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ABSTRACT

Extracellular vesicles (EVs) are membranous containers that are secreted by multiple cell types and
actively transport biomolecules such as lipids, proteins, and nucleic acids to distant cells, thereby
inflicting phenotypic changes. In addition to their use in disease diagnosis, EVs have emerged as
powerful tools for disease treatment. Specifically, the natural transport capacity of EVs can be exploited
for drug delivery purposes. In this review, we focus on the key technologies that are used to ‘design’ EVs
for their use as biological delivery vehicles. We provide a comprehensive overview of (i) methods for the
loading of EVs with therapeutic cargo, (ii) methods for EV surface functionalization to direct EVs to target
cells, and (iii) methods to stimulate cargo release from EVs. Finally, we discuss the remaining and up-
coming challenges for the clinical translation of EV-mediated drug delivery.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

Biomedical engineering
Drug delivery

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The performance of many pharmaceuticals in disease treatment
is suboptimal because of poor bioavailability and toxicity, which
prevents their administration at a therapeutic dose. Nanoparticles
hold high potential as effective drug delivery systems by preventing
drug delivery to non-target tissues, thus enhancing drug specificity
and reducing toxicity. Ultimately, active targeting to a specific tis-
sue site is the holy grail of drug delivery systems. To prevent fast
clearance of nanoparticles from the blood by liver, spleen, and
kidneys, the nanoparticles should be prevented from filtration, and
recognition by phagocytic cells. Moreover, nanoparticles should
refrain from stimulating an immune response, and inducing
toxicity [1]. The coating of nanoparticles with a layer of poly-
ethylene glycol (PEG) is widely used as a method for protection
against removal by the reticuloendothelial system [2], although
drawbacks such as hypersensitivity to and antibody formation
against PEG have been documented [3—6]. The development of
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Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
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‘safe’ nanoparticles is largely focused on the use of biodegradable
and biocompatible materials [7—9].

Despite significant developments, drug delivery systems still
face the big challenge of escaping from the host surveillance sys-
tem, while efficiently delivering cargo at a specific location in the
body without harming non-target tissues [1]. In this regard,
extracellular vesicles (EVs), natural carriers secreted by a variety of
cell types, have emerged as a powerful tool for drug delivery.

Once put away as ‘garbage bags’ and ‘platelet dust’, EVs are now
known to function as messengers between cells [10,11]. Cellular
information in the form of proteins, nucleic acids, and lipids can
traffic between neighboring and distant cells via EVs (Table 1) [11].
EVs have been implicated in various developmental as well as
pathogenic processes such as neural development [12,13], wound
healing [14], cancer metastasis [15,16], immune response media-
tion [17], host—parasite interaction [18], and progression of
neurodegenerative disease [12,19,20].

EVs are secreted extracellular structures that are enclosed by a
lipid bilayer. They include microvesicles (MVs), exosomes, and
apoptotic bodies (ApoBDs), and are categorized on the basis of their
biogenesis pathway [44]. While MVs are formed by outward
budding of the plasma membrane of cells, exosomes are formed by
the inward budding of the limiting membrane of endosomes, thus
forming multivesicular bodies (MVBs). Upon fusion of MVBs with
the plasma membrane the vesicles are released in the extracellular

2588-8420/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Principal components of EVs.
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Class

Targeting/adhesion molecules
Tetraspanins

Heat shock proteins

Antigen presentation proteins
Cytoskeletal proteins
Membrane transport and fusion

Hsc70, Hsp84/90 [22,28,31,32]
MHC class I and I [23,27,28,32—35]
Tubulin, actin, cofilin, myosin [21,22,28,36]

Integrins (a4p1, aMp2, B2, aLB2), ICAM-1/CD54, MFG-E8/lactadherin [21—-26]
CD9, CD37, CD53, CD63, CD81, CD82 [22,23,25,27—30]

Annexins (I, I, IV, V, VI), RAB proteins (RAB7, RAP1B, RABGDI) [21,36]

proteins
Signal transduction proteins G-proteins (Gi2a), 14-3-3, protein kinases, flotillin-1 [36,37]
Enzymes Peroxidases, pyruvate and lipid kinases, enolase-1, GAPDH [28,37]

Protein synthesis molecules
Transmembrane molecules
Antiapoptotic proteins
MVB formation proteins

EEF1A1, EEF2, ADP ribosylation factor [37]

Alix, thioredoxin peroxidase [36,37]
Tsg101, Alix, Clathrin [36,37]

A33 antigen, P-selectin, cell surface peptidases (CD13, CD26), ATPase channels [28,29,37]

Lipids Phosphatidylserine, cholesterol, ceramide, sphingomyelin, lysophosphatidylcholine, arachidonic acid, prostaglandins, and

leukotrienes [29,38—40]

Nucleic acids DNA, RNA (mRNA, miRNA) [41—-43],

ICAM, intercellular adhesion molecule; MFG-E8, milk fat globule EGF factor VIII protein; MHC, major histocompatibility complex; GAPDH, glyceraldehyde 3-phosphate
dehydrogenase-activating protein; EEF, eukaryotic translation elongation factor; TSG101, tumor susceptibility gene 101.

space [45] (Fig. 1). MVs and exosomes show significant overlap in
their (cytosol-derived) cargo, their biological functions, and un-
derlying molecular mechanisms, including their cellular entry
pathways [46]. The third type of EVs, ApoBDs, fall in the range from
50 to 5000 nm [47], and are generated from cells undergoing
apoptosis, which is characterized by plasma membrane blebbing
[10,48—50]. Owing to the vast increase in EV isolation methodol-
ogies (Table 2), other EV subpopulations have been discovered,
including exomeres, small and large exosome-like vesicles, and
mitochondrial protein-enriched EVs [50—53], while also raising the
possibility that not all EV subpopulations are comprehensively
defined. Currently, transmission electron microscopy, nanoparticle
tracking analysis, and dynamic light scattering [54] are the mostly
used techniques for particle size determination, while flow
cytometry, western blotting, and mass spectrometry (MS) serve to
identify the protein composition [55]. Additionally, the lipid and
carbohydrate fingerprint can be obtained by lipidomic analysis
[56,57] and lectin microarray technology [58], respectively.
Generally, the required EV yield and purity, together with the ease
and costs of the isolation procedure govern the choice for a specific

EV isolation procedure and following characterization techniques
[59].

In this review, we will focus on the two EV types that are most
widely explored as drug delivery vehicles: exosomes and MVs,
while collectively referring to them as EVs [50—52,67]. Specifically,
we provide a detailed account of the available methods for the
loading of EVs with (therapeutic) cargo, EV unloading mechanisms,
and the challenges and prospects of the development of EVs as drug
delivery vehicles. Of note, the third type of EVs, i.e., ApoBDs, has
received less attention in drug delivery research thus far, mainly
because of their broad size distribution and engulfment of large
ApoBDs by phagocytes. However, the potential of ApoBDs as drug
delivery vehicles is increasingly being recognized, especially that of
small ApoBDs [68—70].

2. EVs as drug delivery systems

The potency of EVs as a new class of nanocarriers owes to their
unique properties as information carriers, including their intrinsic
homing ability, biocompatibility, cell-specific targeting, non-

Exosomes

Recipient cell

MV (i) Endosome

O
OO O‘_/q

LV

Fig. 1. Biogenesis of microvesicles and exosomes. Exosomes are endosome-derived vesicles. Plasma membrane invaginations (i) pinch off and form endosomes (ii) MVBs (iii) are
formed when the limiting membrane of an endosome buds inwards and forms intraluminal vesicles (ILVs). Upon fusion of MVBs with the plasma membrane the ILVs, now called
exosomes, are released in the extracellular space (iv). Microvesicles are plasma membrane—derived vesicles. They form when the plasma membrane buds outwards and undergoes

fission (v).
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Table 2
Exosome isolation methods including advantages and disadvantages.
EV isolation/purification method Description Advantages Disadvantages Reference
Differential ultracentrifugation o Differential centrifugation of e High EV yields e Time consuming (62—90 h) [60-62]
with density gradient centrifugation cell culture supernatant or e High EV recovery e Reduced protein and RNA
body fluids at increasing e High EV purity recovery
speeds (300 g: removes cells; e Highly sensitive to various
1,000 g: removes cell debris; parameters, e.g., the applied
10,000 g: removes MVs; speed (g-force), the
100,000 g: pellets exosomes) centrifuge characteristics
e Additional use of a sucrose (rotor type, angle of rotor,
density gradient during radius of centrifugal force),
ultracentrifugation separates the solution viscosity, and the
contaminants from EVs operator variability
Filtration paired with centrifugation e Size-based separation using e Useful for isolation of EVs e Loss of EVs due to binding to [62]
ultrafiltration membranes from large volumes (>1 L) of the membranes
with defined molecular conditioned medium e Remnant contamination go
weight or size exclusion e Suitable for clinical smaller components
limits applications e Blockage of the membrane
o Selective isolation based on pores in concentrated fluids
molecular weights due to increased applied
force
Immunoaffinity capture e Trapping EVs on plates, e Simple and rapid e Not suitable for large-scale [24,60,62]
filters, matrices, or beads e Useful for rough EV purification
bearing antibody against characterization of EVs e Possibility of loss of EV
specific EV surface proteins e Does not require functionality during release
e Most common targets are ultracentrifugation from the captured matrix
tetraspanins (CD63, CD9, e Can be analyzed by flow e Restricted to a subpopulation
CD81, etc.) and TSG101 cytometry using of marker-positive EVs
fluorophore-conjugated e Dependent on appropriate
antibodies selection of EV surface target
e High EV isolation specificity and availability of the target
o Highly pure EV isolate antibody
e Low yield
Size exclusion chromatography e Separation of EVs based on e Clear separation of large e Long run time [60,62]
differential hydrodynamic molecules from small e Limited scalability for high-
diameters by passing the molecules throughput applications
heterogeneous EV solution e Preserves the integrity and e Needs to be combined with
through a column containing biological activity of EVs another isolation technique
beads with pores of different being separated to concentrate the final EV
sizes o Excellent reproducibility and preparation
sensitivity e The use of an extra force to
e High EV recovery reduce the run time might
cause the deformation and
break-up of EVs
Polymer-based precipitation e Polyethylene glycol—based e Easy to use o Co-isolation of non-vesicular [62,63]
precipitation of EVs, per- e Does not require specialized contaminants such as lipo-
formed by addition of EV equipment proteins and polymer
suspension to polyethylene e It can be rapidly performed residues
glycol-containing solution e Pre- and post-isolation steps
and low speed centrifugation can lead to a purer isolated
e The most commonly used EV fraction
commercial product is
ExoQuick-TC from System
Biosciences
Microfluidic technologies e Three main techniques e Small volume of starting o Low collection efficiency [64—66]

founded on size (trapped in
a porous-ciliated silicon
microstructure), density
(pressure or electrophoresis-
driven membrane filtration
with a specific pore size), and
immunoaffinity (chip coated
with antibody against EV
surface protein) based EV
isolation

e Innovative techniques
including size and density-
dependent EV separation
through ultrasound-operated
acoustic nanofilter, electro-
phoretic or electromagnetic
manipulation-driven
separation

material is required; highly
pure EV isolation; minimal
processing time; high-
throughput analysis of EV
contents

Contamination with MVs of
similar size

Not suitable for EV isolation
from large samples

EV, extracellular vesicles; MVs, microvesicles; TSG101, tumor susceptibility gene 101.
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immunogenicity, broad distribution in biological fluids, and easy
penetration across physiological barriers [10,71]. In addition, the
natural cargo of EVs may contain therapeutic molecules, which can
be harnessed for therapeutic interventions [72]. Despite that the
role of EVs in natural cargo transfer is being questioned, their po-
tency as nanocarriers with accompanying advantages as non-
immunogenicity, remains worthwhile to explore [73—75]. To
exploit EV drug delivery potential, methods have been developed to
introduce cargo of exogenous origin into EVs as well as to maximize
their efficacy of targeting and delivery. Here, we discuss the stra-
tegies hitherto employed for EV cargo loading, targeting, and cargo
unloading.

2.1. Loading cargoes

There are three general approaches to generate EVs that are
loaded with therapeutic substances (Fig. 2): (1) exogenous EV
loading: loading of cargo into pre-formed EVs, i.e., post-isolation;
(2) endogenous EV loading: cargo loading during EV biogenesis,
i.e., through engineering of cells prior to EV isolation; and (3)
in vivo production of loaded EVs through implantation of genet-
ically engineered cells or in vivo transduction/transfection of cells.
Although each method has its advantages, the overall outcome of
each technique is primarily influenced by the nature and type of
the cargo molecule. Therefore, in this section, we will focus on
different biomolecule species and the methodologies employed
for their loading into EVs, both endogenously and exogenously
(Figs. 3 and 4). An overview of the loading methods per molecular
species is provided in Table 3. For a discussion of the advantages
and disadvantages of the methods we refer the reader to
Refs. [76—79].

a b
Exogenous Endogenous
EV loading EV loading
e
@)
0O
)

Donor cell

© Exosome

¢ Plasma membrane component

(O Microvesicle

Materials Today Nano 16 (2021) 100148

2.1.1. siRNA

siRNAs are small non-coding RNA molecules that, upon their
intracellular delivery, mediate the degradation of complementary
mRNA and thereby silence gene expression. However, they are
rapidly degraded in circulation and poorly enter cells due to their
hydrophilic nature, hence their delivery is mediated by nano-
particles, including EVs [172—176]. Importantly, siRNA molecules
are easily loaded into EVs owing to their small size (20—25 nucle-
otides) and are the most studied molecule for EV-mediated
delivery.

Alvarez-Erviti et al. loaded EVs with siRNA against BACE1 (beta-
secretase 1), an enzyme relevant to Alzheimer’s disease, by means
of electroporation (Fig. 3-1). In electroporation, short high-voltage
pulses are used to produce transient pores in (cell) membranes,
which allow for the passage of small molecules [177]. Intravenous
injection of the BACE1 siRNA-loaded EVs into wild-type mice, led to
successful BACE1 knockdown [80]. However, a follow-up study
reported that electroporation induced siRNA aggregate formation,
which caused an overestimation of the loading efficiency into EVs
[178]. Nevertheless, electroporation still remains a popular method
for siRNA loading, largely due to the realization of the desired
therapeutic effect. For example, reduction of alpha-synuclein ag-
gregates in the brain [81], alleviation of inflammation by reducing
the expression of ICAM-1 (intercellular adhesion molecule 1) in
microvascular endothelial cells [82], and reduction of oncogenic
RAS expression and cancer suppression in multiple mouse models
[83] have been obtained with EVs that were loaded with siRNA by
electroporation.

Recently, as an alternative to electroporation, a modified cal-
cium chloride—mediated ‘transfection’ method (Fig. 3-2), previ-
ously developed for loading microRNAs (miRNAs) into EVs [84],

in vivo production
of loaded EVs

in vivo implantation of
engineered EV donor cells
OR

in vivo DNA innoculation
to generate producer cells

e Cytosolic component

Engineered EV donor cells

Fig. 2. EV loading approaches. Therapeutic biomolecules including RNA, DNA, protein, lipids, and small-molecule drugs can be loaded into EVs via exogenous incorporation (A, post-
EV isolation) or endogenous incorporation during biogenesis of EVs (B, pre-EV isolation). The third approach involves in vivo generation of designer EVs by implantation of (ex vivo)

engineered EV donor cells or in vivo DNA inoculation to generate producer cells (C).
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Exogenous EV loading
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Fig. 3. Exogenous EV loading strategies. 1. Electroporation-induced membrane permeability enables loading of EVs with therapeutic molecules. 2. Calcium chloride—mediated
precipitation of small RNAs followed by heat shock in the presence of EVs results in RNA encapsulation. 3. Momentary permeabilization of EV membranes by ultrasonic waves
facilitates capture of therapeutics in EVs. 4. Hydrophobically modified small RNA molecules get inserted into the lipid bilayer of the EV membrane. 5. Simple co-incubation of EVs
with therapeutics leads to their association. 6. Lipoplexes merge with the EV lipid bilayer, resulting in hybrid EVs containing EV and lipoplex lipids distributed in the membrane. 7.
Subsequent dehydration, rehydration in acid, and neutralization facilitates entrapment of therapeutic biomolecules in EVs. 8. The mild detergent saponin solubilizes the EV
membranes, aiding loading of therapeutics. 9. Extrusion of a dispersion of EVs and therapeutic molecules through a porous membrane leads to the incorporation of molecules in
EVs. 10. Rapid freeze-thaw cycles lead to EV membrane disruption, which assists the loading of EVs with molecules. 11. A DNA-cholesterol tether is inserted into the EV membrane
via the hydrophobic domain, while DNA acts as a conjugation entity for the attachment of various biomolecules. 12. Dialysis of EVs against a hypotonic solution that contains

therapeutic molecules results in the loading of molecules in EVs.

was used for loading EVs with siRNAs. In this transfection method,
calcium ions form microprecipitates with negatively charged
chloride ions and nucleic acids. A subsequent heat shock triggers
transient pore formation in the EV membranes, facilitating incor-
poration of nucleic acids into EVs [179]. EVs loaded with siMyd88
(an miRNA mimic) beneficially modulated lung inflammation
in vivo [85]. Importantly, this method was compared with electro-
poration in the same experimental setting and was found compa-
rable in terms of efficiency and convenience.

Sonication (Fig. 3-3) is an emerging alternative to electropora-
tion. In this method, EVs are mixed with nucleic acid cargo and
sonicated with a probe sonicator. During this process the EV
membranes are ruptured and reformed, facilitating the encapsu-
lation of nucleic acids within the EVs [180—182]. Lamichhane et al.
[86] showed that siRNAs against oncogenic HER2 (human
epidermal growth factor receptor 2) could be efficiently loaded into

EVs by sonication for use in an animal model of breast cancer.
Importantly, less large siRNA aggregates (>300 kDa) were formed
during sonication compared to electroporation, and higher cellular
uptake of EV-associated siRNA was observed. On the con side, a
limited functional effect, i.e., limited siRNA-mediated gene
silencing, was observed. Similar effects were seen for EV-mediated
miRNA and ssDNA delivery in the same study. Sonication is an
easily scalable strategy and has the capacity to load EVs with
relatively bulky molecules. However, this may cause a significant
change in the EV size [87,88], which may compromise EV function,
specifically drug delivery performance. Thus, this method needs
further optimization and development.

Recently, in order to increase the extent and ease of siRNA
loading and delivery, siRNAs were modified with TEG (triethylene
glycol)—cholesterol moiety to generate hydrophobically modified
siRNAs (hsiRNA) for easy incorporation into the EV lipid bilayer
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Fig. 4. Endogenous EV loading strategies. 1 and 2. Cytosolic overexpression of a therapeutic entity drives its loading into EVs by mass-action effect. 3 and 4. EV-enriched proteins,
from cytosol or membrane-bound, that contain an RNA binding domain recognize a specific motif in miRNAs. 5 and 6. Expression of a fusion protein between an EV-enriched
protein and an RNA-binding protein mediates mRNA loading into EVs through recognition of a hairpin motif in mRNAs. 7 and 8. A 25 nucleotide zipcode sequence marks
mRNA for miR-1289 recognition, and consequent enrichment in EVs. 9. Cells with pDNA in their extracellular environment are pulsed with focal and transient electrical pulses,
resulting in pDNA shuttling into the cytosol and subsequent enhanced mRNA expression and MVB formation, resulting in mRNA loading into ILVs. 10. Expression of a fusion protein
between an ILV-enriched protein and cargo protein ensures cargo loading into ILVs. 11. Interaction between the L-domain of an ILV marker protein and a WW-domain in cargo
protein, mediates cargo loading into ILVs. 12 and 13. ARRDC1 interacting with a WW-tagged cargo protein or fused to a cargo protein mediates cargo loading into MVs. 14.
Photoactivated protein—protein interaction between CRY fused to a cargo protein and CIBN connected to an ILV-enriched protein, mediates cargo loading into ILVs.

(Fig. 3-4). In vitro and in vivo applications of EVs loaded with
TEG—cholesterol siRNAs resulted in a.o. efficient reduction in
Huntingtin mRNA levels [89] and silencing of the expression of
human antigen R (HuR) [90]. The loading of EVs with hsiRNAs was
further improved by assessing the ability of various lipid conjugates
to enhance siRNA loading and silencing efficiency. Of all the tested
fatty acids, sterols, and vitamin conjugates, vitamin E was observed
to facilitate maximum siRNA loading and functional effect [91]. In

addition, loading parameters such as incubation time, volume,
temperature, and EV-to-siRNA ratio were shown to influence
loading and delivery efficiency. Although the simple incubation of
EVs with hsiRNAs is able to overcome the challenge of
electroporation-induced siRNA aggregation, a slight increase in the
EV size was noted, suggesting siRNA deposition on the EV surface,
which could render the EVs immunostimulatory [89]. Furthermore,
chemical modification of cholesterol-conjugated siRNAs is required
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EV-loading methods for different molecular species.

Molecular species

Loading methods and referred literature

siRNA

miRNA

mRNA

DNA

Protein

Lipids

Small molecules

Electroporation [80—83]

Calcium-mediated transfection [84,85]

Sonication [86—88]

Hydrophobic siRNA [89—92]

Simple incubation [93]

Lipid-based transfection [94—97]

Cytosolic (over)expression [98,99]

Lipid-based transfection [100]

Cytosolic (over)expression [101—106]

RNA binding protein-mediated loading [107—110]
Electroporation [79,111—-118]

Calcium chloride method [84]

pH gradient modification [119]

Cytosolic (over)expression [120—122]
Electroporation [123]

RNA binding protein-mediated loading [124,125]
Cellular nanoporation [126]

Transfection of producer cells [106,127]
Electroporation [128,129]

Electroporation [130]

Saponin treatment [87,88]

Extrusion [87,88]

Rapid freeze (—80°C)/thaw (RT) cycles [87,88]
Sonication [87,88]

DNA-cholesterol tether [131—-133]

Cytosolic (over)expression of cargo [106,122,134—136]
Cargo-EV marker protein fusion [137]
Protein-protein interactions (with WW-tag [138], ARRDC1 mediated [139], EXPLORs [140])
Fusion with liposomes as induced by repeated freeze-thaw cycles [141]
Co-incubation [142]

Co-incubation [143—154]

Electroporation [155—161]

Sonication [159,160,162]

Cellular loading [163,163—169]

Fusion with liposome-containing drugs [170,171]
Incubation [159,160]

Extrusion [159—161]

Freeze-and-thaw [159,160]

Saponin-assisted [161]

Hypotonic dialysis [161]

to prevent degradation in the presence of EVs due to endogenous
RNase activity [92]. However, the conjugation of a hydrophobic
moiety to siRNAs for their loading into EVs may be unnecessary,
because simple co-incubation of siRNA against phosphatase and
tensin homolog (PTEN) with EVs (Fig. 3-5) was recently shown to
result in 34% loading efficiency [93]. The intranasal administration
of these EVs to rats with spinal cord injury substantially attenuated
PTEN expression in the injured region leading to enhanced axonal
growth while also improving neurovascularization and reducing
micro- and astrogliosis. More importantly, significant functional
recovery was obtained in rats following EV treatment. Direct
comparison of cargo loading efficiency, potential immunostimula-
tion, efficiency of cell entry, cargo unloading efficiency, and func-
tional effect of EVs loaded with siRNA by the different methods is
needed to decide on the method of choice.

Alternatively, lipid-based transfection reagents have been used
for exogenous siRNA loading of EVs (Fig. 3-6). Using high-
performance transfection reagent, EVs were ‘transfected’ with
siRNAs for silencing mitogen-activated protein kinase-1 in human
blood cells [94]. Similarly, Lipofectamine 2000 (lipofection reagent)
was used to load EVs with antivascular endothelial growth factor
siRNA for the treatment of brain cancer [95], and Exo-Fect (exo-
some transfection reagent) was used to load siRNA against lincRNA-
cox2 to inhibit microglial proliferation in vitro and in vivo [96].
However, complex formation between the transfection reagent and
siRNA may have occurred in addition to EV—siRNA complex

formation, making it impossible to assign the observed functional
effects to EV-mediated siRNA delivery [94,97].

In addition to the post-loading of EVs as discussed above, EVs
can be pre-loaded with siRNA, i.e., prior to EV isolation. Pre-loading
or endogenous loading can be achieved through the cytosolic
expression of siRNAs in EV-producing cells (Fig. 4-1 and -2). For
example, EVs isolated from cells overexpressing siRNAs against
opioid receptor mu significantly reduced levels of mu mRNA and
protein in the brain and inhibited morphine relapse in mice [98].
Similarly, EVs pre-loaded with siRNA against TGF-$1 (transforming
growth factor beta 1) receptor suppressed TGF-B1 expression and
signaling in tumor cells resulting in the inhibition of tumor growth
and metastases [99]. Significant knock down of the BCR-ABL re-
ceptor, involved in chemotherapy resistance, was obtained with
EVs pre-loaded with siRNA against the BCR-ABL receptor [183].
Although this EV loading method is broadly applicable, the RNA
loading into EVs is proportionate to the cytosolic concentration of
the RNAs and highly dependent on the identity of the parental cell
type. In order to effectively increase EV pre-loading efficiency, very
high siRNA overexpression is needed which may have undesired
effects on the expression of other molecules in the parental cells,
which may be carried forward to target cells via EVs [184].

2.1.2. miRNA
miRNAs are a natural component of EVs. Stoichiometric analysis
of the miRNA content in EVs has revealed the presence of less than
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one miRNA copy per EV [73,185—188]. Similar to siRNAs, miRNAs
are small (18—25 nucleotides) RNA molecules that function in gene
silencing [189] and can be loaded into EVs via pre- and post-loading
methods. For example, human peripheral blood—derived EVs were
post-loaded with miR-21 mimics or inhibitors using Exo-Fect, in a
study on cardiac fibrosis [100]. The miR-21-loaded EVs successfully
regulated target mRNA and protein levels in cardiomyocytes in vitro
and in vivo. In a leading study by Ohno et al. [101], synthetic Let-7a
miRNA, a tumor suppressor, was introduced in producer cells by
lipofection and consequently pre-loaded into EVs by mass-action
driving force. Furthermore, EVs isolated from miRNA-146a-
transfected dendritic cells reduced autoimmunity in a neurolog-
ical autoimmune disease model for myasthenia gravis, although
this effect was attributed to a decrease in CD80/86 at the EV surface
and not to EV-mediated miRNA delivery [102]. Similarly, two other
studies [103,104] used EVs from miR150-5p and miR-124 trans-
fected mesenchymal stem cells as a therapeutic intervention in
in vitro and in vivo rheumatoid arthritis models and in vitro glio-
blastoma multiforme models, respectively. Finally, muscular atro-
phy and kidney fibrosis were reduced by injecting EVs loaded with
miR-29, by viral transduction of the producer cells with an
expression plasmid, into the muscles of mice undergoing muscular
atrophy due to unilateral ureteral obstruction [105]. Of note, EVs
that are loaded with miRNA through the transient transfection/
transduction of producer cells with miRNA-encoding plasmid DNA
(pDNA), may contain pDNA, which may be responsible for the
phenotypic changes in recipient cells [106].

It has been shown that certain RNA-binding proteins mediate
active sorting of miRNAs into exosomes through the recognition of
sequence motifs in miRNA [190—194]. Overexpression of such RNA-
binding proteins in EV-producer cells or introducing the sequence
motifs into miRNAs, leads to active loading of the miRNA into
exosomes [190]. Villarroya-Beltri et al. [190] identified two
sequence motifs, EXOmotifs, for directing miRNAs into EVs and
showed that sumoylation of the heterogeneous ribonucleoprotein
A2B1 (hnRNPA2B1) RNA binding protein was required for its
interaction with miRNA and its sorting into exosomes (Fig. 4-3).
Wang et al. [107] loaded exosomes with miRNA (miR-104) against
ICP4 (infected cell protein 4), a major regulatory protein of herpes
simplex virus 1, through the introduction of a 21-nt RNA transfer
sequence in miR-104 [108] The miR-104 exosomes effectively
reduced ICP4 expression and, as a result, reduced infectious virus
production from host cells.

Alternatively, RNA binding proteins can be exploited for miRNA
loading by their fusion to EV membrane proteins (Fig. 4-4). In this
regard, HuR, an RNA binding protein, was shown to specifically
interact with AU-rich elements in RNAs [109]. Li et al. simulta-
neously overexpressed HuR fused to CD9, a protein abundantly
present in the EV membrane, and miR-155, which contains AU-rich
elements, in EV producer cells. The resulting EVs were highly
enriched in functional miR-155 and efficiently reduced the target
mRNA expression in vitro and in vivo [110]. Cargo loading of EVs
prior to isolation through genetic engineering of parental cells
guarantees proper encapsulation and protection of RNA molecules
within the EV lumen, in contrast to the post-loading method which
may result in localization of RNA at the EV surface. However, it is
difficult to monitor the cargo-loading efficiency in pre-loaded EVs,
and additional changes in EV composition that may arise from the
overexpression of recombinant proteins in cells cannot be
excluded. Similarly, damage to EVs during post-loading, e.g., by
electroporation or sonication, cannot be excluded. Therefore, the
preferred method for miRNA loading of EVs may depend on the
research goals of the experimenter. Currently, electroporation is the
most widely used method to load miRNAs into EVs, as reviewed in
Refs. [79,111], probably because of its ease and speed.
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In an early report [112], miRNA-155 was loaded into EVs from B-
cells using an optimized electroporation protocol. These EVs suc-
cessfully introduced the miRNA-155 into primary mouse hepato-
cytes and miRNA-155 knockout mice. Although this study showed
successful delivery of miRNA into cells, functional outcome was not
studied. Since then, many studies have used electroporation to load
EVs with miRNAs to bring about phenotypic modulation in vitro
and/or in vivo, such as miR-26a-loaded EVs [113] for inhibition of
growth in cancer cells, miR-124-loaded EVs [114] for cortical neu-
rogenesis in ischemia, miR-132-loaded EVs [115] to improve
angiogenesis in ischemic diseases, let-7a-loaded EVs [116] for in-
hibition of cell proliferation in cancer cells, and miR-155-loaded
EVs [117] for dendritic cell maturation. More recently, molecular
beacons (MBs) and modified miRNAs (labeled with
fluorophore—quencher pairs) loaded into EVs via simple co-
incubation and electroporation, respectively, have been used to
study the mechanism of EV-mediated miRNA release in recipient
cells [195] and intracellular miRNA processing, specifically dicer
detection [118]. MBs are hairpin-shaped DNAs with a stem-and-
loop structure that contain a fluorophore and quencher pair in
the stem. The MB becomes fluorescent when the loop binds to its
complementary sequence, which causes the separation of the
fluorophore—quencher pair in the stem [196,197]. Thus, only in the
presence of a target sequence, the MB becomes fluorescent. This
principle was used to visualize miRNA release in cells [195]: EVs
containing miR-21 and miR-31 were loaded with MBs targeted
against these miRNAs. Due to MB-targeted hybridization these EVs
were fluorescent. Upon incubation of MB-EVs with cells, their
colocalization with an EV membrane label, i.e., Dil, indicated the
presence of miR-21/31 within EVs, whereas single MB fluorescence
indicated ‘free’ miR-21/31 released from EVs. For Dicer detection
[118], a hairpin-structured miRNA target for Dicer was labeled with
a fluorophore—quencher pair at the two termini, thus having a
quenched default state, and was loaded into EVs. Upon incubation
of these EVs with cells, cleavage of the Dicer target caused the
separation of the fluorophore—quencher pair, producing fluores-
cence, thereby enabling detection of Dicer activity on the miRNA
target [118].

A modified calcium chloride transfection method including a
heat shock step was recently developed by Zhang et al. [84] for
miRNA post-loading of EVs. Calcium chloride transfection methods
are well established for introducing exogenous DNA into
mammalian cells [198] and heat shock was used to render the EV
membranes more fluid, i.e., similar to the cellular plasma mem-
brane fluidity to facilitate transient membrane destabilization and
access for exogenous molecules to the EV lumen [199]. EVs loaded
with miR-15a by this method were able to modulate the expression
of target genes in recipient cells. Importantly, this method resulted
in a similar loading efficiency as with the widely used electropo-
ration method, but without the need for specialized electropora-
tion equipment.

pH gradient modification of EVs (Fig. 3-7) was recently used to
load miRNAs into EVs post-isolation [119]. Vesicles with an acidic
internal compartment possess ion-trapping properties for weak
base drugs. This means that weakly negatively charged small
molecules can be effectively encapsulated in liposomes in the
presence of a transmembrane pH gradient [200—203]. Based on
this principle, by sequential dehydration with ethanol and rehy-
dration in an acidic environment, followed by dialysis in a neutral
buffer, a pH gradient was established between the EV lumen and its
surrounding medium. By optimizing temperature, incubation time,
and pH parameters, optimal miRNA-loading conditions were
determined. EVs that were loaded with pro-inflammatory miR-146
by pH gradient modification were shown to dose-dependently
induce macrophage inflammatory protein-2 production in
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macrophages [119]. In the same study, this method was used to load
EVs with siRNAs and ssDNA.

2.1.3. mRNA

In addition to the loading of EVs with small RNA molecules,
including siRNA and miRNA, a growing number of papers shows
that much larger, full-length mRNAs can also be loaded into EVs.
However, due to preferential enrichment of short RNAs in EVs,
loading of large RNAs such as full-length mRNA is still a challenge
[124,204]. Wang et al. [120] loaded EVs with HChrR6 mRNA, which
encodes a prodrug-activating enzyme, through the transient
transfection of EV-producer cells with the mRNA. Co-
administration of HChrR6 mRNA-EVs with the prodrug resulted
in growth inhibition in cancer cells in an orthotopic breast cancer
model in mice. Furthermore, EVs have been successfully loaded
with Cre mRNA following stable transfection of EV-producer cells
with Cre-encoding pDNA [121]. Alternatively, electroporation has
been applied for loading mRNAs into EVs [123].

Although mRNAs can be successfully loaded into EVs, they are
subject to rapid degradation in recipient cells [121,205]. Also, it was
shown that in EVs derived from pDNA-transfected producer cells,
the pDNA instead of the mRNA was the main contributor to the
protein expression in recipient cells [106,136]. Moreover, co-
loading of the recombinant protein that is being synthesized by
the EV-producer cells upon their transfection with mRNA (or
pDNA) may also occur. For example, Mizrak et al. [122] could load
both mRNA and protein of cytosine deaminase (CD)-uracil phos-
phoribosyltransferase (CD-UPRT) into EVs by pDNA transfection of
producer cells. Consequently, it becomes difficult to know the un-
derlying reason for the change in protein expression in recipient
cells. Overall, it should be noted that the phenotypic changes
induced by EVs in recipient cells are mediated by the total arsenal
of biomolecules present within the EVs, including proteins, DNA,
and RNA, as well as lipids.

To stimulate the loading of RNAs, Hung and Leonard [124] fused
the Emesvirus zinderi (MS2) bacteriophage coat protein to an EV-
associated protein and decorated the cargo RNA with the MS2-
binding RNA hairpin (Fig. 4-5 and -6). Fusion of the RNA-binding
protein to vesicular stomatitis virus glycoprotein (VSVG), which is
typically present in the plasma membrane, resulted in a 40 times
higher RNA packaging level in EVs (specifically MVs). Loading was
particularly efficient for short RNAs (<0.5 kb). Intriguingly, a 25 nt
zipcode sequence was identified in mRNAs, which is a binding
motif for miR-1289 and causes enrichment of mRNA into EVs [125]
(Fig. 4-7 and -8). Although effective, this strategy demands very
high cytosolic mRNA expression levels in order to achieve sufficient
EV loading.

Recently, an innovative technique called cellular nanoporation
was developed by Yang et al. [126] to increase mRNA loading into
EVs. A monolayer of producer cells was cultured above a chip sur-
face containing nanochannels (ideally 500 nm in width for cells
10—20 pum in size), enabling the passage of transient electrical
pulses to generate pores in the cell membrane, which allowed
extracellular pDNA to enter the cell cytosol. Concomitantly, the
formation of pores caused an increase in intracellular calcium
levels, which induced an increase in MVB formation and exosome
production, with exosomes containing the pDNA-encoded mRNA.
Using nanoporation, cells generated a 50-fold higher EV yield and a
103 times increase in EV mRNA content compared to bulk electro-
poration, with the majority of the mRNA present in exosomes
rather than MVs [126]. This approach greatly simplifies the loading
of mRNAs into EVs because it obviates the need to either incorpo-
rate mRNA-binding sequences in EVs through genetic engineering
of producer cells or perform post-loading of isolated EVs with the
mRNA (Fig. 4-9).
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Although attractive, loading mRNA into EVs is yet an underde-
veloped strategy for therapeutic advance. More knowledge about
basic biology of EV biogenesis and mRNA sorting is required to
improve mRNA loading into EVs. In this regard, it was recently
shown that a neuronal protein called Arc which is evolutionarily
related to viral transposon Gag proteins, can form virus-like capsids
in EVs [206]. Additionally, Arc shows RNA-binding capacity toward
its own transcript as well as cytosolic mRNAs, consequently,
loading them into EVs. These EVs with Arc capsid structures and
bound mRNA can transfer mRNA to other neurons where they can
be actively translated [206]. Hence, Arc protein is a promising
candidate for efficient mRNA loading and delivery. Tagging mRNAs
with EV-tropic sequences could also present a useful strategy for EV
loading, as exemplified recently by Yamashita et al. [207] They
identified a typical RNA sequence in EVs by a SELEX method, i.e.,
several rounds of transfecting cells with a pool of 80 base RNAs,
isolating EVs from transfected cells, and extracting RNAs from EVs.
Such EV-tropic RNA sequence could be fused to mRNA cargo of
interest to facilitate mRNA loading into EVs.

2.14. DNA

Most EV-based therapeutics involve RNA as the species of in-
terest; however, some studies have shown that DNA can be loaded
and transferred to acceptor cells via EVs. This is of interest because
DNA offers a more stable and highly amplifiable alternative to RNA
therapeutics and has potential for permanent correction of genetic
disorders via genomic incorporation [208].

In a pioneering study, Kanada et al. [106] demonstrated pDNA
loading into EVs (both exosomes and MVs) by transient transfection
of producer cells with pDNA [106]. The resultant protein expression
in cells that received those EVs turned out to be elicited by MV-
mediated DNA transfer, while exosome-mediated DNA delivery
led to rapid degradation of the DNA without eliciting a functional
response. Moreover, pDNA was found to be more efficiently loaded
into MVs compared to exosomes. Lamichhane et al. [128] used
electroporation to load EVs with pDNA and observed that DNA
encapsulation into EVs is generally inefficient, while being depen-
dent on DNA size and conformation. Specifically, linear DNA (<1 kb)
was more efficiently loaded into EVs than longer linear DNAs and
non-linear pDNA. These findings suggest that MVs rather than
exosomes are better suited for the delivery of DNA. However, DNA-
loading capacity into EVs was generally very low, irrespective of the
method of DNA incorporation (i.e., transient transfection of pro-
ducer cells or electroporation of EVs).

Recently, the DNA-loading limit was greatly extended by using a
specialized electroporation method on megakaryocyte MVs [129].
Remarkably, >3,000 copies of ~6 kb and 4,000 copies of 3.5 kb
pDNA could be loaded into megakaryocyte MVs. This is the highest
DNA-loading efficiency reported for MVs, exceeding by far the
numbers suggested in other studies [106,128]. Thus, this particular
electroporation strategy might be of advantage for loading DNA
into EVs. Moreover, the loaded DNA was successfully delivered in
recipient cells. Interestingly, co-incubation of cells with polybrene
and MVs resulted in 84% MV-positive cells and high functional
delivery of pDNA (determined from mRNA and protein levels),
suggesting that polybrene might play a stimulatory role in EV up-
take. Of note, considering the possibility that (negatively charged)
pDNA is present at the surface of the EVs, the positively charged
polybrene may serve to reduce the electrostatic repulsion between
the DNA and the cell surface, thus promoting uptake [209]. Un-
fortunately, data on the surface charge of the MVs before and after
electroporation with DNA were not provided. Using super-
resolution structured illumination microscopy, intranuclear pDNA
delivery was revealed together with the presence of the encoded
protein (here, GFP) at the endoplasmic reticulum/Golgi region.
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Minicircle DNA is a circular expression vector. Compared to the
more conventional pDNA it is smaller, because it lacks the pro-
karyotic plasmid backbone, while being episomally stable [210].
Consequently, minicircle DNA induces higher and more prolonged
protein expression compared to its plasmid counterpart [211]. DNA
loading of MVs through transient transfection of EV producer cells
was two-fold more effective with minicircle DNA compared to
PDNA, while the resulting MVs elicited a 14 times higher functional
outcome (luciferase expression) in acceptor cells [127]. Similarly,
apoptosis in tumor cells was more efficiently induced in vitro with
EVs carrying minicircle DNA encoding the thymidine kinase/
nitroreductase fusion protein for dual prodrug therapy than with
EVs carrying pDNA. When MVs carrying minicircle DNA or pDNA
were injected in xenografts in mice, tumor size was greatly reduced
only in mice treated with MVs carrying minicircle DNA. This sug-
gests that the advantages of minicircle DNA over pDNA are even
more pronounced in vivo.

Strategies other than to enhance DNA loading and stability could
also be effectively employed to achieve better functional DNA de-
livery. For example, attaching a nuclear localization signal to the
DNA can facilitate DNA localization to the nucleus, consequently
increasing effective protein expression [212].

2.1.5. Protein

With intracellular delivery of DNA and RNA subsequent tran-
scription and (inhibition of) translation is needed in order to
effectively regulate the target protein expression level in cells.
Moreover, stable integration of the DNA into the host genome may
result in insertional mutagenesis [213]. Therefore, direct protein
delivery is increasingly gaining popularity as a safe therapeutic
method. Several reports have shown successful EV-mediated pro-
tein delivery and various methods have been developed to increase
the protein payload in EVs and direct them to the therapeutic
target.

Exogenous EV loading has been used to load proteins into EVs.
Nakase et al. [130] showed that saporin, a small (30 kDa) ribosome-
inactivating protein that induces cytotoxicity by inhibiting protein
synthesis, was successfully loaded into EVs by electroporation. They
successfully optimized the electroporation protocol to reduce
protein aggregation. Saporin-loaded EVs were shown to induce
considerable cytotoxicity in human pancreatic adenocarcinoma
cells.

Other exogenous EV loading strategies include saponin treat-
ment (Fig. 3-8), extrusion (Fig. 3-9), rapid freeze (—80°C)/thaw (RT)
cycles (Fig. 3-10), and sonication [87]. Saponin is a mild detergent
that permeabilizes cell membranes, enabling encapsulation of
cargoes into EVs [214]. Extrusion works by repeatedly forcing a
mixture of EVs and cargo through small pores, which causes
collapse of the EV membranes and association with the cargo [215].
Freeze-thaw cycles cause cell membrane permeabilization due to
the expansion of water upon freezing. It is commonly used to
encapsulate drug molecules in lipid bilayer vesicles, i.e., liposomes
[216,217].

Comparison among these methods for loading antioxidant
catalase revealed that sonication, extrusion, and saponin treatment
display high loading efficiency, owing to the extensive rearrange-
ment of the lipid bilayer rendering it more permeable to cargo
loading. Moreover, saponin-treated EVs showed highest in vivo
catalase activity. Nonetheless, careful consideration must be given
to choosing the loading method, as most ex vivo techniques lead to
substantial deformation of the EV membrane, potentially disrupt-
ing EV integrity, leading to a loss of immune-privilege, and reduced
effectivity.

Most recently, toward minimizing EV membrane disturbance,
single-stranded DNA conjugated to cholesterol was used to load
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bioactive proteins on EVs (Fig. 3-11) [131]. Such a DNA-cholesterol
tether can be easily inserted into the EV lipid bilayer and when
modified with biotin allows for the conjugation of streptavidin-
modified cargoes. FasL, an immunomodulatory protein that plays
an important role in programed cell death and immune homeo-
stasis [132], was modified with streptavidin [133] and attached to
EVs containing biotin-modified DNA cholesterol tethers via
streptavidin—biotin interaction. These FasL-EVs effectively induced
dose-dependent apoptosis in T cells. Although highly effective,
further research is required to evaluate the possible effects of sur-
face conjugation of cargo on the intrinsic homing ability and cell-
specific targeting ability of the EVs.

Proteins can be endogenously loaded into EVs through the
overexpression of the protein in EV producer cells by transfection
or transduction with protein-encoding pDNA. Aspe et al. [134]
showed that Survivin-T34A mutant protein involved in abrogating
therapeutic resistance in pancreatic cancer was loaded into EVs by
its overexpression in producer cells. EVs containing the mutant
protein successfully enhanced pancreatic cancer cell death in vitro.
Similarly, heat shock protein 70 (HSP70) was efficiently packaged in
EVs. Pathogenic protein aggregation was significantly decreased
upon administration of HSP70-loaded EVs to cellular and
drosophila models of Huntington’s disease [135]. Similarly, over-
expression of the prodrug-activating CD-UPRT enzyme fusion in
cells led to its loading into EVs. Intratumoral delivery of CD-UPRT
EVs in human schwannoma tumors present in sciatic nerve of
nude mice combined with prodrug 5-fluorocytosine treatment
resulted in significant tumor regression [122].

As a result of mutations in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene, chloride channel activity is
impaired in cystic fibrosis (CF) patients, which leads to thick mucus
secretion from epithelial cells, causing a.o. reduction in lung ca-
pacity and higher susceptibility toward infections [218—221]. EVs
collected from CFTR-overexpressing cells were able to correct the
membrane chloride channel activity in CFTR-mutant cells [136].
Importantly, this activity was maintained for 3 days and could be
detected even at day 5, while it was shown to be the result of newly
synthesized proteins from CFTR mRNA that was present in the EVs.
This, for the first time, demonstrated the potential of EV-mediated
therapy for treatment of a genetic disorder. Interestingly, MVs
consistently contained 10- to 20-fold higher amount of CFTR cargo
(protein and mRNA) than exosomes and were able to elicit a higher
therapeutic response. Moreover, MVs presented multiple CFTR
protein bands on Western blot, suggesting that MVs, in addition to
the intact cargo protein, may also export protein degradation
products. Finally, the EVs were shown to contain viral CFTR-
encoding DNA, which was used to transduce the producer cells.
Although viable vector was not obtained from the EVs, the DNA
could still be transcribed in the recipient cells and led to expression
of the CFTR protein.

In contrast to the passive loading of overexpressed proteins into
EVs, EVs can be actively loaded with proteins a.o. via the expression
of cargo protein fusions with EV-associated proteins. Cellular
overexpression of ovalbumin (OVA) antigen fused to CD63 resulted
in the secretion of OVA-loaded EVs (Fig. 4-10) [137]. OVA-specific
CD4* and CD8™ T-cells were induced in naive mice following im-
munization with purified OVA-EVs.

Alternatively, active loading of EVs can occur through
protein—protein interaction. Proteins containing late (L) domains
are involved in the recruitment of proteins to MVBs and plasma
membrane, for sorting into exosomes and MVs, respectively. L do-
mains in proteins contain specific motifs that mediate
protein—protein interactions [222—224] (Fig. 4-11). Sterzenbach
et al. [138] tagged a Cre recombinase with a WW tag that specif-
ically interacts with the L domain on Ndfip1 through three L-



B.S. Joshi, D. Ortiz and LS. Zuhorn

domain motifs (PPxY) and as a result gets sorted into intraluminal
vesicle [225]. Using this strategy, authors showed that Cre recom-
binase could be efficiently loaded into exosomes and transferred
into recipient cells. Such EV-mediated delivery of Cre resulted in
Cre-specific recombination in mouse embryonic fibroblasts in vitro
as well as multiple regions of the mouse brain in vivo.

Arrestin domain containing protein 1 (ARRDC1)-mediated MVs
(ARMMs) constitute a type of MVs formed by ARRDCI1- and
TSG101-mediated budding of the plasma membrane [226—228].
ARRDC1, like Ndfip1 protein, interacts with WW domains of pro-
teins belonging to the neuronal precursor cell-expressed develop-
mentally downregulated 4 family (Fig. 4-12) [138]. It was recently
shown that NOTCH receptors were actively recruited into ARMMSs
and could bring about NOTCH signaling in cells that received
ARMMs. A protein of interest fused to ARRDC1 is actively packaged
into ARMMs and can be delivered into target cells (Fig. 4-13). This
strategy was successfully used to deliver chimeric ARRDC1-p53
protein to tumor cells, which resulted in tumor suppression in vivo
[139]. Furthermore, using the interaction between the chimeric
protein of ARRDC1 fused to Tat1 peptide (which specifically binds
to the stem-loop-containing trans-activating response (TAR)
element) and p53 mRNA fused to TAR, researchers loaded the p53
mRNA into ARMMs. These ARMMs successfully delivered func-
tional mRNA in recipient cells [139] More complex molecules such
as protein/RNA complexes were also loaded using this strategy
[139]. Expression of a WWH-Cas9/sgRNA encoding construct in
donor cells led to incorporation of WW-Cas9/sgRNA complexes into
ARMMs and efficient delivery to recipient cells. Using sgRNA
directed against GFP, GFP downregulation indicated successful gene
editing in recipient cells.

An innovative protein—protein interaction exploiting a light-
inducible system derived from Arabidopsis thaliana called
EXPLORs (exosomes for protein loading via optically reversible
protein—protein interactions) was recently used for protein
loading into EVs [140]. With this method, a blue light—dependent
reversible protein—protein interaction [229—231] between
photoreceptor cytochrome 2 (CRY2) (fused to a cargo protein) and
CRY-interacting basic-helix-loop-helix 1 (CIB1) (fused to the EV-
associated protein CD9) was established in producer cells. Blue
light irradiation—induced interaction of CRY2 and CIB1 conse-
quently led to the incorporation of cargo into EVs (Fig. 4-14).
Administration of these vesicles resulted in efficient cytosolic
delivery of the cargo protein and its function in vitro and in vivo.
Importantly, in the absence of blue light the cargo proteins in
EXPLORs are no longer bound to CD9 and thus ‘free’ in the EV
lumen, which aided effective cargo release from EVs. When
compared to EVs that were generated with the commercial
protein-loading system XPack (System Biosciences), EXPLORs
showed approximately six-fold higher cytosolic delivery of the
cargo protein. However, this technology warrants further
improvement as the exposure of a strong blue light resulted in the
aggregation of CRY2 proteins which could disturb the desired
protein—protein interaction and consequent cargo loading,
limiting the loading efficiency.

2.1.6. Lipids

EVs contain various lipids in their membrane and lumen, such as
cholesterol, sphingomyelin, lysophosphatidylcholine (LPC), arach-
idonic acid and other fatty acids, prostaglandins, and leukotrienes
[40], which have structural as well as informational functions. For
example, prostaglandins [232] and leukotrienes [233] are bioactive
lipids known for their role in cell—cell signaling. LPC plays a role in
lymphocyte chemotaxis and dendritic cell differentiation. Conse-
quently, (LPC-containing) EVs have the potential to boost immune
response [234]. In fact, various lipids contained in EVs have shown
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immunomodulatory functions and could be interesting candidates
for the use of EVs for immunomodulation in vitro and in vivo [234].

Exogenous loading of EVs with lipids is relatively easy, because
of the spontaneous incorporation of lipids in the EV membrane,
enabling EV-mediated lipid delivery to target cells. For example,
EVs isolated from HER2 expressing cells were loaded with phos-
pholipids through fusion with liposomes as induced by repeated
freeze-thaw cycles. Cellular uptake of the resultant ‘hybrid’ EVs was
two-fold more efficient compared to control EVs [141]. For imaging
purposes, EVs were labeled with fluorescent lipophilic dyes.
However, this has been shown to increase EV size which may
disturb EV function [235]. In addition, EVs have been loaded with
cationic lipids to form hybrid exosomes [142], primarily to promote
the release of EV cargo into the cell cytosol. In general, although
easily amenable to lipid loading, the use of EVs as therapeutic lipid
transporters still remains limited. Knowledge on the mechanisms
of natural lipid loading in EVs and the function of the distinct lipid
signatures of different EV subtypes may help to develop non-
disturbing exogenous lipid-loading techniques.

2.1.7. Small molecules

Poor pharmacokinetic, low efficacy, and toxic side-effects cause
poor translation of small molecule drugs to a clinical setting
[236,237]. EVs provide an opportunity for small molecule encap-
sulation and solubilization, protection against degradation, pro-
longed circulation, improved tissue specificity and tissue retention,
thus making attractive carriers for small molecule drugs [238].
Various chemotherapeutic drugs and naturally bioactive com-
pounds have been successfully loaded into/onto EVs by similar
methods as for biomolecules.

The simplest strategy is to load small molecule drugs, including
anti-inflammatory, chemotherapeutic, and antioxidant agents, into
isolated EVs by simple co-incubation. For example, curcumin, a
polyphenolic hydrophobic compound with antioxidant, anti-
cancerous, anticoagulant, and anti-inflammatory properties, was
efficiently associated with EVs and reduced inflammation in
various tissues irrespective of the route of administration
[143—145]. Doxorubicin, a widely used chemotherapeutic agent,
was loaded in macrophage- and blood cell-derived EVs by passive
incubation and displayed antiglioma activity [146]. Similarly, the
antitumor agent paclitaxel [147] when loaded into bovine
milk—derived EVs showed antitumor activities [148]. Importantly,
the oral availability of paclitaxel [149] was greatly enhanced by its
EV incorporation along with maintaining stability under harsh
gastrointestinal fluid conditions [148]. Furthermore, paclitaxel
loaded in embryonic stem cell-derived EVs showed improved
curative effects in glioblastoma treatment [150]. Of note, the
loading efficiency of small molecule drugs into EVs by passive in-
cubation depends upon their degree of hydrophobicity. A range of
chemopreventive agents with varying lipophilicity showed 10—40%
loading differences in milk-derived EVs, and high release efficiency
in recipient cells [151]. Sonodynamic therapy (SDT), i.e., focused
ultrasound-mediated site-specific drug activation, is a recent
advance in cancer therapy. Chemo-sensitizer drugs that are used in
SDT have also been loaded into EVs. For example, sinoporphyrin
sodium, a porphyrin sensitizer for SDT theranostics [152] when
associated with EVs displayed efficient release in tumor cells upon
ultrasonic activation and 10-fold higher metastatic inhibition than
in free form [153]. Moreover, encapsulation in tumor-derived EVs
resulted in homotypic delivery. To enhance the loading of the
highly hydrophilic neurotransmitter dopamine into blood-derived
EVs, high-concentration dopamine solutions were first generated
by means of complexation with vitamin C. The resulting dopamine-
EVs showed higher therapeutic efficacy and lower systemic toxicity
than free dopamine in a Parkinson’s disease mouse model [154].
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In addition, to enhance the exogenous loading of EVs with small
molecules, electroporation has been employed. Electroporation of
EVs in a solution with doxorubicin resulted in a 20% encapsulation
efficiency, while mice treated with dox-EVs showed reduced tumor
growth and cardiotoxicity compared to mice receiving the free drug
[155,156]. Enkephalin, a neurotransmitter involved in pain reduc-
tion, analgesia, and euphoria [239] loaded into EVs via electropo-
ration, resulted in neuroprotection and neural recovery in
ischemia—reperfusion injury [157]. Curcumin was similarly
loaded into EVs for use in glioma treatment [158]. As an alternative
approach, sonication has been employed for loading the anticancer
agents triptolide [162] and paclitaxel [159,160].

Cells which were incubated with the chemotherapeutic drug
methotrexate have been shown to expel the drug from the cells
through the encapsulation in EVs. Importantly, these EVs showed
higher cytotoxicity in acceptor cells compared to the free drug,
without the typical side-effects of the free drug [163]. Similarly,
pharmaceutically relevant levels of the chemotherapeutic drugs
paclitaxel [164—166], imatinib [183], doxorubicin [163,167], cur-
cumin [168], and 3,3’-diindolylmethane [169] have been loaded
into EVs by incubation of cells with the drugs.

Recently, an innovative approach was taken in which EVs were
isolated from cells that were incubated with fusogenic liposomes
containing hydrophobic and hydrophilic small molecules. EVs thus
obtained contained the hydrophobic small molecules (Dil) and to a
certain extent hydrophilic molecules (calcein) and showed poten-
tial to penetrate in vitro tumor spheroids and in vivo tumors [170].
This work demonstrated the intriguing possibility of combining
advantageous properties of natural nanoparticles (EVs) with syn-
thetic ones (liposomes) for drug delivery purposes. Of note, this
procedure was further extended to introduce azide-lipids into EV
membranes, which could be further equipped by click-reaction (see
Section 3.1) with functional entities, including drugs, fluorophores,
and ligands, in the latter case generating EVs loaded with small
molecules and decorated with targeting moieties [171].

In general, the choice for a specific loading method is mainly
governed by the nature of the drug, i.e., hydrophobicity and charge
and the extent to which the method imposes damages on EVs [161].
Different loading methods can greatly differ in outcome in terms of
encapsulation efficiency, effect on EV composition, and processing
time. In a comparative study of methods employed for loading EVs
with paclitaxel, Kim et al. [159] showed that, among incubation,
extrusion, sonication, electroporation, and freeze and thaw
methods, sonication showed maximum loading capacity (29%),
while electroporation reached 5.3% loading and incubation ach-
ieved minimum loading of 1.4%. The high loading capacity with
sonication was a result of considerable reorganization of the EV
membrane, involving changes in microviscosity, rendering it more
permissive to drug loading. Importantly, EV integrity was restored
within 1-h incubation at 37°C and its protein and lipid composition
was not affected. In another comparative study [161], Fuhrmann
et al. investigated the effect of porphyrin hydrophobicity on loading
efficiency via passive (incubation) and active (electroporation,
extrusion, saponin-assisted, hypotonic dialysis) loading methods.
The most hydrophobic porphyrin was efficiently loaded into EVs via
passive loading, while electroporation was shown to substantially
enhance the loading of the more hydrophilic porphyrins. Interest-
ingly, the lipid composition of the EVs seemed to influence loading
efficiency, because EVs isolated from different cell types showed
different loading efficiency under the same loading conditions.
These differences could not be related to differences in cholesterol
content of the different EVs, which was a first guess based on the
assumption that cholesterol increases bilayer rigidity. However,
because membrane fluidity is dependent on temperature, and EV
loading was performed at RT (except for extrusion), it would be of
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interest to investigate the effect of temperature on loading effi-
ciency. In an attempt to increase the loading of a more hydrophilic
porphyrin, saponin co-incubation and hypotonic dialysis (Fig. 3-12)
were shown to increase the loading efficiency by 11-fold compared
to passive loading. However, EVs loaded via hypotonic dialysis
showed poor cellular uptake, preventing porphyrin-mediated
phototoxicity following laser irradiation.

Taken together, EVs prove to be advantageous for carrying small
molecule drugs. They enhance the solubility of hydrophobic mol-
ecules, thus increasing their bioavailability and decreasing the dose
required for achieving a therapeutic effect. Furthermore, EVs can
promote the cellular uptake of hydrophilic drugs. However, the
drug loading method should be carefully chosen, taking into ac-
count the degree of hydrophobicity of the drug and the EV cell
source in order to achieve maximum loading efficiency. Moreover,
in addition to loading efficiency, cell uptake and intracellular drug
release need to be investigated in order to decide on the best
protocol for generating drug-loaded EVs.

3. EVs as drug delivery systems: unloading cargoes

Unloading the encapsulated cargo with cellular and subcellular
precision is of utmost importance for an EV therapeutic to be suc-
cessful. Most EV formulations despite their proven in vitro uptake
by target cells, accumulate primarily in liver or spleen under in vivo
settings [155,240—242]. In an attempt to increase target cell spec-
ificity, various methods have been employed for improved targeted
delivery to a desired cell type as well as enhanced cargo release,
in vitro and in vivo. These methods are discussed below and illus-
trated in Fig. 5.

3.1. Enhancing EV uptake in target cells

In one of the early demonstrations, Alvarez-Erviti et al. [80]
engineered brain-targeting EVs by fusing rabies virus glycoprotein
(RVG) peptide to an EV-rich protein, i.e., lysosome-associated
membrane protein b (Lamp2b). RVG peptide has high affinity to-
ward acetyl choline receptors [243,244]. EVs isolated from RVG-
Lamp2b expressing parental cells displayed RVG peptide on the
surface and accumulated in the brain when injected intravenously.
These EVs were successfully exploited for functional delivery of
siRNA to the brain. This study paved the way for delivery of various
biomolecules to the brain using RVG, while other peptide-Lamp2b
fusions were used to target EVs toward other desired cell types. For
example, a recent study [80] used RVG-EVs for delivery of miR-124
to the brain in a mouse stroke model. Similarly, mesenchymal stem
cell—derived EVs modified with RVG led to reduced amyloid plaque
deposition and neuroinflammation, and importantly, improved
cognitive deficits in Alzheimer’s disease model upon intravenous
administration [245]. An alpha v integrin-specific iRGD peptide
with tumor targeting properties, previously shown in prostate,
breast, cervical, and pancreatic cancer models, was fused to
Lamp2b. iRGD-decorated EVs showed enhanced tumor targeting
efficiency in an in vivo breast cancer model [155]. Similarly, EVs
displaying an ischemic myocardium targeting peptide [246] and a
cardiomyocyte-specific peptide [247] fused with Lamp2b showed
tissue-specific uptake. Altogether, these studies showed the general
applicability of peptide-Lamp2b fusions for targeting purposes.
Furthermore, larger proteins were also displayed at the EV surface
using this strategy. A fragment of interleukin 3 displayed on EVs led
to their increased uptake in chronic myeloid leukemia cells [183].
And the strategy has been extended to other EV-rich proteins. For
example, the transmembrane domain of platelet-derived growth
factor receptor was used as a display system for the GE11 peptide
(YHWYGYTPQNVI) to target EVs to EGFR-overexpressing cancer
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B. Enhancing EV cargo release
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Fig. 5. Strategies to enhance cellular uptake of EVs and cargo release. (A) Enhancing EV uptake. 1. An EV-enriched protein, e.g., Lamp2b, is fused to a peptide that targets a specific
cellular receptor. 2. A phosphoinositol (GPI) anchor signal peptide is fused to a nanobody against a receptor ligand. The ligand binds to the nanobody and targets a specific cellular
receptor. 3. VSVG is fused to a protein that targets a specific cellular receptor. (Expression of VSVG only results in a broad cell tropism.) 4. A Clickable moiety (e.g., azide) is inserted
into an EV membrane protein by metabolic labeling, followed by chemical conjugation of a clickable (e.g., alkyne-functionalized) targeting peptide post-isolation. 5. A hydrophobic
membrane anchor conjugated to a targeting peptide is inserted into the EV membrane. 6. A hydrophobic moiety conjugated to an aptamer is inserted into the EV membrane. 7. An
anchor peptide, which recognizes an epitope of an EV surface protein (e.g., the extracellular loop of CD63), conjugated to a targeting peptide is bound to EVs. (B) Enhancing EV cargo
release. 8. A pH-sensitive fusion peptide is expressed in the EV membrane. Following cellular uptake of EVs through endocytosis and subsequent endosomal acidification, the fusion
peptide mediates EV fusion with the endosomal membrane, facilitating cargo release. 9. Arginine-rich peptides promote the cellular uptake of EVs, thereby enhancing the chance of

cargo release.

cells [101]. Alternative targeting moieties such as nanobodies have
also been used for EV targeting. For example, taking an innovative
approach by using the cell’s own glycosylphosphatidylinositol
(GPI)-mediated protein anchoring, Kooijmans et al. [248] showed
that expression of a GPI anchor signal peptide fused to anti-EGFR
nanobody resulted in nanobody-displaying EVs, which showed
increased binding to EGFR-expressing cells under both static and
flow conditions.

Recently, Meyer et al. [249] described the genetic manipulation
of donor cells to express the VSVG, used in viral pseudotyping,
which was incorporated into EVs. VSVG-pseudotyped EVs showed
enhanced uptake by cells and broad cell tropism compared to EVs
displaying VSVG without its ectodomain. By exchanging the VSVG
ectodomain with specific disease-targeting molecules one could
target specific tissues not only for therapeutic but also for diag-
nostic purposes [249].

The surface display of peptides and nanobodies on EVs shows
promise in enhancing EV targeting to specific tissue types and, in
turn, improving their therapeutic effect. Because the targeting ef-
ficiency of nanoparticles, including EVs, is dependent on the
interaction between the targeting ligands and their cellular re-
ceptors [250], the receptor expression level and the route of entry
in the desired recipient cells likely decide whether a particular
targeting strategy is translated into the desired therapeutic effect
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[251]. Moreover, nanoparticles, although taken up efficiently in
recipient cells may not exhibit therapeutic effects due to a lack of
endosomal escape and consequent cargo delivery [252,253]. Be-
sides, surface-displayed peptides may undergo proteolytic degra-
dation during EV biogenesis (in endosomes) as well as after
isolation and/or when administered in vivo. The glycosylation of
peptides by adding the amino acid sequence GNSTM, an N-linked
glycosylation sequon [254], has been shown to protect the targeting
peptides from premature degradation during EV biogenesis and to
result in enhanced display and function [255]. Still, genetic engi-
neering strategies are often time-consuming and may lead to
batch-to-batch variation [256,257], while genetic engineering of EV
producer cells is required anew for each individual EV (surface)
modification. To this end, functionalization of EVs post-isolation,
via click chemistry or post-insertion of membrane anchors pre-
sent potent alternatives.

Click chemistry, specifically copper-catalyzed azide alkyne
cycloaddition (CuAAC), is a widely employed method for surface
modification of biomacromolecules, including DNA, peptides, and
antibodies [258—262]. The method comprises (relatively) mild re-
action conditions, use of easily available reagents, and presents
high efficiency of cross-linking [263,264]. In a two-step reaction,
first, an alkyl group is chemically added to biomolecules, followed
by their copper-assisted conjugation to azide-functionalized



B.S. Joshi, D. Ortiz and LS. Zuhorn

moieties, resulting in biomolecules functionalized with the moi-
eties. Using click chemistry, Jia et al. [158] attached neuropilin-1
targeting peptide (RGERPPR) to isolated EVs to produce glioma-
targeted EVs. Following intravenous administration these EVs
inhibited tumor growth, delayed tumor recurrence, and extended
the survival of tumor-bearing mice. Cyclo (Arg-Gly-Asp-p-Tyr-Lys)
peptide is used to target cells overexpressing a,R3 integrins, e.g.,
actively proliferating endothelial cells in glioblastoma multiforme
(GBM), prostate cancer, and lung cancer. Due to its propensity to-
ward endothelium, this peptide has also been used to cross the
blood-brain barrier (BBB) [158,265]. However, it has been reported
that over-modification (alkylation) of antibodies lowers their
binding affinities, while minimal modification maintains antibody’s
biological functions [266]. Therefore, the number of alkyne modi-
fications on proteins should be kept at a minimum to maintain their
function following their modification through click chemistry.
Smyth et al. [266] reported that 1.5 alkyne modifications for every
150 kDa of exosomal protein was compatible with EV function.
Alternatively, exosomes were functionalized with azide prior to
their isolation through the metabolic labeling of proteins, including
EV proteins, in producer cells. To this end, cells were incubated with
an azide-bearing amino acid analog of methionine or azide-
containing saccharides to label newly synthesized proteins or gly-
cans and glycoproteins, respectively. Subsequently, copper-free
strain-promoted azide-alkyne cycloaddition (SPAAC) was used to
functionalize isolated EVs. Using this strategy, Wang et al. [267]
functionalized EVs with biotin to which a wide variety of other
functional moieties could be easily added via streptavidin or avidin
interactions. Taken together, click reaction-mediated EV function-
alization is convenient, time and cost-effective, applicable to
functionalize EVs post-isolation, and applicable for the conjugation
of various kinds of (macro)molecules as well as mixtures of (macro)
molecules, thus generating multifunctional EVs.

Due to the requirement of chemical reactions in CuAAC and
SPAAC and the associated possibility of EV surface structure al-
terations [266], an alternative post-isolation functionalization
approach encompassing the post-insertion of membrane anchors
conjugated to targeting moieties, has recently been developed. For
example, a lipidomimetic (octadodecyl) chain conjugated to hy-
aluronic acid was inserted into the EV membrane to achieve tumor
targeting [268]. In another study, the lipid derivative DSPE-PEG
was conjugated to anisamide to target the sigma receptor, which
is characteristically overexpressed in lung cancer tissues [269].
Similarly, Zhu et al. [150] conjugated the RGD peptide to EVs using
DSPE anchors. RGD peptide specifically targets a5B3 integrin,
which is upregulated during angiogenesis, therefore abundantly
present on actively proliferating endothelium in, e.g., glioblastoma
tissue [158,270]. The RGD-EVs accumulated at the site of glio-
blastoma more efficiently than non-targeted EVs, demonstrating
enhanced targeting ability due to peptide display. Alternatively,
DSPE-PEG-RGD was incorporated into the EV membrane following
incubation of parental cells in medium supplemented with the
lipid-peptide conjugate, which resulted in its insertion in the
plasma membrane and consequent loading in EVs [271]. Subse-
quently, these EVs were loaded with an azide derivative of a
monosaccharide. The resulting EVs showed high endothelial
interaction and were successfully used to metabolically label
newly formed blood vessels, which were visualized following
copper-free click chemistry with dibenzocyclooctyne fluorescein
in vitro and in vivo in zebrafish. In another study using membrane
insertion, DMPE-PEG-streptavidin was inserted into the EV
membrane. This way EVs could be decorated with any biotinylated
molecule, including fluorescent molecules and targeting anti-
bodies [272].
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Although antibodies and peptides remain to be the most
commonly used targeting ligands on EVs, their surface display
often requires complicated genetic engineering [83] and/or toxic
chemical cross-linking reactions [273]. Moreover, their clinical
applications are limited due to suboptimal specificity, batch-to-
batch variation, immunogenicity, and low stability [274,275]. A
recent advance in EV surface functionalization was made through
the use of aptamers, also known as chemical antibodies. Aptam-
ers are short, single-stranded DNA or RNA molecules that possess
specific 3D structures and therefore have the ability to specifically
interact with a target, including proteins, peptides, and carbohy-
drates [276,277]. Owing to their non-immunogenicity, high
specificity, thermal stability, low toxicity, and easy synthesis, they
offer great promise as durable and specific targeting ligands
[278,279].

Aptamers are generally conjugated to a hydrophobic moiety
such as cholesterol for facile incorporation and display at the EV
membrane [280]. For example, using a cancer-specific aptamer
conjugated to a diacyl lipid tail, Zou et al. [281] demonstrated that
Dox-loaded EVs decorated with an antiprotein tyrosine kinase 7
(PTK7) aptamer (sgc8) showed enhanced uptake and toxicity in
PTK7-expressing cancer cells. Importantly, EV functionalization
was achieved by simple mixing of the lipid-aptamer conjugate with
the EVs for half an hour at 37°C, showcasing the ease of use of this
approach. Pi et al. used cholesterol to insert an arrow-shaped RNA
aptamer into EVs: cholesterol attached to the tail of the RNA arrow
led to RNA surface display, whereas its attachment to the arrow-
head led to RNA loading inside EVs. This way, the RNA aptamer was
used to function as a targeting ligand and to enhance the loading of
EVs with siRNA [282]. The EVs successfully delivered therapeutic
small RNAs in targeted cancer cell types and inhibited tumor
growth in vivo. More recently, Shamili et al. [283] used an aptamer
with affinity for myelin to functionalize EVs. The aptamer-EV bio-
conjugate promoted the proliferation of oligodendroglial cells
in vitro and suppressed inflammation as well as demyelination
in vivo. Yerneni et al. [131] used an aptamer AS1411 against
nucleolin, a protein highly expressed on cancer cells, to achieve
specific targeting toward cancer cells. Altogether, the studies
highlight the potential of aptamers to redirect EVs to target cell
types. With concerted efforts from various disciplines, including
biology, chemistry, and medicine, aptamer-conjugated EVs pose a
promising possibility for the development of the next-generation
delivery vehicles that are highly specific, stable, easily synthe-
sized, and customizable.

Recently, EV functionalization was greatly simplified by identi-
fying anchor peptides that could decorate EVs with cargo and tar-
geting moieties without the need for genetic modification, harsh
chemical reactions, or lipid conjugation. Using phage display
against the large extracellular loop of CD63, an EV marker protein,
Gao et al. identified CP0O5 peptide (CRHSQMTVTSRL). EVs decorated
with CPO5 conjugated to exon-skipping antisense oligonucleotides
(ASOs) for the treatment of Duchenne muscular dystrophy, showed,
in comparison to CP05-ASOs, an 18-fold increase in dystrophin
expression in the quadriceps of mice in a Duchenne muscular
dystrophy model [284]. Additional decoration with CPO5 conju-
gated to a muscle-targeting peptide further increased dystrophin
expression. Similarly, EVs with surface-displayed brain-targeting
peptide RVG or hepatocellular carcinoma-binding peptide SP94
efficiently distributed to brain and liver, respectively [284]. CPO5
can be used to functionalize any CD63-positive EV with targeting
moieties irrespective of its origin, highlighting the broad applica-
bility of the approach. This way, patient-derived EVs can be easily
modified for therapeutic purposes, avoiding immunological re-
actions owing to their autologous nature.
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Fig. 6. Toward EV-omics and application-specific EV libraries. EVs from a variety of physiologically relevant donor cells are isolated, followed by a comprehensive molecular,
functional, and structural characterization of the EVs and their content by employing state-of-the art ‘omics’ technologies, biophysical methods, and functional assays. This
collection of EV features could be used to build a mathematical model such as tSNE, which could be used to cluster features that are connected to a specific function, as well as to
extract classifying features between clusters. The resultant EV subtyping can be tested experimentally by manipulating EV identity and determining its effect on EV function. At a
later stage, the tSNE model could be used to generate an application-specific EV library set.

3.2. Enhancing EV cargo delivery in target cells

Achieving therapeutic activity depends not only on efficient EV
delivery to target cells and high cargo content, but also on adequate
EV cargo release in recipient cells. Most studies have taken an in-
direct approach to evaluate functional cargo delivery by EVs by
probing phenotypic modulation in recipient cells. Recently, Joshi
et al. [285] showed that approximately 25% of internalized EVs in
HEK293T cells undergo pH-dependent fusion with endosomal
membranes, i.e., back-fusion, to release their cargo. This suggests
that functional delivery of EV content may be further enhanced to
improve therapeutic outcome. To this end, various approaches have
been utilized. Morishita et al. took a pre-isolation approach by
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engineering murine tumor cells to produce EVs carrying a pH-
sensitive fusion protein (GALA) on their membrane. Following
GALA-EV endocytosis and endosomal acidification, GALA fused
with the endosomal membrane resulting in endosomal leakage.
Consequently, the EV cargo was released into the cytosol of the
recipient cell. Because many therapeutic molecules, including
siRNA and mRNA, act in the cytosol, promoting the intracellular
cytosolic delivery of these molecules by engineered EVs represents
a promising delivery approach. Further studies are needed to
analyze GALA-EV stability and performance when encapsulating
therapeutic molecules. The compatibility of GALA peptide modifi-
cation of EVs with the loading and release of therapeutic cargoes
remains to be investigated [286].
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In a post-isolation approach, arginine-rich cell penetrating
peptides (CPPs) were displayed on EVs using a stearyl membrane
anchor. The CPPs promoted the cellular uptake of EVs via macro-
pinocytosis and enhanced the cytosolic delivery of a ribosome
inactivating protein [248,287].

3.3. In vivo EV release

Despite rapid progress, effectively creating designer EVs with
sufficient yield and brief pre-processing still remains challenging.
To overcome these challenges, Kojima et al. [288] created EXOsomal
Transfer into Cells (EXOtic) devices. A multipronged approach was
used to achieve high EV yield, specific RNA packaging, target cell
specificity, and efficient cytosolic delivery. In vivo implanted EV-
producer cells were engineered to overexpress a STEAP3-SDC4-
NadB production booster, which led to an approximately 15-fold
increase in EV yield. Additionally, an mRNA packaging plasmid
(encoding L7Ae fused to CD63), an mRNA of interest carrying a C/
Dpox in the 3’ untranslated region which interacts with L7Ae, a
cytosolic delivery facilitator gene (encoding constitutively active
connexin 43), and a targeting plasmid (encoding RVG-Lamp2b)
were introduced into producer cells to generate EXOtic devices.
Implanted designer cells were used to release EVs for catalase
mRNA delivery to brain cells to reduce neurotoxicity and inflam-
mation in in vitro and in vivo Parkinson’s models.

Another innovative approach for EV loading is the in vivo pro-
duction of cargo-loaded EVs through DNA inoculation. Recently,
Bonito et al. [289] developed an EV-based immunization therapy
capable to elicit tailored immune responses. This strategy is based
on an in vivo intramuscular DNA inoculation to produce host-
derived engineered EVs. Intramuscular injection of a DNA vector
encoding modified Nef (lentiviral protein) fused with HPV E7 (hu-
man papillomavirus oncoprotein) into a host animal induced the
release of muscle cell-derived EVs carrying Nef™'E7 which
induced an HPV E7-specific immune response. Of note, muscle cells
are the only cell type that can be in vivo transfected with naked DNA
without the need for a vector, which makes them ideal for transient
in vivo production of loaded EVs. However, it may prove difficult to
control the level of EV production, which may in the case of im-
munization trigger a too strong immune response, converting
therapeutic EVs into harmful entities. Therefore, further stan-
dardization of this technique is warranted to allow for its safe
clinical application.

4. Conclusions: the holy grail of pharmaceuticals

EVs largely conform to the holy grail of pharmaceuticals and
drug delivery systems, given that they are easily produced, modi-
fiable, and show organotropic behavior. The clinical success of
pharmaceuticals depends on a multitude of features including the
following: (1) easy synthesis and modification, (2) large-scale
production, (3) easy and long-term storage, (4) convenient route
of administration to the patient, (5) long-term stability in circula-
tion, (7) organ specificity, (8) cellular and subcellular targeting with
access to the right cellular machinery for proper functioning, (9)
cost-effectiveness, and (10) safety. Although the comprehensive
advancement in EV research in recent decades has shown their
therapeutic value, their clinical translation remains challenging.
The limiting factors for clinical applications of EVs include optimal
culture condition establishment, along with development of pro-
tocols for large-scale EV production, isolation, and storage. Further
parameters to be considered are attainment of uniformity between
batches, designing optimal dosing regimens, and the development
of potency assays for efficacy evaluation [290].
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Largely, the lack of uniformity in EV isolation techniques, donor
cell types, and experimental conditions, including cell culture
conditions, makes comparisons of research outcomes difficult.
Therefore, a universal EV production platform with fixed genera-
tion, isolation, and characterization protocols would be beneficial.
Producer cells that can be easily genetically and/or metabolically
engineered and produce high amounts of EVs are needed. MSCs and
DCs are likely candidates owing to their previously demonstrated
safe use in clinical trials [72].

Any potential harmful effects of the loading procedure itself
should also be considered. Therefore, in comparative studies,
unloaded EVs should undergo the same procedure, e.g., electro-
poration, as the EVs that are loaded with cargo. Even more so,
control EVs could be loaded with mock cargo, e.g., non-coding DNA,
scrambled control peptides, and mutant proteins.

Next, a comprehensive molecular and structural characteriza-
tion of EVs and their contents is of high importance, while taking
into account the variety in EV subtypes and their different func-
tions. To empower this characterization, besides standardized
isolation protocols, development of high-throughput and scalable
tools to characterize molecular contents, by proteomic, tran-
scriptomic, metabolomic, lipidomic approaches; and structural
features, including biophysical properties such as size, charge, ri-
gidity; and ultimately EV function, disease context, delivery effi-
ciency, target cell specificity, and so on, is required (Fig. 6). This ‘EV-
omic’ analysis could be subject to mathematical models such as
principle component analysis and t-Distributed Stochastic
Neighbor Embedding (tSNE) for EV subtype classification through
clustering of EV characteristics. Such an approach has been recently
employed based on a feature set restricted to membrane marker
proteins [291]. However, a multifaceted analysis is desirable for
optimal classification [291—293], assigning multiple delineating
features to the different EV populations, which opens up the pos-
sibility to manipulate and design specific EV subtypes for specific
applications. In addition, through the generation of searchable EV
databases in conjunction with the biobanking of donor cells rather
than EVs, researchers can identify important parameters needed to
achieve a therapeutic function and similarly, what should be opted
out to avoid unwanted effects. Development of methodologies to
offload the natural cargo of EVs and substitute it for a cargo of in-
terest, i.e., similar to the generation of empty viral capsids, may
further aid in higher loading efficiency and enhanced therapeutic
effects with improved safety [294]. Collective development of all of
these aspects would advance the role of EVs toward realization of
its candidature as a universal drug delivery carrier, as well as shed
light on the mechanisms behind EV biogenesis and intercellular
communication.
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