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Abstract

Microbial communities are continuously exposed to unpredictable changes in

their environment. To thrive in such dynamic habitats, microorganisms have

developed the ability to readily switch phenotypes, resulting in a number of

differently adapted subpopulations expressing various traits. In evolutionary

biology, a particular case of phenotypic heterogeneity that evolved in an

unpredictably changing environment has been defined as bet-hedging. Bet-

hedging is a risk-spreading strategy where isogenic populations stochastically

(randomly) diversify their phenotypes, often resulting in maladapted individ-

uals that suffer lower reproductive success. This fitness trade-off in a specific

environment may have a selective advantage upon the sudden environmental

shift. Thus, a bet-hedging strategy allows populations to persist in very

dynamic habitats, but with a particular fitness cost. In recent years, numerous

examples of phenotypic heterogeneity in different microorganisms have been

observed, some suggesting bet-hedging. Here, we highlight the latest reports

concerning bet-hedging phenomena in various microorganisms to show how

versatile this strategy is within the microbial realms.

This article is categorized under:

Infectious Diseases > Molecular and Cellular Physiology
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1 | INTRODUCTION

In many natural environments, microbial populations are constantly exposed to fluctuations of biotic and abiotic factors.
For instance, soil-inhabiting microorganisms like Bacillus subtilis sense frequent changes of osmolarity caused by inter-
changing rain and drought periods and accordingly regulate the transport and biosynthesis of osmoprotectants (i.e., proline
and glycine betaine) to avoid further cell rupture or desiccation (Bremer & Krämer, 2019). Therefore, microorganisms must
evolve various adaptation strategies to sense and process environmental information readily and avoid extinction.

In a direct response to challenging environmental conditions, microorganisms exploit various gene regulatory net-
works, such as operons and regulons, to modulate their phenotype and/or behavior (Benson & Haldenwang, 1992;
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Crombach & Hogeweg, 2008; Jacob & Monod, 1961; Krell et al., 2010; Siebring et al., 2012). The capacity to adapt by
reversibly switching between different phenotypic states, analogously to ON/OFF switches, is known as phenotypic
switching (Henderson et al., 1999; van der Woude & Bäumler, 2004). However, phenotypic switching usually occurs
only in a fraction of the population due to the presence of intra- and extracellular noise and the topology of regulatory
networks involved in the sensing and processing of the environmental signals (i.e., bi- or multi-stable networks; Elowitz
et al., 2002; Ozbudak et al., 2002; Paulsson, 2004; Pedraza & van Oudenaarden, 2005; Veening, Smits, et al., 2008). As a
result, a nongenetic differentiation within an isogenic population gives rise to several phenotypically distinct subpopu-
lations. This phenomenon is known as phenotypic heterogeneity, and some of its examples include lactose utilization
in Escherichia coli (van Hoek & Hogeweg, 2007), cellular differentiation in B. subtilis (Kearns & Losick, 2005; Smits
et al., 2005; Veening, Igoshin, et al., 2008; Yüksel et al., 2016), flagellin phase variation in Salmonella enterica
(Bonifield & Hughes, 2003), and the development of stress-resistant yeast (Bishop et al., 2007).

Phenotypic heterogeneity may arise from a responsive event to specific environmental cues (responsive switching),
but it can also be the result of random changes in gene expression that are independent of the varying environmental
conditions (stochastic switching) (Elowitz et al., 2002; Kussell, 2005; Levine et al., 2013). These strategies have different
advantages and disadvantages for populations exposed to certain fluctuating environmental conditions (Figure 1). Since
responsive switching strongly depends on the maintenance and the activation of stress-specific sensory circuits, it cau-
ses an adaptive lag that can be critical for survival when the environment fluctuates (Acar et al., 2008; Kaern
et al., 2005). In unpredictable environments, stochastic switching can be advantageous over responsive switching by
generating a variety of maladapted phenotypes (i.e., phenotypes with reduced fitness), which overall increase the long-
term fitness of the population (Ackermann, 2015; Kussell, 2005; Kussell et al., 2005). This particular form of phenotypic
heterogeneity, in which the individuals stochastically express maladapted phenotypes, is known as “bet-hedging.”

In evolutionary biology, bet-hedging has been described as a risk-spreading strategy displayed by isogenic
populations that explicitly evolved in fluctuating environments (Gillespie, 1974; Kussell, 2005; Philippi & Seger, 1989).
Under such conditions, clonal populations stochastically generate phenotypes with different fitness-related traits,
resulting in individuals suffering lower reproductive success. Because the environmental changes favor different pheno-
types at different times, the presence of randomly fit individuals may have a selective advantage when the sudden envi-
ronmental shifts occur. Populations that employ bet-hedging minimize the temporal fitness variance of surviving
offspring and maximize the long-term geometric mean fitness across generations (de Jong et al., 2011; Grimbergen

Environment 1 Environment 2 Environment 3
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switching

Stochastic

switching

Time

FIGURE 1 Responsive versus stochastic switching (adapted from Kussell et al., 2005). Isogenic cell populations adapt to changing

conditions by switching their phenotype, either responsively (upper panel) or stochastically (lower panel). A schematic representation of the

switching strategies is shown, in which the color of the fittest individuals matches the color of the environment. In responsive switching,

cells change their phenotype when sensing an environmental change to maximize temporal fitness. The population survives if the majority

of the individuals successfully commit to the switch. However, when the environment changes in a stochastic manner, the stochastic

switching strategy becomes critical for adaptation. Populations that randomly employ stochastic switching, express a number of maladapted

phenotypes of reduced fitness that may suit another environment in the future
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et al., 2015; Kussell et al., 2005; Seger, 1987; Starrfelt & Kokko, 2012). Importantly, this temporal trade-off between fit-
ness mean and variance does not occur in any other adaptation strategies.

One of the most prominent and well-studied cases of how microbes use a bet-hedging strategy is the formation of
persister cells in different bacteria, including E. coli, S. meliloti, or, in more recently reported studies, Staphylococcus
aureus and Caulobacter crescentus (Balaban et al., 2004; Huang et al., 2020; Keren et al., 2004; Kussell et al., 2005; Zalis
et al., 2019). In this mechanism, under antibiotic stress conditions, a part of the initially isogenic population stochasti-
cally and reversibly enters into dormancy and becomes resistant to a killing dose of the antibiotics (Figure 2). Further-
more, once the antibiotic pressure is relieved, the dormant cells can regrow and repopulate the environment. In this
regard, the presence of persister cells becomes highly relevant in common antibiotic treatments (Fisher et al., 2017;
Lewis, 2007, 2010).

Theoretical studies have shown that the evolution and success of bet-hedging strategies depend on many factors,
including the environment's reliability, that is, the frequency and magnitude of environmental changes (Ga�al
et al., 2010; Kussell, 2005); the ability of the population to respond to changes by mutations and rare phenotype selec-
tion (King & Masel, 2007; Wolf et al., 2005); the presence of a suitable environmental cue at the time (King &
Masel, 2007); and the co-occurrence of other evolutionary strategies (King & Masel, 2007). Considering all these ecolog-
ical factors, it is very challenging to provide empirical evidence for true bet-hedging strategies for several reasons. First,
bet-hedging traits evolve in isogenic populations, and since the microbial genomes are subjected to natural genetic
modifications or acquired mutations, the genetic composition of the studied population should be considered in the
experimental setup. Second, because adaptive changes usually arise after long periods, and the fitness gains must be
quantified across several generations, it is necessary to perform long-term evolutionary experiments under fluctuating
growth conditions.

Consequently, authors of recent reports have discussed six categories of experimental evidence for bet-hedging strat-
egies (de Jong et al., 2011; Grimbergen et al., 2015; Simons, 2011). Until now, only a few studies have experimentally
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FIGURE 2 Schematic representation of persister cell formation in Caulobacter crescentus. It has been proposed that antibiotic

persistence in C. crescentus is promoted by HipA1 and HipA2 toxins, which are serine/threonine kinases that phosphorylate the aminoacyl-

tRNA synthetases GltX and TrpS, preventing synthesis of charged tRNAs (Huang et al., 2020). Phosphorylation of GltX/TrpS leads to

translation arrest and activation of the amino acid starvation-signaling pathway (SpoT). Activation of SpoT is also stochastically triggered by

carbon or nitrogen starvation (indicated by the dashed arrow). Elevated levels of (p)ppGpp, a stringent response alarmone, contribute to

translational arrest. Activation of SpoT and further transcriptional changes in the isogenic population of C. crescentus allow most cells to

adapt to the starvation conditions, whereas only a fraction of the population becomes dormant (phenotypic heterogeneity). Dormant cells

(blue cells) are not metabolically active and can survive high doses of antibiotics. The persister state is reversible; therefore, when the

optimal conditions arrive, dormant cells can repopulate the environment (orange cells). The gradient red-colored bar indicates starvation

stress
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demonstrated stochastic phenotypic switching in dynamic environments, including the elegant work of Beaumont
et al. (2009), which provided the evidence for de novo evolution of bet-hedging traits in Pseudomonas fluorescens under
frequently fluctuating conditions (Beaumont et al., 2009). Here, selection of phenotypes was achieved by repeatedly
imposing the exclusion rule and a population bottleneck. Applying both at the point of environmental shift enabled to
maintain diversity in the population by excluding the most common phenotype (the exclusion rule) and to select for a
random variant among the surviving cells to minimize the cost of bet-hedging (a bottleneck). Interestingly, the authors
showed that in two out of 12 experimental replicates, surviving genotypes persisted due to stochastic phenotype
switching. Furthermore, in one of the switching genotypes, they identified a mutation in the carB gene, encoding for a
subunit of carbamoylphosphate synthase involved in pyrimidine and arginine biosynthesis. It is speculated that this
mutation caused significant changes in the central metabolism of the evolved population that further translated to
molecular noise and promoted stochastic phenotype switching.

This experimental example was later revisited by Libby and Rainey (2011). Here, the authors used mathematical
models and simulations to investigate the benefits of stochastic switching in populations of P. fluorescens subjected to
the exclusion rule and population bottleneck (Libby & Rainey, 2011). Importantly, they observed that switching
populations could invade and even replace the nonswitchers despite the high fitness costs and the frequency with
which the switching occurred. Besides, the simulations showed that the results are robust to alterations in switching
rate, the fidelity of exclusion, bottleneck size, duration of environmental state, and growth rate.

Both studies demonstrated that the exclusion rules and bottlenecks can shape the adaptation of populations
responding to fluctuating conditions and that experimental studies, reinforced with theoretical models, can be a supe-
rior strategy in proving the evolution of bet-hedging. Nonetheless, much more remains to be discovered, including the
mechanisms of stochastic switching, which is the most challenging to follow.

This mini-review discusses the most recent empirical studies where authors claim the role of bet-hedging in
observed phenotypic heterogeneity. Specifically, we focus on describing microbial systems that display a bet-hedging
strategy, but without stressing the six categories of experimental evidence proposed by de Jong et al., 2011, Grimbergen
et al., 2015 and Simons, 2011. In Figure 3, we compiled all the examples discussed that fall into diverse microbial life-
style areas, including signaling, resource use and dormancy.

2 | NOISE IN MICROBIAL CONVERSATIONS: BET-HEDGING
IN QUORUM-SENSING RESPONSES AND CELL FATE DETERMINATION

It has been long recognized that cells within a microbial community can sense changes in the cell population density
and adjust their gene expression accordingly (Nealson et al., 1970). This cell-to-cell communication mechanism is
known as “quorum sensing” (QS), and is based on the production and sensing of small diffusible molecules known as
autoinducers (AIs). AIs trigger cooperative behaviors and the production of “public goods” (Fuqua et al., 1994, 2001;
Ng & Bassler, 2009; Williams, 2007). In addition, their chemical nature differs depending on the producing organism.
For instance, Gram-negative bacteria release and sense homoserine lactones (Eberhard et al., 1981), whereas Gram-
positive bacteria produce and sense autoinducing peptides (Kleerebezem et al., 1997; Magnuson et al., 1994). The QS
signaling is AI concentration-dependent, reflecting the number of cells in the population (“quorum”). Accordingly,
when the concentration of AIs reaches a threshold, QS-signaling promotes collective phenotype switching, which is
beneficial for the entire population.

Processes reported to be controlled by QS include competence initiation (Håvarstein et al., 1996; Magnuson
et al., 1994; Salvadori et al., 2019), endospore formation (Lazazzera et al., 1997; Li et al., 2011; L�opez &
Kolter, 2010), bioluminescence (Eberhard et al., 1981; Fuqua et al., 1994; Gray & Garey, 2001), secretion of virulence
factors (Ji et al., 1995; Rutherford & Bassler, 2012), bacteriocin production (Brurberg et al., 1997;
Kleerebezem, 2004; Kuipers et al., 1998; Shanker & Federle, 2017), biofilm formation (Brindhadevi et al., 2020;
Hammer & Bassler, 2003; Kievit et al., 2001; Yarwood et al., 2004), and even changes in the bacteriophage lifecycle
(i.e., lysogenic vs. lytic; Harms & Diard, 2019; Høyland-Kroghsbo et al., 2013; Qin et al., 2017). These experimental
works describe QS-signaling in bulk populations in which the cells at a high density collectively contribute to the
common good. Nevertheless, phenotypic heterogeneity is highly present in QS systems, mainly because QS can
exploit bistable switches (Bauer et al., 2017). Some examples of phenotypic heterogeneity in QS include the LuxR/
LuxI bioluminescence system of Vibrio fischeri and Vibrio harveyi (campbellii) (Anetzberger et al., 2009; Weber &
Buceta, 2013), the presence of “social cheaters” in Pseudomonas aeruginosa (Sandoz et al., 2007), and the escape of
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individual cells from Pseudomonas putida biofilms (C�arcamo-Oyarce et al., 2015). Other examples of single-cell stud-
ies on QS and phenotypic heterogeneity were collected and neatly presented in the recent reviews by Grote et al.
(2015), Mukherjee and Bassler (2019), and Bettenworth et al. (2019).

Interestingly, the occurrence of phenotypic heterogeneity in several cases of QS systems has been suggested to repre-
sent a potential bet-hedging strategy. Pradhan and Chatterjee (2014) used Pseudomonas syringae and Xanthomonas
campestris to study bet-hedging in QS response to AIs (Pradhan & Chatterjee, 2014). To follow the phenotypic variation
in response to AIs, they used chromosomally encoded green fluorescent protein reporter fusions, responsive to N-acyl-
homoserine lactone and diffusible signal factor (cis-11-methyl-2-dodecenoic acid), respectively. In both experimental
conditions, the authors show the coexistence of two subpopulations: QS-responsive and nonresponsive cells (bright and
dark accordingly), at high cell-density in the presence of external QS signals. Moreover, this phenotypic heterogeneity
has been identified as a nonheritable and reversible stochastic event, similar to persister cell formation when antibiotic
pressure is removed. Induced and uninduced cells could further differentiate to QS-responsive or nonresponsive sub-
populations, independently of their progeny. Since QS signaling is involved in coordinating multiple social behaviors,
like motility or biofilm formation, the authors propose that the production of QS nonresponsive cells would be advanta-
geous under rapidly changing conditions. However, despite the analogy of persister cells' formation, we suggest that in
future studies long-term experiments and fitness estimations are necessary to prove that these mechanisms indeed
evolved as a bet-hedging strategy.

FIGURE 3 Overview of recent studies on phenotypic heterogeneity and possible employment of bet-hedging strategies in various

microorganisms. In this work, we highlight some recent studies regarding bet-hedging traits that fall into several categories of microbial

lifestyle, including signaling (purple), dormancy (yellow), and resource use (blue). In some cases, the same population manifests different

bet-hedging strategies because of direct or indirect relationships between traits. With an asterisk, we marked examples of studies where a

population was shown to employ several bet-hedging strategies, for example, nutrient utilization is directly involved in spore or persisters

formation
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2.1 | Spore formation in B. subtilis

In B. subtilis, the production of highly resistant endospores in response to nutritional stress is a prevalent example of an
evolved bet-hedging strategy (Siebring et al., 2014; Veening et al., 2005). Spore formation is regulated by a mul-
ticomponent phosphorelay, in which the final threshold concentration of phosphorylated Spo0A, the key sporulation
transcription factor, triggers spore-related gene expression (Fujita et al., 2005; Perego & Hoch, 2014). The Spo0A phos-
phorylation and thus sporulation initiation depends on several other signaling systems, including RapA-PhrA, a QS
duo that responds to starvation stress (Perego & Hoch, 2014),and the two-component signal transduction system
ComA-ComP, which indicates the cell density of the population and activates the RapA phosphatase (Lazazzera
et al., 1997, 1999; Mueller et al., 1992). Remarkably, noise in the expression of the RapA-PhrA system has been reported
as a source of heterogeneity in sporulation in B. subtilis (Veening et al., 2005). Previous studies demonstrated that cells
with a low transcription of rapA sporulate early, whereas cells that strongly upregulate rapA delay their entry to sporu-
lation (Bischofs et al., 2009). Later, Mutlu et al. (2018) showed that RapA-PhrA determines not only the sporulation
timing, but also impacts the spore yield and the spore revival frequency (Mutlu et al., 2018). This phenotypic spore
memory that differentiates spores into high and low quality is proposed to be a bet-hedging strategy to overcome the
uncertainty of the environment, where the concentration of nutrients fluctuate. Early spores germinate more efficiently
in an environment with low nutrient concentration than late spores, resulting in a fitness benefit under starvation
periods. This hypothesis has been further validated theoretically and experimentally by Mutlu et al. (2020). In this
work, the authors studied spore revival of B. subtilis strains isolated from gut and soil upon nutrient supply to determine
the fitness advantage of different sporulation strategies, emphasizing spore quantity versus quality, and their evolution-
ary course (Mutlu et al., 2020).

2.2 | Sporulation and biofilm formation interplay

Cell fate determination in B. subtilis largely depends on bistable regulatory switches due to their noisy nature, hence a
broad range of different phenotypes can be observed within an isogenic population. It has been long recognized that the
B. subtilis biofilms are multicellular communities comprising motile, matrix-producing, and sporulating cells (Vlamakis
et al., 2008). Cell differentiation is known to be tightly regulated by the levels of the phosphorylated Spo0A and
depending on the intracellular concentration of Spo0A~P, a cell commits either to sporulation (high levels of Spo0A~P)
or biofilm matrix formation (intermediate levels of Spo0A~P). In the case of biofilm development, the presence of an ade-
quate concentration of Spo0A~P is essential for the production of SinI. SinI is a direct antagonist of transcription repres-
sor SinR, which allows for transcription of epsA and tasA operons required for polysaccharide synthesis and production
of amyloid fibers, by titrating SinR levels. Moreover, the levels of Spo0A~P and cell fate determination can be indirectly
affected by other regulatory systems like DegU (responsible for floating biofilm formation) and the QS systems.

In B. subtilis, the ComX signaling peptide, a component of the ComA-ComP QS system, has been shown to posi-
tively regulate transcription of the epsA-O operon and polysaccharide synthesis by increasing surfactin production. Sub-
sequently, an elevated surfactin concentration activates KinC, a histidine kinase which increases Spo0A~P levels,
promoting biofilm formation. In the recent work of Spacapan et al. (2019), the role of QS in cellular development was
investigated. The authors examined the role of ComX crosstalk between sporulation and biofilm formation and showed
that the ComA-ComP QS system in floating biofilms reduces the growth rate and increases early stochastic sporulation,
which suggests a potential bet-hedging strategy (Spacapan et al., 2019). The authors used a QS mutant named ΔcomQ,
which does not produce active signal peptide ComX, and subsequently followed cell differentiation in floating biofilms
to prove their hypothesis. By measuring the colony forming units and the number of spores in floating biofilms, the
authors showed that floating biofilm of a wild type had a significantly higher amount of spores than the ΔcomQ
mutant. Moreover, the analysis of activation of the early sporulation promoter PspoIIQ confirmed that the ΔcomQ
mutation delays entry into sporulation. Interestingly, when the culture was supplemented with external ComX peptide,
the promoter's activity resembled the wild type.

Taken all together, ComX was shown to act as a switch that regulates population growth and promotes early sporu-
lation. In this regard, it has been proposed that early sporulation might benefit B. subtilis survival in fluctuating envi-
ronments where nutrients are often depleted. This benefit is in line with those observed in the spore quantity versus
quality trade-off described in the previous section. Therefore, it is tempting to speculate that this long-term fitness bene-
fit is the result of a bet-hedging strategy.
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3 | BET-HEDGING IN RESOURCES UPTAKE AND UTILIZATION

3.1 | Bet-hedging in respiratory mechanisms: a safety valve under anoxic spells

Microorganisms inhabiting microenvironments, where oxygen availability is limited (i.e., soil, sediments, biofilms, or
marine environments), have developed respiratory mechanisms to utilize alternative oxidizing agents and ultimately
generate energy to grow. Prominent examples are denitrifying bacteria, which use nitrogen oxyanions and oxides as elec-
tron acceptors during hypoxic/anoxic conditions (Shapleigh, 2006). Denitrifiers reduce nitrate to N2 via nitrite, NO, and
N2O stepwise to avoid the entrapment in anoxia for long periods. For each step of reduction: NAR (NO3

� ! NO2
�),

NIR (NO2
� ! NO), NOR (2NO ! N2O), and NOS (N2O ! N2), they express a set of reductases, which are encoded by

nar, nir, nor, and nos gene clusters, respectively. The functionality and cooperation of all reductases prevent the accumu-
lation of toxic intermediates like nitric oxide and conserve energy under frequent fluctuation in oxygen levels (Bergaust
et al., 2008; Sullivan et al., 2013).

In the model denitrifier microorganism Paracoccus denitrificans, it has been observed that all cells in an isogenic
population synthesize NOS, while only part of the population synthesizes NIR (Lycus et al., 2018). Lycus et al. (2018)
described this phenotypic variation based on the NIR system's stochastic initiation, which eventually becomes autocata-
lytic via NO production. It is suggested that by employing stochastic initiation of NIR, P. denitrificans can hedge its bets
and generate different cell variants under imminent anoxia. In this work, the authors propose that the bet-hedging
strategy in NIR initiation is beneficial for conserving energy when the oxygen levels suddenly increase. In this scenario,
the cell does not spend its energy synthesizing a denitrifying proteome (Olaya-Abril et al., 2018); instead, energy is
invested in aerobic respiration (a long-term fitness benefit). However, the NIR expression, in sudden anoxia might
cause a severe fitness loss (decreased growth rates caused by graduate NIR expression). Moreover, the authors provide
evidence that NIR is localized and stored at the poles of nongrowing cells, ready to use in the case of a sudden switch to
anaerobic respiration. Additionally, they discuss the effect of temperature on synthesizing one of the NIR components,
NirS. Because the probability of NirS synthesis and expression of the complete denitrification proteome increased with
increasing temperatures the authors suggest that the bet-hedging strategy might have evolved at low temperatures.

This elegant study highlights not only the evolution of a bet-hedging population. One can speculate that it also sug-
gests a more profound complexity with a mix of survival strategies, where evolved bet-hedging crosses with the division
of labor. The formation of different cell variants in a population of P. denitrificans is thought to contribute to survival
via producing common goods (N2O), cross-feeding interactions, and scavenging by neighboring cells. In this scenario,
the division of labor might have evolved from the previous maladaptation that became beneficial on a generation-wide
scale.

It has been recently suggested that not only denitrifying bacteria play the odds in environments when oxygen is
scarce. Carey and Goulian (2019) proposed that the aerobically growing population of E. coli hedge its bets to prepare
for the future anoxic spells by noisy expression of the torCAD operon (Carey & Goulian, 2019). The signaling two-
component system TorT/TorS/TorR regulates the torCAD operon and allows E. coli cells to sense and utilize
trimethylamine oxide (TMAO) as a final electron acceptor instead of oxygen. Previous studies on torCAD have shown
that TorT/TorS/TorR complex is expressed as well under aerobic conditions, however with a high cell-to-cell variance
of the mean expression values (Ansaldi et al., 2007; Carey & Goulian, 2019; Roggiani & Goulian, 2015). Consequently,
the noisy expression generates different phenotypic variants resulting in maladapted cells' subpopulations with lower
fitness under aerobic conditions. It has been shown that only cells that highly express the torCAD operon upon sudden
anoxia continued to grow in anaerobic conditions, suggesting the bet-hedging strategy (Carey et al., 2018).

3.2 | Bet-hedging in nutrient utilization

Microorganisms require several nutrients to thrive in the niche they occupy, and previous studies illustrate how some
hedge their bets in response to specific environmental conditions (Solopova et al., 2014; van Boxtel et al., 2017; Veening,
Smits, et al., 2008). For instance, when a population of the amoeba Dictyostelium discoideum encounters nutrient deple-
tion, two subpopulations are distinguished: aggregators (spores) and nonaggregators (vegetative cells; Wonhee &
Gomer, 2011). An elegant theoretical work on the study of each subpopulation under short and long starvation condi-
tions provided evidence of the bet-hedging strategy underlying this case of phenotypic heterogeneity (Martínez-García &
Tarnita, 2017). This work demonstrates that more spores are formed in the long starvation condition, whereas
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vegetative cells are predominant in the short starvation condition. Therefore, although one phenotype might do better
at specific requirements, bet-hedging ensures the population's survival.

Similarly, a bet-hedging mechanism in response to starvation in the bacterium S. meliloti has been described
(Ratcliff & Denison, 2010, 2011; Zhang & Rainey, 2010). In this work, under starvation conditions, two different cell
types emerge after cell division, cells carrying either low or high concentrations of polyhydroxybutyrate (PHB; Ratcliff
et al., 2008). The cell having high PHB concentrations can survive for long-term starvation periods. Besides, the authors
of this work correlate this bet-hedging strategy with bacterial persistence because the high-PHB-containing cells show
higher tolerance to the antibiotic ampicillin (Ratcliff & Denison, 2011). Importantly, this study provides evidence of the
origins of the state of persistence triggered by a nutrient-stress and bet-hedging mechanism. In contrast to high-PHB-
containing cells, the low-PHB cells are metabolically active, that is, they are nonpersistent cells, and thus this subpopu-
lation of cells can utilize the nutrients that are available in the environment.

3.3 | Bet-hedging for amino acids utilization

Few studies have investigated bet-hedging strategies on amino acid utilization. We have previously reported a case of
phenotypic heterogeneity on the uptake of the amino acid methionine by Lactococcus lactis, where two subpopulations
rely each on a methionine transporter with different affinities for the amino acid (Hernandez-Valdes et al., 2020). Since
one of the subpopulations primarily utilizes a high-affinity transporter, the cells in this subpopulation are likely fitter in
environments with minimal amounts of methionine than the subpopulation that relies on a low-affinity transporter.
Notably, this heterogeneity is apparent at the colony level, and therefore it is a remarkable example of phenotypic
switching with a low rate. A further study to confirm whether this heterogeneity is a bet-hedging strategy is envisioned.
The low switching rate offers the possibility to subject each subpopulation to evolution and selection experiments.

Based on the seasonal changes (e.g., light and temperature), the presence of nutrients in the environment fluctuates
(Kearns et al., 2016; Mello et al., 2016; Paver & Kent, 2017). A study on Saccharomyces cerevisiae shows that the GAP1
gene is responsible for adapting the population to simultaneous changes in the environment (Møller et al., 2013). Due
to a hub-switch in the GAP1 gene, three genotypes are observed: a chromosomal GAP1 gene, an extrachromosomal cir-
cle GAP1 gene, and the GAP1 deletion. GAP1 encodes an amino acid transporter for L- and D-amino acids, but partici-
pates in the pathway for stress-protecting sugar trehalose and participates in biofilm formation (Donaton et al., 2003;
Torbensen et al., 2012). Therefore, different finesses are observed for each subpopulation in specific growth conditions.
For instance, the GAP1 deletion has lower fitness than the wild type when grown in L-glutamate as a nitrogen source,
but it has a higher fitness when grown in either ammonium or allantoin. Interestingly, the presence of GAP1 in extra-
chromosomal circles resulted in a higher fitness than the wild type in an evolved population with L-glutamate as a
nitrogen source, probably due to an increase in gene number.

3.4 | Bet-hedging for carbohydrate utilization

In contrast to amino acids, the link between carbon source utilization and bet-hedging has been extensively
described in previous studies (Gasperotti et al., 2020; Grimbergen et al., 2015; Siegal, 2015). The carbon catabolite
repression in E. coli explains its preference for glucose and how the presence of this sugar prevents the use of other
carbon sources so that only when no glucose is present, the other sugars can be utilized (Kremling et al., 2015).
Recent work provides extra insight into the mechanism underlying the transition from glucose to other carbon
sources in E. coli (Kotte et al., 2014). Kotte et al. (2014) show that during this carbon source transition, character-
ized by a lag phase, the population of cells is diversified into growing and nongrowing phenotypes. The subpopula-
tion that uses the secondary available carbon source is responsible for the lag phase, whereas the nongrowing
subpopulation enters a dormant state. Moreover, these subpopulations are distinguished by different glycolytic rates
during their initial growth on glucose, a cell with a low glycolytic rate becomes the subpopulation that enters dor-
mancy. The authors propose that the cells hedge their bets during their growth on glucose, resembling a conditional
bet-hedging mechanism, where it occurs only after glucose is depleted, and the cells with a high glycolytic rate can
cope with the change of carbon source.

Likewise, our group reported the diauxic shift from glucose utilization to cellobiose in L. lactis (Solopova
et al., 2014). In this case, the transition between both states is determined by catabolite repression and the stringent
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response. The cells that utilize cellobiose are cells that switch during the release of catabolite repression and activate
the stringent response to enable cellobiose utilization.

An interesting bet-hedging mechanism related to avoiding glucose repression in S. cerevisiae has been described
(Garcia et al., 2016; Jarosz et al., 2014). The yeast S. cerevisiae generally consumes glucose, preferably even when other
carbon sources are present (Pinu et al., 2014). Previous studies have reported that some strains switch to a metabolic
generalistic type despite their characteristic metabolic specialization, allowing them to consume other carbon sources
even when glucose is present. Remarkably, this capacity relies on the inheritance of an altered protein conformation—
a prion named [GAR+]. The prion is transduced from mother cells to daughter cells at different rates, depending on the
nutrients in the environment, suggesting a bet-hedging mechanism to cope with the fluctuations of carbon sources. Fur-
thermore, bacteria are able to induce [GAR+] through the production of lactic acid in such a way that strong and weak
variants of the prion are observed, depending on the different concentrations of lactic acid (Garcia et al., 2016).

4 | DISCUSSION AND OUTLOOK

4.1 | Does phenotypic heterogeneity always benefit a population?

An environment where resources, especially nutrients, are constantly changing is a scenario in which microorganisms
can develop different phenotypes to increase their survival chances (Childs et al., 2010; van Boxtel et al., 2017)
(Figure 4). Although many studies have demonstrated how phenotypically variable bacterial strains are able to thrive
in a niche, showing successful outcomes of using a bet-hedging strategy, few studies have studied the adverse effects of
heterogeneity in bacterial phenotypes (Levy, 2016). In this regard, do microorganisms always benefit from displaying
heterogeneity?

Troselj and Wall (2018) investigated the population response of the soil bacterium Myxococcus xanthus when a
subpopulation of cells are starving (auxotrophic for amino acids; Troselj et al., 2018; Troselj & Wall, 2018). While no

FIGURE 4 Nutrient fluctuations and cell consequences during a bet-hedging strategy. Bacteria develop phenotypic heterogeneity

during changes in environmental conditions (Environment A to B), and a bet-hedging strategy results in subpopulations of cells with

different fitness. While cells with low fitness are subjected to different outcomes (e.g., sporulation), the fitter cells thrive. Eventually, (change

to Environment C) the cells display the diversity in phenotypes by a random switch
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bacterial interaction occurs in a mixed population of prototrophic and auxotrophic cells in rich media, an antagonistic
interaction is established in a starvation medium. A toxin produced by the prototrophic cells kills the auxotrophic
cells, via the type VI secretion system (T6SS). An analysis of the mechanism underlying this antagonism between sib-
ling cells shows that starving cells have lower amounts of immunity factors than the growing cells. Thus, this observa-
tion suggests that growing cells eliminate the less fit cells of the population. Several scenarios have been suggested for
the biological implications of this interaction. For instance, it might be that growing cells obtain nutrients from the
lysed cells, and therefore, the population becomes fitter without the starving cells, that is, as a homogeneous popula-
tion. Another possibility is eliminating the nongrowing cells to avoid sporulation, which is a decision at the popula-
tion level and an energetically expensive process. It would be interesting to explore whether similar antagonistic
interactions against the less fit subpopulation are present in some known cases of bet-hedging strategies by bacteria,
where studies have been focused on the exclusive benefits to the subpopulation that is favored under a specific nutri-
tional condition.

Changes in nutrients have revealed bet-hedging and other phenotypic heterogeneity strategies (Gasperotti et al., 2020;
van Boxtel et al., 2017). The importance of this evolutionary adaptation relies on the possibility to persist and thrive in
niches where the availability of nutrients fluctuates (Balaban et al., 2004; Martín et al., 2019; Ratcliff & Denison, 2011).
Since bacteria live in densely populated environments, and nutrient availability is expected to change, bet-hedging repre-
sents an adaptive evolution strategy that allows bacteria to cope with unstable environmental conditions.

5 | CONCLUSIONS

It has been long acknowledged that microbial populations employ bet-hedging strategies to persist in very dynamic
and unpredictable habitats. In the last decades, due to their high relevance in the food industry (e.g., food spoilage
caused by germination of persistent spores) and the medical field (e.g., antibiotic-resistant persister cells), endospore
and persister cell formation have been particularly studied in bacteria (Balaban et al., 2004; Lewis, 2007; Veening
et al., 2005). Nonetheless, despite the difficulties in identifying bet-hedging, recent research studies on phenotypic het-
erogeneity have provided many promising indications of bet-hedging strategies employed by a plethora of microor-
ganisms. Current studies have shown that bet-hedging traits may concern many physiological aspects (Figure 3),
which provides further evidence of how frequently microorganisms hedge their bets. Yet, more extensive, long-term
evolutionary studies to assess the fitness gains in fluctuating environments are required to confirm the authenticity of
bet-hedging cases described in previous classification reviews (de Jong et al., 2011; Grimbergen et al., 2015;
Simons, 2011).
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