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1 Introduction

In recent years, it has become clear that the structure of non-relativistic gravity theories

is quite different than the structure of general relativity. In particular, there are many

different non-relativistic gravity theories that are based on the extensions of the Bargmann

algebra that cannot be accessed from the Poincaré algebra by means of an Inonu-Wigner

contraction. A well-known example of this kind, called the three-dimensional extended

Bargmann gravity [1], has been studied from various angles including its supersymmetric

completion and matter couplings [2], its cosmological and non-relativistic conformal [3] and

Maxwellian [4] extensions as well as the construction of its parity-odd cousin, the exotic

extended Bargmann supergravity [5]. Another important example that goes beyond the

Bargmann symmetries, which was put forward in [6, 7], is based on the argument that

although the Bargmann symmetries are sufficient to establish the Poisson’s equation for

Newtonian gravity in a covariant manner, an action principle for Newtonian gravity requires

extended symmetries beyond the standard Bargmann symmetries. It was furthermore

shown in [8] that a non-trivial central extension of the algebra of [7] is necessary for three-

dimensions to construct a three-dimensional Chern-Simons gravity action which was later

generalized to include a cosmological constant in [9].

All these recent progress begs for a systematic understanding of extended symmetries

that goes beyond the Bargmann symmetry. There are various proposals to generate such

extended algebras. From a contraction viewpoint, the non-relativistic limit of Poincaré ⊕
U(1) algebra gives rise to the Bargmann algebra. Therefore, as the number of generators in-

creases in the non-relativistic side, one has to go beyond the Poincaré algebra. To this end,

it was shown in [10] by three-dimensional examples that the non-relativistic limit of coad-

joint Poincaré algebras is a promising candidate to generate higher-order non-relativistic
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algebras. Similarly, in [8], the non-relativistic limit of a particular bi-metric theory was

shown to generate an extended three-dimensional gravity, known as the extended Newto-

nian gravity. Instead of contraction of relativistic algebras, which preserves the number of

generators, one can consider the Lie algebra expansion which generates larger Lie algebras

starting from a specific one [11–13]. This methodology is based on a consistent truncation

of infinite series expansion for Maurer-Cartan one-forms and has recently been applied

extensively to non-relativistic settings to provide extended non-relativistic (super)algebras

and corresponding (super)gravity models, see e.g. [5, 14–16].

There is an important class of non-relativistic algebras that admit non-relativistic con-

formal symmetry. These algebras are known to provide a different scaling dimension for

space and time coordinates, i.e. under scaling transformations the time coordinate scale

as t → λ2t while space coordinates scale as x → λx. Therefore the structure of non-

relativistic conformal algebras is quite distinct from their relativistic cousin. As a price to

pay, non-relativistic conformal algebras do not contain the spatial part of the special con-

formal symmetry but only include dilatations (D), temporal special conformal symmetry

generator (K) and possible higher-order non-relativistic conformal symmetry generators.

The simplest representative of such algebras is known as the Schrödinger algebra whose

generators are the symmetries of the Schrödinger equation. This algebra is actually a

subalgebra of the conformal group itself [18] and is known to play a crucial role in the

condensed matter applications of non-relativistic symmetries [19]. In three dimensions, a

higher-order Schrödinger algebra, known as the extended Schrödinger algebra, was estab-

lished in [3] as a non-relativistic conformal extension of the extended Bargmann algebra.

Although the above-mentioned mechanisms have been widely used to generate various ex-

tensions of the Bargmann algebra, there is no systematic procedure known to generate

extensions of Schrödinger algebra. The main purpose of this paper is to fill this gap in

three-dimensions by utilizing the Lie algebra expansion methodology. In order to achieve

our goal, we first introduce a particular subalgebra of three-dimensional conformal algebra

that is unique to three-dimensions in section 2. It is a new, novel non-relativistic conformal

extension of the Galilei algebra, and as far as we know, this subalgebra has been overlooked

so far. Next, we employ the Lie algebra expansion procedure and first reproduce the ex-

tended Schrödinger algebra of [3], then go to the next order and establish what we call the

“enhanced Schrödinger algebra” and the corresponding “enhanced Schrödinger gravity”.

As the extended Schrödinger algebra of [3] is the non-relativistic conformal extension of

the extended Bargmann algebra, the construction of the higher-order enhanced Schrödinger

algebra leads to a natural question: what algebra does one obtain by truncating the non-

relativistic conformal generators from the enhanced Schrödinger algebra? To address this

question, it is natural to see what algebra arises after the extended Bargmann algebra in

the Lie algebra expansion of the three-dimensional Poincaré algebra. This was already

achieved in [14] and it was shown that the next order algebra is the extended Newtonian

algebra [8]. To our surprise, we found that the consistent truncation of the enhanced

Schrödinger algebra does not give rise to the extended Newtonian algebra but another

algebra with the same set of generators. Our result leads us to question the uniqueness of

the higher-order extended algebras and we provide several examples on the non-uniqueness
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at a particular order in three and higher dimensions. In section 4 we give conclusion and

discussions.

2 The core algebra of higher order Schrödinger algebras

As mentioned, our primary goal in this paper is to create machinery to generate higher-

order Schrödinger algebras based on Lie algebra expansions. As this procedure is based

on an infinite series expansion of a core Lie algebra with certain properties, we dedicate

this section to a very brief review of Lie algebra expansion methodology as well as the core

algebra of the higher-order Schrödinger algebra.

2.1 Lie algebra expansions

Lie algebra expansion is a three-step procedure that generates higher-order Lie algebras

starting from a core algebra.

1. The core algebra must be a direct sum of two subspaces g = V0 ⊕ V1 where V0 and

V1 satisfy

[V0, V0] ⊂ V0 , [V0, V1] ⊂ V1 , [V1, V1] ⊂ V0 . (2.1)

In the first step, we split the generators of the core algebra into the even (V0) and odd

(V1) class of generators, i.e. if Xi with i = 1, . . . , dimg represents the generators of

the core algebra, then we may split the generators as Xi = (Xi0 , Xi1) where Xi0 ∈ V0
with i0 = 1 . . . dimV0 and Xi1 ∈ V1 with i1 = 1 . . . dimV1.

2. In the second step, we assign a gauge field to each generator

ωi =
(
ωi0 , ωi1

)
, (2.2)

and establish their Maurer-Cartan equations based on the structure constants of the

core algebra.

dωk = −1

2
Cij

kωi ∧ ωj . (2.3)

We expand the gauge fields in powers of an expansion parameter λ depending on

which class they belong to, i.e. gauge fields that are associated with even generators

are expanded in even powers of λ whereas the odd ones are expanded in odd powers

of λ

ωi0 =
∞∑

α0=0, α0 even

(α0)

ω i0λα0 , ωi1 =
∞∑

α1=1, α1 odd

(α1)

ω i1λα1 , (2.4)

where α0 and α1 indicates the order of expansion. The resulting power series are also

used to expand the relevant Maurer-Cartan equations

d
(γs)

ω ks = −1

2
Cip,αp jq ,βq

ks,γs
(αp)

ω ip ∧
(βq)

ω jq . (2.5)

where s, p, q = 0, 1 and Cip,αp jq ,βq
ks,γs = Cipjq

ks if γs = αp + βq and it vanishes

otherwise.
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3. In the final step, we truncate the infinite-dimensional algebra to a finite-dimensional

one by considering the following consistent truncation

ωi0 =

N0∑
α0=0, α0 even

(α0)

ω i0λα0 , ωi1 =

N1∑
α1=1, α1 odd

(α1)

ω i1λα1 , (2.6)

where the consistency is imposed by either setting N0 = N1 + 1 or N1 = N0 + 1.

As in [14] we will represent the algebras corresponding to these two conditions as

g(N0, N1) = g(N + 1, N) and g(N0, N1) = g(N,N + 1) respectively.

Before proceeding to the actual construction of extended Schrödinger algebras, some com-

ments are in order. As evident from the expansion procedure that we outlined here,

higher-order algebras that we generate with Lie algebra expansion inherits the symme-

try properties of core algebra. Consequently, if a core algebra has a certain symmetry

amongst its generators, this will also show itself in some form in the higher-order algebras.

Furthermore, the structure of the expanded Maurer-Cartan equation (2.5) indicates that

any structure constant Cij
k with i 6= j of the core algebra generates at least two differ-

ent commutation relations with the same structure constants in the higher-order algebra.

Thus, if a higher-order algebra does not have this property, then either the gauge fields of

the corresponding generators are the zeroth-order gauge fields in the expansion (2.6) or the

higher-order algebra does not originate from a Lie algebra expansion. With these notes in

mind, we are now ready to proceed to the construction of a core algebra that can generate

higher-order Schrödinger algebras.

2.2 The core algebra

The implementation of the Lie algebra expansion methodology to generate higher-order

Schrödinger algebras requires a core algebra with the essential property (2.1). We may

form such an algebra by considering the four-dimensional conformal algebra

[MAB ,MCD] = ηACMBD−ηBCMAD−ηADMBC+ηBDMAC ,
[
MAB , P̂C

]
= ηAC P̂B−ηBC P̂A ,[

PA, K̂B

]
= −2

(
ηABD̂+MAB

)
,

[
MAB , K̂C

]
= ηACK̂B−ηBCK̂A ,[

D̂, P̂A

]
= −P̂A ,

[
D̂, K̂A

]
= K̂A , (2.7)

where A,B = 0, . . . 3. Here we have P̂A for translations, MAB for Lorentz transformations,

D̂ for dilatations and K̂A for special conformal symmetry. Based on these commutation

relations, the generators of the four-dimensional conformal algebra can be split into even

(V0) and odd (V1) class of generators as

V0 = {P̂0, P̂3, K̂0, K̂3, D̂,M03,Mab} , V1 = {P̂a, K̂a,Ma0,Ma3} . (2.8)

Using the components of these generators, we may make the following definitions

h =
1

2

(
P̂0+P̂3

)
, j =

1

6

(
P̂0−P̂3

)
+

1

6

(
K̂0+K̂3

)
−2

3
Ĵ , k =

1

2

(
K̂0−K̂3

)
,

pa =
1

2

(
P̂a+M

?
a3+M

?
a0

)
, ga =

1

2

(
K̂a+M

?
a3−M?

a0

)
, d = D̂+M03 , (2.9)

– 4 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
7

where a, b = 1, 2 and Ĵ = 1
2ε
abMab and the starred quantities are defined as

M?
a3 = εa

bMb0 , M?
a0 = εa

bMb3 . (2.10)

Note that due to the structure of the duality relation that we used here, these definitions are

unique to four dimensions. The generator (2.9) form a closed subalgebra of the conformal

algebra that is given by

[j, pa] = −εabpb , [j, ga] = −εabgb , [h, ga] = −εabpb ,

[pa, pb] = εabh , [ga, gb] = εabk , [pa, gb] = −1

2
δabd+

3

2
εabj ,

[k, pa] = −εabgb , [h, k] = d , [d, pa] = −pa ,

[d, ga] = ga , [d, h] = −2h , [d, k] = 2k . (2.11)

This subalgebra has several notable features. First of all, due to the splitting of the

conformal generators (2.8), the algebra (2.11) can be written as the direct sum of an even

and an odd class of generators V0 ⊕ V1 where

V0 = {h, j, k, d} , V1 = {pa, ga} , (2.12)

which is the first step necessary to implement the Lie algebra expansion. Second, it is

invariant under the following redefinition

pa → ga , ga → pa , h→ k , k → h , j → j , d→ −d , (2.13)

which will present itself in different forms in the higher-order algebras. Third, if these gen-

erators are treated as the generators of a non-relativistic algebra, i.e. j as the generators of

spatial rotations, pa for spatial translations, ga for Galilean boosts, h for time translations,

d for dilatations and k for non-relativistic special conformal transformations, then (2.9)

can be considered as a novel non-relativistic conformal Galilean algebra. Finally, the core

algebra can be equipped with an invariant bi-linear form that we can use to construct a

Chern-Simons action

(pa, gb) = δab , (j, j) = −2

3
, (d, d) = 2 , (h, k) = −1 , (2.14)

We may construct an action principle for the core algebra using the invariant bi-linear form

and the structure constants via Chern-Simons action formula

S =
k

4π

∫
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (2.15)

where A = Aµdx
µ. In order to identify Aµ in terms of the generators and the gauge fields

of the core algebra, we assign a gauge field to each of the generators

pa → Eµ
a , ga → Ωµ

a , h→ θµ , k → Fµ , d→ Bµ , j → Ωµ . (2.16)

Consequently, Aµ reads

Aµ = Eµ
apa + Ωµ

aga + θµh+ Fµk +Bµd+ Ωµj , (2.17)
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and the Chern-Simons Lagrangian for the core algebra is given by

S =
k

4π

∫
d3x εµνρ

(
Eµ

aRνρa(g) + Ωµ
aRνρa(p)− θµRνρ(k)− FµRνρ(h) + 4Bµ∂νBρ

−4

3
Ωµ∂νΩρ + εabΩµ

aΩν
bθρ + εabEµ

aEν
bFρ

)
. (2.18)

Note that it is not possible to express the core action completely in terms of the curvatures

due to the non-vanishing diagonal couplings (d, d) and (j, j). The curvatures that we used

here are defined as

Rµν(h) = 2∂[µθν] + εabE[µ
aEν]

b − 4B[µθν] ,

Rµν(j) = 2∂[µΩν] + 3εabE[µ
aΩν]

b ,

Rµν(k) = 2∂[µFν] + εabΩ[µ
aΩν]

b + 4B[µFν] ,

Rµν(d) = 2∂[µBν] − E[µ
aΩν]a + 2θ[µFν] ,

Rµν
a(p) = 2∂[µEν]

a + 2εabΩ[µEν]b + 2εabθ[µΩν]b − 2B[µEν]
a ,

Rµν
a(g) = 2∂[µΩν]

a + 2εabΩ[µΩν]b + 2εabF[µEν]b + 2B[µΩν]
a . (2.19)

3 Higher order Schrödinger algebras

Armed with core algebra (2.9), its properties and its Chern-Simons action (2.18), we may

now proceed to the second step of the Lie algebra expansion and construct higher-order

non-relativistic Schrödinger algebras and their corresponding actions.

3.1 Extended Schrödinger gravity

In this subsection we will show that the (N0, N1) = (2, 1) algebra that we obtain from the

Lie algebra expansion of the core algebra (2.11) leads to the three-dimensional extended

Schrödinger algebra constructed in [3]. In principle, one can start the expansion at (1, 0)

order, however, as can be seen from (2.11), this would simply lead to a truncation of the

Schrödinger algebra with the mass generator M . The (1, 0) order algebra also coincides

with an Inonu-Wigner contraction of the core algebra (2.11) once the generators of the

Galilean transformations and the spatial translations are properly rescaled with the speed

of light c, i.e. ga → cga and pa → cpa. As the g(1, 0) algebra do not admit a non-degenerate

invariant bi-linear form, we skip this step and start with g(2, 1) case. To proceed to the

second step of the Lie algebra expansion procedure, we first establish the curvatures that

correspond to the gauge fields of the core algebra (2.16). Imposing the consistent truncation

(N0, N1) = (2, 1) the expansion of the gauge fields can be given by

θµ =
(0)

θµ + λ2
(2)

θµ , Ωµ =
(0)

Ωµ + λ2
(2)

Ωµ , Fµ =
(0)

Fµ + λ2
(2)

Fµ ,

B =
(0)

Bµ + λ2
(2)

Bµ , Eµ
a = λ

(1)

Eµ
a , Ωa = λ

(1)

Ωµ
a . (3.1)
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To finalize the second step of the Lie algebra expansion methodology, we use the expansion

of the gauge fields expand the curvatures as

(0)

Rµν(h) = 2∂[µ
(0)

θν] − 4
(0)

B[µ

(0)

θν] ,
(2)

Rµν(h) = 2∂[µ
(2)

θν] + εab
(1)

E[µ
a
(1)

Eν]
b − 4

(0)

B[µ

(2)

θν] − 4
(2)

B[µ

(0)

θν] ,
(0)

Rµν(j) = 2∂[µ
(0)

Ων] ,
(2)

Rµν(j) = 2∂[µ
(2)

Ων] + 3εab
(1)

E[µ
a
(1)

Ων]
b ,

(0)

Rµν(k) = 2∂[µ
(0)

Fν] + 4
(0)

B[µ

(0)

Fν] ,
(2)

Rµν(k) = 2∂[µ
(2)

Fν] + εab
(1)

Ω[µ
a
(1)

Ων]
b + 4

(0)

B[µ

(2)

Fν] + 4
(2)

B[µ

(0)

Fν] ,
(0)

Rµν(d) = 2∂[µ
(0)

Bν] + 2
(0)

θ[µ
(0)

Fν] ,
(2)

Rµν(d) = 2∂[µ
(2)

Bν] + δab
(1)

Ω[µ
a
(1)

Eν]
b + 2

(0)

θ[µ
(2)

Fν] + 2
(2)

θ[µ
(0)

Fν] ,
(1)

Rµν
a(p) = 2∂[µ

(1)

Eν]
a + 2εab

(0)

Ω[µ

(1)

Eν]b + 2εab
(0)

θ[µ
(1)

Ων]b − 2
(0)

B[µ

(1)

Eν]
a ,

(1)

Rµν
a(g) = 2∂[µ

(1)

Ων]
a + 2εab

(0)

Ω[µ

(1)

Ων]b + 2εab
(0)

F[µ

(1)

Eν]b + 2
(0)

B[µ

(1)

Ων]
a . (3.2)

We can proceed to the third step and read off the structure constants and construct the

g(2, 1) algebra

[H,Ga] = −εabP b , [J, Pa] = −εabP b , [J,Ga] = −εabGb ,
[Pa, Gb] = εabM + δabY , [Ga, Gb] = εabS , [Pa, Pb] = εabZ ,

[D,Ga] = Ga , [D,Pa] = −Pa , [D,H ] = −2H ,

[D,S] = 2S , [D,K] = 2K , [D,Z] = −2Z ,

[K,Pa] = −εabGb , [K,H] = −D , [K,Y ] = S ,

[K,Z] = 2Y , [H,S] = −2Y , [H,Y ] = −Z , (3.3)

where we identify the generators as

(0)

h = H ,
(2)

h = Z ,
(0)

j = J ,
(2)

j =
2

3
M ,

(0)

k = K ,

(2)

k = S ,
(0)

d = D ,
(2)

d = −2Y ,
(1)
pa = Pa ,

(1)
ga = Ga , (3.4)

This algebra is precisely the extended Schrödinger algebra [3]. Note that due to the struc-

ture of its core algebra, the extended Schrödinger algebra is invariant under following

redefinitions

Pa →Ga , Ga →Pa , H →K , K →H , J → J ,

Z →S , S →Z , M →M , Y →− Y . (3.5)
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We may also expand the Chern-Simons Lagrangian for the core algebra (2.18), which is

given by

S =
k

4π

∫
d3x εµνρ

(
eµ
aRνρa(G) + ωµ

aRνρa(P )− 2sµRνρ(H)− 2mµRνρ(J)

−2yµRνρ(D)− 2zµRνρ(K)
)
, (3.6)

where we relabelled the gauge fields as

(0)

θµ = τµ ,
(2)

θµ = zµ ,
(0)

Ωµ = ωµ ,
(2)

Ωµ =
3

2
mµ ,

(0)

Fµ = fµ ,

(2)

Fµ = sµ ,
(0)

Bµ = bµ ,
(2)

Bµ = −1

2
yµ ,

(1)

Eµ
a = eµ

a ,
(1)
ωµ

a = ωµ
a , (3.7)

and the curvatures can simply be read off from (3.2) with the identifications (3.4) and (3.7)

Rµν(H) = 2∂[µτν] − 4b[µτν] ,

Rµν
a(P ) = 2∂[µeν]

a + 2εab ω[µeν]b − 2εab ω[µbτν] − 2b[µe
a
ν] ,

Rµν(M) = 2∂[µmν] + 2εabω[µ
aeν]

b ,

Rµν
a(G) = 2∂[µων]

a + 2εabω[µων]b + 2εabf[µeν]b + 2b[µω
a
ν] ,

Rµν(J) = 2∂[µων] ,

Rµν(S) = 2∂[µsν] + εabω[µaων]b + 4b[µsν] + 2f[µyν] ,

Rµν(K) = 2∂[µfν] + 4b[µfν] ,

Rµν(D) = 2∂[µbν] + 2τ[µfν] ,

Rµν(Y ) = 2∂[µyν] − 2ω[µae
a
ν] + 4f[µzν] − 4τ[µsν] ,

Rµν(Z) = 2∂[µzν] + εabe[µaeν]b − 4b[µzν] − 2τ[µyν] . (3.8)

The action (3.6) is precisely the extended Schrödinger gravity of [3].

3.2 Enhanced Schrödinger gravity

In this subsection, we study the case g(4, 3). In principle, this should produce the Schrö-

dinger extension of the extended Newtonian algebra [8] as it is the next order algebra after

the extended Bargmann algebra in the Lie algebra expansion of the three-dimensional

Poincaré algebra [14]. However, as we will see, it produces a Schrödinger extension of

a different algebra with the same generators as the extended Newtonian algebra. This

result leads us to question the uniqueness of the g(4, 3) algebras and as we will discuss

in subsection 3.3, such algebras are not unique. Deferring this discussion for the next

subsection, we consider the same setting as in the previous subsection but now we truncate

the expansion at g(4, 3) order

θµ =
(0)

θµ + λ2
(2)

θµ + λ4
(4)

θµ , Ωµ =
(0)

Ωµ + λ2
(2)

Ωµ + λ4
(4)

Ωµ , Fµ =
(0)

Fµ + λ2
(2)

Fµ + λ4
(4)

Fµ ,

B =
(0)

Bµ + λ2
(2)

Bµ + λ4
(4)

Bµ , Eµ
a = λ

(1)

Eµ
a + λ3

(3)

Eµ
a , Ωa = λ

(1)

Ωµ
a + λ3

(3)

Ωµ
a . (3.9)
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Having the expansion of the gauge fields, we obtain the corresponding curvatures

via (2.19) as

(0)

Rµν(h) = 2∂[µ
(0)

θν] − 4
(0)

B[µ

(0)

θν] ,
(2)

Rµν(h) = 2∂[µ
(2)

θν] + εab
(1)

E[µ
a
(1)

Eν]
b − 4

(0)

B[µ

(2)

θν] − 4
(2)

B[µ

(0)

θν] ,
(4)

Rµν(h) = 2∂[µ
(4)

θν] + 2εab
(1)

E[µ
a
(3)

Eν]
b − 4

(0)

B[µ

(4)

θν] − 4
(4)

B[µ

(0)

θν] − 4
(2)

B[µ

(2)

θν] ,
(0)

Rµν(j) = 2∂[µ
(0)

Ων] ,
(2)

Rµν(j) = 2∂[µ
(2)

Ων] + 3εab
(1)

E[µ
a
(1)

Ων]
b ,

(4)

Rµν(j) = 2∂[µ
(4)

Ων] + 3εab
(1)

E[µ
a
(3)

Ων]
b + 3εab

(3)

E[µ
a
(1)

Ων]
b ,

(0)

Rµν(k) = 2∂[µ
(0)

Fν] + 4
(0)

B[µ

(0)

Fν] ,
(2)

Rµν(k) = 2∂[µ
(2)

Fν] + εab
(1)

Ω[µ
a
(1)

Ων]
b + 4

(0)

B[µ

(2)

Fν] + 4
(2)

B[µ

(0)

Fν] ,
(4)

Rµν(k) = 2∂[µ
(4)

Fν] + 2εab
(1)

Ω[µ
a
(3)

Ων]
b + 4

(0)

B[µ

(4)

Fν] + 4
(4)

B[µ

(0)

Fν] + 4
(2)

B[µ

(2)

Fν] ,
(0)

Rµν(d) = 2∂[µ
(0)

Bν] + 2
(0)

θ[µ
(0)

Fν] ,
(2)

Rµν(d) = 2∂[µ
(2)

Bν] + δab
(1)

Ω[µ
a
(1)

Eν]
b + 2

(0)

θ[µ
(2)

Fν] + 2
(2)

θ[µ
(0)

Fν] ,
(4)

Rµν(d) = 2∂[µ
(4)

Bν] + δab
(3)

Ω[µ
a
(1)

Eν]
b + δab

(1)

Ω[µ
a
(3)

Eν]
b + 2

(0)

θ[µ
(4)

Fν] + 2
(4)

θ[µ
(0)

Fν] + 2
(2)

θ[µ
(2)

Fν] ,
(1)

Rµν
a(p) = 2∂[µ

(1)

Eν]
a + 2εab

(0)

Ω[µ

(1)

Eν]b + 2εab
(0)

θ[µ
(1)

Ων]b − 2
(0)

B[µ

(1)

Eν]
a ,

(3)

Rµν
a(p) = 2∂[µ

(3)

Eν]
a + 2εab

(0)

Ω[µ

(3)

Eν]b + 2εab
(2)

Ω[µ

(1)

Eν]b + 2εab
(0)

θ[µ
(3)

Ων]b + 2εab
(2)

θ[µ
(1)

Ων]b

−2
(0)

B[µ

(3)

Eν]
a − 2

(2)

B[µ

(1)

Eν]
a ,

(1)

Rµν
a(g) = 2∂[µ

(1)

Ων]
a + 2εab

(0)

Ω[µ

(1)

Ων]b + 2εab
(0)

F[µ

(1)

Eν]b + 2
(0)

B[µ

(1)

Ων]
a ,

(3)

Rµν
a(g) = 2∂[µ

(3)

Ων]
a + 2εab

(0)

Ω[µ

(3)

Ων]b + 2εab
(2)

Ω[µ

(1)

Ων]b + 2εab
(0)

F[µ

(3)

Eν]b + 2εab
(2)

F[µ

(1)

Eν]b

+2
(0)

B[µ

(3)

Ων]
a + 2

(2)

B[µ

(1)

Ων]
a , (3.10)

Once again, we can read off the structure constants from the expanded curvatures and

construct the g(4, 3) algebra

[D,H ] = −2H [D,Z] = −2Z [D,K] = 2K

[D,S] = 2S [H,K] = D [H,S] = −2Y

[H,Y ] = −Z [K,Y ] = S [K,Z] = 2Y

[H,Ga] = −εabP b [H,Ba] = −εabT b [Z,Ga] = −εabT b

[Y,Ga] = −1

2
Ba [J,Ga] = −εabGb [J,Ba] = −εabBb

[M,Ga] = −3

2
εabB

b [J, Pa] = −εabP b [J, Ta] = −εabT b

– 9 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
7

[M,Pa] = −3

2
εabT

b [K,Pa] = −εabGb [S, Pa] = −εabBb

[K,Ta] = −εabBb [Ga, Gb] = εabS [Ga, Pb] = −δabY + εabM

[Pa, Pb] = εabZ [D,Pa] = −Pa [D,Ta] = −Ta

[Y, Pa] =
1

2
Ta [D,Ga] = Ga [D,Ba] = Ba

[Pa, Tb] = εabX1 [Ga, Bb] = εabX3 [Pa, Bb] = δabX4 + εabX2

[Ta, Gb] = δabX4 + εabX2 [D,X1] = −2X1 [Y,Z] = X1

[X4, H] = X1 [D,X3] = 2X3 [S, Y ] = X3

[K,X4] = X3 [X1,K] = −2X4 [Z, S] = −2X4

[H,X3] = −2X4. (3.11)

where we identify the generators as

(4)

h = X1 ,
(4)

j =
2

3
X2 ,

(4)

k = X3 ,

(4)

d = −2X4 ,
(3)
pa = Ta ,

(3)
ga = Ba , (3.12)

together with our previous definitions (3.4). Similarly, the gauge fields identified as

(4)

θµ = x1µ ,
(4)

Ωµ =
3

2
x2µ ,

(4)

Fµ = x3µ ,

(4)

Bµ = −1

2
x4µ ,

(3)

Eµ
a = tµ

a ,
(3)

Ωµ
a = bµ

a . (3.13)

together with our previous definitions (3.7). We refer the algebra (3.11) as the enhanced

Schrödinger algebra. The enhanced Schrödinger algebra can be equipped with an invariant

bi-linear form to form a Chern-Simons action

(Pa, Bb) = δab, (Ta, Gb) = δab, (J,X2) = −1,

(M,M) = −3

2
, (D,X4) = −1, (Y, Y ) =

1

2
,

(H,X3) = −1, (K,X1) = −1, (S,Z) = −1 . (3.14)

Alternatively, one can consider the Lie algebra expansion of the core action (2.18), which

gives rise to the enhanced Schrödinger gravity

S =
k

4π

∫
d3x εµνρ

(
bµ
aRνρa(P ) + eµ

aRνρa(B) + ωµ
aRνρa(T ) + tµ

aRνρa(G)− x1µRνρ(K)

−fµRνρ(X1)− zµRνρ(S)− sµRνρ(Z)− τµRνρ(X3)− x3µRνρ(H)

+yµ∂νyρ − 3mµ∂νmρ − 4x4µ∂νbρ − 4x2µ∂νωρ + εab ωµ
aων

bzρ

+2εab ωµ
abν

bτρ + εab eµ
aeν

bsρ + 2εab eµ
atν

bfρ

)
, (3.15)
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Here, the curvatures can simply be read off from (3.11) with the identifications (3.12)

and (3.13)

Rµν
a(P ) = 2∂[µeν]

a + 2εab ω[µeν]b − 2εab ω[µbτν] − 2b[µe
a
ν] ,

Rµν
a(G) = 2∂[µων]

a + 2εabω[µων]b + 2εabf[µeν]b + 2b[µω
a
ν] ,

Rµν
a(B) = 2∂[µbν]

a + εabω[µbν]
b + 3εabm[µων]b + 2εabf[µtν]b + 2εabs[µeν]b

+2b[µbν]
a − y[µων]a ,

Rµν
a(T ) = 2∂[µtν]

a + εabω[µtν]
b + 3εabm[µeν]b + 2εabτ[µbν]b + 2εabz[µων]b

−2b[µtν]
a + y[µeν]

a ,

Rµν(H) = 2∂[µτν] − 4b[µτν] ,

Rµν(K) = 2∂[µfν] + 4b[µfν] ,

Rµν(S) = 2∂[µsν] + εabω[µaων]b + 4b[µsν] + 2f[µyν] ,

Rµν(Z) = 2∂[µzν] + εabe[µaeν]b − 4b[µzν] − 2τ[µyν] ,

Rµν(X1) = 2∂[µx1ν] + 2εabe[µ
atν]

b − 4b[µx1ν] + 2x4[µτν] + 2y[µzν] ,

Rµν(X2) = 2∂[µx2ν] + 2εabe[µ
abν]

b + 2εabt[µ
aων]

b ,

Rµν(X3) = 2∂[µx3ν] + 2εabω[µ
abν]

b + 4b[µx3ν] + 2x4[µfν] − 2y[µsν]

Rµν(X4) = 2∂[µx4ν] + 2δabe[µ
abν]

b + 2δabt[µ
aων]

b − 4x1[µfν] − 4τ[µsν] + 4x3[µτν] .

(3.16)

3.3 Non-uniqueness of higher order algebras

In the previous subsection, we obtained a g(4, 3) Schrödinger algebra and the corresponding

g(4, 3) Schrödinger gravity. Following this result, there is an obvious question to address:

what algebra does one obtain by truncating the non-relativistic conformal generators from

the g(4, 3) Schrödinger algebra? To answer this question, we may truncate the enhanced

Schrödinger algebra by consistently truncating {D,K,X1, X2, X3, X4} in which case one

obtains

[H,S] = −2Y , [H,Y ] = −Z , [H,Ga] = −εabP b ,

[H,Ba] = −εabT b , [Z,Ga] = −εabT b , [Y,Ga] = −1

2
Ba ,

[J,Ga] = −εabGb , [J,Ba] = −εabBb , [M,Ga] = −3

2
εabB

b ,

[J, Pa] = −εabP b , [J, Ta] = −εabT b , [M,Pa] = −3

2
εabT

b ,

[S, Pa] = −εabBb , [Ga, Gb] = εabS , [Ga, Pb] = −δabY + εabM ,

[Pa, Pb] = εabZ , [Y, Pa] =
1

2
Ta . (3.17)
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Although they have the same generators, the algebra (3.17) is different than the three-

dimensional extended Newtonian algebra that is given by [8]

[H,Ga] = Pa , [J, Pa] = −εabP b , [J,Ga] = −εabGb ,
[J, Ta] = −εabT b , [J,Ba] = −εabBb , [Ga, Pb] = εabM ,

[Ga, Gb] = εabS , [H,Ba] = −εabT b , [M,Ga] = −εabT b ,
[S, Pa] = −εabT b , [S,Ga] = −εabBb , [Ga, Tb] = −εabY ,

[Ga, Bb] = εabZ , [Pa, Bb] = −εabY . (3.18)

These two algebras most importantly differ by the fact that while Y and Z are central in

the extended Newtonian algebra (3.18), they are not central and cannot be consistently

truncated in (3.17). This result is somewhat puzzling and it leads us to question how

unique the higher-order algebras are. In the rest of this section, we will discuss several

examples of non-uniqueness in three and higher dimensions.

Example 1. Consider the following algebra with four parameters a1, a2, a3 and a4

[J,Ga] = −εabGb , [J, Pa] = −εabP b , [J,Ba] = −εabBb ,

[J, Ta] = −εabT b , [H,Ba] = −εabT b , [H,Ga] = −εabP b ,

[Ga, Gb] = εabS , [M,Ga] = a1εabT
b , [S,Ga] = a1εabB

b ,

[S, Pa] = a1εabT
b , [Ba, Gb] = a2εabZ , [Ba, Pb] = a3εabY ,

[Ga, Pb] =
1

2
a4δabY + εabM , [Ga, Tb] = a3εabY , [H,S] = a4Y . (3.19)

If all the parameters are non-zero, they can be absorbed into the redefinitions of the gen-

erators. However, we may construct discrete set of algebras by setting certain parameters

to zero. Of particular interest, for the following choice of the parameters

a1 = −1 , a2 = 1 , a3 = −1 , a4 = 0 , (3.20)

this algebra reduces to the three-dimensional extended Newtonian algebra [8]. We may lift

this algebra to arbitary dimensions by setting a2 = a3 = a4 = 0 and thereby truncating Y

and Z as

[Jab, Gc] = 2δc[bGa] , [Jab, Gc] = 2δc[bPa] , [Jab, Bc] = 2δc[bBa] ,

[Jab, Tc] = 2δc[bTa] , [H,Ba] = Ta , [H,Ga] = Pa ,

[Ga, Gb] = Sab , [M,Ga] = −a1Ta [Sab, Gc] = −2a1δc[bBa] ,

[Sab, Pc] = −2a1δc[bTa] , [Ga, Pb] = δabM , [Jab, Jcd] = 4δ[a[cJd]b] ,

[Jab, Scd] = 4δ[a[cSd]b] . (3.21)

Note that the three-dimensional algebra can be recovered by setting

Jab → εabJ , Sab → εabS , P a → εabPb , T a → εabTb . (3.22)
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This algebra precisely match with the higher-order algebra of [7] upon rescaling

Ba →
1

a1
Ba , Ta →

1

a1
Ta (3.23)

as long as a1 6= 0. However, if a1 = 0, then we obtain an extension of the Bargmann

algebra that is spanned by the generators {H,Jab, Pa, Ga,M} with four extra generators

{Sab, Ba, Ta} where M stays central unlike the algebra of [7].

Example 2. Next, we consider the following algebra with four parameters a1, a2, a3 and a4

[J,Ga] = −εabGb , [J, Pa] = −εabP b , [J,Ba] = −εabBb ,

[J, Ta] = −εabT b , [H,Ba] = −εabT b , [H,Ga] = −εabP b ,

[Ga, Gb] = εabS , [M,Ga] = a3εabT
b , [S,Ga] = a3εabB

b ,

[S, Pa] = a3εabT
b , [Ba, Gb] = a4εabZ , [Ga, Pb] =

1

2
a1δabY + εabM ,

[Pa, Pb] =
1

2
a1a2εabZ , [H,S] = a1Y , [H,Y ] = a2Z , (3.24)

Once again, the closure of the algebra does not require any specific choice for the free

parameters and various algebras can be obtained by setting certain parameters to zero.

Unlike the first example, this algebra does not reduce either to the extended Newtonian

algebra (3.18) or the new algebra with the same generators (3.17) for any choice of the

discrete parameters. Nonetheless, it can be lifted to higher dimensions by setting a1 =

a2 = a4 = 0 to obtain the algebra (3.21).

Example 3. As a third example, we consider the following algebra with four parameters

a1, a2, a3 and a4

[J,Ga] = −εabGb , [J, Pa] = −εabP b , [J,Ba] = −εabBb ,

[J, Ta] = −εabT b , [H,Ba] = −εabT b , [H,Ga] = −εabP b ,

[Ga, Gb] = εabS , [M,Ga] = a3εabT
b , [S,Ga] = a3εabB

b ,

[S, Pa] = a3εabT
b , [Ba, Pb] = a4εabY , [Ga, Pb] =

1

2
a1δabY + εabM ,

[Ga, Tb] = a4εabY , [Z,Ga] = a2εabT
b , [H,S] = a1Y . (3.25)

The closure of the algebra, again, is independent of the choice of parameters. Furthermore,

as in the second example, this algebra does not reduce either to the extended Newtonian

algebra (3.18) or the new algebra with the same generators (3.17) for any choice of the

parameters. We may set different paramters to zero to investigate various subalgebras. In

particular, setting a1 = a2 = a4 = 0, we may obtain the d-dimensional algebra (3.21).
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Example 4. Consider the following algebra with four parameters a1, a2, a3 and a4

[J,Ga] = −εabGb , [J, Pa] = −εabP b , [J,Ba] = −εabBb ,

[J, Ta] = −εabT b , [H,Ba] = −εabT b , [H,Ga] = −εabP b ,

[Ga, Gb] = εabS , [M,Ga] =
3

4
a1a2a3εabB

b+a4εabT
b , [M,Pa] =

3

4
a1a2a3εabT

b

[S,Ga] = a4εabB
b , [S, Pa] =

1

2
a1a2a3εabB

b+a4εabT
b , [Y,Ga] = −1

2
a2a3Ba ,

[Ga, Pb] =
1

2
a1δabY+εabM , [Y, Pa] =

1

2
a2a3Ta , [Z,Ga] = a3εabT

b ,

[Pa, Pb] =
1

2
a1a2εabZ , [H,S] = a1Y , [H,Y ] = a2Z . (3.26)

There is no constraint on the parameters for the closure of this algebra and various discrete

set of different algebras by setting certain parameters to zero. In particular we may set

a1 = −2 , a2 = −1 , a3 = −1 , a4 = 0 , (3.27)

in which case we recover the new algebra (3.17). We may also choose to set all the pa-

rameters to zero in which case we obtain an extension of the Bargmann algebra with four

extra generators {Sab, Ba, Ta} where M stays central as we discussed in example 1.

Example 5. So far, we investigated the three-dimensional models such that when it is

possible to lift them to higher dimensions, they give rise to the same algebra of [7] with

a single parameter. In our final example, we show that the algebra of [7] can actually

accommodate three parameters

[Jab, Gc] = 2δc[bGa] , [Jab, Pc] = 2δc[bPa] , [Jab, Bc] = 2δc[bBa] ,

[Jab, Tc] = 2δc[bTa] , [H,Ba] = a1Ta , [H,Ga] = Pa ,

[Ga, Gb] = a2Sab , [M,Ga] = −a1a2a3Ta [Sab, Gc] = 2a3δc[bBa] ,

[Sab, Pc] = 2a1a3δc[bTa] , [Ga, Pb] = δabM , [Jab, Jcd] = 4δ[a[cJd]b] ,

[Jab, Scd] = 4δ[a[cSd]b] . (3.28)

Here we insist that the Bargmann algebra is a subalgebra so we did not place a parameter

in the relevant commutators. The closure of this algebra does not depend on any particular

choice of the parameters. If all the parameters are non-zero, then they can be absorbed by

into the redefinitions of the generators and we obtain the algebra of [7]. However, if any one

of the parameters is set to zero, then M becomes central. In that case, the Bargmann alge-

bra becomes a subalgebra and one can introduce a mass current in a Bargmann-invariant

sense to the extended theory.

4 Discussion

In this paper, we present a Lie algebra expansion methodology to generate higher-order

three-dimensional Schrödinger algebras. Our construction relies on a new novel three-

dimensional non-relativistic conformal Galilei algebra that we utilized as a core algebra.
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By employing the Lie algebra expansions, we first recovered the extended Schrödinger

algebra [3] and obtained a new higher-order Schrödinger algebra which we referred to

as the enhanced Schrödinger algebra. We, next, truncate the non-relativistic conformal

symmetry generators and found a new algebra that goes beyond the three-dimensional

extended Bargmann algebra. Although with the same set of generators, this new algebra

does not coincide with the extended Newtonian algebra [8]. This result leads to a natural

question of whether higher-order algebras are unique. We, then, showed that the higher-

order algebras are indeed not unique and they can accommodate parameters such that we

can obtain a set of discrete algebras by setting these parameters to zero. In particular,

we showed that the symmetry algebra that was proposed as the symmetry algebra of

an action for Newtonian gravity [7] is not uniquely defined but can be closed with three

parameters. We also show that for a particular choice of these parameters the Bargmann

algebra becomes a subalgebra of the extended algebra and one can introduce a mass current

in a Bargmann-invariant sense to the extended theory.

The most straightforward continuation of this work would be to find the supersymmet-

ric completion of the core algebra (2.11) therefore extending the higher-order Schrödinger

algebras with supersymmetry. As the Schrödinger algebra itself if a particular instance

of the `-conformal Galilei algebra [20, 21], it would also be interesting to understand the

higher-order Schrödinger algebras by understanding the `-conformal Galilei algebra from

a Lie algebra expansion viewpoint. Finally, the non-uniqueness of the higher-order non-

relativistic algebras certainly deserves a detailed investigation. In our examples, the param-

eters were discrete such that we obtain certain algebras by setting some of the paramters

to zero. It is also possible to generalize the algebra of [7] with continuous set of free pa-

rameters, see appendix C of [22]. In particular, given the fact that the proposed symmetry

algebra of an action for Newtonian gravity can accommodate three discrete (or continu-

ous [22]) parameters, it would be interesting to understand the metric formulation of the

Lagrangian proposed in [7] in terms of a gauge theory of a symmetry algebra. Finally, as

the extended Schrödinger algebra has a hidden relativistic structure [23], it would be of

interest to see if the enhanced of the Schrödinger algebra and the corresponding supergrav-

ity theory can also be recast in a manifestly relativistic form, perhaps with a co-adjoint

Poincaré structure.
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