
 

 

 University of Groningen

Seven steps toward more transparency in statistical practice
Wagenmakers, Eric-Jan; Sarafoglou, Alexandra; Aarts, Sil; Albers, Casper; Algermissen,
Johannes; Bahník, Štěpán; van Dongen, Noah; Hoekstra, Rink; Moreau, David; van
Ravenzwaaij, Don
Published in:
Nature Human Behaviour

DOI:
10.1038/s41562-021-01211-8

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Wagenmakers, E-J., Sarafoglou, A., Aarts, S., Albers, C., Algermissen, J., Bahník, Š., van Dongen, N.,
Hoekstra, R., Moreau, D., van Ravenzwaaij, D., Sluga, A., Stanke, F., Tendeiro, J., & Aczel, B. (2021).
Seven steps toward more transparency in statistical practice. Nature Human Behaviour, 5, 1473-1480.
https://doi.org/10.1038/s41562-021-01211-8

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1038/s41562-021-01211-8
https://research.rug.nl/en/publications/2d3642ae-47f1-4e49-a705-c75c51c1f45e
https://doi.org/10.1038/s41562-021-01211-8


PersPective
https://doi.org/10.1038/s41562-021-01211-8

1Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands. 2School for Public Health and Primary Care, Maastricht University, 
Maastricht, The Netherlands. 3Heymans Institute of Psychological Research, University of Groningen, Groningen, The Netherlands. 4Donders Institute for 
Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands. 5Faculty of Business Administration, Prague University of Economics, 
Prague, Czech Republic. 6Department of Educational Science, University of Groningen, Groningen, The Netherlands. 7School of Psychology and Centre for 
Brain Research, The University of Auckland, Auckland, New Zealand. 8Department of Psychology, University of Groningen, Groningen, The Netherlands. 
9Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, The Netherlands. 10Department of Psychology, University of Münster, 
Münster, Germany. 11Office of Research and Academia-Government-Community Collaboration Education and Research Center for Artificial Intelligence 
and Data Innovation, Hiroshima University, Hiroshima, Japan. 12Institute of Psychology, ELTE Eotvos Lorand University, Budapest, Hungary.  
✉e-mail: ej.wagenmakers@gmail.com

A superficial assessment of the published literature sug-
gests that statisticians rarely agree on anything. Different 
schools—mostly frequentists, likelihoodists and Bayesians—

have fought one another tooth and nail for decades, debating the 
meaning of ‘probability’, arguing about the role of prior knowl-
edge, disputing the value of objective versus subjective analyses 
and disagreeing about the primary goal of inference itself: whether 
researchers should control error rates, update beliefs, or make coher-
ent decisions. Fundamental disagreement exists not only between 
the different statistical schools, but also within the same school. For 
example, within the frequentist school, there is the perennial debate 
between those who seek to test hypotheses through P values and 
those who emphasize estimation through confidence intervals; and 
within the Bayesian school, Jack Good’s claim that there are 46,656 
varieties of Bayesians may prove to be an underestimate1 (but see 
also ref. 2).

The disagreement also manifests itself in practical application 
whenever multiple statisticians and practitioners of statistics find 
themselves independently analysing the same dataset. Specifically, 
recent ‘multiple-analyst’ articles show that statisticians rarely use 
the same analysis, and they often draw different conclusions, even 
for the exact same dataset and research question3–7. Deep disagree-
ment is also exhibited by contradictory guidelines on P values8–13. 
Should practitioners avoid the phrase ‘statistically significant’? 
Should they lower the P value thresholds, or justify them, or aban-
don P values altogether? And, if P values are abandoned, what 
should replace them? With statisticians fighting over these funda-
mental issues, users of applied statistics may be forgiven for adopt-
ing a wait-and-see attitude and carrying on as usual.

In this Perspective, we claim that, besides the numerous disputes 
and outstanding arguments, statisticians might agree on a set of sci-
entific norms. We bring these norms to the fore, as we believe that 
they have considerable relevance for the practice of statistics in the 
social and behavioural sciences. The norms that we believe should 
guide statistical practice are communalism, universalism, disinter-
estedness and organized scepticism, which are the four scientific 
norms proposed by Merton14 (originally published in 1942; see Box 
1 for a detailed overview of the Mertonian norms and Box 2 for 
an overview of how each statistical procedure discussed here fulfills 
these norms).

Visualizing data
Description. By visualizing data, researchers can graphically repre-
sent key aspects of the observed data as well as important properties 
of the statistical model applied.

Benefits and examples. Data visualization is important in all phases 
of the statistical workflow. In exploratory data analysis, data visual-
ization helps researchers to formulate new theories and hypothe-
ses15. In model assessment, data visualization supports the detection 
of model misfit and guides the development of appropriate statisti-
cal models16–20. Finally, once the analysis is complete, visualization 
of data and model fit is arguably the most effective way to commu-
nicate the main findings to a scientific audience21.

For an example of how data visualization facilitated the develop-
ment of a new hypothesis, consider the famous map of the distribu-
tion of deaths from cholera created by London anaesthetist John 
Snow during the cholera outbreak in Soho, London, in September 
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1854. To trace the source of the outbreak, John Snow created a 
dot map that displayed the homes of the deceased as well as the 
water pumps in the neighbourhood (Fig. 1). The scatter of the data 
showed that the deaths clustered around a particular water pump in 
Broad Street, suggesting that the disease was waterborne instead of 
airborne22. In response to John Snow’s request, the pump was dis-
abled by removing its handle, which immediately ended the neigh-
bourhood epidemic. It was later discovered that the well belonging 
to the pump was contaminated with sewage, which caused the out-
break in the neighbourhood.

For an example of how data visualization can reveal model mis-
specification, consider Anscombe’s quartet23 shown in Fig. 2. The 
four scatter plots all have identical summary statistics (that is, mean, 
standard deviation and Pearson correlation coefficient values). By 
visually inspecting the panels, it becomes obvious that the bivariate 
relation is fundamentally different for each panel24.

Current status. Since William Playfair (1759–1823) invented the 
first statistical graphs—such as line graphs and bar charts25—data 
visualization has become an essential part of science. Today, graphs 
are part of most statistical software packages and have become 
an indispensable tool to perform certain analyses (that is, princi-
pal component analysis or prior and posterior predictive checks) 
or for handling big datasets (that is, through cluster analysis26). 
Technology now enables us to go beyond static visualizations and 
display the dynamic aspects of the data, for example, using the soft-
ware packages R Shiny27 or iNZight28.

Limitations. Despite the obvious benefits, data visualization also 
offers the opportunity to mislead, for example, when displaying 
spurious patterns by either expanding the scale to minimize varia-
tion, or by minimizing the scale to accentuate differences29–31.

Furthermore, the informativeness of a graph often depends on 
the design capabilities of the researcher and how much thought 
they put into what information should be communicated. Scientists 
without programming experience often find themselves constrained 
by the options offered in standard graphics software. However, the 
example of Anscombe’s quartet shows that even the simplest plots 
can be highly informative.

Guidelines. There are no uniform guidelines as to when and which 
graphical representations should be used. However, there is a fun-
damental principle of good statistical graphics according to Tufte 
(page 92 of ref. 32): “Above all else show the data” (that is, minimize 
non-data elements). In general, scientists should aim to create a 
graph that is as clean, informative and as complete as possible. These 
characteristics are also emphasized in the ASA Ethical Guidelines33. 
The guidelines mention that, to ensure the integrity of data and 
methods, the ethical statistician “[i]n publications and reports, con-
veys the findings in ways that are both honest and meaningful to 
the user/reader. This includes tables, models, and graphics” (page 
3 of ref. 33).

Beyond that, guidelines depend on the individual aspects of the 
data (that is, the complexity of the data and experimental design) 
and context (compare with ref. 34); here we refer the interested reader 
to the numerous manuals describing good practices in graphical 
representation of statistical information32,35–40.

Quantifying inferential uncertainty
Description. By reporting the precision with which model param-
eters are estimated, the analyst communicates the inevitable uncer-
tainty that accompanies any inference from a finite sample.

Benefits and example. Only by assessing and reporting inferen-
tial uncertainty is it possible to make any claim about the degree 
to which results from the sample generalize to the population. 
For example, Strack et al.41 studied whether participants rate car-
toons to be funnier when they hold a pen with their teeth (which 
induces a smile) instead of holding it with their lips (which 
induces a pout). On a ten-point Likert scale, the authors observed 
a raw effect size of 0.82 units. For the interpretation of this result, 
it is essential to know the associated inferential uncertainty. In 
this case, the 95% confidence interval ranges from −0.05 to 1.69, 
indicating that the data are not inconsistent with a large range of 
effect-size estimates (including effect sizes that are negligible or 
negative).

Box 1 | Merton’s ethos of science

Merton14 proposed that scientific ethos is characterized by the 
following four norms:
 (1) Communalism. “The substantive findings of science are a 

product of social collaboration and are assigned to the com-
munity. […] Property rights in science are whittled down to 
a bare minimum by the rationale of the scientific ethic. […] 
The institutional conception of science as part of the public 
domain is linked with the imperative for communication of 
findings. Secrecy is the antithesis of this norm; full and open 
communication its enactment.” (pages 273–274 of ref. 14).

 (2) Universalism. “[T]ruth-claims, whatever their source, are 
to be subjected to preestablished impersonal criteria: con-
sonant with observation and with previously confirmed 
knowledge. The acceptance or rejection of claims entering 
the lists of science is not to depend on the personal or social 
attributes of their protagonist; his race, nationality, religion, 
class, and personal qualities are as such irrelevant.” (page 
270 of ref. 14).

 (3) Disinterestedness. “Science, as is the case with professions 
in general, includes disinterestedness as a basic institutional 
element. […] A passion for knowledge, idle curiosity, altru-
istic concern with the benefit to humanity […] have been 
attributed to the scientist.” (pages 275–276 of ref. 14).

 (4) Organized scepticism. This “involves a latent questioning 
of certain bases of established routine, authority, vested 
procedures and the realm of the ‘sacred’ generally. […] Sci-
ence which asks questions of fact concerning every phase 
of nature and society comes into psychological, not logical, 
conflict with other attitudes toward these same data which 
have been crystallized and frequently ritualized by other in-
stitutions. Most institutions demand unqualified faith; but 
the institution of science makes scepticism a virtue.” (pages 
264–265 of ref. 14).

In general, when Mertonian norms are carried over to the field 
of statistics, general themes include the need to be transparent, 
to acknowledge uncertainty and to be open to alternative 
interpretations. As such, the Mertonian norms, although 
proposed over half a century ago, embody the current aspirations 
to increase the transparency and reproducibility of science. 
Critically, the principles behind the Mertonian norms can be 
translated into concrete statistical practices. A non-exhaustive 
list of these practices include (1) visualizing data; (2) quantifying 
inferential uncertainty; (3) assessing data preprocessing choices; 
(4) reporting multiple models; (5) involving multiple analysts; 
(6) interpreting results modestly; and (7) sharing data and code. 
We believe that most statisticians would generally endorse 
these practices85, barring reasonable exceptions (that is, privacy 
concerns, severe restrictions of time and money). Here we 
explain these practices in more detail, including their benefits, 
limitations and guidelines.
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Current status. In almost all statistics courses, students are 
taught to provide not only the summary of statistical tests (such 
as F, t and P values and the associated degrees of freedom), but 
also parameter point-estimates (that is, regression weights, effect 
sizes) and their associated uncertainty (that is, standard error, 
posterior distribution, confidence intervals, credible intervals). 
Nevertheless, there exists a gap between what is taught and what 
is practiced. Studies of published articles in physiology20, the 
social sciences42 and medicine43,44 revealed that error bars, stan-
dard errors or confidence intervals were not always presented. 
Popular metrics such as Cronbach’s alpha (a measure of test score 
reliability) are also rarely presented with a measure of inferential 
uncertainty.

Limitations. We believe that there are no acceptable excuses for 
omitting a measure of inferential uncertainty in any report.

Although not a limitation as such, it should be noted that infer-
ential uncertainty always needs to be quantified relative to the infer-
ential goal—does a researcher want to generalize across people, 
stimuli, time points or another dimension? The proper way of com-
puting standard errors depends on the researcher’s purpose.

Guidelines. Various guidelines strongly recommend that effect-size 
estimates are accompanied by measures of uncertainty in the form 
of standard errors or confidence intervals. For example, the publica-
tion manual of the American Psychological Association (6th edn, 
page 34) states: “When point estimates (that is, sample means or 
regression coefficients) are provided, always include an associated 
measure of variability (precision), with an indication of the spe-
cific measure used (that is, the standard error)”. Furthermore, the 
International Committee of Medical Journal Editors45 explicitly rec-
ommend to “[w]hen possible, quantify findings and present them 
with appropriate indicators of measurement error or uncertainty 
(such as confidence intervals)” (page 17 of ref. 45).

Assessing data preprocessing choices
Description. By assessing the impact of plausible alternative data 
preprocessing choices (that is, examining the ‘data multiverse’46), 
the analyst determines the extent to which the finding under scru-
tiny is either fragile or sturdy.

Benefits and example. A data multiverse analysis reveals the fra-
gility or sturdiness of the finding under plausible alternative data 

Fig. 1 | Recreation of John Snow’s map of the distribution of deaths from cholera. The points represent homes of the deceased individuals and the crosses 
represent water pumps. The contaminated water pump that triggered the cholera epidemic is located on Broad Street. Reproduced with permission from 
The Geographical Journal22.
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preprocessing choices. This prevents researchers from falling prey 
to hindsight bias and motivated reasoning, which may lead them 
to unwittingly report only the preprocessing pipeline that yields the 
most compelling result47,48. But even a completely unbiased analysis 
will benefit from a data multiverse analysis, as it reveals uncertainty 
that would otherwise remain hidden.

For example, Steegen et al.46 re-examined the results of Durante 
et al.49, who reported an interaction between relationship status 
(that is, single or not) and menstrual cycle (that is, fertile or not) 
on reported religiosity. After applying a series of 180 different data 
preprocessing procedures (that is, five different ways to split women 
into high versus low fertility), the multiverse reanalysis showed that 
the resulting 180 P values were distributed uniformly between 0 and 
1, indicating that the reported interaction is highly fragile.

Current status. The idea of assessing sensitivity to data-preprocessing 
choices dates back at least to De Groot (page 190 of ref. 47) and 
Leamer (page 308 of ref. 50) and was revived by Simmons et al.48 
and by Steegen et al.46. In the field of functional magnetic resonance 
imaging, both Carp51 and Poldrack et al.52 emphasized the hidden 
influence of different plausible preprocessing pipelines. In psychol-
ogy, recent applications are Bastiaansen et al.3 and Wessel et al.53. 
Nevertheless, the overwhelming majority of empirical articles does 
not report the results of a data multiverse analysis.

Limitations. A pragmatic limitation of the data multiverse lies in 
the extra work that it entails. Another limitation can be found in 
ambiguities surrounding the definition of the data multiverse. The 
analyst has to determine what constitutes a sufficiently represen-
tative set of preprocessing choices and whether all preprocessing 
choices are equally plausible, such that they should be given equal 
weight in the multiverse analysis. A final limitation is that it is not 
always clear how to interpret the results of a data multiverse analy-
sis. Interpretation can be facilitated with certain graphical formats 
that cluster related pipelines (that is, specification curves)54.

Guidelines. Some specific guidelines on assessing data preprocess-
ing choices are offered by Simmons et al.48 (see the requirements 
for authors, numbers 5 and 6), but it is difficult to provide general 
guidelines as “[…] a multiverse analysis is highly context-specific 
and inherently subjective. Listing the alternative options for data 
construction requires judgement about which options can be con-
sidered reasonable and will typically depend on the experimental 
design, the research question, and the researchers performing the 
research” (page 709 of ref. 46). More general guidelines that relate 
exclusively to the reporting of preprocessing choices are given in the 
ASA Ethical Guidelines33. These mention that, to ensure the integ-
rity of data and methods, the ethical statistician “[w]hen reporting 
on the validity of data used, acknowledges data editing procedures, 
including any imputation and missing data mechanisms” (page 2 
of ref. 33).

Reporting multiple models
Description. By assessing the impact of plausible alternative statis-
tical models (that is, examining the model multiverse), the analyst 
gauges the extent to which a statistical conclusion is either fragile 
or sturdy.

Benefits and example. Similar to the data multiverse analysis 
discussion in the previous section, a model multiverse analysis 
examines the fragility or sturdiness of the finding under plausible 
alternative statistical modelling choices. Modelling choices com-
prise differences in estimators and fitting regimes, but also in model 
specification and variable selection. Reporting the outcomes of mul-
tiple plausible models reveals uncertainty that would remain hidden 
if only a single model were entertained. Moreover, this practice pro-
tects analysts against hindsight bias and motivated reasoning, which 
may unwittingly lead them to select the single model that produces 
the most flattering conclusion. For example, Patel et al.55 quanti-
fied the variability of results under different model specifications. 
They considered 13 clinical, environmental and physiological vari-
ables as potential covariates for the association of 417 self-reported, 
clinical and molecular phenotypes with all-cause mortality. As a 
consequence, they computed P values for 213 = 8,192 models and 
examined the instability of the inference, which they call the ‘vibra-
tion of effects’.

Current status. Although the idea of the model multiverse dates 
back at least to De Groot47 and Leamer50, most empirical research-
ers still base their conclusion on only a single analysis (but also see 
refs. 56,57).

Limitations. As was the case for the construction of the data mul-
tiverse, a pragmatic limitation of the model multiverse lies in the 
extra work that it entails for the analyst as well as the reader. Recent 
work suggests that the number of plausible models can be very 
large4,7. Multiverses also vary in their informativeness, and readers 
need to assess themselves whether a multiverse features notably dis-
tinct models or just runs the essentially same model multiple times. 
Model spaces can be overwhelming; any single analyst will naturally 
be drawn towards the subset of models that they are familiar with 
(or, unwittingly, the subset of models that yields the result that is 
most flattering or most in line with prior expectations). Moreover, 
Del Giudice et al. (page 5 of ref. 58) argue that “By inflating the size of 
the analysis space, the combinatorial explosion of unjustified speci-
fications may, ironically, exaggerate the perceived exhaustiveness 
and authoritativeness of the multiverse while greatly reducing the 
informative fraction of the multiverse. At the same time, the size of 
the specification space can make it harder to inspect the results for 
potentially relevant findings. If unchecked, multiverse-style analy-
ses can generate analytic ‘black holes’: Massive analyses that swal-
low true effects of interest but, due to their perceived exhaustiveness 
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and sheer size, trap whatever information is present in impenetrable 
displays and summaries.”

Guidelines. Because the construction of the model multiverse 
depends on the knowledge and expertise of the analyst, it is chal-
lenging to provide general guidelines. However, for relatively sim-
ple regression models, clear guidelines do exist55,59. Furthermore, 
Simonsohn et al.54 suggested a specification curve analysis, and 
Dragicevic et al.60 suggest interactive ways of presenting the results. 
The ASA Ethical Guidelines33 mention that, to meet the responsi-
bilities towards funders and clients, the ethical statistician “[t]o the 
extent possible, presents a client or employer with choices among 
valid alternative statistical approaches that may vary in scope, cost, 
or precision” (page 3 of ref. 33). However, the ASA does not mention 
that researchers share the same responsibility towards their scien-
tific colleagues, although this may be implicit.

One general recommendation for constructing a comprehensive 
model multiverse is to collaborate with statisticians who have com-
plementary expertise, bringing us to the next section.

involving multiple analysts
Description. By having multiple analysts independently analyse the 
same dataset, the researcher can decrease the impact of analyst-specific 
choices regarding data preprocessing and statistical modelling.

Benefits and example. The multiple-analysts approach reveals the 
uncertainty that is due to the subjective choices of a single analyst 
and promotes the application of a wider range of statistical tech-
niques. When the conclusions of the analysts converge, this bolsters 
one’s confidence that the finding is robust; when the conclusions 
diverge, this undercuts that confidence and stimulates a closer look 
at the statistical reasons for the lack of consensus.

The multiple-analysts approach was used, for example, in a study 
by Silberzahn et al.7, in which 29 teams of analysts examined, using 
the same dataset, whether the skin tone of soccer players influences 
their probability of getting a red card. Although most of the analysis 
teams reported that players with a darker skin tone have a higher 
probability of getting a red card, some of the teams reported null 
results. The analysis approach used by the teams differed widely, 
both with respect to data preprocessing and statistical modelling 
(that is, included covariates, link functions, assumption of hierar-
chical structure).

Current status. A precursor to the multiple-analysts approach 
concerns the 1857 ‘Cuneiform competition’, in which four schol-
ars independently translated a previously unseen ancient Assyrian 
inscription61. The overlap between their translations—which were 
sent to the Royal Asian Society in sealed envelopes, and were 
simultaneously opened and inspected by a separate committee of 

Box 2 | Seven Mertonian statistical procedures

This box outlines how each of the seven procedures discussed in 
this Perspective fulfil the Mertonian norms. An overview is given 
in the table below.

Communalism univer  
salism

Disinter  
estedness

organized  
scepticism

(1) Visualizing 
data

Yes Yes Yes

(2) Quantifying 
inferential 
uncertainty

Yes Yes Yes

(3) Assessing 
data 
preprocessing 
choices

Yes Yes Yes

(4) Reporting 
multiple models

Yes Yes Yes

(5) Involving 
multiple 
analysts

Yes Yes Yes

(6) Interpreting 
results 
modestly

Yes Yes

(7) Sharing data 
and code

Yes Yes Yes Yes

(1) Visualizing data. Well-designed visualizations show at a glance 
the key aspects of the data. Moreover, by giving the reader a more 
complete picture of the data and related statistics, visualizations 
can either support or weaken a conclusion drawn by the researcher, 
or help the reader to find alternative ways of interpreting the results 
and analysing the data.

(2) Quantifying inferential uncertainty. Acknowledging inferential 
uncertainty (that is, by presenting standard errors or confidence 
intervals) contributes to open communication. Moreover, quan-

tifying inferential uncertainty signals that researchers are openly 
acknowledging the extent to which their measurements are impre-
cise, especially when the sample size is small. Finally, explicitly 
acknowledging inferential uncertainty may prompt readers to 
question how well the results from the sample generalize to the 
population.

(3) Assessing data preprocessing choices. When researchers share the 
results from only a single data preprocessing pipeline, they may 
unintentionally hide important information. If a result proves sen-
sitive to particular preprocessing choices, this warrants scepticism 
and may initiate a debate on the importance and plausibility of rel-
evant data preprocessing choices (compare with page 308 of ref. 50).

(4) Reporting multiple models. Similar to the previous section, 
reporting results from only a single model may unintentionally 
hide important information.

(5) Involving multiple analysts. The multiple-analysts approach 
can reveal whether different teams of analysts reach converging or 
diverging conclusions from the same dataset. By including other 
analysts with different backgrounds and interests, the potential 
impact of self-interest of any single analyst is counteracted. The 
multiple-analysts approach also stimulates scepticism by bringing 
to light alternative statistical perspectives on the data.

(6) Interpreting results modestly. Disinterested analysts arguably 
have little need to exaggerate claims, impress reviewers and down-
play signs of model misfit. Analysts who facilitate organized scepti-
cism do not attempt to suppress doubt—they are not defensive, and 
they do not wish to protect their work against good-faith scrutiny 
from their peers.

(7) Sharing data and code. All secrecy about data is a limitation 
to knowledge accumulation and violates the ethos of science. All 
interested researchers should have access to relevant, properly ano-
nymized data. Importantly, sharing data enables sceptical eyes to 
scrutinize the results, promoting quality control.
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examiners—was striking and put to rest any doubts concerning the 
method used to decipher such inscriptions. The multiple-analysts 
approach never caught on in practice, although recent examples 
exist in psychology and neuroscience3–5,7,62,63.

Limitations. As was the case for the construction of the data mul-
tiverse and the model multiverse, a pragmatic limitation of the 
multiple-analyst approach lies in the extra work that it entails, spe-
cifically with respect to (1) finding knowledgeable analysts who are 
interested in participating; (2) documenting the dataset, describ-
ing the research question and identifying the target of statistical 
inference; (3) collating the initial responses from each team and 
potentially coordinating a review and feedback round. Although 
differences in opinion should be respected, there needs to be ways 
to filter out analysis approaches that involve clear mistakes. An 
additional limitation concerns possible homogeneity of the ana-
lysts. For example, all analysts involved could be rigidly educated 
in the same school of thought, share cultural or social biases or just 
make the same mistake. In such a case, the results may create an 
inflated sense of certainty in the conclusion that was reached. These 
potential limitations can be mitigated by selecting a diverse group 
of analysts and incorporating feedback and revision options in the 
process7, a round-table discussion5 or, more systematically, a Delphi 
approach64.

Guidelines. There are no explicit guidelines concerning the 
multiple-analysts approach. We propose that the optimal number of 
analysts to be included depends on factors such as the complexity of 
the data, the importance of the research question (that is, a clinical 
trial on the effectiveness of a new drug against coronavirus disease 
2019 (COVID-19) warrants a relatively large number of analysts) 
and the probability that the analysts could reasonably reach a differ-
ent conclusion (that is, there may be multiple ways to interpret the 
research question, and there may be multiple dependent variables 
and predictor variables that could or could not be relevant).

When analysts are selected, care should be taken to ensure het-
erogeneity, diversity and balance. Specifically, one should be mind-
ful of the potential biasing effects of specific background knowledge, 
culture, education and career stage of the analyst.

The ASA Guidelines emphasize the legitimacy and value in alter-
native analytic approaches, stating that “[t]he practice of statistics 
requires consideration of the entire range of possible explanations 
for observed phenomena, and distinct observers […] can arrive at 
different and potentially diverging judgements about the plausibil-
ity of different explanations” (page 5 of ref. 33).

interpreting results modestly
Description. By modestly interpreting the results, the analyst 
explicitly acknowledges any remaining doubts concerning the 
importance, replicability and generalizability of the scientific claims 
at hand.

Benefits and example. Modestly presented scientific claims enable 
the reader to evaluate the outcomes for what they usually are: not 
final, but tentative results pointing in a certain direction, with 
considerable uncertainty surrounding their generalizability and 
scope. Overselling results might lead to the misallocation of public 
resources towards approaches that are in fact not properly validated 
and not ready for application in practice. Furthermore, researchers 
themselves risk losing long-term credibility for short-term gains of 
greater attention and higher citation counts. Moreover, after having 
publicly committed to a bold claim, it becomes difficult to admit 
that one’s initial assessment was wrong; in other words, overconfi-
dence is not conducive to scientific learning.

Scientists of true modesty remain doubtful even at moments 
of great success. For example, when James Chadwick found 

experimental proof of neutrons, the discovery that earned him the 
Nobel prize, he communicated it modestly under the title ‘Possible 
existence of neutron’65.

Current status. Tukey66 already remarked that “Laying aside uneth-
ical practices, one of the most dangerous [[…] practices of data 
analysis […]] is the use of formal data-analytical procedures for 
sanctification, for the preservation of conclusions from all criticism, 
for the granting of an imprimatur.” (page 13 of ref. 66). Almost 60 
years later, an editorial in Nature Human Behaviour warned its read-
ers about “conclusive narratives that leave no room for ambiguity or 
for conflicting or inconclusive results” (page 1 of ref. 67). Similarly, 
Simons et al.68 suggested adding a mandatory ‘constraints on gen-
erality’ statement in the discussion section of all primary research 
articles in the field of psychology to prevent authors from making 
wildly exaggerated claims of generality. This suggests that scientific 
modesty is rarer than we would expect if Mertonian norms were 
widely adopted. There are some clear indications of a lack of mod-
esty. First, the frequency of stronger language (words such as amaz-
ing, ground-breaking, unprecedented) seemed to have increased in 
the past few decades69. Second, dichotomization of findings (that is, 
ignoring the uncertainty inherent to statistical inference) is com-
mon practice (ref. 42, see paragraph 4.3). Third, textbooks (which 
are typically a reflection of current practice) on how to write papers 
often explicitly encourage authors to overclaim70,71.

Limitations. Publications and grants are important for scientific 
survival. Coupled with the fact that journals and funders often 
prefer ground-breaking and unequivocal outcomes, it may be 
detrimental to one’s success to modestly interpret the results. The 
encouragement of this Mertonian practice may require change at an 
institutional level, although some have argued that scientists should 
not hide behind the system when defending their behaviour72.

Guidelines. There are several ways that we can contribute to 
increasing intellectual modesty. First, we could encourage intel-
lectual modesty in the work of others when we act as reviewers of 
papers and grant proposals73. As a reviewer’s career is independent 
of how they evaluate a paper, they can make a positive review con-
ditional on a more modest presentation of outcomes. Hoekstra and 
Vazire73 present a list of suggestions for increasing modesty in the 
traditional sections of an empirical article, which can be used by 
authors as well. One example includes “Titles should not state or 
imply stronger claims than are justified (that is, causal claims with-
out strong evidence)” (page 16 of ref. 73) .

The ASA Guidelines also state: “[t]he ethical statistician is can-
did about any known or suspected limitations, defects, or biases in 
the data that may affect the integrity or reliability of the statistical 
analysis” (page 2 of ref. 33).

Sharing data and code
Description. By sharing data and analysis code, researchers provide 
the basis for their scientific claims. Ideally, data and code should be 
shared publicly, freely and in a manner that facilitates reuse.

Benefits and example. As there are many different ways of pro-
cessing and analysing data7,46, sharing code promotes reproduc-
ibility and encourages sensitivity analyses. Sharing data and code 
also enables other researchers to establish the validity of the origi-
nal analyses, it can facilitate collaboration, but it can also serve as 
protection against data loss. When publishing his theory on gen-
eral intelligence, Spearman74 shared his data as an appendix to the 
article. A century later, this act of foresight enabled scientists to use 
this dataset for both research and education. Because Spearman 
made his data publicly available, other researchers could establish 
the reproducibility and generalizability of the findings.
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Current status. Data sharing has never been easier. Public reposito-
ries offer free storage space for research materials, data (that is, the 
Open Science Framework) and code (that is, GitHub). While data 
sharing is not yet a general practice in most scientific fields, sev-
eral recent initiatives (that is, Open Data/Code/Materials badges75), 
standards (TOP Guidelines76), journals (that is, Scientific Data) and 
checklists (that is, Transparency Checklist77) are helping to pro-
mote this research practice. When sharing raw data is unfeasible, 
researchers can make aggregated data summaries available—for 
example, the data used to generate certain plots or covariance matri-
ces of involved variables.

Limitations. Restrictions imposed by funders, ethics review boards 
in universities and other institutions, collaborators and legal con-
tracts may limit the extent to which data can be publicly shared. 
There may also be practical considerations (that is, sharing big 
data), data use agreements, privacy rights and institutional poli-
cies that can curtail sharing intentions. What remains central is to 
inform the readers about the accessibility of the data of the analysis. 
Note that these limitations should not apply to the analysis code 
provided that code is solely reflective of the researcher’s analysis 
actions and is free of any data privacy issues.

Guidelines. An important principle of sharing data is that they should 
be findable, accessible, interoperable and reusable (FAIR78). Several 
guides are available discussing the practical79 and ethical80 aspects of 
data sharing. Researchers should follow the data sharing procedures 
and requirements of their fields81,82 and indicate the accessibility of 
the data in the research report76,83. The ASA Ethical Guidelines33 for 
Statistical Practice state that the ethical statistician “[p]romotes shar-
ing of data and methods as much as possible”, and “[m]akes docu-
mentation suitable for replicate analyses, metadata studies, and other 
research by qualified investigators.” (page 5 of ref. 33).

Concluding comments
If the statistical literature is any guide, one may conclude that stat-
isticians rarely agree with each other. For example, the 2019 special 
issue in The American Statistician featured 43 articles on P values 
and, in their editorial, Wasserstein et al.13 stated that “the voices in 
the 43 papers in this issue do not sing as one”. However, despite the 
continuing disagreements about the foundations of statistical infer-
ence, we believe that there is nevertheless much common ground 
among statisticians, specifically with respect to the ethical aspects 
of their profession. To examine this ethical dimension more sys-
tematically, we started by considering the Mertonian norms that 
characterize the ethos of science and outlined a non-exhaustive list 
of seven concrete, teachable, and implementable practices that we 
believe need wider propagation.

In essence, these practices are about promoting transparency 
and the open acknowledgement of uncertainty. With agreement on 
such practices explicitly acknowledged, we believe that commonly 
discussed contentious issues (that is, P values) may become less cru-
cial. Indeed, in a letter to his frequentist nemesis Sir Ronald Fisher, 
the arch-Bayesian Sir Harold Jeffreys wrote “Your letter confirms 
my previous impression that it would only be once in a blue moon 
that we would disagree about the inference to be drawn in any par-
ticular case, and that in the exceptional cases we would both be a bit 
doubtful” (page 162 of ref. 84).

We hope that the proposed statistical practices will improve the 
quality of data analysis across the board, especially in applied dis-
ciplines that are perhaps unfamiliar with the ethical aspects of sta-
tistics, aspects that a statistician may take for granted. Furthermore, 
instead of counting on them to be absorbed through osmosis, we 
believe that it is important to include these ethical considerations—
and their statistical consequences—explicitly in the statistics cur-
ricula. Statistical techniques other than those discussed here may 

also further the Mertonian ideals. We hope that this contribution 
provides the impetus for a deeper exploration of how data analysis 
in applied fields can become more transparent, more informative 
and more open about the uncertainties that inevitably arise in any 
statistical data analysis problem.
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