://doi.org/10.1016/i

ijrobp.2017.04.026.

Wong 0Y, Yau V, Kang J, et al. Survival impact of cardiac dose following lung

stereotactic body radiotherapy. Clin Lung Cancer 2018;19:e241-6. https://doi.

0rg/10.1016/j.cllc.2017.08.002.

[8] MaJ-T, Sun L, Sun X, et al. Is pulmonary artery a dose-limiting organ at risk in
non-small cell lung cancer patients treated with definitive radiotherapy?
Radiat Oncol 2017;12. https://doi.org/10.1186/s13014-017-0772-5.

[9] Ghita M, Gill EK, Walls GM, et al. Cardiac sub-volume targeting demonstrates

regional radiosensitivity in the mouse heart. Radiother Oncol

2020;152:216-21. https://doi.org/10.1016/j.radonc.2020.07.016.

Contreras JA, Lin AJ, Weiner A, et al. Cardiac dose is associated with

immunosuppression and poor survival in locally advanced non-small cell

lung cancer. Radiother Oncol ] Eur Soc Ther Radiol Oncol 2018;128:498-504.

3]

4

[5]

6

[7

[10]

https://doi.org/10.1016/j.radonc.2018.05.017.

Badiyan SN, Robinson CG, Bradley ]D. Radiation toxicity in lung cancer

patients: the heart of the problem? Int ] Radiat Oncol Biol Phys

2019;104:590-2. https://doi.org/10.1016/1.ijrobp.2019.03.007.

Wong J, Fong A, McVicar N, et al. Comparing deep learning-based auto-

segmentation of organs at risk and clinical target volumes to expert inter-

observer variability in radiotherapy planning. Radiother Oncol
2020;144:152-8. https:[/doi.org/10.1016/j.radonc.2019.10.019.

Liu X, Li K-W, Yang R, Geng L-S. Review of Deep Learning Based Automatic

Segmentation for Lung Cancer Radiotherapy. Front Oncol 2021;11:2599.

https://doi.org/10.3389/fonc.2021.717039.

[14] Payer C, Stern D, Bischof H, Urschler M. Multi-label whole heart segmentation
using CNNs and anatomical label configurations. STACOM@MICCAI 2017.

[15] Zhuang X, Li L, Payer C, et al. Evaluation of algorithms for Multi-Modality
Whole Heart Segmentation: An open-access grand challenge. Med Image Anal
2019;58:101537. https:[/doi.org/10.1016/i.media.2019.101537.

[16] Morris ED, Ghanem Al, Dong M, Pantelic MV, Walker EM, Glide-Hurst CK.
Cardiac substructure segmentation with deep learning for improved cardiac
sparing. Med Phys 2020;47:576-86. https://doi.org/10.1002/mp.13940.

[17] Harms J, Lei Y, Tian S, et al. Automatic delineation of cardiac substructures

using a region-based fully convolutional network. Med Phys

2021,48:2867-76. https://doi.org/10.1002/mp.14810.

Haq R, Hotca A, Apte A, Rimner A, Deasy JO, Thor M. Cardio-pulmonary

substructure segmentation of radiotherapy computed tomography images using

convolutional neural networks for clinical outcomes analysis. Phys Imaging Radiat

Oncol 2020;14:61-6. https://doi.org/10.1016/j.phro.2020.05.009.

Clark K, Vendt B, Smith K, Freymann |, Kirby ], Koppel P, et al. The Cancer

Imaging Archive (TCIA): maintaining and operating a public information

repository. ] Digit Imaging 2013;26:1045-57. https://doi.org/10.1007/s10278-

[11]

[12]

[13]

[18]

[19]

013-9622-7.
[20] Bradley ]D, Forster K Data from NSCLC - Centux1mab The Cancer Imaging
Archive 2018. Lorg,

[21] Wijsman R, Dankers F, Troost EGC, et al Multivariable normal-tissue
complication modeling of acute esophageal toxicity in advanced stage non-
small cell lung cancer patients treated with intensity-modulated (chemo-)
radiotherapy. Radiother Oncol 2015;117:49-54. https://doi.org/10.1016/i.
radonc.2015.08.010.

[22] Aerts HJWL, Wee L, Velazquez ER, et al. Data From NSCLC-Radiomics. The
Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2015.PFOM9REI.

[23] Feng M, Moran JM, Koelling T, et al. Development and validation of a heart

atlas to study cardiac exposure to radiation following treatment for breast

cancer. Int J Radiat Oncol Biol Phys 2011;79:10-8. https://doi.org/10.1016/i.
ijrobp.2009.10.058.

Nikolov S, Blackwell S, Zverovitch A, et al. Clinically applicable segmentation of

head and neck anatomy for radiotherapy: deep learning algorithm

development and validation study. ] Med Internet Res 2021;23:e26151.
https://doi.org/10.2196/26151.

Paszke A, Gross S, Massa F, et al. PyTorch: An imperative style, high-

performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer

A, d\textquotesingle Alché-Buc F, Fox E, Garnett R, eds. Advances in Neural

Information Processing Systems 32. Curran Associates, Inc.; 2019:8024-8035.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

[24]

[25]



M. Garrett Fernandes, J. Bussink, B. Stam et al.

[26] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for
biomedical image segmentation. In: Navab N, Hornegger ], Wells WM, Frangi
AF, editors. Medical image computing and computer-assisted intervention -
MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234-41.

[27] Gigek O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning
dense volumetric segmentation from sparse annotation. In: Ourselin S,
Joskowicz L, Sabuncu MR, Unmal G, Wells W, editors. Medical image
computing and computer-assisted intervention - MICCAI
2016. Cham: Springer International Publishing; 2016. p. 424-32.

[28] Liu L, Jiang H, He P, et al. On the variance of the adaptive learning rate and
beyond. CoRR. 2019;abs/1908.0. http://arxiv.org/abs/1908.03265.

59

Radiotherapy and Oncology 165 (2021) 52-59

[29] Meakin ], van Zeeland H, Koek M, et al. Grand-Challenge.org. doi:10.5281/

zenodo.3356819

Lorenzen EL, Taylor CW, Maraldo M, et al. Inter-observer variation in

delineation of the heart and left anterior descending coronary artery in

radiotherapy for breast cancer: A multi-centre study from Denmark and the

UK. Radiother Oncol 2013;108:254-8. https://doi.org/10.1016/j.

radonc.2013.06.025.

[31] Thor M, Apte A, Haq R, lyer A, LoCastro E, Deasy JO. Using auto-segmentation
to reduce contouring and dose inconsistency in clinical trials: the simulated
impact on RTOG 0617. Int ] Radiat Oncol Biol Phys 2021;109:1619-26. https://
doi.org/10.1016/j.ijrobp.2020.11.011.

[30]



