
 

 

 University of Groningen

Network Testing Utilizing Programmable Network Hardware
Kundel, Ralf; Siegmund, Fridolin; Hark, Rhaban; Rizk, Amr; Koldehofe, Boris

Published in:
IEEE Communications Magazine

DOI:
10.1109/MCOM.001.2100191

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Kundel, R., Siegmund, F., Hark, R., Rizk, A., & Koldehofe, B. (2022). Network Testing Utilizing
Programmable Network Hardware. IEEE Communications Magazine, 60(2), 12-17.
https://doi.org/10.1109/MCOM.001.2100191

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.1109/MCOM.001.2100191
https://research.rug.nl/en/publications/dfeaa005-2f69-4393-9d06-7b37fa6f4539
https://doi.org/10.1109/MCOM.001.2100191


Ralf Kundel, Fridolin Siegmund, Rhaban Hark, Amr Rizk, Boris Koldehofe. Network Testing Utilizing Programmable
Networking Hardware. Accepted for publication in IEEE Communications Magazine, Network Softwarization and

Management Series, presumably date of publication: 01/2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical
work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have
offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each
author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

1

Network Testing Utilizing Programmable
Network Hardware

Ralf Kundel, Fridolin Siegmund, Rhaban Hark, Amr Rizk, and Boris Koldehofe

Abstract—QoS requirements on modern network
hardware, including switches and routers, require the
ability to conduct precise measurements of the packet
processing and forwarding of network elements. This
requires tracing packet processing and detecting the
loss of packets with high timing accuracy. Current
approaches for network testing rely on special and
purpose-built devices, which are costly and inflexible
as these devices cannot be reconfigured to include
new testing or monitoring functionality.

In this article, we demonstrate the power behind
novel programmable network switches to enable
highly accurate and flexible testing and monitoring
of network element functionality before and during
deployment. While the cost of such switches is com-
parable to traditional commodity switches, their pro-
cessing logic can be programmed to realize specific
networking functionality. In the context of P4STA,
an open source measurement framework previously
presented by us, we show how the programmability
of modern network switches helps to perform highly
accurate and purpose-independent testing of network
elements. In addition, we also highlight its ability to
support reconfigurable monitoring tasks within the
network after deployment.

I. INTRODUCTION

In the last decades, communication networks have
become the backbone of nearly every digital service
used in daily life. Networking hardware has experienced
tremendous performance jumps caused by the Internet
becoming a gigantic network with a total bandwidth
of hundreds of terabits per second. The underlying
networks that constitute the building blocks of this
ecosystem (such as Internet Service Providers (ISPs),
enterprise/residential networks and data centers) face
steadily increasing and highly intertwined QoS/QoE re-
quirements for very different classes of applications such
as Voice over IP or automation. As a result, modern
network elements must provide a data plane performance
of multiple terabits per second while having forwarding

delays of less than a microsecond and no unexpected
packet loss.

Today’s network elements typically constitute
switches, routers but also complex network functions.
Some network functions can be subject to regulatory
requirements, which need to be thoroughly tested. For
instance, a broadband network gateway in Telco access
networks must fulfill a certain QoS level regarding
packet loss and counting accuracy [1]. In this work, we
will focus on the example of switches in 5G fronthaul
networks as Device Under Test (DUT), connecting
radio units with base-band units. For that, a very
deterministic forwarding behavior and no packet loss
are required to ensure a failure-free operation of the
5G network. In the aforementioned example of 5G
fronthauls, e.g., unfavorable queue management or
incorrect prioritization can lead to packets not being
delivered within the required timeframe or even losses
and as a consequence to failures in the 5G network [2].

Meeting requirements of high-performance network-
ing hardware typically requires a sophisticated under-
standing of the hardware ahead of its deployment. Ana-
lyzing a few samples at low resolution will in many cases
not allow to find the causes. Instead, measurements must
be sampled with a high resolution.

A. Background and Technological Fundamentals

To understand the importance of high resolution test-
ing let us take a closer look at the four phases in the
innovation cycle of networking hardware. Functional and
performance testing is conducted in four phases of the
innovation cycle of networking hardware as depicted in
Figure 1. In the research and development phase (1), it
is required to measure and understand existing network-
ing hardware’s behavior in detail and perform experi-
ments with new prototypical hardware. Considering the
previously mentioned performance requirements, these
experiments must be performed with very high accuracy
and at the same time at maximal load. In the subsequent
quality management phase (2), the newly developed and
produced products at the manufacturer require testing
to validate the expected quality on a random sample of



Ralf Kundel, Fridolin Siegmund, Rhaban Hark, Amr Rizk, Boris Koldehofe. Network Testing Utilizing Programmable
Networking Hardware. Accepted for publication in IEEE Communications Magazine, Network Softwarization and

Management Series, presumably date of publication: 01/2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical
work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have
offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each
author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

2

…

data center

Manufacturer R&D

1 research

2 quality
management

shipment

findings ch
all
en
ge
s

3 integration
testing

network operators:

4 monitoring

Fig. 1: Innovation cycle of networking hardware. Mea-
surements of the hardware are required in all phases.

the production output. After shipping to the operator,
typically a data center or Internet service provider, the
hardware will be configured for deployment and the
software updated. Again, the expected behavior for the
specific use case must be validated (3). Finally, networks
are monitored in operation in order to detect and correct
abnormal behavior (4). Based on the monitoring obser-
vations, new challenges for R&D arise, which completes
the innovation cycle. The obtained understanding of the
networking hardware behavior is required by network
operators, hardware vendors and researchers in order to
improve current and future networks.

Concretely, the testing system must support a very
high-throughput, i.e., up to 100𝐺𝑏𝑖𝑡/𝑠, measuring la-
tency with a few nanoseconds accuracy and detecting
very small values of packet loss. Currently, it is nec-
essary to use specialized tools for network testing to
meet these requirements simultaneously. However, these
commercial and closed-source tools require purpose-built
hardware that is limited in flexibility and incurs high
costs. This causes either a high effort and costs or leads
to insufficient testing.

Paradigms for programming networks have shaped
the development of communication networks in the
last decade [3]. This programmability and by that the
gained flexibility can be divided into two key aspects
enforced by programmable hardware: The opening of
the control plane interface, which is responsible for
controlling the flow rules in the switch data plane,
was the defining first step. One major milestone for
this was the introduction of the OpenFlow protocol,
which allowed opening up existing networking hardware
supplied by major vendors. As control plane protocols
do not allow to modify the fundamental behavior of data
plane chips, reconfigurable hardware was a second major
step towards network programmability [4]. While Field
Programmable Gate Arrays (FPGAs) allow reconfiguring
digital circuits on bit level since the 80s, they suffer

from comparably low clock frequencies. Hence, they
cannot provide the same performance as special-purpose
chips (ASICs) for networking hardware. However, the
introduction of programmable hardware specialized for
networking purposes enabled reconfiguration with a per-
formance comparable to that of non-configurable chips
used in networking applications [5]. By that, many dif-
ferent applications, including but not limited to network
measurements, can be realized on the same hardware
platform. One primary driver of this technology is the
programming language P4 [6], which provides a simple
and powerful abstraction for data plane programming.

Modern networking hardware that is in operation
today already provides such programmability and al-
lows, together with software, to create flexible and
high-performance test solutions that tackle the previ-
ously mentioned drawbacks of existing purpose-built ap-
proaches. Consequently, these off-the-shelf devices will
constitute a fundamental building block for functional
and performance network testing.

In our previous work, we initially presented
P4STA [7], a load generation framework, open source
available on GitHub [8]. One main advantage of open
source tools over commercial products is their easy
customizability and, consequently, increased flexibility.

The contributions of this article are: 1) we generalize
the approach of load generation with programmable
hardware and focus on the integration of programmable
networking hardware and open source software in all
phases of the innovation cycle; the presented evaluation
results refer to scenarios belonging to the phases 1-
3. 2) We point out how to create testing solution for
networking hardware which provides (i) high testing
performance and (ii) flexibility at (iii) comparably low
costs. 3) Last, we present an approach for detecting
packet reordering with sub-microsecond accuracy.

II. UTILIZING PROGRAMMABLE HARDWARE FOR

NETWORK TESTING

In the following, we describe how programmable
hardware can be used for flexible and high-performance
network measurements. The subsequently discussed ap-
proach can be used in all four testing scenarios of
Figure 1 by reconfiguring existing hardware.

The P4STA framework tackles the previously named
challenges in a disaggregated manner:

A. Disaggregated Network Load Generation and Packet
Timestamping

The P4STA setup for disaggregated network measure-
ment experiments, as shown in Figure 2, consists of
several components:



Ralf Kundel, Fridolin Siegmund, Rhaban Hark, Amr Rizk, Boris Koldehofe. Network Testing Utilizing Programmable
Networking Hardware. Accepted for publication in IEEE Communications Magazine, Network Softwarization and

Management Series, presumably date of publication: 01/2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical
work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have
offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each
author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

3

DUT

timestamping

counting

replication &
traffic shaping

. . .

load generators:

external data
capturing host:

management 
server:

P4STA Stamper:

management
network

10 Gbit/s - 100 Gbit/s 
Ethernet links

Fig. 2: Measurement setup following the P4STA termi-
nology relying on a P4-programmable Stamper.

DUT: The Device Under Test, typically the network-
ing hardware to be measured, will be considered in the
following as a black box. This means the internals of the
DUT are not disclosed; however, the external behavior,
e.g., supported protocols or how packets are manipulated,
are known in order to configure P4STA properly. We
assume that the DUT provides 𝑛 ≥ 1 Ethernet ports,
typically two, for receiving and sending packets.

Load generators: The load generators are standard
servers with powerful network interface cards, as a soft-
ware realization is very flexible and easy to implement.

In order to support challenging measurement scenar-
ios, multiple load generators can be used in parallel.
Hence, the entire state, computing demand and traffic
load can be distributed. This allows each generator to
increase its maximum rate and more sessions in parallel
can be generated.

P4STA Stamper: The central component of P4STA
is the Stamper. First, the Stamper is responsible for
forwarding packets from the load generators to the
DUT and vice versa. For that, the packet destination
information, typically Ethernet or IP addresses, is used.
Second, each packet to and from the DUT will be
timestamped by the egress or ingress port, respectively.
By taking the timestamps in hardware, a very high time
accuracy compared to software-based approaches, having
an inaccuracy of up to 1000𝑛𝑠, can be achieved [9].
Third, the number of incoming and outgoing packets and
bytes for each port will be counted in order to detect
packet loss in hardware with very high accuracy.

Last, traffic replication and port shaping can be used
for specifying the load on the DUT. Generating high
loads in software is very challenging, especially with
small packet sizes. For that, the replication feature can
help to reach high packet rates.

External data capturing host: Modern networking
switches cannot store large amounts of data within the
data plane of the switch. Consequently, the data to be
captured must be transmitted as a continuous stream to

a sink where it can be stored. In P4STA, we define this
sink as an external data capturing host connected via
Ethernet to the Stamper. It receives copies of a subset
or all packets returning from the DUT, duplicated by the
Stamper. This copy can be either the entire packet or a
header digest only. All metadata information, typically
the timestamps of a packet, must be part of this copy.

Management server: Disaggregation always results
in increased management effort and a possible lack of
clarity for human administrators. In order to prevent this,
all measurement processes are automated and are con-
trolled by a centralized server. Typical operations such
as deploying a configuration on the Stamper, starting
a measurement or collecting the results can be simply
controlled. This central application is accessible via an
HTML-based user interface to facilitate usability and
make measurement results visible. In addition, a CLI
and API are provided for test case automation.

B. Storing Measurement Data at Line Rate

Network measurements with high load typically gener-
ate a tremendous amount of data to be stored. Assuming
a rate of 108 packets per second and 16 bytes of mea-
surement data to be stored for each packet results into
1600𝑀𝐵/𝑠. However, the internal memory of modern
networking switches, which is composed of high-speed
SRAM memory cells, only provides very little capacity
in the range of hundreds of kilobytes. Hence, we note
that not even the measurement data of the packets in-
flight that are traversing the DUT can be stored in the
data plane of the switch. This huge amount of data
implies that monitoring in networks on all switches on
a per-packet base can cause scalability issues. Indeed,
this internal memory is very well suited for storing
aggregated measurement data such as the total number of
sent packets per port. In order to circumvent this memory
limitation, this data can be stored directly within the
packet. For that, two different options exist:

Payload: The first approach overrides existing bytes
within the packet payload. For that, the section of
the payload cannot be used by the application layer.
Consequently, this approach is only helpful in the case
of benchmark experiments of network elements without
a productive application running in addition to the gen-
erated network load. This approach does not affect the
size of the test packets.

Data header: An alternative approach is to add an ad-
ditional packet header to the packet carrying the data as a
piggyback. In our experiments, unused TCP option types
were leveraged as they are ignored by all investigated
networking hardware and software implementations. The



Ralf Kundel, Fridolin Siegmund, Rhaban Hark, Amr Rizk, Boris Koldehofe. Network Testing Utilizing Programmable
Networking Hardware. Accepted for publication in IEEE Communications Magazine, Network Softwarization and

Management Series, presumably date of publication: 01/2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical
work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have
offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each
author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

4

port 2
LUT

LUT

LUT

LUT

Action

Action

Action

Action

stage 1

stamper.p4

... ...

p
a
r
s
e
r

add
timestamp

replication
& shaping

stateful
ALUs

egress
counter

ingress
counter

MAC
timestamp

port 1

port n

. . .

port 2

port 1

port n

. . .

MAC
timestamp

LUT

LUT

LUT

LUT

Action

Action

Action

Action

stage 2

LUT

LUT

LUT

LUT

Action

Action

Action

Action

stage 3

LUT

LUT

LUT

LUT

Action

Action

Action

Action

stage n

traffic
manager

d
e
p
a
r
s
e
r

LUT

LUT

LUT

LUT

Action

Action

Action

Action

stage n-1

forwarding
logic

programmable
networking
hardware

Fig. 3: Exemplary functional mapping of the Stamper p4-program on a programmable switch pipeline.

advantage of this approach is that any application on top
of the transport layer can run within the load generators
and will not be affected by the measurement. However,
this increases the packet size, and by that, the Maximum
Transmission Unit (MTU) of the DUT or load generator
receiver may be exceeded.

In both cases, a new checksum of packets traversing
the Stamper must be computed incrementally based on
the old checksum and the modified packet data every
time a packet data value is altered.

C. Stamper Realization with P4 Programmable Hard-
ware

The data plane realization of the Stamper depends
on the underlying hardware ranging from FPGAs to
Smart Network Interface Cards (SmartNICs) or P4 pro-
grammable switches. In the following, we describe the
main functional blocks and how to map them onto a P4
programmable Intel Tofino switch. Note that a SmartNIC
platform is supported by P4STA as well.

As depicted in Figure 3, the data plane behavior of the
Stamper is described in a P4-program called stamper.p4
being mapped by a compiler on the switching hardware.

One key functionality of P4STA is timestamping. To
achieve a measurement accuracy in the range of a few
nanoseconds, timestamps are taken as late as possible
before sending packets and as early as possible after re-
ceiving them for each packet in the data plane hardware.
The ingress and egress Media Access Controller (MAC),
which represents the piece of logic closest to the wire
of modern switching hardware, can be used for that.
The retrieved timestamp data is added to the packet as
described in the previous subsection.

Further, all incoming and outgoing packets and bytes
are counted for each port. The total number of times-
tamped packets, average latency and the total number of
bytes is captured in the data plane by stateful ALUs,
performing arithmetic operations based on their state
and the current packet. Hence, possible losses between

the Stamper and the external data capturing host can be
detected.

Finally, a table, forwarding logic, is applied for each
packet to determine the output port and the destination
MAC address can be updated. For each port, traffic
replication and shaping can be applied. Replicating each
packet from a single load generation server multiple
times can achieve a very high load at small packet
sizes. For example, an experimental 100𝑀𝑏𝑖𝑡/𝑠 raw-
socket-based packet source can be replicated 103 times
to create a 100𝐺𝑏𝑖𝑡/𝑠 load on the DUT with the same
characteristics as before. This is possible by utilizing the
multicast capabilities of the underlying P4 switch. By
marking a status bit within the packet, duplicates can be
detected and filtered out later on. Moreover, by shaping
a DUT port of the Stamper, a burst-free packet flow with
a specified rate can be realized.

To summarize, the Stamper implementation is respon-
sible for retrieving the following information: 1) A times-
tamp for each packet before and after the packet as well
as the 2) average, maximum and minimum latency over
all packets and 3) packet loss counters are maintained.
Realizing the previously mentioned functionality with
the Intel Tofino networking switch leads to resource
utilization of less than 10% of the most used resource
such as SRAM and stateful ALUs.

D. High Performance Data and Packet Capturing

The external data capturing host is responsible for
receiving and storing all measurement data attached to
packets. For that, incoming packets are parsed and the
information of interest is extracted and stored. Currently,
we are facing two different implementation types, both
having advantages and disadvantages:

Raw socket based capturing: Any application on
a Linux-based system can open a raw socket on any
network interface port to receive any packet that arrives
on this port. On the one hand, this approach is quite sim-
ple. On the other hand, the performance of such sockets



Ralf Kundel, Fridolin Siegmund, Rhaban Hark, Amr Rizk, Boris Koldehofe. Network Testing Utilizing Programmable
Networking Hardware. Accepted for publication in IEEE Communications Magazine, Network Softwarization and

Management Series, presumably date of publication: 01/2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical
work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have
offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each
author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

5

Fig. 4: User interface displaying the measurement data of the ingress and egress counter for all Stamper ports. Two
load generators are connected to one DUT port each. The bold arrows on the right side indicate timestamped flows.

is comparably bad, and we observed that even under
the best conditions, receiving rates stay below 1𝐺𝑏𝑖𝑡/𝑠.
Therefore, a downscale factor 𝑁 can be configured in the
Stamper, which avoids an overload of the external host.
Then, only one out of 𝑁 packets will be sent to the data
sink. Unaffected by this, all counters and stateful ALUs
in the Stamper behave as before.

High-performance poll mode driver: An alternative
to the raw socket approach are user space drivers such
as the DPDK framework [10]. These drivers allow much
higher packet rates up to 100𝐺𝑏𝑖𝑡/𝑠 even at comparably
low packet sizes as the network interface card is entirely
under control by the application. Further, the load can be
distributed between several CPU cores for performance.
However, such drivers require hardware support which
may currently not be given in all network interface cards
in production and the port must be unbound from the
kernel networking stack. In addition, this approach can
be used to capture a complete packet trace on the external
host. Note that this can quickly exceed the main memory
capacity and HDD writing speeds are too slow.

E. Analyzing the Measurement Results

After capturing raw measurement data, the last step
is to process and analyze it. For that, we distinguish
between per-packet data and aggregated information
such as counter and stateful ALU values in the data
plane of the Stamper. It is essential to quickly obtain
preliminary results with minimal effort for both the
aggregated data and the per-packet information time
series. The screenshot of the P4STA user interface in
Figure 4 depicts some of the aggregated information
captured in the data plane of the Stamper. Concretely, it
presents the number of received and transmitted packets
and bytes for each port. Also, packet loss within the

DUT and possible faulty behavior in the testbed setup
can be easily detected. The ports of the Stamper on
the right side, e.g., 47/0, map to the ports in the
left-side table. Based on the retrieved data from the
Stamper and external host, further information can be
derived, including the latency over time, jitter, inter-
packet arrival times, packet reordering and many more.
These metrics can be computed automatically within the
P4STA workflow. This is very important, especially for
the large quantity of time series data, as the captured raw
data is not human readable.

III. EXPERIMENTAL RESULTS AND EXPERIENCES

Network testing is crucial for validating and under-
standing high-performance networking hardware. The
accuracy of this approach has been discussed in our pre-
ceding work [11] in detail. In the following, we present
some results for a simple packet forwarding network
function (DUT) realized on a SmartNIC. However, the
presented measurement setup could be executed exactly
in the same way for a switch to be validated for oper-
ating in a 5G front-haul network with strict forwarding
requirements, i.e. no packet loss and reordering as well
as a constant latency. We choose this DUT intentionally
as its architecture, not being a straight pipeline, can
theoretically cause packet loss, higher latency variation
and packet reordering.

While performing the test, we created a constant
bitrate-shaped test load of 7𝐺𝑏𝑖𝑡/𝑠 and 1518 𝑏𝑦𝑡𝑒 packet
size with the P4STA framework, which was applied to
the DUT. Each packet was timestamped twice before and
after the investigated network function, and the external
host captured all measurement data. The analysis tool of
P4STA allows the computation of the latency for each
packet and additional metrics after the experiment.



Ralf Kundel, Fridolin Siegmund, Rhaban Hark, Amr Rizk, Boris Koldehofe. Network Testing Utilizing Programmable
Networking Hardware. Accepted for publication in IEEE Communications Magazine, Network Softwarization and

Management Series, presumably date of publication: 01/2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical
work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have
offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each
author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

6

Latency

arrival time departure time

Fig. 5: Left: Latency time series of all packets for the device under test at 7 Gbit/s for each packet. Red crosses
mark out of order packets. Right: Detail view on the arrival and departure time at the DUT for the marked out of
order packet as well as preceding and subsequent packets.

The left plot in Figure 5 depicts the latency over
time for all packets in one direction through the device
under test with a time accuracy of nanoseconds. As
the absolute latency and its range are in the order of
a few microseconds, this high time accuracy is required.
Other network functions, especially switches, can have
latencies lower by a factor of up to ten and higher in the
future [12] which requires even a higher time resolution.

The red crosses in the plot indicate out of order
packets that were detected by P4STA. For example, as
shown in detail on the right half of Figure 5, 𝑝𝑎𝑐𝑘𝑒𝑡 𝑛,
which was sent at around 8.5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 after the start,
is delivered out of order as it was handed over to the
network function between packets n − 1 and n + 1. How-
ever, it was sent out by the network function between
𝑝𝑎𝑐𝑘𝑒𝑡 𝑛 + 1 and 𝑛 + 2. In total, we observed 11 out
of order packets while the total number of packets was
around 5.7 𝑚𝑖𝑙𝑙𝑖𝑜𝑛. In this case, the reordering behavior
can be explained by the internal architecture of the DUT.
Transferring these results on the concrete example of
a 5G fronthaul network, this reordering would cause
invalid radio signals on the air interface. In general,
such measurements enormously assist in understanding
and validating the internal behavior of high-performance
network functions.

The additional latency in this setup caused by the
Stamper is negligible and depends on many factors such
as the link speed and the used hardware. In the case of
a Tofino-based Stamper and 10𝐺𝑏𝑖𝑡/𝑠 link speed, this
additional latency is around 2`𝑠. Netronome SmartNIC-
based Stamper implementations can cause an increase of
up to 20`𝑠 at the same link speed. Higher link speeds
result in lower latency of the Stamper due to its store
and forward behavior.

IV. RELATED WORK

Similar approaches for network testing have been dis-
cussed in related work before. Shabaz et al. proposed an
open source load generator built upon the NetFPGA plat-
form called Open Source Network Tester (OSNT) [13].
They benefit from the high time accuracy of pro-
grammable hardware compared to software-based ap-
proaches as well. However, no dynamic load patterns
such as stateful TCP could be generated as they real-
ized the load generation within the FPGA. Further, the
maximum load is limited due to the number of ports and
speed per port compared to programmable switches.

Another approach for fine-grained network monitoring
is In-band Network Telemetry (INT), utilizing piggy-
backing of data attached to the packet traversing a
network [14]. As soon as a packet enters an INT-capable
network, the entry switch will add an INT header to
the packet. Every traversing switch can add additional
information to this header in a stacked way. Before the
packet leaves the INT network, the last switch removes
the INT header stack and sends it to an external collector,
similar to the external host in our work. Compared to
our approach, the overhead is much higher and load
replication features could not be supported.

Last, we would like to mention the ERSPAN protocol,
which allows to duplicate and encapsulate packets within
the data plane for monitoring purposes. A timestamping
accuracy similar to the results presented in this work can
be achieved by leveraging the capability of hardware
switches. Indeed, measuring the latency or jitter of
numerous packets, e.g., a 100𝐺𝑏𝑖𝑡/𝑠 test run for 10𝑠,
becomes very difficult as each packet must be duplicated
before and after the DUT and the collected data must be
assembled afterward by unique packet identifiers.



Ralf Kundel, Fridolin Siegmund, Rhaban Hark, Amr Rizk, Boris Koldehofe. Network Testing Utilizing Programmable
Networking Hardware. Accepted for publication in IEEE Communications Magazine, Network Softwarization and

Management Series, presumably date of publication: 01/2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical
work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have
offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each
author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

7

V. CONCLUSION

Network element testing and monitoring play an es-
sential role in the innovation cycle of developing, man-
ufacturing and deploying of networking hardware. The
potential of existing programmable data plane hardware
offers an alternative to specialized hardware for mea-
suring and testing network element functionality. In this
article, we demonstrated how programmable networking
hardware can be utilized for network testing and moni-
toring using the open source P4STA measurement frame-
work. By combining the benefits of software generation
of test inputs and programmable hardware, the presented
measurement framework is flexible enough to allow
network testers to include their own test functionality
while still achieving high measurement accuracy.

As data plane chip vendors are currently working on
next generations of programmable hardware that promise
improved programmability (such as stateful and complex
operations) [15], we postulate that more advanced net-
work testing functionality can be embedded directly in
hardware. We encourage the research community to take
advantage of the existing open source projects relying on
programmable hardware. Since the initial publication of
the P4STA framework, first vendors of testing hardware
announced commercial products for network testing pur-
poses based on programmable off-the-shelf networking
hardware, on which also P4STA builds. For future work,
the integration of other existing protocols, e.g., ERSPAN
and INT, shall be investigated.

ACKNOWLEDGMENT

This work has been supported by Deutsche Telekom
through the Dynamic Networks 8 project, by the German
Research Foundation (DFG) within the Collaborative
Research Center MAKI as well as the project SPINE.

REFERENCES

[1] R. Kundel, L. Nobach, J. Blendin, W. Maas, A. Zimber, H.-J.
Kolbe, G. Schyguda, V. Gurevich, R. Hark, B. Koldehofe, and
R. Steinmetz, “OpenBNG: Central office network functions on
programmable data plane hardware,” International Journal of
Network Management, 2021.

[2] C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and
C. Lim, “5g c-ran with optical fronthaul: An analysis from
a deployment perspective,” Journal of Lightwave Technology,
vol. 36, no. 11, pp. 2059–2068, 2018.

[3] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking:
A comprehensive survey.” IEEE, 2014, pp. 14–76.

[4] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich,
F. Zeiger, R. Frank, and M. Menth, “A survey on data plane
programming with p4: Fundamentals, advances, and applied
research,” 2021.

[5] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKe-
own, M. Izzard, F. Mujica, and M. Horowitz, “Forwarding
metamorphosis: Fast programmable match-action processing in
hardware for sdn,” in Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM. ACM, 2013, pp. 99–110.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-
ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al.,
“P4: Programming protocol-independent packet processors,”
vol. 44, no. 3. ACM, 2014, pp. 87–95.

[7] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe,
“P4STA: High performance packet timestamping with pro-
grammable packet processors,” in Proceedings of the IEEE/IFIP
Network Operations and Management Symposium(NOMS).
IEEE, 2020.

[8] “P4sta: High performance packet timestamping and load aggre-
gation framework,” https://github.com/ralfkundel/P4STA, 2019.

[9] P. Orosz and T. Skopko, “Performance evaluation of a high
precision software-based timestamping solution for network
monitoring,” International Journal on Advances in Software,
vol. 4, no. 1, 2011.

[10] Intel. (2014) Data plane development kit. Accessed last on:
28. May 2021. [Online]. Available: https://www.dpdk.org/

[11] R. Kundel, F. Siegmund, and B. Koldehofe, “How to measure
the speed of light with programmable data plane hardware?” in
2019 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), 2019, pp. 1–2.

[12] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and
J. K. Ousterhout, “It’s time for low latency,” in 13th Workshop
on Hot Topics in Operating Systems (HotOS XIII). USENIX
Association, May 2011.

[13] G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, A. Covington,
M. Bruyere, N. Mckeown, N. Feamster, B. Felderman, M. Blott,
A. W. Moore, and P. Owezarski, “Osnt: open source network
tester,” vol. 28, no. 5, Sep. 2014, pp. 6–12.

[14] L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu,
and N. Li, “In-band network telemetry: A survey,” Computer
Networks, vol. 186, p. 107763, 2021.

[15] A. Agrawal and C. Kim, “Intel tofino2 - a 12.9tbps p4-
programmable ethernet switch,” in 2020 IEEE Hot Chips 32
Symposium (HCS), 2020, pp. 1–32.

BIOGRAPHIES
Ralf Kundel (ralf.kundel@kom.tu-darmstadt.de) obtained his B.Sc.
and M.Sc. degree from Technical University of Darmstadt, Germany
in 2015 and 2017 respectively. Since 2018 he is a Ph.D. student at
the same university. In his research he focuses on quality of service
aware network functions offloaded on programmable hardware. One
main focus is on internet service providers access networks.
Fridolin Siegmund is a graduate student at Technical University of
Darmstadt, Germany, where he received his bachelor in 2019 and is
currently working on his master’s degree. His main research interest
is in software defined networking.
Rhaban Hark obtained his Ph.D. in 2020 at Technical University
of Darmstadt where he is currently heading the Adaptive Communi-
cation Systems Group. One main research interest is in monitoring
software defined networks.
Amr Rizk received the doctoral degree (Dr.-Ing.) from the Leibniz
Universität Hannover, Germany, in 2013. Since 2021 he is a pro-
fessor at the department for computer science at the University of
Duisburg-Essen, Germany. His interests include network performance
evaluation and communication system applications.
Boris Koldehofe received the Ph.D. degree from the Chalmers Uni-
versity of Technology, Gothenburg, Sweden, in 2005. He is currently
Professor of Computer Science at the University of Groningen.
He has extensive research and teaching experience in the area of
networked and distributed systems.


