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Chapter 1

Introduction

T
HE presence of undesired behaviors is inherent in a multitude of systems in
engineering [91]. The source of these unwanted behaviors can vary for a
plethora of reasons. Among these reasons are, for example, physical issues

in the plant [92], communication problems [110], imprecision on the identification
procedure [109], missing dynamical behavior in the model, etc. All the listed
reasons are aggravated as systems become more complex as technology advances.
Since the occurrence of these undesired behaviors is innate to all types of systems, it
is of utmost interest that a procedure to detect, isolate, or mitigate these behaviors
is developed.

Before any remedial actions can be planned to deal with those behaviors, it is
crucial to understand and classify them. Following the definitions given in [69],
we use the following definitions of unwanted behaviors:

• Fault. A fault is an unwanted abnormal behavior of at least one characteristic
of the nominal system. A fault can be characterized as follow i) a fault
may cause a reduction of the nominal performance; ii) some sources of the
fault are design fault; manufacturing fault, assembling fault, fault caused
by wear, wrong operation (human error), hardware fault, software fault,
and communication fault; iii) a fault may occur and the system may remain
functional; iv) a fault is the first step to greater problems (malfunctions and
failures); v) a fault can be abrupt, intermittent, oscillatory, or gradual.

• Malfunction A malfunction is a temporary interruption of the system capa-
bility to fulfill its nominal functions. A malfunction can be characterized
as follow i) a malfunction is a temporary interruption that may or may not
be intermittent; ii) a malfunction is commonly a result of wear or lack of
maintenance; iii) a malfunction is the result of one or multiple faults; iv) a
malfunction is an event;

• Failure A failure is the permanent interruption of the capability to fulfill its
nominal tasks. A failure can be characterized as follow i) a failure is the
permanent loss of the system’s ability to perform its functions; ii) a failure is
a result of one or multiples faults; iii) a failure is classified by the number of
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failures, or predictability (random, deterministic, systematic); iv) a failure is
an event;

In order to illustrate the above notions we provide the following example. Let us
say the reader is driving a manual car with a regular clutch. Assuming the driver
knows how to change gear, the clutch system will perform a smooth change of gears
without any noise, which is the nominal behavior. A fault in this scenario would be
the change in the clutch pedal ”sensation”, where the driver would need to change
the force applied to the pedal to change gear, but the change of gear would still
be smooth without any noise. A malfunction in this scenario would be the next
step where sometimes the driver will not be able to change gears, the clutch would
”slip”, but after a few attempts, the driver would be able to change gear. Finally, a
failure happens when the clutch system would stop working permanently.

To provide a visual representation, the following image in Fig.1.1 is a repre-

Figure 1.1: Backlash, a normal behav-
ior, image extracted from [84].

Figure 1.2: Fatigue crack, a gear fail-
ure, image extracted from [98].

sentation of the backlash, which is a typical physical phenomenon but can be
gradually increased due to wear. Fig.1.2 exemplifies a failure caused by overload
or other improper use of the equipment or caused by wear associated with the lack
of maintenance.

Now that we understand the problem it is necessary to define what are the
goals for a procedure that is responsible to detect, isolate, or mitigate a fault. The
purpose of this procedure is to maintain three characteristics: reliability, availability,
and safety. Reliability can be defined as the ability to fulfill a task in a given time.
Availability is the amount of time a system is able to fulfill its task properly. Safety
is the ability to keep the people involved in the system’s operation safe.

In industrial process control systems, fault detection and fault mitigation solu-
tions are used simultaneously. This issue is dealt with using a supervisory loop. A
supervisory loop is defined as a technical process that provides all the information



3

regarding the system, to point out any unwanted behavior, and also helps with
the decision-making process to solve these problems. The placement of each pro-
cedure in a supervisory loop is represented in Fig.1.3. As can be seen in Fig.1.3,

Control
System

Fault
Detection

Fault
Isolation

Fault
Evaluation

Decision

Stop
Operation

Reconfigu-
ration

Repair

Mainte-
nance

Monitoring

Fault Management

Fault

Figure 1.3: Graphic representation of Supervisory Loop, and all the sub-processes
that compose it. The standard controller is embedded in the ”Control System”
block. The Supervisory Loop is divided into two main processes the monitoring and
management. The monitory part is responsible to acquire the information, and the
management part deals with the decision-making and actions to keep the system
working properly.

Fault Detection (FD), Fault Isolation (FI), and Fault Evaluation (FE) are classified
as monitoring procedures. The processes of reconfiguration, operational change,
maintenance, and repairs are considered to be fault management procedures. The
procedures of reconfiguration and change operation can be automated.

As seen in Fig.1.3 the monitoring process is divided into three main parts, the FD
is the process that signalizes the presence of a fault, the FI points out where the fault
is occurring, and the FE estimates the magnitude of the fault. Concerning the fault
management procedures, the reconfiguration process refers to all procedures that
keep the system working and manage to change some characteristics to mitigate
the fault and the change in the operation block represents the action altering the
entire process to keep the plant working (this is a more severe action compared to
the reconfiguration). Repair is the action to send a team of workers to fix a piece
of equipment that already failed and maintenance is scheduled to send a team of
workers to do preventive fixes in an equipment to prevent a failure caused by wear.

From the standpoint of the system itself, the faults can occur in every part of the
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process. From the diagram in Fig.1.4 we can observe that the faults can occur on

Plant

Fault

Sensor Net

Fault

ControllerNetActuator

FaultFaultFault

Fault

Figure 1.4: The placement of possible occurrence of fault in a generic system.

an actuator, sensors, a structural problem, and/or during the signals transmissions.
Therefore, to deal with the maximum amount of faults simultaneously, it is neces-
sary to consider the different sources of the faults during the design procedure of
fault detection systems.

1.1 Fault Detection and Fault Tolerant state-of-the-
art

Fault Detection

The literature on the fault detection problem is extensive. Among all the literature,
it is possible to classify the solutions related to the fault occurrence with two main
branches, namely, the model-based solutions [69, 79, 93, 128] and the data-driven
solutions [3, 49, 105]. Both classes have their pros and cons, as described in
[50, 111, 114, 125]. The main advantages of model-based approaches are:

• Guarantee on the performance when the model is precise and reliable,[69,
116].

• Easy to implement, and design. Since it is a well-established branch of
research in control engineering, there are plenty of suitable results for many
situations [128].

One major disadvantage of this approach is its reliance on the veracity of the
model being used. Thus the mathematical description or the identification process
must be precise.

On the other hand, the main advantages of data-driven approaches are:
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• They can directly be implemented using previously available data without
needing an analytical model [50].

• They do not demand a high level of computational effort, which enables their
implementation in real time [111].

The main difficulty of the data-driven are the data preprocessing, and the depen-
dency on data reliability, quality, and quantity [31].

Among the model-based branch of solutions, it is possible to categorize them
into four main approaches: Observer-based, Parity space, Parameter estimation,
and Bond Graph. All these approaches make some sort of comparison between
the expected/predicted behavior and the real behavior, the discrepancy between
behaviors indicates the occurrence of a fault. This comparison is made in two
steps. The first one is the residue signal generation, which is generated using
the aforementioned approaches. The second step is the evaluation process which
uses the residue signal to distinguish if a fault occurred or not in the monitored
processes.

Observer-based: This approach relies on the observability assumption where
systems behavior can be obtained from the output. As it is true for all model-based
approaches, the observer approach depends on a precise and reliable mathematical
model of the system. Yet, a perfect mathematical model is not achievable in
practice [93]. This inherent imprecision in the mathematical model is caused by
simplifications (i.e. linearization process), or overlooking a particular behavior
that at first glance seems irrelevant to the overall behavior. Bypassing those
behaviors may ease the task describing the system mathematically. But for an FD
procedure, this may cause bias or imprecision that leads to false alarms. Besides
the model imprecision, another important aspect is that all systems are subjected to
disturbances or noises, which can be interpreted as an unknown and uncontrollable
input. A possible way to deal with this is proposed in [92], where an approach to
decouple the control input from the fault signal is presented. Other approaches
propose the decoupling of the unknown input (noise/disturbance) from the fault
signal using the for example the Unknown Input Observer (UIO), as in [4, 30] or
the Unknown Input Filter (UIF) [92]. Besides the aforementioned approaches, we
can also point out the results based on observers that are derived in the following
frameworks as the Markov Jump Linear Systems [127], Fuzzy logic [32, 67], H−
index and H∞ norm [5, 25, 97], and Kalman filter in [78, 123].

Parity space: The Parity space approach was first presented in [96]. Roughly,
speaking a Parity space FD uses the transformation of the state-space model of
the system to gather the parity relations by observing the system on a finite
horizon, [58]. The idea behind this approach is to generate the parity relation to
acquire equations that only depends on known or measured parameters (inputs and
outputs). The major main disadvantage of parity space based approaches is that
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they do not consider the uncertainties on the system. Consequently, they are mostly
applied only on Linear Time-Invariant Systems. A few examples of FD approaches
based on parity space are [51, 59, 86, 91].

Parameter Estimation: The procedures based on parameter estimation are
based on the premise that the state variables can be estimated given the access
to the inputs and outputs of the system. A way to describe the FD based on the
parameter estimation is that the fault is detected via a comparison between the
estimated parameters of the nominal process and the online parameter estimation
over a pre-set time horizon. In this procedure, we consider that a fault occurred
when a discrepancy between these estimations appears [69, 115].

Bond Graph: A bond graph is another way to represent a system dynamic, its
main advantage is the direct representation of the bidirectional energy exchange
in the system. This characteristic allows to generate a residual signal based on
the energy exchange. Some examples of the bond graph being applied to the
FD problem are [7, 24, 52, 103]. An extension of the FD approach based in
bond graphs is the signed bond graph, which uses the bond graph qualitative and
quantitative structural properties to generate multiples behavior predictions, as
cited in [111], and presented in [27].

We can classify the FD approaches based on data-driven with two main classes,
namely, the supervised and unsupervised approaches. A supervised approach
can be sub-classify as Bayesian Networks, or Artificial Neural Networks. For the
unsupervised ones, we can classify them as Control Charts, Principal Component
Analysis or Partial Least Squares.

The supervised approach bases its function on the historical data to design a
learning model that will be used as an FD to evaluate the new data.

Bayesian Networks: Bayesian networks are a type of acyclic graphs where a
node represents a variable, which can be a discrete or a continuous variable [117].
Another similar approach is the Dynamic Bayesian Network, which besides the
stochastic modeling also includes temporal information [122].

Artificial Neural Networks: An Artificial Neural Networks are models that
imitate the learning process of a biological system. An artificial Neural Network
is composed of a series of interconnected processes called nodes, those nodes are
organized in layers, which form a complex network [95, 102].

The unsupervised approaches as opposed to the supervised approaches do not
use any previously acquired knowledge of the system. Some examples of methods
that can be classified as unsupervised are control charts, principal component
analysis or partial least squares.

Control Charts: Among all the data-driven approach presented here, the
Control Charts is the oldest, and is firstly presented in [107]. As described in
[81], the Control Chart approach is a statistical hypothesis testing, the design of a
Control Chart is separated into two parts. The first one is the retrospective analysis,
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and the second one is the monitoring process.

Principal Component Analysis: The authors in [120] state, that a Principal
Component Analysis is a multivariate data analysis method that is capable of
simplify the data to keep the important information and reduce the data set size.

Partial Least Squares: The Partial Least Squares method can be described as a
projection of a data set with a high number of dimensions in a data set with lower
dimension, this new data set is defined using latent variables. The purpose of those
latent variables is to define the most important information on the original data set
that should be retained [73].

It is important to mention that there are more types of FD approaches. The
above mentioned examples and classification are just a glimpse of how rich the
FD literature is. Another critical piece of information that worth mentioning is
that there are approaches that are based on both main branches of FD approaches,
the model-based and the data-driven approaches, these types of approaches are
called hybrid. The authors can refer to these works [57, 111] that are based on
this premise.

A graphical representation of the aforementioned classification of the FD prob-
lem is given by Fig.1.5.

Fault Detection

Model-Based Data-Driven

Observer-based

Parity Space

Parameter Estimation

Bond Graphs

Bayesian Network

Artificial Neural Network

Control Charts

Principal Component

Analysis

Partial Least Square

Figure 1.5: Classification of the FD approaches.
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Fault Tolerant Control

For the Fault Tolerant Control (FTC) problem we may classify it into two distinct
manners. The first one, similarly to the FD problem, the model-based [90] and
data-driven approaches [49]. The latter one is the classification based on whether
the approach is active or passive. A Reconfigurable Control approach correspond to
the solutions where the controller only acts (reconfigure) in the presence of a fault
[124]. For the passive approach, the potential fault is taken into account during
the controller design, which provides a Robust Control solution [76].

Referring to the FTC problem based on the data-driven we may cite some
procedures for the robust and reconfigurable approaches.

Markov parameter sequence: The Markov parameter sequence is a stochastic
tool utilized to identify a system from its input and output as presented in [68, 72].

Subspace Predictive Control (SPC): the SPC uses subspace identification pre-
dictors associated with predictive control applied to an affine LPV system [74].

Fault Tolerant Architecture: The FTA is an online fault tolerant control based
on residue generation designed using Youla parametrization, [118].

Regarding the model-based FTC problem, we can point out a few approaches
for the robust or reconfigurable approaches.

Gain Scheduled Control: A gain scheduled control is the type of control that
depends on a parameter. This parameter vary in time, and the variation is dictated
by the system [101].

Adaptive Control: The basic idea of adaptive control is similar to the one
presented for the gain scheduled control. There are plenty of approaches that fall
into this category, as for example, Model Reference Adaptive Controller (MRAC)
[26], Model Identification Adaptive controller (MIAC) [88]. Some other examples
can be seen in [113, 124].

Fault Accommodation: The fault accommodation procedure is a method that
changes the controller parameters or structure to mitigate the consequences of a
fault. The input and output between plant and controller remain unchanged but
the performance may decrease [8].

Robust Fault tolerant Control: The robust approach can be implemented using
any appropriate framework, such as, the Linear Parameter Varying (LPV), Markov
Jump Linear System (MJLS), or any other framework. We consider that a controller
is robust when during the design process the presence of a fault is considered, but
the controller acquired is static (meaning that the controller is not gain-scheduled
or mode-dependent) [25]. Usually, these controllers are suboptimal since they are
designed to work in multiple operational points.

As was mentioned for the FD, the same statement can be made here, where
all the classes and parameters presented above are just an example of the rich
literature of the Fault tolerant control.
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Figure 1.6: Classification of the FTC approaches.

1.2 Outline and Main contributions

From the discussion and explanation presented in the previous section now we
are prepared to describe the main contributions presented in this thesis, and also
positioning of the results in the literature. As the title of the thesis says, we deal
with the fault detection and fault accommodation problem.

From the classifications discussed in the first part of the introduction, all the
results presented herein are model-based. Regarding the Fault Detection results,
classifying them as shown in Fig.1.5, they are all based on residue generated using
observers. For the FAC problems, we proposed a FAC under some frameworks and
also a Gain-Scheduled FAC, as classified in Fig. 1.6.

Each chapter in this thesis is organized as follows. In the first two sections
a preliminary discussion is introduced, presenting the theoretical background
necessary to understand and implement the results in the respective chapter. They
are followed by the proposed design, theoretical works, and illustrative examples for
the respective frameworks. The chapter is concluded with simulations to exemplify
the usability of the approaches.

The content for every chapter is as follows.

• Chapter 2: In Chapter 2 we propose the FDF and FAC design under the
Markov Jump Linear Systems framework. We derive the results under this
framework intending to model the network communication loss. The results
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presented in Chapter 2 have been published in [13, 14, 16, 20, 47].

• Chapter 3: In Chapter 3 we follow the same idea of the previous chapter,
but including the assumption that the Markov chain is not directly accessible,
instead, the FDF and FAC depends on an estimation of the Markov chain
parameter. Chapter 3 contain the results from the following publications
[15, 17, 18, 19].

• Chapter 4: For Chapter 4, we follow the idea from Chapter 2, but instead
of the MJLS framework, we implement the Markov Jump Lur’e Systems, in
order to add the non-linear behavior during the FDF or FAC design. The
results in Chapter 4 are presented in [21].

• Chapter 5: In Chapter 5 we introduce the Gain-Scheduled FDF and FAC
design for Linear Parameter Varying systems. Besides, we also use some
techniques to include during the design process, the assumption that the
schedule parameter is imprecise. The results in Chapter 5 are published in
[22].

Chapter 2 Chapter 5

Chapter 3 Chapter 4

Figure 1.7: Interaction between chapters.

Finally, we wrap up the thesis with a conclusion chapter. For the sake of helping
the reader, we present Appendix A. Appendix A, provides the modeling of the
network using Markov chains, the modeling procedure of the illustrative models
used throughout the thesis, and some useful lemmas.



Chapter 2

FDF and FAC for Markov Jump Linear
Systems

I
N this chapter we present the results for the Fault Detection Filter (FDF)
and Fault Accommodation Controllers (FAC) under the Markov Jump Linear
System (MJLS) framework. Herein, the MJLS is implemented as a tool to

model the communication loss between the system components, which allows us to
draw results for the design of the FDF and FAC assuming that the communication is
subjected to packet loss. This assumption is important since packet loss is inherent
to any communication channel. The usual workaround to the communication loss
is the retransmission of the information, however, this type of method burdens the
network infrastructure. Hence, design an FDF or an FAC under the communication
loss provides robust solutions against this type of problem and at the same time
does not increase the load imposed on the network infrastructure.

The results presented in this chapter were published in the following conferences
and journals

• Subsection 2.3.3 presented theH∞ Fault Detection Filter for Markovian Jump
Linear Systems, which was presented in the European Control Conference
2018 [14].

• Subsection 2.3.3 presented the H2 Fault Detection Filter for Markovian Jump
Linear Systems, which was presented in the Congresso Brasileiro de Automat-
ica 2018 [13].

• Subsection 2.3.3 presented the Mixed H2/H∞ Fault Detection Filter for
Markovian Jump Linear Systems, which was published in Mathematical
Problems in Engineering [16].

• Subsection 2.3.3 presented the Mixed H−/H∞ Fault Detection Filter for
Markovian Jump Linear Systems, which was published in European Journal
of Control [47].

• Subsection 2.4.2 presented the H∞ Fault Accommodation Control for Marko-
vian Jump Linear Systems, which was presented in the IFAC 2020, Berlin
[20].
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2.1 Notation

The real Euclidian space is presented by Rn where n denotes its dimension, and
n×m represents the real matrices dimension, for example A(Rn,Rm). The symbol
(·)′ denotes the transpose of a matrix, I indicate the identity matrix. The oper-
ator Her(·) represents the symmetric sum (X) = X + X ′. A diagonal matrix is
represented by the operator diag(·). The symbol • represents a symmetric block
in a partitioned symmetric matrix. On a probability space (Ω,F ,P) with filtration
{Fk}, the expected value operator is represented by E(·), the conditional expected
operator, by E(· | ·), and the space of all discrete-time sequences of dimension r,
Fk-adapted processes, such that ‖z‖22 ,

∑∞
k=0 E(‖z(k)‖2) < ∞, by Lr22 . We set

Wi , {w ∈ Lr2 : ‖w̃‖2i > 0}, and the operator Ei(X) =
∑N
j=1 ρijXj .

2.2 Preliminary for the Markovian Jump Linear Sys-
tem

We consider the following general discrete-time Markovian Jump Linear System
(MJLS)

G :

{
x(k + 1) = Aθ(k)x(k) + Jθ(k)w(k),

z(k) = Cθ(k)x(k) +Dθ(k)w(k),
(2.1)

where x(k) ∈ Rnx is the state, y(k) ∈ Rny is the measured output, z(k) ∈ Rnz is
the estimated output, w(k) ∈ Rnw is the exogenous input. We also consider that
w(k) ∈ Lr22 . The index θ(k) is a random variable such that {θ(k) : k ∈ N}, denotes
a Markov chain.

With θk ∈ K = {1, . . . , N}, where N represents the number of modes in
which (2.1) may operate. The transition matrix is represented by P = [ρij ] where
ρij = Prob[θk+1 = j|θk = i] and

∑N
j=1 ρij = 1 for all i ∈ K.

2.2.1 Stability for Markovian Jump Linear Systems

2.1. DEFINITION. Consider system (2.1), with null exogenous input w(k) = 0 ∀k ∈ N,
and initial conditions x(0) = x0 ∈ Rn, θ0 ∈ K. The systems is

• Mean Square Stable (MSS) ∀ (x0, θ0) if

lim
k→∞

E{x(k)′x(k)|x0, θ0} = 0. (2.2)
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• Stochastically stability (SS) ∀ (x0, θ0) if

E
{ ∞∑
k=0

x(k)′x(k)
∣∣x0, θ0

}
<∞. (2.3)

As in [33], the definition (2.2) and definition (2.3) are equivalent, and are known
as Second Moment Stability (SMS).

2.2.2 H∞ norm for MJLS

Assuming that (2.1) is MSS with x0 = 0, the H∞ norm of G is given by (see
[55, 106])

‖G‖∞ = sup
06=w∈L2,θ0∈K

‖z‖2
‖w‖2

. (2.4)

Notice that the case K = {1} corresponds to the deterministic case, that is, the case
without jumps.

It is possible to calculate the H∞ norm using the so-called Bounded Real Lemma
for Markovian Jump Linear Systems, first presented in [106], and stated below.

2.1. LEMMA. System (2.1) is MSS and satisfies the norm constraint ‖G‖2∞ < γ if and
only if there exist matrices Pi = P ′i > 0 such that[

Ai Ji
Ci Di

]′ [ Ei(P ) 0
0 I

] [
Ai Ji
Ci Di

]
−
[
Pi 0
0 γI

]
< 0,∀i ∈ K. (2.5)

Proof: See [106].

Applying the Schur complement to (2.5) we get that[
Pi • • •
0 γI • •

Ei(P )Ai Ei(P )Ji Ei(P ) •
Ci Di 0 I

]
> 0, (2.6)

and the LMI constraint (2.6) can also be described by the inequality below[
Pi • • •
0 γI • •
Ai Ji Ei(P )−1 •
Ci Di 0 I

]
> 0. (2.7)



14 2. FDF and FAC for Markov Jump Linear Systems

2.2.3 H2 norm for MJLS

Assuming that (2.1) is MSS with x0 = 0, the H2 norm is given by

‖G‖22 =

nw∑
s=1

N∑
i=1

µi‖zi,s‖22, (2.8)

where z represents the output z(0), z(1), . . . obtained when

• the input is given by w(k) = esδ(k), where es ∈ Rnm is the s-th column of
the m×m identity matrix and δ(k) is the unitary impulse, see [35].

• θ0 = i ∈ K with probability µi = P (θ0 = i)

In [36] it is shown that, if the Markov chain is ergodic, and taking µi = ρi,
where ρi = limk→∞ P (θ(k) = i) , the norm defined in (2.8) can also be written as

‖G‖22 = lim
k→∞

E[z(k)′z(k)], (2.9)

where z(k) is the controlled output and w(k) represents a wide-sense white-noise
with covariance given by the identity matrix that is independent of the initial
condition x0, and the Markov chain {θk}. From the above, we have the following
lemma.

2.2. LEMMA. System (2.1) is MSS and satisfies the norm constraint ‖G‖22 < λ if and
only if there exist matrices Pi = P ′i > 0 and Si = S′i > 0 such that

N∑
i=1

µiTr(Si) < λ, (2.10)[
Si • •

Ei(P )Ji Ei(P ) •
Di 0 I

]
> 0, (2.11)[

Pi • •
Ei(P )Ai Ei(P ) •
Ci 0 I

]
> 0, ∀i ∈ K. (2.12)

Proof: See [54] or [35].

Pre- and post- multiplying (2.11) and (2.12) by diag(I,Ei(P )−1, I) we obtain
that if the inequalities [

Si • •
Ji Ei(P )−1 •
Di 0 I

]
> 0, (2.13)[

Pi • •
Ai Ei(P )−1 •
Ci 0 I

]
> 0, (2.14)

are satisfied then ‖G‖22 < λ.
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2.2.4 H− index for MJLS

Assuming that (2.1) is MSS and x0 = 0, the H− sensitivity index is defined as

‖G‖2− = inf
06=w∈L2,θ0∈K

‖z‖2
‖w‖2

. (2.15)

2.3. LEMMA. : Assuming that (2.1) is MSS we have that ‖G‖− > ξ for ξ > 0 if there
exist matrices Pi > 0, i ∈ K such that[

Ai Ji
Ci 0

]′ [ Ei(P) 0
0 −I

] [
Ai Ji
Ci 0

]
−
[

Pi C′iDi
D′iCi D

′
iDi−ξI

]
< 0,∀ i ∈ K, (2.16)

is satisfied.

Moreover for Pi > 0 we have that (2.16) is satisfied if and only if[
Pi+C

′
iCi • •

D′iCi D′iDi−ξI •
Ai Ji Ei(P)−1

]
> 0,∀ i ∈ K, (2.17)

holds.

Proof: Let us show first that if there exist matrices Pi > 0 such that (2.16) is
satisfied then ‖G‖− > ξ. Pre and post multiplying (2.16) by [x(k)′ w(k)′] and its
transpose we get that[

x(k)

w(k)

]′ [ A′θ(k)Eθ(k)(P)Aθ(k)−Pθ(k)−C
′
θ(k)

Cθ(k) A′
θ(k)

Eθ(k)(P)Jθ(k)−C
′
θ(k)

Dθ(k)

J′
θ(k)

Eθ(k)(P)Aθ(k)−D
′
θ(k)

Cθ(k) J′
θ(k)

Eθ(k)(P)Jθ(k)−D
′
θ(k)

Dθ(k)+ξI

] [
x(k)

w(k)

]
< 0.

(2.18)

From (2.18) and (2.1) we get that

x(k + 1)′Eθ(k)(P)x(k + 1)− x(k)Pθ(k)x(k)− z(k)′z(k) + ξw(k)′w(k) < 0. (2.19)

Denoting by Fk the σ-field generated by the variables {x(l), w(l), θ(l); l = 0, . . . , k}
we get that x(k + 1)′Eθ(k)(P)x(k + 1) = E(x(k + 1)′Pθ(k+1)x(k + 1)|Fk), and thus
E(x(k + 1)′Eθ(k)(P)x(k + 1)) = E(x(k + 1)′Pθ(k+1)x(k + 1)). Recalling that x0 = 0

we get from (2.19) after taking the sum over k from 0 to T that

T∑
k=0

E
[
x(k + 1)′Pθ(k+1)x(k + 1)− x(k)Pθ(k)x(k)− ‖z(k)‖2 + ξ‖w(k)‖2

]
=

E(x(T + 1)′Pθ(T+1)x(T + 1))−
T∑
k=0

E(‖z(k)‖2) + ξ

T∑
k=0

E(‖w(k)‖2) < 0. (2.20)

Taking the limit as T →∞ in (2.20) and recalling that (2.1) is MSS, we obtain that
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limT→∞ E(x(T + 1)′Pθ(T+1)x(T + 1)) = 0, and we conclude that

‖z‖22 − ξ‖w‖22 > 0,

showing the first part of the proof. Let us show now the equivalence between (2.16)
and (2.17). Suppose that there exists Pi > 0 satisfying the constraints in (2.16). For
any α > 0 we may rewrite (2.16) as[

Pi •
D′iCi D

′
iDi−ξI

]
−
[
Ai Ji
Ci 0

]′ { [ Ei(P) 0
0 αI

]
−
[

0 0
0 (1+α)I

]} [
Ai Ji
Ci 0

]
> 0. (2.21)

Reorganizing (2.21) we get that[
Pi+(1+α)C′iCi C′iDi

D′iCi D′iDi−ξI

]
︸ ︷︷ ︸

>0

−
[
Ai Ji
Ci 0

]′ [ Ei(P) 0
0 αI

] [
Ai Ji
Ci 0

]︸ ︷︷ ︸
>0

> 0. (2.22)

From Schur’s complement we obtain that (2.22) is equivalent to Pi+(1+α)C′iCi • • •
D′iCi D′iDi−ξI • •
Ai Ji Ei(P)−1 •
Ci 0 0 α−1I

 > 0, (2.23)

and from the Schur’s complement again we get that (2.23) is equivalent to[
Pi+(1+α)C′iCi • •

D′iCi D′iDi−ξI •
Ai Ji Ei(P)−1

]
− α

[
C′i
0
0

]
[Ci 0 0 ] > 0,

showing (2.17). On the other hand, suppose that (2.17) holds. By taking the reverse
steps as before we get that (2.16) is satisfied, completing the proof. �

2.1. REMARK. Notice that, unlike Lemma 2.1, we cannot guarantee from (2.16) that
(2.1) is MSS.

2.3 Fault Detection Filter Formulation

Let us conider the FD scheme in Fig. 2.1. As shown in Fig.2.1, the main points for
a model-based FD to perform properly are the i) accurate model for the plant; ii) a
reliable network communication; iii) a well-designed residue generator filter; and
iv) a proper residue evaluation. In this work, we concentrate our endeavors on
providing residue generator filter designs that contemplate some common issues
as imprecise modeling, unreliable network connections, and unknown network
behavior.

It is important to state that the design of a residue evaluation procedure is not
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Figure 2.1: Block diagram detailing the Fault Detection scheme, presenting the
residue generation and residue evaluation steps.

in the scope of this work. However, a proper residue evaluation is required to
guarantee the FD procedure overall performance. The block diagram representing
the FD topology is presented in Fig.2.2 We assume that the MJLS subject to faults

System
Gθ(k)

Filter Fθ(k)

Weighting
filter Wθ(k)

Control u(k)

Fault f(k)

Noise d(k) y(k) r(k)

f̂(k)

re(k)

Figure 2.2: Block diagram representing the topology used to design the Fault
Detection Filter.

is defined as

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k) + Eθ(k)f(k),

x(0) = x0, θ(0) = θ0,

(2.24)



18 2. FDF and FAC for Markov Jump Linear Systems

where x(k) ∈ Rnx , y(k) ∈ Rny , u(k) ∈ Rnu , w(k) ∈ Rnw , f(k) ∈ Rnf , represent
the state, measurements, control, exogenous, and fault signals respectively.

2.3.1 Residue Generator using Fault Detection Filter

The goal here is to design a FDF, which is responsible to generate the residue signal
r(k). The FDF is defined as

F :


η(k + 1) = Aηθ(k)η(k) +Mηθ(k)u(k) + Bηθ(k)y(k),

r(k) = Cηθ(k)η(k) +Dηθ(k)y(k),

η(0) = η0,

(2.25)

where η(k) ∈ Rnx , r(k) ∈ Rnr representing filter state, and residue signals, respec-
tively.

A possible way to improve the FDF performance is to consider a weight system
during the design process, as used in [28, 126, 127]. As described in [28], the
weight system improves the FDF performance for a specific frequency range. Herein,
the weight systemW is denoted by

W :


xf (k + 1) = AWxf (k) +BWf(k),

f̂(k) = CWxf (k) +DWf(k),

xf (0) = 0,

(2.26)

where xf (k) ∈ Rnr is the weight matrix state, f(k) is the same signal as in (2.24),
and f̂(k) ∈ Rnr is the weighted fault signal.

2.2. REMARK. In [28], a non-minimal phase FDI system is presented, using the H∞
criterion. It is important to state that the weighting system (2.26) is given, and its
sole purpose is to be used as a tuning tool during the design process. In [28, 83], this
technique is implemented for the continuous-time domain, and in [127] the same
approach is used for the discrete-time domain. As described in [83], the presence
of (2.26) allows us to choose between a fault detection or a fault isolation problem,
depending solely on the structure of (2.26). If the designer decides to solve a fault
estimation problem with the same framework, the only action would be to set the
values of (2.26) as BW = 0, CW = 0, and DW = I. It is important to make it clear
that the filterW is not present in the implementation, it is just a part of the design
procedure.

The difference between the fault detection and fault isolation approaches is that
fault detection needs only a single residue signal, and for the fault isolation case
it is necessary to generate a set of residue signals, called structured residual set,
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as described in [29]. In our case, for the fault detection approach, we can set AW ,
BW , CW , and DW as fixed matrices to generate a single residue signal r(k). On the
other hand, for the fault isolation approach, the matrices AWf

, BW , CW , and DW
would need to be designed differently in a way to generate an appropriate number
of residue signals to reach the fault isolability. The size of the residue set should
be similar to the number of known recurring faults so that to isolate these specific
faults. It is important to mention that a complete fault isolability is not always
achievable since complete knowledge of all possible faults may be unreasonable for
some practical situations.

The major goal in here is to design the matrices Aηi, Bηi, Cηi, Dηi,Mηi so that
the Fault Detection Filter (2.25) is mean square stable when x(0) = 0, u(0) = 0,
d(0) = 0 and f(0) = 0 and minimizes the value of γ in for the H∞ norm cases as in

sup
w 6=0, w∈L2, θ0∈N

‖re‖2
‖w‖2

< γ, (2.27)

where re(k) = r(k)− f̂(k). For the H2 norm the goal in the problem formulations
is

m∑
s=1

N∑
i=1

µi‖re‖22 < λ. (2.28)

From the above, the equivalent system can be written in the augmented form as

Gaug :

{
x̄(k + 1) = Ãθ(k)x̄(k) + B̃θ(k)w̄(k),

re(k) = C̃θ(k)x̄(k) + D̃θ(k)w̄(k),
(2.29)

where the augmented state and the input signal are x̄(k) = [x(k)′ η(k)′ xf (k)′]′

and w̄ = [u(k)′ w(k)′ f̂(k)′]′ with

[
Ãi B̃i
C̃i D̃i

]
=


Ai 0 0 Bi Ji Fi
BηiCi Aηi 0 Mηi BηiDi BηiEi

0 0 AW 0 0 BW
DηiCi Cηi −CW 0 DηiDi DηiEi −DW

. (2.30)

2.3.2 Evaluation Function

In the evaluation stage, it is necessary to set an evaluation function EVAL(k) and
also a threshold TH, both as defined in [127]. We consider L as the evaluation
time, and with that, we can separate the evaluation process into two distinct cases,
the first one is defined by k − L > 0 and the second one, k − L < 0. Thus, we



20 2. FDF and FAC for Markov Jump Linear Systems

define the auxiliary vectors for each case as{
for k − L > 0, r̄(k) = [r(k) r(k − 1) . . . r(k − L)]′

for k − L < 0, r̄(k) = [r(k) r(k − 1) . . . r(0)]′
(2.31)

and, given the discrepancy between the intervals, the evaluation functions for each
case are set as

for k − L > 0, EVAL(k) =

{
σ=k−L∑
σ=k

r̄′(σ)r̄(σ)

} 1
2

,

for k − L < 0, EVAL(k) =

{
σ=0∑
σ=k

r̄′(σ)r̄(σ)

} 1
2

.

(2.32)

2.3. REMARK. It is important to highlight that the choice of a suitable L is deeply
linked with the FDI performance, since if L is not large enough, the faults may not be
detected since the evaluation signal will not have enough time to reach the threshold.
On the other hand, if L is too large, the number of false alarms will drastically increase.

Another part of the evaluation process is the definition of a threshold, denoted
by TH. We refer to [29] or [56] for an in-depth discussion on how to choose
one among the different types of thresholds. In our case, we implement a fixed
threshold, which is obtained after performing a Monte Carlo simulation when
there is no fault. After this simulation being performed, we obtain a curve that
represents the mean and standard deviation of the evaluation function (2.32) for
the evaluation window L. We assume that TH is the peak value of the curve that
represents the mean summed with the standard deviation of EVAL(k) in the period
(0, L). For a more detailed description of this subject, see [29],[56].

Considering the aforementioned discussion, the decision for the fault detection
is as follows:

EVAL(k) > TH =⇒ fault occurrence =⇒ alarm,

EVAL(k) 6 TH =⇒ absence of fault.

2.4. REMARK. For simplicity suppose in (2.24) and (2.25) that u(k) = v is a con-
stant input set-point and that w(k) is a white noise sequence with null mean and
constant covariance matrix. By combining equations (2.24) and (2.25) we obtain, for
appropriate matrices Ãi, B̃i, C̃i, (see (2.52)) the system

Gnh =

{
x̃(k + 1) = Ãθ(k)x̃(k) + B̃θ(k)w̃(k),

r(k) = C̃θ(k)x̃(k),
(2.33)
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where

x̃(k) =

[
x(k)

η(k)

]
, w̃(k) =

[
v

w(k)

]
.

Suppose that system (2.33) is MSS and that the Markov chain {θ(k)} is ergodic. Then
it was shown in Theorem 3.33 and Proposition 3.36 of [36] that E(x̃(k)1{θ(k)=j})→
µj and that Uj(k) = E(x̃(k)x̃(k)′1{θ(k)=j}) → Uj as k → ∞ for some vectors µj
and positive semi-definite matrices Uj , j = 1, . . . , N . By noticing from (2.33) that
r(k) =

∑N
i=1 C̃ix̃(k)1{θ(k)=i} it follows that E(r(k)r(k)′) =

∑N
i=1 C̃iUi(k)C̃ ′i. From

this one can see that E(r(k)r(k)′)→ R as k →∞ where R =
∑N
i=1 C̃iUiC̃

′
i. Since

E(EVAL(k)2) =

k∑
i=k−L

Tr(E(r(i)r(i)′)),

it follows that E(EVAL(r, k)2) → (L + 1)Tr(R) as k → ∞ and also, from Jensen’s
inequality, that 0 6 lim supk→∞ E(J(r, k)) 6 ((L + 1)Tr(R))1/2. In the numerical
simulation we can observe this kind of limit behavior for the evaluation function.

2.3.3 Theoretical Results

In this subsection we present the design of the FDF under the MJLS framework
using the following performance indexes H∞, H2 norms, and H− sensibility index,
also the design for the mixed H2/H∞ and H−/H∞.

H∞ Fault Detection Filter Design for MJLS

2.1. THEOREM. There exists a mode-dependent FD Filter as in (2.25) satisfying
‖Gaug‖2∞ < γ if there exist symmetric matrices Zi, Xi, Wi, and matrices Oi, ∇i,
Γi, Cηi, Dηi with compatible dimensions that satisfy the following LMI constraint

Zi • • • • • • • • •
Zi Xi • • • • • • • •
0 0 Wi • • • • • • •
0 0 0 γI • • • • • •
0 0 0 0 γI • • • • •
0 0 0 0 0 γI • • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z)Bi Ei(Z)Bdi Ei(Z)Fi Ei(Z) • • •
Π8,1 Π8,2 0 Π8,4 Π8,5 Π8,6 Ei(Z) Ei(X) • •

0 0 Ei(W )AW 0 0 Ei(W )BW 0 0 Ei(W ) •
DηiCi −CW 0 DηiDi 0 0 0 I


> 0,

(2.34)

where

Π8,1 = Ei(X)Ai +∇iCi +Oi, Π8,2 = Ei(X)Ai +∇iCi, Π8,4 = Ei(X)Bi + Γi,

Π8,5 = Ei(X)Ji +∇iDi, Π8,6 = Ei(X)Fi +∇iEi, Π10,1 = DηiCi + Cηi,
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Π10,6 = DηiEi −DW ,

for all i ∈ K. If a feasible solution for (2.34) is obtained, then a suitable FD Filter
is given by Aηi = (Ei(Z) − Ei(X))−1Oi, Bηi = (Ei(Z) − Ei(X))−1∇i, Mηi =

(Ei(Z)− Ei(X))−1Γi, Cηi, Dηi, for all i ∈ K.

Proof: The first step to derive the result is to impose the following structure,
similar to the structure in [62], for the matrices Pi and P−1

i :

Pi =

[
Xi Ui 0

U ′i X̂i 0
0 0 Wi

]
, P−1

i =

[
Yi Vi 0

V ′i Ŷi 0
0 0 Hi

]
, (2.35)

and also consider the following structure for the matrices εi(P ) and Ei(P )−1:

Ei(P ) =

[ Ei(X) Ei(U) 0

Ei(U)′ Ei(X) 0
0 0 Ei(W )

]
, Ei(P )−1 =

[
R1i R2i 0
R′2i R3i 0

0 0 Ei(W )−1

]
. (2.36)

We define the matrices π and ζ by

π =

[
I I 0

V ′i Y
−1
i 0 0

0 0 I

]
, ζ =

[
R−1

1i Ei(X) 0

0 E(U)′ 0

0 0 Ei(G)

]
. (2.37)

Since Ui = Zi − Xi in (2.35), we get from (2.35), and (2.37) that Yi = V ′i and
Yi = Z−1

i . Also considering Ui = −X̂i we get R−1
1i = Ei(X+U) = Ei(Z). Moreover,

we have that R−1
1i = E(Z), and so we have that

π′Piπ =

[
Y −1
i Y −1

i 0

Y −1
i Xi 0
0 0 Wi

]
, ζ ′Ãiπ =

[
R−1

1i Ai R−1
1i Ai 0

Π̃2,1 Ei(X)Ai+Ei(U)BηiCi 0
0 0 Ei(W )AW

]
,

Π̃2,1 = Ei(X)Ai + Ei(U)BηiCi + Ei(U)AηiV ′i Y −1
i ,

ζ ′B̃i =

[
R−1

1i Bi R−1
1i Ji R−1

1i Fi
Π̄2,1 Ei(X)Ji+Ei(U)BηiDi Ei(X)Fi+Ei(U)BηiEi

0 0 Ei(W )BW

]
,

Π̄2,1 = Ei(X)Bi + Ei(U)Mηi,

ζ ′Ei(P )−1ζ =

[
R−1

1i Ei(Z) 0

Ei(Z) Ei(X) 0
0 0 Ei(W )

]
, C̃iπ = [DηiCi+CηiV ′i Zi DηiCi −CW ] ,

D̃i = [ 0 DηiDi DηiDi−DW ] .

Applying the change of variables Ei(U)AηiV ′i Zi = Oi, Ei(U)Bηi = ∇i, Ei(U)Mηi =

Γi, CηiV ′i Zi = Cηi, Dηi and also substituting E(Z) = R−1
1i in (2.34), we get the
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following inequality [
π′P̃iπ • • •

0 δI • •
ζ′Ãiπ ζ

′B̃i ζ
′Ei(P )−1ζ •

C̃iπ D̃i 0 I

]
> 0, (2.38)

and it is easy to see that inequality (2.38) is equivalent to the inequality (2.34).
Multiplying to the right by diag[π−1, I, ζ−1, I] and to the left by its transpose, we
get the inequality (2.7) and with that we can guarantee that ‖G‖2∞ < γ. �

H2 Fault Detection Filter Design for MJLS

2.2. THEOREM. There exists a mode-dependent FD Filter in the form of (2.25) satis-
fying the ‖Gaug‖22 < λ if there exist symmetric matrices Zi, Xi, Si, Ti and matrices Oi,
∇i, Γi, Cηi, Dηi, with compatible dimensions that satisfy the following LMI constraints

N∑
i=1

µiTr(Si) < λ, (2.39)
• • • •[

Si
]

• • • •
• • • •

Ei(Z)Bi Ei(Z)Ji Ei(Z)Fi Ei(Z) • • •
Ei(X)Bi+Γi Ei(X)Ji+∇iDi Ei(X)Fi+∇iEi Ei(Z) Ei(X) • •

0 0 Ei(T )BW 0 0 Ei(T ) •
0 DηiDi DηiEi−DW 0 0 0 I

 > 0, (2.40)


Zi • • • • • •
Zi Xi • • • • •
0 0 Ti • • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z) • • •
Ei(X)Ai+∇iCi+Oi Ei(X)Ai+∇iCi 0 Ei(Z) Ei(X) • •

0 0 Ei(T )AW 0 0 Ei(T ) •
DηiCi+Cηi DηiCi −CW 0 0 0 I

 > 0, (2.41)

for all i ∈ K. If a feasible solution for (2.39), (2.40), (2.41) is obtained, then
a suitable FD Filter is given by Aηi = (Ei(Z) − Ei(X))−1Oi, Bηi = (Ei(Z) −
Ei(X))−1∇i,Mηi = (Ei(Z)− Ei(X))−1Γi, Cηi, Dηi, for all i ∈ K.

Proof: In the same way as presented for the H∞ case, the structures for the
matrices Ti and T−1

i are as shown in the equation (2.35) for, respectively, Pi
and P−1

i . For the matrices Ei(T ) and Ei(T )−1 the structure are equal to the
one in equation (2.36) for, respectively, Ei(P ) and Ei(P )−1 . Furthermore, the
matrices π and ζ are as shown in equation (2.37). Applying the change of variables
Ei(U)AηiV ′i Zi = Oi, Ei(U)Bηi = ∇i, Ei(U)Mηi = Γi, CηiV ′i Zi = Cηi, Dηi =

Dηi and also substituting Ei(Z) = R−1
1l in (2.40), (2.41), we get the following

inequalities

N∑
i=1

µiTr(Si) < λ, (2.42)
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[
Si • •
ζ′B̃i ζ

′Ei(P )−1ζ •
D̃i 0 I

]
> 0, (2.43)[

π′Piπ • •
ζ′Ãiπ ζ

′Ei(P )−1ζ •
C̃iπ 0 I

]
> 0. (2.44)

Multiplying (2.43) to the right by diag[I, ζ−1, I] (respectively (2.44) by diag[π−1, ζ−1, I])
and to the left by its transpose we get the inequalities (2.13), (2.14) which, com-
bined with (2.42), yields that ‖Gaug‖22 < λ. �

Mixed H2/H∞ Fault Detection Filter Design for MJLS

Note that the structure of the FDF for the H2 and H∞, allows us to reformulate the
problem mixing H2/H∞ norms, in order to attain a better performance in some
cases. Therefore, it is necessary to rewrite the problem as mixed problem by setting
the objective function as

inf{g(λ, γ), such that ‖Gaug‖22 < λ and ‖Gaug‖2∞ < γ}, (2.45)

which considers the restrictions as defined in (2.27) and (2.28). By inspection it is
possible to note that there are three possible ways to define the objective function
in (2.45), as described below.

First Case: Find a minimum guaranteed cost λ for theH2 norm of system (2.29),
subject to a given upper bound γ > 0 on the H∞ norm. In this case, we have

g(γ, λ) = γ. (2.46)

Second Case: Find a minimum guaranteed cost γ for the H∞ norm of system
(2.29), subject to a given upper bound λ > 0 on the H2. In this case, we have

g(γ, λ) = λ. (2.47)

Third Case: Find a minimum for a weighted combination of the guaranteed cost
for both H2 and H∞ norms of system (2.29). Thus, for given scalars β(∞) > 0 and
β(2) > 0, we set

g(γ, λ) = γβ(∞) + λβ(2), (2.48)

where β(.) represents the weight for each upper bound. A similar approach is
presented in [43].

In this subsection we consider the mixed H2/H∞ case. The set of variables is
defined as

ψ = {Zi > 0, Xi > 0, Wi > 0, Ti > 0, Si > 0, Oi, ∇i, Γi, Cηi, Dηi} ∪ ζ (2.49)
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where ζ represents a set that contains λ, γ or both, depending if these parameters
λ, γ are assumed to be given or a variable of the problem. Hence, we also define

Ψ = {ψ as in (2.49) such that the LMIs (2.34),(2.39),(2.40),(2.41) (2.50)

are simultaneously feasible}.

The next theorem provides a sufficient condition for the FD Filter design for the
mixed H2/H∞ case.

2.3. THEOREM. There exists a mode-dependent FD Filter as in (2.25) such that
‖Gaug‖22 < λ and ‖Gaug‖2∞ < γ if there exists ψ ∈ Ψ, where ψ is defined as in
(2.50). If a feasible solution is obtained then a suitable FD Filter is given by Aηi =

(Ei(Z) − Ei(X))−1Oi, Bηi = (Ei(Z) − Ei(X))−1∇i,Mηi = (Ei(Z) − Ei(X))−1Γi,
Cηi, Dηi, for all i ∈ K.

Proof: The proof follows directly from the proofs for Theorems 2.1 and 2.2. �

Mixed H−/H∞ Fault Detection Filter Design for MJLS

For the mixed H−/H∞ FDF design we rewrite (2.24) in a particular manner where
(2.24) is rewritten into two forms: one for the H∞ norm design and another for
the H− sensibility index. In the H∞ norm design we rewrite the system as

G∞ :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k),

x(0) = x0, θ(0) = θ0,

(2.51)

One can observe that comparing (2.24) with (2.51) it is noticeable that the fault
signal f(k) is ignored. We choose this particular structure for the mixed H−/H∞
FDF approach due to two major factors. The first one is that we need to guarantee
the stability of the filter, and the latter one is that we want to minimize the effects
of the exogenous and control input in the FDF residue signal. The idea supporting
this choice is that two factors will reduce the presence of false alarms in the FDI
scheme. Since there is no fault signal f(k) we also ignore (2.26).

The augmented system under these considerations are

G∞aug :

{
x̃(k + 1) = Ãθ(k)x̄(k) + B̃θ(k)w̄(k),

r(k) = C̃θ(k)x̄(k) + D̃θ(k)w̄(k),
(2.52)

where the augmented state is x̄(k) = [x(k)′ η(k)′]′ and w̄(k) = [u(k)′ w(k)′]′ and

Ãi =
[

Ai 0
BηiCi Aηi

]
, B̃i = [Bi Ji Mηi BηiDi ] , C̃i = [ 0 Cηi ] , D̃i = [ 0 0 ] .
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The fault detection problem for the H∞ case may be represented by the opti-
mization problem to derive the matrices that compose the FDF (2.25) in such a
way that system (2.52) is MSS and minimizes the value γ in

sup
‖w‖2 6=0,w∈L2

‖r‖2
‖w‖2

< γ, (2.53)

where γ > 0.
Using the augmented system (2.52), and the Bounded Real Lemma (BRL)

constraints (2.7), the following theorem is proposed:

2.4. LEMMA. There exists a mode-dependent FDF in the form of (2.25) satisfying
the constraint (2.53) for some γ > 0 if there exist symmetric matrices Zi, Xi, and
matrices Oi, ∇i, Γi, Cηi with compatible dimensions that satisfy the following LMI
constraint 

Zi • • • • • •
Zi Xi • • • • •
0 0 γI • • • •
0 0 0 γI • • •

Ei(Z)Ai Ei(Z)Ai Ei(Z)Bi Ei(Z)Ji Ei(Z) • •
Π6,1
i Π6,2

i Ei(X)Bi+Hi Π6,4
i Ei(Z) Ei(X) •

Cηi 0 0 0 0 0 I

 > 0, (2.54)

where Π6,1
i = Ei(X)Ai+∇iCi+Oi, Π6,2

i = Ei(X)Ai+∇iCi, and Π6,4
i = Ei(X)Ji+

∇iDi. If a feasible solution for (2.54) is obtained, then a suitable FDF is given
by Aηi = (Ei(Z) − Ei(X))−1Oi, Bηi = (Ei(Z) − Ei(X))−1∇i, Mηi = (Ei(Z) −
Ei(X))−1Γi, Cηi, for all i ∈ K.

Proof : The proof of Lemma 2.4 is similar to the proof presented in [62] and for
this reason it will be omitted. �

Now to design the H− side we rewrite (2.24) as follows

G :


x(k + 1) = Aθ(k)x(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) + Eθ(k)f(k),

x(0) = x0, θ(0) = θ0,

(2.55)

where x(k) ∈ Rnx , y(k) ∈ Rny , f(k) ∈ Rnf , that represents the state, measure-
ments, and fault signals, respectively. Therefore, the augmented system for the H−
case is

G−aug :

{
x̄(k + 1) = Āθ(k)x̄(k) + B̄θ(k)w̄(k)

re(k) = C̄θ(k)x̄(k) + D̄θ(k)w̄(k)
, (2.56)

where the augmented state is x̄(k) = [x(k)′ η(k)′ xf (k)′]′, w̄(k) = f(k)′, and
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considering the equation re(k) = r(k)− f̂(k)

Āi =

[
Ai 0 0
BηiCi Aηi 0

0 0 AW

]
, B̄i =

[
Fi
BηiEi
BW

]
, C̄i = [ 0 Bηi −CW ] , D̄i = −DW .

For the H− case, the purpose of this sensibility index in the fault detection
problem is to maximize the FDF (2.25) sensitivity against the fault signal, recalling
that f̂(k) ∈ L2. Therefore, the definition is somewhat inverse of the usual H∞
norm since the H− is defined as

inf
f̂∈L2

‖re‖2
‖f̂‖2

> ξ, (2.57)

ξ > 0, with the intention of increasing the sensibility of the output re(k) against
the weighted fault signal f̂(k).

Considering the augmented system (2.56) and Lemma 2 and the constraint in
(2.17), we can propose the following theorem.

2.4. THEOREM. If there exist symmetric matrices Zi, Xi, Wi and matrices Oi, ∇̄i, C̄ηi,
with compatible dimensions that satisfy the following Bilinear Matrix Inequality (BMI)
constraints

Zi+C̄′ηiC̄ηi • • • • • •
Zi Xi • • • • •

−C′W C̄ηi 0 C′WCW+Wi • • • •
−D′W C̄ηi 0 D′WCW D′WDW−ξI • • •
Ei(Z)Ai Ei(Z)Ai 0 Ei(Z)Fi Ei(Z) • •

Ξ6,1
i Ξ6,2

i 0 Ξ6,4
i Ei(Z) Ei(X) •

0 0 Ei(Wi)AW Ei(Wi)BW 0 0 Ei(W)

 > 0, (2.58)

where Ξ6,1
i = Ei(X)Ai+∇̄iCi+Oi, Ξ6,2

i = Ei(X)Ai+∇̄iCi, and Ξ6,4
i = Ei(X)Fi+∇̂iEi,

and the following LMI constraints [
Zi •
Zi Xi

]
> 0, (2.59)

then there exists Pi > 0 for all i ∈ K such that (2.17), replacing Ai, Ji, Ci, Di by
respectively Āi, B̄i, C̄i, D̄i as in (2.56), and taking

Aηi = (Ei(Z)− Ei(X))−1Oi, Bηi = (Ei(Z)− Ei(X))−1∇̄i, Cηi, (2.60)

will hold.

2.5. REMARK. Notice that, as pointed out in Remark 2.1, we cannot guarantee from
(2.17) that system (2.56) will be MSS.Therefore we cannot guarantee that a suitable
FDF will be derived. However, since the goal is to combine the H− index with the H∞
filter, we will obtain MSS from the conditions for the H∞ filter (see Remark 2.1).
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Proof: Consider that (2.58) and (2.59) hold and set the matrices Aηi, Bηi, C̄ηi
as in (2.60), and the matrices Āi, B̄i, C̄i, D̄i as in (2.56). Notice that from (2.59)
we have that Xi− Zi > 0, which implies that Ei(X)−Ei(Z) > 0. Partitionate Pi, P−1

i ,
Ei(P), Ei(P)−1 as

Pi =

[
Xi Ui 0
U′i X̂i 0
0 0 Wi

]
, P−1

i =

[
Yi Vi 0
V′i Ŷi 0

0 0 W−1
i

]
,

Ei(P) =

[ Ei(X) Ei(U) 0

Ei(U′) Ei(X̂) 0
0 0 Ei(W)

]
, Ei(P)−1 =

[
R1i R2i 0
R′2i R3i 0

0 0 Ei(W)−1

]
,

where Yi = Z−1
i , −X̂i = Ui = Zi−Xi, Vi = Z−1

i , ∀i ∈ K, which yields to R−1
1i = Ei(Z).

Defining the matrices %i and ςi as

%i =
[
I I 0
I 0 0
0 0 I

]
, ςi =

[
Ei(Z) Ei(X) 0

0 Ei(Z)−Ei(X) 0
0 0 Ei(W)

]
,

and noticing that

%′iPi%i =
[
Zi Zi 0
Zi Xi 0
0 0 Wi

]
, %′iC̄

′
iC̄i%i =

[
C̄′ηiC̄ηi 0 −C̄′ηiCW

0 0 0
−C′W C̄ηi 0 C′WCW

]
,

D̄′iC̄i%i = [−D′W C̄ηi 0 D′WCW ] , ς ′iĀi%i =

[ Ei(Z)Ai Ei(Z)Ai 0

Ei(X)Ai+Oi+∇̄iCi Ei(X)Ai+∇̄iCi, 0
0 0 Ei(W)AW

]
,

C̄i%i = [ Cηi 0 −CW ] , D̄′iD̄i = D′WDW ,

ς ′iB̄i =

[ Ei(Z)Bi
Ei(X)Fi+∇̄iEi

Ei(W)BW

]
, %′iEi(P)−1%i =

[
Ei(Z) Ei(Z) 0
Ei(Z) Ei(X) 0

0 0 Ei(W)

]
,

we conclude that the inequality in (2.58) can be re-written as[
%′iPi%i+%

′
iC̄
′
iC̄i%i • •

D̄′iC̄i%i D̄′iD̄i−ξI •
ς′Āi%i ς′iB̄i ς′iEi(P)

−1ςi

]
> 0. (2.61)

Pre and post multiplying (2.61) by diag(%−1
i , I, ς−1

i ), we obtain that (2.17) holds,
showing the result. �

Coordinate Descent Algorithm
Note that the constraint (2.58) is a BMI since the term C̄′ηiC̄ηi is quadratic. Hence,

it is necessary to use an appropriate method to solve this type of problem. A possible
procedure to solve this BMI is to implement a Coordinate Descent Algorithm, as
in [18, 19]. For this define ψ̄ =

{
Zi, Xi, ∇̄i, Oi, C̄ηi, i ∈ K

}
, T = {Ti, i ∈ K}, and

Si(ψ̄, ξ, T) the inequality in (2.58) with the variables ψ̄, ξ and replacing the block
(1,1) in 2.58 by Zi + Ti (that is replacing F′iFi by Ti in the block (1,1)). For
Tk =

{
Tki , i ∈ K

}
, with Tki > 0 fixed, solve the following LMI optimization problem,

denoted by Pr(Tk): max ξ subject to the following LMIs: Si(ψ̄, ξ, Tk) > 0, (2.58)
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and [
Tki •
C̄ηi I

]
> 0. (2.62)

Suppose that there is a solution ψ̄k, ξk for this problem. Set now Tk+1
i = C̄k′ηi C̄kηi

and solve the problem Pr(Tk+1). Consider that the solution for this problem is
ψ̄k+1, ξk+1. From (2.62) we have that Tki > C̄k

′

ηi C̄kηi = Tk+1
i > C̄k+1′

ηi C̄k+1
ηi , and

Si(ψ̄k+1, ξk+1, Tk) > Si(ψ̄k+1, ξk+1, Tk+1) > 0, that is, ψ̄k+1, ξk+1 is feasible for
problem Pr(Tk), so that ξk+1 6 ξk. Based on that, we propose the following
algorithm.

Algorithm 1: Coordinate Descent Algorithm

Input: T0, tmax, ε
Output: Aηi, Aηi , C̄ηi as in Theorem 2.3.

1 At iteration k use Tk to solve the LMI optimization problem Pr(Tk) posed
above. Obtain a solution ψ̄k, ξk.

2 If ξ
k−1−ξk
ξk−1 > ε and k 6 tmax, go back to step 1 using Tk+1

i = C̄k′ηi C̄kηi.
Otherwise stop the algorithm.

Since the sequence ξk > 0 is decreasing, it will converge and the algorithm will
stop at some iteration.

2.6. REMARK. Observe that in Algorithm 1, the initial condition has impact on the
feasibility or convergence speed of the algorithm. Note that, the first iteration finds a
feasible solution the CDA convergence is guaranteed, meaning that the final results will
be equal or better than the initial condition. A possible way to define the T0

i = C̄0′

ηiC̄0
ηi,

where C̄0
ηi is obtained using Lemma 2.4.

It is important to point out that the FDFs obtained using Lemma 2.4 and
Theorem 2.3 have a similar structure, thus, this key aspect allows us to solve both
problems simultaneously. Based on this property, we present an approach to solve
the mixed H∞/H− problem, in a similar way as presented in [43]. We need to
impose the following constraints

ψ =
{
γ, ξ, Zi = Zi, Xi = Xi, ∇i = ∇̄i, Oi = Oi, Cηi = C̄ηi

}
. (2.63)

Set

Ψ = {ψ as in (2.63) such that the LMIs (2.54), and the BMIs (2.58),

are simultaneously feasible}. (2.64)

2.5. THEOREM. There exists a mode-dependent FDF as in (2.24) such that
‖Gaug‖2∞ < γ and ‖Gaug‖2− > ξ if there exists ψ ∈ Ψ, where Ψ is defined as in (2.64).
If a feasible solution is obtained then a suitable FDF is given by Aηi = (Ei(Z) −
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Ei(X))−1Oi, Bηi = (Ei(Z) − Ei(X))−1∇i, Cηi, Mηi = (Ei(Z) − Ei(X))−1Γi,
∀i ∈ K.

Proof: The proof follows directly from the proofs of Theorems 2.4 and 2.3. �

2.7. REMARK. Observe that is not necessary to mention the LMI constraint (2.59) in
(2.64), since (2.58) already has this constraints within.

We define the mixed objective function

g(γ, ξ) = σγ − (1− σ)ξ, (2.65)

where ‖G‖2∞ < γ, ‖G‖2− > ξ, and σ > 0 is a weighting scalar.
The goal is to minimize (2.65) subject to ψ ∈ Ψ. If one of the bounds is fixed the

problem will be to minimize the objective function under the constraint ‖G‖2∞ < γ

or ‖G‖2− > ξ.

2.3.4 Simulations Results

As an illustrative example we use a coupled-tank, the modeling is described in the
Appendix A. The matrices that compose the state-space system are

A1,2 =
[−0.0239 −0.0127

0.0127 −0.0285

]
, B1,2 = [ 0.7100 0

0 0.7100 ] ,

J 1,2 = [ 0.0071 0
0 0.0071 ] , F 1,2 = 0.1 [ 0.7100

0 ] , D 1,2 = [ 0.0100 0
0 0.0100 ] ,

E 1,2 = [ 0
0 ] , AW = 0.25, BW = 0.5, CW = 0.75, DW = 0.5,

As seen above, the matrix that represents the fault in the actuator (F ) is a 10%

ratio of the input matrices B. This choice of value represents the eventual fault in
the actuator. Another aspect is that (F ) should not be switched since the fault has
no direct relationship with the network behavior. Regarding the sensor fault matrix
(E) we consider it to be null since we are only considering an actuator fault and
not a sensor fault. To model the communication loss between the FDF and plant
sensors, the matrices Ci are defined as

C1 = [ 1 0
0 1 ] , C2 = [ 0 0

0 0 ] .

The transition matrix is defined as P = [ 0.80 0.2
0.575 0.425 ], which represents a network

with a packet loss rate of 25%.

2.8. REMARK. It is important to clarify the distinction between the concept of com-
munication loss and sensor fault. The first one represents the information lost during
the transmission, which is a network problem. The latter represents an equipment
(sensor) problem where data gathering is compromised.
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2.9. REMARK. It is possible to implement more complex network models by changing
the number of modes, and imposing different structures in the transition matrix P.
However, this is not the main goal of this work. Some works that tackle this subject
are [9].

Using Theorem 2.1 and the aforementioned systems we get,

Aη1 =
[

0.0021 −0.0020
0.0021 −0.0020

]
, Aη2 =

[
0.0058 −0.0375
0.0478 −0.0669

]
, Mη1 =

[
0.1342 0.0698
−0.5776 0.7818

]
,

Mη2 = [ 1.1986 0.0922
0.3684 0.9221 ] , Bη1 =

[−0.0259 −0.0107
0.0106 −0.0265

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [−0.0489 0.0469 ] , Cη2 = [ 0 0 ] , Dη1 = [ 0.0523 −0.1963 ] , Dη2 = [ 0 0 ] ,

(2.66)

and the upper bound obtained was γ = 1.4142. Now considering Theorem 2.2 we
obtained

Aη1 =
[−0.2535 0.2444

0.2540 −0.2621

]
, Aη2 =

[−0.0132 −0.0070
0.0070 −0.0157

]
, Mη1 =

[
0.6814 −0.2061
−0.2060 0.6814

]
,

Mη2 = [ 0.7100 0.0000
0.0000 0.7100 ] , Bη1 =

[
0.4334 −0.4475
−0.4419 0.4521

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [−0.1239 −0.1239 ] , Cη2 = [ 0 0 ] , Dη1 = [−0.3259 −0.3259 ] , Dη2 = [ 0 0 ] ,

(2.67)

and the upper bound obtained was λ = 5.6378. For the Theorem 2.3 the FDF
obtained was

Aη1 =
[−0.2534 0.2617

0.2605 −0.2383

]
, Aη2 =

[−0.01298 −0.0077
0.0069 −0.01668

]
, Mη1 =

[
0.7399 −0.1475
−0.1475 0.7399

]
,

Mη2 = [ 0.7572 0.04728
0.0472 0.7573 ] , Bη1 =

[
0.4330 −0.4802
−0.4544 0.4071

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [−0.0379 −0.1094 ] , Cη2 = [−0.0061 −0.0370 ] ,

Dη1 = [ 0.0036 0.0096 ] , Dη2 = [ 0 0 ] , (2.68)

the upper bound γ = 5 and λ = 5.8224. At last, the FDF obtained using Theorem
2.5,

Aη1 =
[−0.2979 −0.0109
−0.0008 −0.3017

]
, Aη2 =

[−0.0239 −0.0127
0.0127 −0.0285

]
, Mη1 =

[
0.7100 −0.0000
−0.0000 0.7100

]
,

Mη2 =
[

0.7101 −0.0000
−0.0000 0.7101

]
, Bη1 =

[
0.2740 −0.0018
0.0135 0.2732

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [ 0.4896 0.1075 ] , Cη2 = [ 3.1892 −2.0479 ] , (2.69)

with the upper and lower bounds γ = 1.2270 and ξ = 1.01.

Monte Carlo Simulation

As previously discussed, the system is a coupled tank, the fault signal implemented
in this simulation is an abnormal input on the first tank at k = 125. The intensity
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of this input is equal to 10% of the regular input. Also considering the threshold
TH = 0.3. Under this specific situation, we present five graphical results from the
simulation. The first four results are shown in Figs. 2.3a, 2.3b, 2.3c, 2.3d where
the mean and standard deviation of the residue signal for each theorem are given,
and the fifth result is the evaluation signal EVAL(k) obtained for all three cases and
shown in Fig. 2.5
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signal obtained using Theorem 2.5

Figure 2.3: Mean and standard deviation for the residue signal obtained using FDF
designed using the Theorems 2.1, 2.2, 2.3, 2.5. There are two graphics for each
theorem, representing when the system is subjected to a fault and another graphic
without fault.

Examining Figs. 2.3a, 2.3b, 2.3c, 2.3d it is possible to observe that the lower
value of standard deviation is obtained using Theorem 2.5, and the results obtained
using Theorem 2.1 provided the higher value. Note that, the higher standard
deviation is directly connected with the number of false alarms. Therefore, the
results obtained via Theorem 2.5 will present a lower chance of false alarms.
Another important piece of information is that all the residue signals obtained with
the presence of fault were close to zero, which is the expected behavior.

Inspecting Figs. 2.4a, 2.4b, 2.4c, 2.4d we may state that all four approaches
properly detected the fault. However, there is a performance discrepancy between
the approaches, the fastest detection was obtained using Theorem 2.1, detecting
the fault in the interval of k = [143 155] (12 range). However, the result obtained
using Theorem 2.5 presented the most reliable results since the detection interval
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(a) Mean and standard deviation for evalua-
tion function obtained using Theorem 2.1.
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(b) Mean and standard deviation for evalua-
tion function obtained using Theorem 2.2
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(c) Mean and standard deviation for evalua-
tion function obtained using Theorem 2.3
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Figure 2.4: Mean and standard deviation for the evaluation function obtained using
FDF designed using the Theorems 2.1, 2.2, 2.3, 2.5. There are two graphics for
each theorem, representing when the system is subjected to a fault and another
graphic without fault.

was k = [153 160] (7 range).

In Fig. 2.5 a comparison with all the four approaches is presented, where solely
the mean value of the evaluation function is provided. Its clearer that the results
for Theorem 2.1 is faster, but the difference to the result obtained using Theorem
2.5 is equal to 6, and also there is an overlap in those intervals. Therefore, we
may conclude that all four result are viable solution Fault Detection and Isolation
problem for the MJLS framework.

2.4 Fault Accommodation Formulation

I
N this section, we present the Fault Accommodation problem formulation
and propose some theoretical approaches to solve such a problem. The for-
mulation we present here is a particular case of a model-based Active Fault

Accommodation Control (FAC) problem, where an auxiliary controller is designed
with the only purpose of mitigating the fault effect on the system performance.
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Figure 2.5: Average value of the evaluation function signal for four distinct cases,
where the blue curve represent the result using Theorem 2.1, the red curve represent
the result obtained via Theorem 2.2, the magenta curve represent the results
through Theorem 2.3, the black curve denote the result for Theorem 2.5, and the
cyan line denotes the threshold TH.

The MJLS for the fault-compensation problem is described as

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)uTotal(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k),

x(0) = x0, θ(0) = θ0,

(2.70)

where the system states are denoted by x(k) ∈ Rnx , the control input is represented
by u(k) ∈ Rnu , the exogenous input is w(k) ∈ Rnd , the fault signal is denoted by
f(k) ∈ Rnf and the measured output is represented by y(k) ∈ Rny .

2.4.1 Fault Accommodation Controller

The Fault Compensation Controller scheme is presented in Fig. 2.6. We see from
this scheme that our main goal is to provide an FAC (Kci) that generates the control
signal h(k) with the sole purpose of compensating the fault signal f(k). The control
signal h(k) should be close to zero when the system is working properly.

The FAC can be described as

Kc :


η(k + 1) = Aθ(k)η(k) + Mθ(k)u(k) + Bθ(k)y(k),

h(k) = Cθ(k)η(k),

η(0) = η0, θ(0) = θ0,

(2.71)
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System
Gθ(k)

Controller
Kθ(k)

FAC Kcθ(k)

Fault f(k)

uTotal(k)

u(k)Noise w(k) x(k)

h(k)y(k)

Figure 2.6: Fault accommodation control scheme diagram used to design the
controller.

where η ∈ Kq represents the FAC, u(k) and y(k), are respectively, the control signal
from the regular controller and the measured signal from the system.

The mode-dependent state-feedback controller is

u(k) = Kθ(k)x(k), (2.72)

where x(k) ∈ Rn represents the states in (2.70). From that, we define uTotal(k) as

uTotal(k) = u(k) + h(k). (2.73)

Considering system (2.70), the state feedback control law (2.72), and the
FAC (2.71), as presented in Fig.2.6, the augmented system is given by

Gaug :


x̄(k + 1) = Āθ(k)x̄(k) + B̄θ(k)w̄(k),

z̄(k) = C̄θ(k)x̄(k) + D̄θ(k)w̄(k),

x̄(0) = η0,

where x̄(k) = [x(k)′ η(k)′]′ and w̄(k) = [w(k)′ f(k)′]′, with the following aug-
mented matrices are

Āi =
[

Ai−BiKi BiCi
BiCi−MiKi Ai

]
, B̄i =

[
Ji Fi

BiDi 0

]
,

C̄i = [ 0 −BiCi ] , D̄i = [ 0 Fi ] .
(2.74)

The main goal of this paper is to design a FAC as presented in (2.71) where the
difference o(k) = Fif(k) − Bih(k) is close to zero. Therefore, the optimization
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problem is described as

sup
w 6=0, w∈L2, θ0∈N

‖o‖2
‖w‖2

< γ. (2.75)

2.4.2 Theoretical Results

H∞ Fault Accomodation Control Design for MJLS

2.6. THEOREM. There exists a mode-dependent FAC as described in (2.71) satisfying
the constraint (2.75) for some γ > 0 if there exist symmetric matrices Zi, Xi, and the
matrices ∆i, ∇i, Ωi, and Θi with compatible dimensions such that


Zi • • • • • •
Zi Xi • • • • •
0 0 γI • • • •
0 0 0 γI • • •

Π5,1
i Π5,2

i Ei(X)Ji Ei(X)Fi Π5,5
i • •

Π6,1
i Π6,2

i Ei(X)Ji+ΘiDi Ei(X)Fi Ei(X) Ei(X) •
−∆i 0 0 Ei(X) 0 0 Her(Ei(X))−I

 > 0, (2.76)

with

Π5,1
i = Ei(X)Ai − Ei(X)BiKi + ∆i,

Π6,1
i = Ei(X)Ai − Ei(X)BiKi + ΘiCi +∇iKi + ∆i + Ωi,

Π6,2
i = Ei(X)Ai − Ei(X)BiKi + ΘiCi +∇iKi,

Π5,2
i = Ei(X)Ai − Ei(X)BiKi, Π5,5

i = Her(Ei(X))− Ei(Z),

holds for all K. If a feasible solution is obtained, a suitable fault-compensation
controller is given by Ai = (Ei(Z) − Ei(X))−1Ωi, Mi = (Ei(Z) − Ei(X))−1∇i,
Bi = (Ei(Z)− Ei(X))−1Θi, and Ci = (Ei(Z)− Ei(X))−1B−1

i Ωi.

Proof: The goal of the proof is to show that if the inequality (2.76) holds, then
(2.5) is also satisfied. First, consider the following structures for the matrices

Pi =
[
Xi Ui
U ′i X̂i

]
, P−1

i =
[
Yi Vi
V ′i Ŷi

]
,

Ei(P ) =
[

Ei(X) Ei(U)

Ei(U)′ Ei(X̂)

]
,Ei(P )−1 =

[
R1i R2i

R′2i R3i

]
,

(2.77)

and define the matrices Qi and Ti as

Ti =
[

I I
V ′i Y

−1
i 0

]
, Qi =

[
Ei(X) Ei(X)

0 Ei(U)′

]
.

As demonstrated in [61], by imposing that Ui = Zi −Xi, it follows from (2.77)
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that Vi = V ′i , Vi = Z−1
i . Setting the following matrices

T ′iPiTi =
[
Y −1
i Y −1

i

Y −1
i Xi

]
, Q′iĀiTi =

[
ν11
i Ei(X)Ai−Ei(X)BiKi
ν21
i ν22

i

]
,

ν11
i = Ei(X)Ai − Ei(X)BiKi + Ei(X)BiCi,

ν21
i = Ei(X)Ai − Ei(X)BiKi + Ei(U)BiCi − Ei(U)MiKi − Ei(X)BiCi,

ν22
i = Ei(X)Ai − Ei(X)BiKi + Ei(U)BiCi − Ei(U)MiKi

Q′iB̄i =
[

Ei(X)Ji Ei(X)Fi
Ei(X)Ji+Ei(U)BiDi Ei(X)Fi

]
,

C̄iTi = [−BiCi 0 ] , D̄i = [ 0 Fi ] .

as presented in [46], it is possible to write

Her(Ei(X))− Ei(Z) 6 Ei(X)′Ei(Z)−1Ei(X).

This step allow us to write

Q′iEi(P )−1Qi =
[

Her(Ei(X))−Ei(Z) Ei(X)
Ei(X) Ei(X)

]
.

Therefore the inequality given in (2.76) can be written as T ′iPiTi • • •
0 γI • •

Q′iĀiTi Q′iB̄i Q′iEi(P )−1Qi •
Ei(X)C̄iTi Ei(X)D̄i 0 Her(Ei(X))−I

 > 0.

Applying the congruence transform

diag(T−1
i , I, Q−1

i ,Ei(X)−1),

in this last inequality, the following constraint is obtained[
Pi • • •
0 γI • •
Āi B̄i Ei(P )−1 •
C̄i D̄i 0 I

]
> 0,

which, by applying a Schur complement, can be recognized as the BRL (2.5),
concluding the proof. �

2.10. REMARK. Note that, from (2.76), matrix Bi in (2.70) should be invertible.
However, by requiring it only to be square, we can obtain the matrix Ci using a Penrose
inverse.
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2.4.3 Simulations Results

To disclose the usability of the proposed approach we use the same coupled tank
model example used in the previous section. A proper discussion of the modeling
process is presented in Appendix A. The matrices that compose the coupled-tank
system are:

A1,2 =
[−0.024 −0.013

0.013 −0.029

]
, B1,2 = [ 0.71 0

0 0.71 ] , J1,2 = 0.1B1,2, F1,2 = diag(I1, 01),

C1 = I2, C2 = 02, D1,2 = 0.1I2.

Additionally, consider that the transition matrix is given by

P = [ 0.8 0.2
0.8 0.2 ] , (2.78)

The nominal controller obtained using the results in [63] is

K1 =
[−1.3456 0.0154
−0.0154 −1.3398

]
, K2 =

[−0.0315 0.0167
−0.0167 −0.0375

]
,

and the H∞ norm value is γ = 0.1276. The fault-compensation controller obtained
designed using Theorem 2.6 is

Ac1 =
[

0.2233 −0.0080
−0.0059 0.2731

]
, Ac2 =

[
0.0488 −0.003
−0.0013 0.0651

]
,

Bc1 =
[−0.1745 0.0041

0.0045 −0.2079

]
, Bc2 =

[−0.1745 0.0041
0.0045 −0.2079

]
,

Mc1 =
[−0.1701 0.0063

0.0016 −0.2018

]
, Mc2 =

[−0.1701 0.0063
0.0016 −0.2018

]
,

Cc1 =
[−0.4597 0.0239
−0.0006 −0.5075

]
, Cc2 =

[−0.4596 0.0239
−0.0006 −0.5075

]
.

and the H∞ norm value is γ = 1.9002.

Monte Carlo Simulation

The fault signal implemented is a sinusoidal wave as 0.025sin(k). The noise signal
is a white noise with zero mean and deviation equal to 0.01. The results presented
herein were obtained via Monte Carlo simulations with 300 rounds. In all the
simulation we made a comparison between the proposed approach (Theorem
2.6), and a regular solution using only the controller designed using [63]. The
simulation results are organized in two sets of six subfigures, where the first set
contains the results when there is a fault and the second set shows the results for
the case without fault. Each set is organized as follows: the first graphic represents
the mean and standard deviation for both tank levels h1 and h2 obtained using
Theorem 2.6, the second graphic represent the mean and standard deviation for
both tank levels h1 and h2 obtained using solely the nominal controller, and the
third graphic compares the mean of both previous graphics. The fourth graphic is
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the mean and standard deviation of the control signal obtained using Theorem 2.6,
the fifth graphic is the mean and standard deviation of the control signal obtained
using the nominal controller and the sixth graphic is the comparison of the fourth
and fifth graphics. In Fig. 2.7c it is possible to observe that the fault is compensated
for both levels, which can be seen by comparing the mean value of the system
states using the accommodation and the nominal controller. In both graphics the
compensation is noticeable, the sinusoidal behavior is mitigated in both levels.
Fig. 2.7a, and 2.7b show that the standard deviation for both the plant states are
slightly higher, approximately 0.05 meter. Additionally, note that the control signals
for both actuators, which are shown in Fig. 2.7f, minimize the fault behavior while
keeping the level near the linearization points, that is, 0.25m and 0.1m for the first
and second tanks, respectively.

The analyzes of the simulation without fault is important since it shows that
the proposed approach in Theorem 2.6 will not drastically change the nominal
behavior of the plant. In Fig. 2.8c, we can observe that there is not a significant
change when comparing it with the nominal results, which is desirable. The step
response for the compensated approach is closer to the step signal. As seen in
Fig. 2.8d, Fig. 2.8e also shows a distinct difference between the graphics, however,
this difference is around 0.001, which is acceptable. For the control signal presented
in Fig. 2.8f, there is a difference between the control signals for both actuators.
Based on the aforementioned results, we see that the FAC approach proposed in
this section indeed mitigates the fault signal as intended. However, there is a slight
difference between the FAC and the nominal controller, which was not desired.
This phenomenon can be explained due to the step input, as the FAC detects this
abrupt change as a fault.

2.5 Concluding remarks

In this chapter, we presented the theoretical results obtained for the design of a
FDF and FAC under the MJLS framework, additionally we also presented examples
to illustrate the viability of the proposed methods. Analyzing the simulation results
allows us to state that all approaches fulfilled the intended purpose. The next
chapter presents the design of FDF and FAC with the additional assumption that
the Markov mode is not accessible.
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Figure 2.7: Mean and standard deviation for the states and control signal for the
FAC designed with Theorem 2.6 when the system is subjected to the fault.
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Figure 2.8: Mean and standard deviation for the states and control signal for the
FAC designed with Theorem 2.6 when the system is in its nominal state (faultless).





Chapter 3

FDF and FAC for Markovian Jump Linear
Systems with Parameter Estimation

I
N this chapter we present the theoretical background necessary to under-
stand the results obtained for the FDF and FAC design herein. The major
novelty in this chapter is the assumption that the Markov chain mode is

not directly accessible. For that reason the FDF and FAC designed under this
assumption do not depend on the Markov chain parameter θ(k), but instead, the
FDF and FAC depend only on an estimation of the Markov chain mode denoted
by θ̂(k). From the practical point of view, the assumption of the Markov mode in
our case is interesting, since we are using the Markov chain to model the network
behavior, and the hypothesis that the network state is instantaneously acquired
might be unrealistic. Therefore, the design methods presented here can circumvent
this issue and guarantee the performance simultaneously.

The results presented in this chapter were published in the following journals
and conferences:

• Subsection 3.2.1 presented theH∞ Fault Detection Filter for Markovian Jump
Linear Systems with Estimation Parameter, which was presented in the 9th
IFAC Symposium on Robust Control Design (ROCOND’18) [15].

• Subsection 3.2.2 presented the H2 Fault Detection Filter for Markovian Jump
Linear Systems with Estimation Parameter, which was presented in the Con-
gresso Brasileiro de Automatica 2020 [17].

• Section 3.3 presented the Simultaneous Fault Detection and Control for
Markovian Jump Linear Systems with Estimation Parameter, which was pub-
lished in IEEE ACCESS [18].

• Section 3.4 presented the Fault Accommodation controller under Markovian
jump linear systems with asynchronous modes, which was published in
International Journal of Robust Nonlinear Control [19].
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3.1 Preliminary for Markovian Jump Linear Systems
with Parameter Estimation

Consider the following hidden discrete-time MJLS in the stochastic space (Ω,F ,P)

with filtration Fk

G :

{
x(k + 1) = Aθ(k)θ̂(k)x(k) + Jθ(k)θ̂(k)w(k),

z(k) = Cθ(k)θ̂(k)x(k) +Dθ(k)θ̂(k)w(k),
(3.1)

where x(k) ∈ Rnx is the state, y(k) ∈ Rny is the measured output, z(k) ∈ Rnz is
the estimated output, w(k) ∈ Rnw is the exogenous input. We also consider that
w(k) ∈ L2.

Observe that (3.1) depends on two distinct stochastic processes θ(k) and θ̂(k).
The first one represents a homogeneous Markov chain, with values are in the set N.
Considering that Fk is a σ-field generated by

x(0), w(0), θ(0), θ̂(0), . . . , x(k), w(k), θ(k), θ̂(k), (3.2)

we assume that

Prob(θ(k + 1) = j|Fk) = Prob(θ(k + 1) = j|i) = ρij , i ∈ N. (3.3)

It is assumed that θ(k) is unaccessible and that θ̂(k) is observable and takes
values in the set M. From the above, we consider the sigma field F̂0, generated via
x(0), w(0), θ(0), and F̂k, by x(0), w(0), θ(0), θ̂(0), . . . , x(k), w(k), θ(k), θ̂(k), k > 0,
and assume that

Prob(θ̂(k + 1) = j|Fk) = Prob(θ̂(k + 1) = `|i) = φi`, ` ∈M. (3.4)

We have that φi` > 0,∀i ∈ N is such that
∑
`∈M φi` = 1, where the set Mi, i ∈M

is defined as in

Mi , {` ∈M : φij > 0} ,∪i∈NMi = M. (3.5)

The detection probability matrix is denoted by Υ = [φi`], i ∈ N, ` ∈ Mi. This
process is known as a Hidden Markov Model, as in [100].

We define the transition probability matrix by Ψ = [ρij ] where ρij = Pr[θk+1 =

j|θk = i] and
∑N
j=1 ρij = 1 for all i ∈ K. Observe that system (3.1) depends on the

index θ(k), but also depends on the index θ̂(k), which represents an estimation for
the index θ(k).
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3.1.1 Stability for Hidden Markovian Jump Linear Systems

Consider the hidden MJLS (3.1) with w(k) = 0 defined on the probability space
(Ω,F,Prob) with filtration {Fk}. As presented in [37], the definition of stochastic
stability is described as below.

3.1. DEFINITION. Considering (3.1) with w(k) = 0, system (3.1) is said to be stochas-
tically stable if for any initial condition θ(0 = θ0), and for all second moment x0,

‖x‖22 =

∞∑
k=0

E(‖x(k)‖2) <∞. (3.6)

For V = (V1, . . . , Vn) ∈ Hn consider the following linear operators Ei, Li, Ti
∈ Hnx , which allow us to draw the stability conditions for (3.1) as

Ei(V ) ,
∑
j∈N

ρijVj , (3.7)

Li(V ) ,
∑
`∈Mi

φi`A
′
i`Ei(V )Ai`, (3.8)

Tj(V ) ,
∑
i∈N

∑
`∈Mi

ρijφijAi`ViA
′
i`, ∀i, j,∈ N. (3.9)

3.1.2 H∞ norm for Hidden MJLS

3.2. DEFINITION. Assuming that (3.1) is MSS, the H∞ norm is given by

‖G‖2∞ , sup
06=w∈L2,θ0∈K

‖z2‖
‖w2‖

.

The next lemma is known as Bounded Real Lemma for the detector approach,
which was first introduced in [112].

3.1. LEMMA. If there exists Pi > 0, Mi` > 0, Si` > 0, and Ni` such that (3.10),
(3.11), hold [

Pi 0
0 γ2I

]
>
∑
l∈Mi

φil
[
Mi` •
Ni` Si`

]
, (3.10)

[
Mi` •
Ni` Si`

]
>
[
Ai` Ji`
Ci` Di`

]′ [ Ei(P ) 0
0 I

] [
Ai` Ji`
Ci` Di`

]
, (3.11)

for all i ∈ N and ` ∈Mi then ‖G‖∞ < γ.

Proof: See [112]. �
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Applying the Schur complement in (3.11) we obtain the following inequality,[
Mi` • • •
Ni` Si` • •
Ai` Ji` Ei(P )−1 •
Ci` Di` 0 I

]
> 0. (3.12)

3.1.3 H2 norm for MJLS for Parameter Estimation

Assuming that (3.1) is MSS, the H2 norm is given by

‖G‖2 =

√√√√ nw∑
s=1

N∑
i=1

µi‖zi,s‖22 (3.13)

where the initial Markov chain state distribution is given by Prob(θ(0) = i) = µi > 0

for all i ∈ N. Considering the strict inequalities,

Qi >
∑
`∈Mi

φi`(A
′
i`Ei(Q)Ai` + C ′i`Ci`), i ∈ N, ` ∈Mi, (3.14)

for Qi > 0, we have that

(‖G‖2)
2
<

N∑
i=1

∑
l∈Mi

φi`µiTr(J
′
i`Ei(Q)Ji`), (3.15)

3.2. LEMMA. If there exists Wi` > 0, Ri` > 0, and Qi > 0, such that (3.16), (3.17),
(3.18), (3.19), hold

N∑
i=1

∑
`∈Mi

µiφi`Tr(Wi`) < λ2, (3.16)[
Wi` • •
Ji` Ei(Q)−1 •
Di` 0 I

]
> 0, (3.17)

Qi` >
∑
`∈Mi

φi`Ri`, (3.18)[
Ri` • •
Ai` Ei(Q)−1 •
Ci` 0 I

]
> 0. (3.19)

for all i ∈ N and ` ∈Mi then ‖G‖2 < λ.

Proof: See [37] or [42].
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3.2 Fault Detection Filter Formulation for MJLS with
Parameter Estimation

In this section, we provide FDF design under the assumption that the Markov Chain
mode is not accessible. From the discussion made at the beginning of this chapter,
we may provide a block diagram of the system as in Fig.3.1 We assume that the

System
Gθ(k)

Filter Fθ̂(k)

Weighting
filter Wθ(k)

Control u(k)

Fault f(k)

Noise d(k) y(k) r(k)

f̂(k)

re(k)

Figure 3.1: Fault detection and isolation scheme diagram assuming that the network
mode is not accessible.

MJLS subject to faults is defined as

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k) + Eθ(k)f(k),

x(0) = x0, θ(0) = θ0,

(3.20)

where x(k) ∈ Rnx , y(k) ∈ Rny , u(k) ∈ Rnu , w(k) ∈ Rnw , f(k) ∈ Rnf , represent
the state, measurements, control, exogenous, and fault signals respectively.

Using the same idea of the FDF in the previous chapter, we also implement a
systemW given by (3.21), which is described as

W :


xf (k + 1) = AWxf (k) +BWf(k),

f̂(k) = CWxf (k) +DWf(k),

xf (0) = 0,

(3.21)

where xf (k) ∈ Rnr is the weight matrix state, f(k) is the same signal as in (2.24),
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and f̂(k) ∈ Rnr is the weighted fault signal.

We assume that the FDF depends only on the detected variable θ̂(k) as in

F :


η(k + 1) = Aηθ̂(k)η(k) +Mηθ̂(k)u(k) + Bηθ̂(k)y(k),

r(k) = Cηθ̂(k)η(k) +Dηθ̂(k)y(k),

η(0) = η0,

(3.22)

whereby η(k) ∈ Rnx represents the filter states, and r(k) ∈ Rnn is the filter residual.
We point out that this filter structure depends exclusively on the detector mode
θ̂(k).

With the intention of designing an FDF in the form of (3.22) to be mean square
stable when x(0) = 0, u(0) = 0, d(0) = 0 and f(0) = 0 and minimizes the value
of γ considering the H∞ norm case, we define criterion to be minimized in the
optimization problem as

sup
w 6=0, w∈L2, θ0∈N

‖re‖2
‖w‖2

< γ, (3.23)

where re(k) = r(k) − f̂(k). The definition of the criterion to be minimized in
optimization problem for the H2 norm case is

m∑
s=1

N∑
i=1

µi‖re‖22 < λ. (3.24)

Considering system (3.20), weighting system (3.21) the two different criteria
(3.23), (3.24), allow us to describe augmented state and the input signal as x̄(k) =

[x(k)′ η(k)′ xf (k)′]′ and w̄ = [u(k)′ w(k)′ f̂(k)′]′,

Gaug :

{
x̄(k + 1) = Ãθ(k)θ̂(k)x̄(k) + B̃θ(k)θ̂(k)w̄(k),

re(k) = C̃θ(k)θ̂(k)x̄(k) + D̃θ(k)θ̂(k)w̄(k),
(3.25)

where each matrix is described as

[
Ãi` B̃i`
C̃i` D̃i`

]
=


Ai 0 0 Bi Ji Fi
Bη`Ci Aη` 0 Mη` Bη`Di Bη`Ei

0 0 AW 0 0 BW
Dη`Ci Cη` −CW 0 Dη`Di Dη`Ei −DW

 .(3.26)
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3.2.1 H∞ Fault Detection Filter Design for MJLS with Parameter
Estimation

3.1. THEOREM. There exists a filter in the form of (3.22) such that ‖Gaug‖2∞ < γ if
there exist symmetric matrices Zi, Xi, Hi`, Nil, Sil,Wi, and matrices R`, O`, ∇`, Γ`,
Cη`, Dη`, with compatible dimensions that satisfy the following LMI constraint[Zi • • •

Zi Xi • •
0 0 Wi •
0 0 0 γ2I

]
>
∑
`∈Mi

φi`
[Hi` •
Ni` Si`

]
, (3.27)


[
Hi`

]
• • • •[

Ni`
] [

Si`
]

Π3,4 • • • •
Ei(Z)Ai Ei(Z)Ai 0 Ei(Z)Ji Ei(Z)Fi Ei(Z) • • •

Π4,1 Π4,2 0 Π4,3 Π4,5 Π4,6 0 Π4,7 • •
0 0 Ei(W)Aw 0 0 Ei(W)Bw 0 0 Ei(W) •

Dη`Ci+Cη` Dη`Ci −Cw 0 Dη`Di Π6,6 0 0 0 I

 > 0, (3.28)

where

Π3,4 = Ei(Z)Bi, Π4,1 = R`Ai +∇`Ci +O`, Π4,2 = R`Ai +∇`Ci,
Π4,3 = R`Bi + Γ`, Π4,5 = R`Ji +∇`Di, Π4,6 = R`Fi +∇`Ei,
Π4,7 = Her(R`) + Ei(Z)− Ei(X ), Π6,6 = Dη`Ei −Dw.

If a feasible solution is found a suitable FDF is given by Aη` = −R−1
l Ol, Bη` =

−R−1
l ∇l,Mη` = −R−1

l Γl, Cη`, Dη`.

Proof: Consider the structure for the matrices

P̃i =

[
Xi • •
U ′i X̂i •
0 0 P 33

i

]
, P̃−1

i =

[ Yi • •
V ′i Ŷi •
0 0 P 33 −1

i

]
, Ei(P̃ )−1 =

[
T̂1i • •
T̂ ′2i T̂3i •
0 0 Ei(P 33

i )−1

]
(3.29)

and the linearization matrices

τi =

[
I I 0

V ′i Y
−1
i 0 0

0 0 I

]
, ι =

[
T̂−1
1i Ei(X) 0

0 Ei(U)′ 0

0 0 Ei(P 33
i )

]
, (3.30)

that leads to

τ ′i P̃iτi =

[
Y −1
i Y −1

i 0

Y −1
i Xi 0

0 0 P 33
i

]
, ι′iEi(P̃ )−1ιi =

[ Ei(Z) • •
Ei(Z) Ei(X) •

0 0 Ei(P 33
i )

]
. (3.31)

Considering the constraint (3.28), and Ui = Zi −Xi, X̂i = −Ui, V ′i Y
−1
i and from

(3.27) we can say that Ei(X)− Ei(Z) is invertible since Xi > Zi. This observation
also allows us to write R`(Ei(X)− Ei(Z))−1R′` > R` +R′` + Ei(Z)− Ei(X), (see
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[46]), in such a way that the term Her(R`) + Ei(Z) − Ei(X) can be changed by
R`(Ei(X)− Ei(Z))−1R′` in the constraint (3.28). Define the matrix Qi` as,

Qi` =

[
In In 0

0 (R−1
` )′(Ei(X)−Ei(Z)) 0

0 0 I

]
. (3.32)

Applying the congruence transformation diag(I,Qi`, I, I) in (3.28), and from that
we acquire the term R`(Ei(X) − Ei(Z))−1R′`. By consequence we can make the
variable transformation O` = R`Aη`, ∇` = R`Bη`, Γ` = R`Mη`, Cη`, Dη`. As
presented in [41] and the references therein, T̂−1

1i = Ei(X)− Ei(U)Ei(X̂)−1Ei(U),
and we also have that Ei(U) = −Ei(X̂). Therefore, T̂−1

1i = Ei(Z) = Ei(X)+Ei(U),
and so the constraint (3.27) and (3.28) can be also described as[

τ ′i P̃ τi 0

0 γ2I

]
>
∑
`∈Mi

[
τ ′iH̃i`τi •
Ñi`τi S̃i`

]
, (3.33)

 τ ′iH̃i`τi • • •
Ñi`τi S̃i` • •
ι′iÃi`τi ι

′
iJ̃i` ι

′
iEi(P̃ )−1ιi •

C̃i`τi D̃i` 0 I

 > 0. (3.34)

Using the congruence transformations diag(τ−1
i , I) in (3.33) and diag(τ−1

i , I, ι−1
i , I)

in (3.34) we get the constraints in Lemma 3.1, concluding the proof. �

3.2.2 H2 Fault Detection Filter Design for MJLS with Parameter
Estimation

3.2. THEOREM. There exists a filter in the form of (3.22) such that ‖Gaug‖22 < λ if
there exist symmetric matrices Zi, Xi, Vi`, Gi, and matrices R`, O`, ∇`, Γ`, Cη`, Dη`,
with compatible dimensions that satisfy the following LMI constraints

N∑
i=1

∑
l∈Mi

µiφi`Tr(Wi`) < λ, (3.35)[
Zi • •
Zi Xi •
0 0 Gi

]
>
∑
`∈Mi

φi` [ Vi` ] , (3.36)
[
Wi`

]
• • • •

Ei(Z)Bi Ei(Z)Ji Ei(Z)Fi Ei(Z) • • •
R`Bi+Γ` R`Ji+∇`Di R`Fi+∇`Ei0 Her(R`)+Ei(Z)−Ei(X) • •

0 0 Ei(G)Bw 0 0 Ei(E) •
0 Dη`Di Dη`Ei−Dw 0 0 0 I

 > 0, (3.37)


[
Vi`

]
• • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z) • • •
Π̃3,1 R`Ai+∇`Ci 0 0 Her(R`)+Ei(Z)−Ei(X) • •

0 0 Ei(G)Aw 0 0 Ei(G) •
Dη`Ci+Cη` Dη`Ci −Cw 0 0 0 I

 > 0, (3.38)
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where Π̃3,1 = R`Ai +∇`Ci +O`. If a feasible solution is obtained the matrices that
compose the filter are Aη` = −R−1

` O`, Bη` = −R−1
` ∇`,Mη` = −R−1

` Γ`, Cη`, Dη`.

Proof: Fixing the following structure for the matrices

P̃i =

[
Xi • •
UTi X̂i •
0 0 P 33

i

]
, P̃−1

i =

[ Yi • •
V Ti Ŷi •
0 0 P 33 −1

i

]
, Ei(P̃ )−1 =

[
T̂1i • •
T̂T2i T̂3i •
0 0 T̂4i

]
, (3.39)

and the linearization matrices

τi =

[
I I 0

V Ti Y
−1
i 0 0

0 0 I

]
, ιi =

[
T̂−1
1i Ei(X) 0

0 Ei(U)T 0

0 0 Ei(P 33)

]
, (3.40)

we get that

τTi P̃iτi =

[
Y −1
i Y −1

i 0

Y −1
i Xi 0

0 0 P 33
i

]
, ιTi Ei(P̃ )−1ιi =

[
T̂−1
1i • •
T̂−1
1i Ei(X) •
0 0 Ei(P 33)

]
. (3.41)

The matrix Ei(P̃ )−1, as explained in [61], depends nonlinearly on Ei(P̃ ). Assuming
that Ui = −X̂i, additionally from the structure of P̃i and P̃−1

i provides Ui = −X̂i =

Y −1
i −Xi = Zi −Xi, which enable us to rewrite ιTi Ei(P̃ )−1ιi as

ιTi Ei(P̃ )−1ιi =

[ Ei(Z) • •
Ei(Z) Ei(X) •

0 0 Ei(P 33)

]
. (3.42)

Considering the constraints (3.37), (3.36) and (3.38), and Ui = Zi−Xi, X̂i = −Ui,
V Ti Y

−1
i and from (3.36) we are able to say that Ei(X) − Ei(Z) is invertible due

to Xi > Zi. This observation also allows us to write R`(Ei(X) − Ei(Z))−1RT` >
Her(R`) + Ei(Z)− Ei(X), (see [46]), such that

[
Wi`

]
• • • •

Ei(Z)Bi Ei(Z)Ji Ei(Z)Fi Ei(Z) • • •
R`Bi+Γ` R`Ji+∇`Di R`Fi+∆`Ei 0 Π3,5 • •

0 0 Ei(E)Bw 0 0 Ei(G) •
0 Dη`Di Dη`Ei−Dw 0 0 0 I

 > 0, (3.43)


[
Vi`

]
• • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z) • • •
R`Ai+∇`Ci+O` R`Ai+∇`Ci 0 0 Π3,5 • •

0 0 Ei(G)Aw 0 0 Ei(G) •
Dη`Ci+Cη` Dη`Ci −Cw 0 0 0 I

 > 0, (3.44)

where Π3,5 = R`(Ei(Z) − Ei(X))−1R′`. Recall that O` = −R`Aη`, ∇` = −R`Bη`,
Γ` = −R`Mη`, Cη`, Dη`. As in [41], T̂−1

1i = Ei(X) − Ei(U)Ei(X̂)−1Ei(U)T , and
since Ei(U) = −Ei(X̂) we get that T̂−1

1i = Ei(Z) = Ei(X) + Ei(U). Define the
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matrix Qi` as,

Qi` =

[
I I 0
0 (R−1

` )T (Ei(X)−Ei(Z)) 0
0 0 I

]
. (3.45)

Applying congruence transformations diag(I,Qi`, I) and diag(I, I, I,Qi`, I), re-
spectively, in (3.43) and (3.44) we obtain the constraints below (similarly as
presented in [61])

[
Wi`

]
• • • •

Ei(Z)Bi Ei(Z)Ji Ei(Z)Fi Ei(Z) • • •
Ei(U)Bi+Ei(U)Mη` Ei(U)Ji+Ei(U)Bη`Di Ei(U)Fi+Ei(U)Bη`Ei Ei(Z) Ei(X) • •

0 0 Ei(G)Bw 0 0 Ei(G) •
0 Dη`Di Dη`Ei−Dw 0 0 0 I

 > 0,

(3.46)
[
Vi`

]
• • • •

Ei(Z)Ai Ei(Z)Ai 0 Ei(Z) • • •
Ei(U)Ai+Ei(U)Bη`Ci Ei(U)Ai+Ei(U)Bη`Ci+Ei(U)Aη` 0 Ei(Z) Ei(X) • •

0 0 Ei(G)Aw 0 0 Ei(G) •
Dη`Ci+Cη` Dη`Ci −Cw 0 0 0 I

 > 0.

(3.47)

The constraints (3.36), (3.46) and (3.47) can also be described as

τTi P̃iτi >
∑
`∈Mi

φilτ
T
i R̃i`τi, (3.48)

[
Wi` • •

ιTi B̃i`τi ι
T
i Ei(P̃ )−1ιi •

D̃i` 0 I

]
> 0, (3.49)[

τTi R̃i`τi • •
ιTi Ãi`τi ι

T
i Ei(P̃ )−1ιi •

C̃i` 0 I

]
> 0. (3.50)

Applying the congruence transformations τ−1
i , diag(I, ι−1

i ) and diag(τ−1
i , ι−1

i , I) in
(3.48), we end up with the equivalent LMI constraints as in [42], concluding the
proof. �

3.2.3 MixedH2/H∞ Fault Detection Filter Design for MJLS with
Parameter Estimation

The reason behind mixing both norms is to obtain an FDF with two characteris-
tics, the robustness against exogenous signal w(k) from the H∞, and the energy
sensibility from H2.

Note that the FDF obtained using Theorems 3.1 and 3.2 have the same structure,
so that this particular aspect allows us to solve both optimization problems at the
same time. Keeping in mind this particularity, the mixed H2/H∞ optimization
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problem may be defined as

inf{g(λ, γ), such that ‖Gaug‖22 < λ and ‖Gaug‖2∞ < γ}, (3.51)

so that (3.51) considers both (3.23) and (3.24) simultaneously. Observing (3.51),
there are several different ways to solve it. We here choose to solve (3.51) find-
ing a weighted combination of the guaranteed cost for both H2 and H∞ norms.
Therefore, the objective function can be defined as in (2.46), or (2.47), or (2.48).

In order to solve the LMIs in Theorem (3.1) and (3.2), it is necessary to define

ψ = {R`, O`,∇`, Cη`,Dη`}. (3.52)

We set

Ψ = {ψ as in (3.52), such that the LMIs (3.27), (3.28),

(3.35), (3.37), (3.38) are simultaneously feasible}, (3.53)

and,

inf
ψ∈Ψ
{g(λ, γ)}. (3.54)

3.3. THEOREM. There exists a mode-dependent FDF as in (3.22) such that ‖Gaug‖2∞ <

γ and ‖Gaug‖22 < λ if there exists ψ ∈ Ψ, where Ψ is defined as in (3.53). If a feasible
solution is obtained then a suitable FDF is given by Aη` = −R−1

` O`, Bη` = −R−1
` ∇`,

Mη` = −R−1
` Γ`, Cη`, Dη`.

Proof: The proof follows directly from the proofs for Theorems 3.1 and 3.2. �

3.2.4 Simulations Results

For the illustrative example we used the same model as presented in Appendix
A, which is a coupled tank where the fault is an abnormal input on the first tank.
However, it is necessary to add the detector matrix information as in

Γ = [ 0.65 0.35
0.75 0.25 ] . (3.55)

Using this information and solving Theorem 3.1 we obtain the FDF in the form of
(3.22) as

Aη1 =
[

0.0021 −0.0020
0.0021 −0.0020

]
, Aη2 =

[
0.0058 −0.0375
0.0478 −0.0669

]
, Mη1 =

[
0.1342 0.0698
−0.5776 0.7818

]
,
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Mη2 = [ 1.1986 0.0922
0.3684 0.9221 ] , Bη1 =

[−0.0259 −0.0107
0.0106 −0.0265

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [−0.0489 0.0469 ] , Cη2 = [−2.1824 1.7279 ] , Dη1 = [ 0.0523 −0.1963 ] ,

Dη2 = [ 0 0 ] , (3.56)

and the upper bound obtained was γ = 1.4142. Now considering Theorem 3.2 we
obtained

Aη1 =
[−0.2535 0.2444

0.2540 −0.2621

]
, Aη2 =

[−0.0132 −0.0070
0.0070 −0.0157

]
, Mη1 =

[
0.6814 −0.2061
−0.2060 0.6814

]
,

Mη2 = [ 0.7100 0.0000
0.0000 0.7100 ] , Bη1 =

[
0.4334 −0.4475
−0.4419 0.4521

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [−0.1239 −0.1239 ] , Cη2 = [ 0 0 ] , Dη1 = [−0.3259 −0.3259 ] , Dη2 = [ 0 0 ] ,

(3.57)

and the upper bound obtained was λ = 5.6378. For the Mixed problem presented
in Theorem 3.3 the results are

Aη1 =
[−0.0034 0.0107

0.0018 −0.0222

]
, Aη2 =

[−0.0037 0.0110
0.0021 −0.0242

]
, Mη1 =

[
1.5849 −0.3285
−0.0001 0.7664

]
,

Mη2 =
[

1.1125 −0.1271
−0.0000 0.7110

]
, Bη1 =

[−0.0215 −0.0227
0.0110 −0.0064

]
, Bη2 = [ 0 0

0 0 ] ,

Cη1 = [−1.3640 −1.2157 ] , Cη2 = [ 0 0 ] , Dη1 = [ 0.1416 0.1841 ] , Dη2 = [ 0 0 ] ,

(3.58)

and the upper bounds obtained are λ = 5.8733 and γ = 1.8795.

Monte Carlo Simulation

The simulations were made using the same setup from the previous section. Re-
membering that the system used in this simulation is a coupled tank and the fault
signal represents an abnormal input on the first tank at the time of t = 125s. We
consider that the threshold is TH = 1. Performing the simulation under these partic-
ular circumstances the results obtained are the residue signal r(k) using Theorem
3.1, 3.2, and 3.3. The second result is shown in Fig.3.4 with the evaluation function
for all cases in this section. Examining Figs. 3.2a, 3.2b, 3.2c it is possible to observe
that the residue signal for all three approaches behaved as intended, where they
reacted to the fault properly when it occurs. There were no changes on the residue
signal when there was no fault. Figs. 3.3a, 3.3b, 3.3c show the evaluation function
obtained using all three theorems in this section. It is noteworthy that the fastest
detection was provided by Theorem 3.1 with the detection range of [176 186]s, the
detection range obtained using Theorem 3.2 was [223 236]s, and for Theorem 3.3
was [242 253]s. All approaches detected the fault properly, therefore, all can be
considered a suitable solution for the FDI problem.
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Figure 3.2: Mean and standard deviation for residue signal obtained using FDF
designed via Theorems 3.1, 3.2, and 3.3.

3.3 Simultaneous Fault Detection and Control for-
mulation for MJLS with Parameter Estimation

In this section, we present the design of simultaneous fault detection and control
for MJLS with parameter estimation. In this particular problem, we design an FDF
and a state feedback controller at the same time. The major advantage provided by
this topology is that a single element in the system is capable of detect a fault, and
perform the regular controller task. The formulation presented here considers that
the Hidden Markov mode as in Section 3.2. However, it is necessary to redefine the
BRLs for the H∞ and H2 cases, and also rewrite the system for this specific design.
Consider the following MJLS in the stochastic space (Ω,F ,P) with filtration {Fk},

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k) + Ffθ(k)f(k)

y(k) = Lθ(k)x(k) +Hwθ(k)w(k) +Hfθ(k)f(k)

z(k) = Cθ(k)x(k) +Dθ(k)u(k),

(3.59)

where x(k) ∈ Rnx is the state, u(k) ∈ Rnu is the control input, w(k) ∈ Rnr is the
disturbance, f(k) ∈ Rnf is the signature of the failure, y(k) ∈ Rny is the measured
output, and z(k) ∈ Rnz is the controlled output. As we described in Section 3.2,
the index θ(k) represents a homogeneous Markov chain.
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(a) Mean and standard deviation for evalua-
tion function obtained using Theorem 3.1.
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(b) Mean and standard deviation for evalua-
tion function obtained using Theorem 3.2
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tion function obtained using Theorem 3.3

Figure 3.3: Mean and standard deviation for evaluation function obtained using
FDF designed via Theorems 3.1, 3.2, and 3.3.
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Figure 3.4: The mean value of the evaluation function signal for three distinct
approaches, where the blue curve represents the results using Theorem 3.1, the
red curve represents the results obtained via 3.2, the magenta curve represents the
results through Theorem 3.3, and the cyan line denotes the threshold TH.

We would like to design a type of stabilizing controller that simultaneously can
act as a residual filter as well as a controller. The controller/filter structure is given
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by

C :


xc(k + 1) = Acθ̂(k)xc(k) + Bcθ̂(k)y(k)

u(k) = Ccθ̂(k)xc(k)

f̂(k) = Cfθ̂(k)xc(k) +Dfθ̂(k)y(k),

(3.60)

where xc ∈ Rnx is the controller state and f̂(k) ∈ Rnf is an estimate of the
signature signal f(k).

The goal is to stabilize (3.59) through (3.60) whilst at the same time the
controller acts also as supervisory filter providing estimates of f̂(k) through the
residual signal

r(k) , f(k)− f̂(k).

By connecting (3.59) and (3.60) and defining x̃(k)′ ,
[
x(k)′ xc(k)′

]′
and, w̃(k)′ ,[

w(k)′ f(k)′
]′

, we get the closed-loop dynamics

Gc :


x̃(k + 1) = Ãθ(k)θ̂(k)x̃(k) + J̃θ(k)θ̂(k)w̃(k)

z(k) = C̃cθ(k)θ̂(k)x̃(k),

r(k) = C̃fθ(k)θ̂(k)x̃(k) + Ẽfθ(k)θ̂(k)w̃(k),

(3.61)

where

Ãi` ,
[

Ai BiCc`
Bc`Li Ac`

]
, J̃i` ,

[
Ji Fi

Bc`Hwi Bc`Hfi

]
,

C̃ci` , [Ci DiCc` ] , C̃fi` , [−Df`Li −Cf` ] ,

Ẽfi` , [−Df`Hwi If−Df`Hfi ] .

Let us introduce some basic concepts required for properly describing the main
goal. The concept of internal stochastic stability and stabilizability are stated next,
where A , (A1, . . . , An) ∈ B(Rnx), B , (B1, . . . , Bn) ∈ B(Rnx ,Rnu), and K ,
(K1, . . . ,Kn) ∈ B(Rnu ,Rnu), and for Q ∈ Hn, Ei(Q) ,

∑
j∈N pijQj . Considering

the augmented system (3.61) is stochastic stable, as defined in 3.1.1, the class of
the class of admissible controllers is given by C , {C}.

Next we redefine the concept of H∞ norm of (3.61) concerning outputs z(k)

and r(k) adapted from [112]. This process is necessary since we aim to provide a
solution that is an FDF and a state-feedback controller simultaneously. To fulfill this
purpose, it is necessary to redefine the optimization processes and their respective
LMIs constraints twice, where the optimization considering the output z(k) refers
to the control part of the problem, and the other considering r(k) to take up the
FDF side of the problem.
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For that, we set Wi , {w̃ ∈ lr+f2 : ‖w̃‖2i > 0}, where for any signal
g = {g(k), k = 0, 1, 2, . . .}, ‖g‖22i , E(‖g(k)‖2 | θ0 = i). Now we redefine the H∞
and H2 norms, which will be used to present later on the mixed formulation. We
start with the H∞ norm definition.

3.3. DEFINITION (H∞ NORMS). Given that C ∈ C, the H∞ norm of (3.61) with
respect to z is given by

‖Gc‖(w̃ 7→z)∞ , sup
i∈N

sup
w̃∈Wi

‖z‖2i
‖w̃‖2i

,

and the H∞ norm of (3.61) with respect to r by,

‖Gc‖(w̃ 7→r)∞ , sup
i∈N

sup
w̃∈Wi

‖r‖2i
‖w̃‖2i

.

Consider the following inequalities for given γc > 0 and γr > 0,[
Pi 0
0 γ2

c I

]
>
∑
`∈Mi

φi`
[
Mi` •
Ni` Si`

]
, (3.62)

[
Mi` •
Ni` Si`

]
>
[
Ãi` J̃i`
C̃ci` 0

]′ [ Ei(P ) 0
0 I

] [
Ãi` J̃i`
C̃ci` 0

]
, (3.63)

and [
Pi 0

0 γ2
rI

]
>
∑
l∈Mi

φi`
[
Mi` •
Ni` Si`

]
, (3.64)

[
Mi` •
Ni` Si`

]
>
[
Ãi` J̃i`
C̃fi` Ẽfi`

]′ [ Ei(P) 0
0 I

] [ Ãi` J̃i`
C̃fi` Ẽfi`

]
, (3.65)

for all i ∈ N. The following bounded-real lemma is adapted from [112].

3.3. LEMMA (BOUNDED-REAL LEMMA). If there exists P ∈ H2n+, P > 0, P ∈ H2n+,
P > 0, such that (3.62), (3.63), (3.64), and (3.65) hold, then C ∈ C, ‖Gc‖(w̃ 7→z)∞ <

γc and ‖Gc‖(w̃ 7→r)∞ < γr.

Therefore the goal is to design C ∈ C so that ‖Gc‖(w̃ 7→z)∞ < γc and ‖Gc‖(w̃ 7→r)∞ < γr
for w̃ ∈ Wi, i ∈ N. Specifically in this work we focus our efforts in finding

inf
C∈C,P,γr,γc

{γcβc + γrβr}: s. t. (3.62), (3.63), (3.64) and (3.65) (3.66)

hold for a given βc > 0, βr > 0. This particular formulation will be useful later on
in this paper. We present next the H2 norm definition.

3.4. DEFINITION (H2 NORMS). Assume that C ∈ C. For x̃(0) = 0, define zs,i and rs,i,
the outputs of (3.61) for the initial condition θ(0) = i and the input w̃(k) = 0 for
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k > 1 and w̃(0) = es, where es is the s−th vector of the standard basis of Rs. The H2

norms of (3.61) with respect to the ouputs z and r are given by

‖Gc‖(w̃ 7→z)2 =

√√√√ r∑
s=1

N∑
i=1

µi‖zs,i‖22 (3.67)

and

‖Gc‖(w̃ 7→r)2 =

√√√√ r∑
s=1

N∑
i=1

µi‖rs,i‖22, (3.68)

where the initial Markov chain state distribution is given by P(θ(0) = i) = µi > 0 for
all i ∈ N.

Considering the strict inequalities,

Q̃i >
∑
`∈Mi

φi`(Ã
′
i`Ei(Q̃)Ãi` + C̃ ′ci`C̃ci`), i ∈ N, ` ∈Mi, (3.69)

and

Q̃i >
∑
l∈Mi

φi`(Ã
′
i`Ei(Q̃)Ãi` + C̃ ′fi`C̃fi`), i ∈ N, l ∈Mi, (3.70)

for Q̃i > 0 and Qi > 0, we have that

(
‖Gc‖(w̃ 7→z)2

)2

<

N∑
i=1

∑
l∈Mi

φi`µiTr(J̃ ′i`Ei(Q̃)J̃i`) (3.71)

and

(
‖Gc‖(w̃ 7→r)2

)2

<

N∑
i=1

∑
`∈Mi

φi`µiTr(J̃ ′i`Ei(Q̃)J̃i` + Ẽ′fi`Ẽfi`). (3.72)

Following the discussion presented in [38] and [42], we get that if the following
inequalities for the filter part

N∑
i=1

∑
`∈Mi

µiφi`Tr(Wi`) < λ2
r, (3.73)

[
Wi` • •
J̃i` Ei(Q̃)−1 •
Ẽfi` 0 I

]
> 0, (3.74)
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Q̃i` >
∑
l∈Mi

φi`R̃i`, (3.75)[
R̃i` • •
Ãi` Ei(Q̃)−1 •
C̃fi` 0 I

]
> 0. (3.76)

and for the controller side

N∑
i=1

∑
`∈Mi

µiφi`Tr(Wi`) < λ2
c , (3.77)[

Wi` •
J̃i` Ei(Q̃)−1

]
> 0, (3.78)

Q̃i` >
∑
`∈Mi

φi`R̃i`, (3.79)

[
R̃i` • •
Ãi` Ei(Q̃)−1 •
C̃ci` 0 I

]
> 0. (3.80)

hold, then C ∈ C, ‖Gc‖(w̃ 7→z)2 < λc and ‖Gc‖(w̃ 7→r)2 < λr. Similarly to the H∞ case,
the main goal is to design C ∈ C so that ‖Gc‖(w̃ 7→z)2 < λc and ‖Gc‖(w̃ 7→r)2 < λr for
w̃ ∈ Wi, i ∈ N. Specifically in this work we focus our efforts in finding

ψ = {Wi`, Qi, Ri`,Wi`,Qi,Ri`, i ∈ N, ` ∈Mi} (3.81)

∆ = {ψ such that (3.73)-(3.80) hold }
inf

C∈C,P,λr,λc
{λcζc + λrζr} : s. t. ψ ∈ ∆, (3.82)

for a given ζc, ζr > 0. Similarly to the H∞ case, we choose this particular formula-
tion in order to derive some results later on.

3.3.1 H∞ Simultaneous Fault Detection and Control Design for
MJLS with parameter estimation

The next result presents BMI constraints regarding the controller design (3.83),
(3.84), and for the filter design (3.85) and (3.86).

3.4. THEOREM. There exists an SFDC described as in (3.60) such that C ∈ C, ‖Gc‖(w̃ 7→z)∞

< γc, and ‖Gc‖(w̃ 7→r)∞ < γr for fixed γc > 0 and γr > 0 if there exist symmetric ma-
trices Zi, Xi, M11

i` , M22
i` , S11

i` , S22
i` , Zi, Xi, M11

i` , M22
i` , S11

i` , S22
i` , and the matrices

M21
i` , S21

i` , M21
i` , S21

i` , N11
i` , N12

i` , N21
i` , N22

i` , N11
i` , N12

i` , N21
i` , N22

i` , G`, Γ`, χ`, Θ`, Φ`,
and K` with compatible dimensions such that inequalities (3.83), (3.84), (3.85), and
(3.86) hold ∀i ∈ N, ` ∈M. If a feasible solution is obtained, a suitable SFDC is given
by Ac` = −G−1

` Γ`, Bc` = −G−1
` χ`, Cc` = K`, Cf` = −Θ`, Df` = −Φ`.
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[ Zi • • •
Zi Xi • •
0 0 γ2

c ∞I •
0 0 0 γ2

c ∞I

]
>
∑
l∈Mi

φi`

M11
i` • • •

M21
i` M22

i` • •
N11
i` N12

i` S11
i` •

N21
i` N22

i` S21
i` S22

i`

 , (3.83)


M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Π5,1 Ei(Z)Ai Ei(Z)Ji Ei(Z)Fi Ei(Z) • •
Π6,1 G`Ai+χ`Li G`Ji+χ`Hwi G`Fi+χ`Hfi 0 Π6,6 •

Ci+DiK` Ci 0 0 0 0 I

 > 0, (3.84)

Π5,1 = Ei(Z)(Ai +BiK`), Π6,1 = G`(Ai +BiK`) + Γ` + χ`Li,

Π6,6 = Her(G`) + Ei(Z −X),

[ Zi • • •
Zi Xi • •
0 0 γ2

r ∞I •
0 0 0 γ2

r ∞I

]
>
∑
l∈Mi

φi`

M11
i` • • •

M21
i` M22

i` • •
N11
i` N12

i` S11
i` •

N21
i` N22

i` S21
i` S22

i`

 , (3.85)


M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Π̌5,1 Ei(Z)Ai Ei(Z)Ji Ei(Z)Fi Ei(Z) • •
Π̌6,1 G`Ai+χ`Li G`Ji+χlHwi G`Fi+χ`Hfi 0 Π̌6,6 •
Π̌7,1 Φ`Li Φ`Hwi I+Φ`Hfi 0 0 I

 > 0. (3.86)

Π̌5,1 = Ei(Z)(Ai +BiK`), Π̌6,1 = G`(Ai +BiK`) + Γ` + χ`Li,

Π̌7,1 = Θ` + Φ`Li, Π̌6,6 = Her(G`) + Ei(Z− X).

Proof: The proof follows similar reasoning as presented in [44] and [61]. We
set the structure of matrices Pi and P−1

i of (3.62)-(3.63) as

Pi =
[
Xi •
Ui X̂i

]
, P−1

i =
[
Z−1
i •
Vi Ŷi

]
, (3.87)

and similarly for matrices Pi and P−1
i of (3.64)-(3.65), we set

Pi =
[
Xi •
Ui X̂i

]
, P−1

i =
[
Z−1
i •
Vi Ŷi

]
. (3.88)
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We also define the matrices τi and υi as

τi =
[

I I
ViZi 0

]
, υi =

[
I Ei(X)
0 Ei(U)

]
, (3.89)

along with
ti =

[
I I

ViZi 0

]
, ui =

[
I Ei(X)
0 Ei(U)

]
. (3.90)

By verifying the diagonal blocks of (3.83) and also (3.84), we note that Her(G`) >
Ei(X − Z) > 0 so that G` is non-singular. Considering the fact that PiP−1

i = I

and PiP
−1
i = I, we rewrite the matrices Pi and P−1

i by setting Ui = −X̂i, and
matrices Pi and P−1

i by setting Ui = −X̂i, as follows

Pi =
[

Xi •
Zi−Xi Xi−Zi

]
, (3.91)

P−1
i =

[
Z−1
i •

Z−1
i Z−1

i +(Xi−Zi)−1

]
, (3.92)

and

Pi =
[

Xi •
Zi−Xi Xi−Zi

]
, (3.93)

P−1
i =

[
Z−1
i •

Z−1
i Z−1

i +(Xi−Zi)−1

]
. (3.94)

Besides, (3.146) and (3.90) become

τi =

[
I I

I 0

]
, υi =

[
I Ei(X)

0 Ei(Z −X)

]
, (3.95)

and

ti =

[
I I

I 0

]
, ui =

[
I Ei(X)

0 Ei(Z− X)

]
. (3.96)

Since G` is non-singular, we set Γ` = −G`Ac`, χ` = −G`Bc`, K` = Cc`, Θ` = −Cf`,
and Φ` = −Df`. As presented in [46, 61], we get that G`Ei(X − Z)−1GT` >
Her(G`) +Ei(Z −X) and G`Ei(X− Z)−1GT` > Her(G`) + Ei(Z−X) so that (3.84)
and (3.86) still hold if the diagonal blocks in which Her(G`) + Ei(Z − X) and
Her(G`) + Ei(Z− X) appear are substituted by G`Ei(X − Z)−1GT` and G`Ei(X−
Z)−1GT` , respectively, resulting in


M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Ξ51 Ei(Z)Ai Ei(Z)Ji Ei(Z)Fi Ei(Z) • •
Ξ61 Ξ62 Ξ63 Ξ64 0 Ξ66 •

Ci+DiCc` Ci 0 0 0 0 I

 > 0, (3.97)
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and 
M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Ξ̃51 Ei(Z)Ai Ei(Z)Jwi Ei(Z)Fi Ei(Z) • •
Ξ61 Ξ62 Ξ63 Ξ64 0 Ξ̃66 •

−Cf`−Df`Li −Df`Li −Df`Hwi I−Df`Hfi 0 0 I

 > 0, (3.98)

where

Ξ51 = Ei(Z)(Ai +BiCc`), Ξ61 = G`(Ai +BiCc`)−G`Ac` −G`Bc`Li,
Ξ62 = G`Ai −G`Bc`Li, Ξ63 = G`Ji −G`Bc`Hwi, Ξ64 = G`Fi −G`Bc`Hfi,

Ξ66 = G`Ei(X − Z)−1G′`, Ξ̃51 = Ei(Z)(Ai +BiCc`), Ξ̃66 = G`Ei(X− Z)−1G′`.

By defining the following matrices

Πi` =
[
Ei(Z)−1 I

0 G−T` Ei(X−Z)

]
, (3.99)

and
π̃i` =

[
Ei(Z)−1 I

0 G−T` Ei(X−Z)

]
, (3.100)

and applying the congruence transformations diag(I, I,Πi`, I) and diag(I, I, π̃i`, I)

to (3.150) and (3.98), respectively, we get that τ ′iMi`τi • • •
Ni`τi Si` • •
υ′iÃi`τi υ

′
iJ̃i` υ

′
iEi(P )−1υi •

C̃ci`τi 0 0 I

 > 0, (3.101)

and  t′iMi`ti • • •
Ni`ti Si` • •
u′iÃi`ti u′iJ̃i` u′iEi(P)−1ui •
C̃fi`ti Ẽfi` 0 I

 > 0, (3.102)

hold, for τi, υi, ti, and ui given as in (3.149) and (3.96). By applying the congru-
ence transformations diag(τ−1

i , I, υ−1, I) and diag(t−1
i , I, u−1

i , I) to (3.152) and
(3.102), respectively, and the Schur complement to the resulting inequalities, we
get that (3.63) and (3.65) hold. Finally, by noting that (3.83) and (3.85) can be
equivalently rewritten as follows[

τ ′iPiτ •
0 γ2

c I

]
>
∑
l∈Mi

φi`

[
τ ′iMi`τi •
Ni`τi Si`

]
, (3.103)
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and [
t′iPiti •

0 γ2
rI

]
>
∑
l∈Mi

φi`

[
t′iMi`ti •
Ni`ti Si`

]
, (3.104)

we get, after applying the congruence transformations diag(τ−1
i , I) and diag(t−1

i , I)

to (3.153) and (3.104), respectively, that (3.62) and (3.64) hold. Thus, since
(3.62)-(3.63) and (3.64)-(3.65) hold for the closed-loop system as in (3.61), we
get from Lemma 3.3 that C ∈ C, ‖Gc‖w̃ 7→z < γc, and ‖Gc‖w̃ 7→r < γr, and the claim
follows. �

3.3.2 H2 Simultaneous Fault Detection and Control Design for
MJLS with parameter estimation

The next result presents BMI constraints related to the control and filter design of
the SFDC system (3.60).

3.5. THEOREM. There exists an SFDC described as in (3.60) such that C ∈ C, ‖Gc‖(w̃ 7→z)2

< λc, and ‖Gc‖(w̃ 7→r)2 < λr for fixed λc > 0 and λr > 0 if there exist symmetric ma-
trices W 11

i` , W 22
i` , Ti, Oi, V 11

i` , V 22
i` , W11

i` , , V22
i` Ti, Oi, V11

i` , V22
i` and the matrices

W 21
i` , V 21

i` , W21
i` , V21

i` G`, Γ`, χ`, Θ`, Φ`, and K` with compatible dimensions such
that inequalities (3.105), (3.106), (3.107), (3.108), (3.109), (3.110), (3.111), and
(3.112) hold ∀i ∈ N, ` ∈M. If a feasible solution is obtained, a suitable SFDC is given
by Ac` = −G−1

` Γ`, Bc` = −G−1
` χ`, Cc` = K`, Cf` = −Θ`, Cf` = −Θ`, Df` = −Φ`.

Proof: The proof follows the similar reasoning as the one employed in the proof
of Theorem 3.4. Similarly as presented in [61], [44], the structure of matrices Q̃i
and Q̃−1

i of (3.73)-(3.76), and Q̃i and Q̃−1
i of (3.77)-(3.80), are

Q̃i =
[
Oi •
Ūi Ôi

]
, Q̃−1

i =
[
T−1
i •
V̄i T̂i

]
, (3.113)

and

Q̃i =
[
Oi •
Ūi Ôi

]
, Q̃−1

i =
[
T−1
i •
V̄i T̂i

]
. (3.114)

We also define the matrices ηi and σi

ηi =
[

I I
V̄iTi 0

]
, σi =

[
I Ei(T )

0 Ei(Ū)

]
, (3.115)

along with ni and si,

ni =

[
I I

V̄iTi 0

]
, si =

[
I Ei(T)

0 Ei(Ū)

]
. (3.116)
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∑
i∈N

∑
l∈Mi

µiφi`Tr(Wi`) < λ2
c , (3.105)

[
Ti •
Ti Oi

]
>
∑
`∈Mi

[
V 11
i` •
V 21
i` V 22

i`

]
, (3.106)

 W 11
i` • • •

W 21
i` W 22

i` • •
Ei(T )Ji Ei(T )Fi Ei(T ) •

G`Ji+χ`Hwi G`Fi+χ`Hfi 0 Her(G`)+Ei(T−O)

 > 0, (3.107)

 V 11
i` • • • •
V 21
i` V 22

il • • •
Ei(T )(Ai+BiK`) Ei(T )Ai Ei(T ) • •

G`(Ai+BiK`)+Γ`+χ`Li G`Ai+χ`Li 0 Her(G`)+Ei(T−O) •
Ci+DiK` Ci 0 0 I

 > 0, (3.108)

∑
i∈N

∑
`∈Mi

µiφi`Tr(Wi`) < λ2
r, (3.109)

[
Ti •
Ti Oi

]
>
∑
`∈Mi

[
V11
i` •

V21
i` V22

i`

]
, (3.110)


W11
i` • • • •

W21
i` W22

i` • • •
Ei(T)Ji Ei(T)Fi Ei(T) • •

G`Ji+χ`Hwi G`Fi+χ`Hfi 0 Her(G`)+Ei(T−O) •
Φ`Hwi I+Φ`Hfi 0 0 I

 > 0, (3.111)

 V11
i` • • • •

V21
i` V22

i` • • •
Ei(T)(Ai+BiK`) Ei(T)Ai Ei(T) • •

G`(Ai+BiK`)+Γ`+χ`Li G`Ai+χ`Li 0 Her(G`)+Ei(T−O) •
Θ`+Φ`Li Φ`Li 0 0 I

 > 0. (3.112)

We get from (3.107)-(3.108) as well as (3.111)-(3.112) that G` is non-singular.
By setting Ūi = −Ôi and Ūi = −Ôi in (3.158) and (3.114) and using the fact that
Q̃iQ̃

−1
i = I and Q̃iQ̃

−1
i = I, we get that (3.158)-(3.116) can be rewritten as

Q̃i =
[

Oi •
Ti−Oi Oi−Ti

]
, Q̃−1

i =
[
T−1
i •
T−1
i Υ1i

]
, (3.117)

where Υ1i = T−1
i − (Oi − Ti)−1, and

Q̃i =
[

Oi •
Ti−Oi Oi−Ti

]
, Q̃−1

i =
[
T−1
i •

T−1
i Υ2i

]
, (3.118)

where Υ2i = T−1
i − (Oi − Ti)

−1, along with

ηi = [ I II 0 ] , σi =
[
I Ei(T )
0 Ei(T−O)

]
(3.119)
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and

ni =

[
I I

I 0

]
, si =

[
I Ei(T)
0 Ei(T−O)

]
. (3.120)

Recalling the previous reasoning applied in the proof of Theorem 3.4, we get that
G`Ei(O−T )−1G′` > Her(G`)+Ei(T−O) andG`Ei(O−T)−1G′` > Her(G`)+Ei(T−
O). By performing the change of variables Γ` = −G`Ac`, χ` = −G`Bc`, K` = Cc`,
Θ` = −Cf`, and Φ` = −Df`, we can rewrite (3.107)-(3.108) and (3.111)-(3.112)
as follows W 11

i` • • •
W 21
i` W 22

i` • •
Ei(T )Ji Ei(T )Fi Ei(T ) •

G`[Ji−Bc`Hwi] G`[Fi−Bc`Hfi] 0 G`Ei(O−T )−1G′`

 > 0, (3.121)

and 
V 11
i` • • • •
V 21
i` V 22

i` • • •
Ei(T )Ai(Cc`) Ei(T )Ai Ei(T ) • •
G`Υ3i` G`[Ai−Bc`Li] 0 G`Ei(O−T )−1G′` •
Ci+DiCc` Ci 0 0 I

 > 0, (3.122)

where Ai(Cc) = Ai +BiCc` and Υ3i` = [Ai(Cc`)−Ac` − Bc`Li]. Along with
W11
i` • • • •

W21
i` W22

i` • • •
Ei(T)Ji Ei(T)Fi Ei(T) • •

G`[Ji−Bc`Hwi] G`[Fi−Bc`Hfi] 0 G`Ei(O−T)−1G′` •
−Df`Hwi I−Df`Hfi 0 0 I

 > 0, (3.123)

and 
V11
i` • • • •

V21
i` V22

i` • • •
Ei(T)Ai(Cc`) Ei(T)Ai Ei(T) • •
G`Υ3i` G`[Ai−Bc`Li] 0 G`Ei(O−T)−1G′` •

−Cf`−Df`Li −Df`Li 0 0 I

 > 0. (3.124)

By defining the matrices

Π̄i` =
[
Ei(T )−1 I

0 G−T` Ei(O−T )

]
,

and

π̄i` =
[
Ei(T)−1 I

0 G−T` Ei(O−T)

]
,

and applying the congruence transformations diag(Ir+f , Π̄i`) and diag(I2n, Π̄i`, Iq)

to (3.162) and (3.163) as well as diag(Ir+f , π̄i`, If ) and diag(I2n, π̄i`, If ) to (3.123)-
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(3.124), we get [
Wi` •
σ′iJ̃i` σ

′
iEi(Q̃)−1σi

]
> 0, (3.125)[

η′iR̃i`ηi • •
σ′iÃi`ηi σ

′
iEi(Q̃)−1σi •

C̃ci`ηi 0 I

]
> 0, (3.126)

and [ Wi` • •
s′iJ̃i` s′iEi(Q̃)−1si •
Ẽf` 0 I

]
> 0, (3.127)[

n′iR̃i`ni • •
s′iÃi`ni s′iEi(Q̃)−1si •
C̃fi`ni 0 I

]
> 0. (3.128)

By applying the congruence transformations diag(I, σ−1
i ), diag(η−1

i , σ−1
i , I),

diag(I, s−1
i , I), diag(n−1

i , s−1
i , I) to (3.164)-(3.128), we get that (3.74), (3.76),

(3.78), and (3.80) hold with the closed-loop matrices of system (3.61). Finally, by
noting that (3.106) and (3.110) can be rewritten as follows

η′iQ̃iηi >
∑
`∈Mi

φi`η
′
iR̃i`ηi, (3.129)

and

n′iQ̃ini >
∑
`∈Mi

φi`n
′
iR̃i`ni, (3.130)

and thus, by noting that (3.105) and (3.109) are equivalent to (3.73) and (3.77),
and by applying the congruence transformations η−1

i and n−1
i to (3.166)-(3.130),

respectively, we get that (3.75)-(3.79) are also satisfied. Therefore, considering the
discussion presented in Section 3.2, see, for instance, [38] and [42], we get that
C ∈ C, ‖Gc‖(w̃ 7→z)2 < λc, and ‖Gc‖(w̃ 7→r)2 < λr, and the claim follows. �

3.3.3 Mixed H2/H∞ Simultaneous Fault Detection and Control
Design for MJLS with parameter estimation

We present now the design of mixed H2/H∞ SFDC for MJLS with partial informa-
tion on the jump parameter.

Observing the constraints in Theorems 3.4 and 3.5 it is possible to notice that the
structure to obtain SFDC is the same, therefore a mixed solution can be formulated.

To increase the overall performance the H2 norm will be considered in the
controller side of the design due to its equivalence to the LQR controllers, which
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provide good performance in practical solutions. For the fault detection side, we
consider the H∞ norm, which provides an FDI with a lower occurrence of false
alarms, [93, 127].

From the aforementioned discussion, we consider the mixed solution with the
control side of the SFDC designed using the BMI conditions for Theorem 3.5 and
the fault detection side obtained using the BMI from Theorem 3.4. Hence, the new
rewritten optimization problem is

φ = {Zi,Xi,Mi`,Ni`,Si`,Wi`, Vi`, Ti, OiG`,Γ`, χ`,K`,Θ`,Φ`} (3.131)

κ = {φ such that (3.85)-(3.86) and (3.105)-(3.108) hold

inf
C∈C,P,γr,λc

{λcζc + γrβr} : s. t. φ ∈ κ. (3.132)

for a given ζc > 0, βr > 0.

3.6. THEOREM. There exists an SFDC described as in (3.60) such that C ∈ C, ‖Gc‖(w̃ 7→r)∞

< γr, and ‖Gc‖(w̃ 7→z)2 < λc for fixed, γr > 0, and λc > 0 if there exist symmetric
matrices Zi, Xi, M11

i` , M22
i` , S11

i` , S22
i` , W 11

i` , W 22
i` , V 11

i` , V 22
i` , Ti, Oi and the matrices

M21
i` , S21

i` , N11
i` , N12

i` , N21
i` , N22

i` , W 21
i` , V 21

i` ,G`, Γ`, χ`, Θ`, Φ`, and K` with com-
patible dimensions such that inequalities, (3.85), (3.86), (3.105), (3.106), (3.107),
and (3.108), hold ∀i ∈ N, ` ∈ Mi. If a feasible solution is obtained, a suitable
fault-compensation controller is given by Ac` = −G−1

` Γ`, Bc` = −G−1
` χ`, Cc` = K`,

Cf` = −Θ`, and Df` = −Φ`.

Proof: The proof for Theorem 3.6 is a direct consequence of Theorems 3.4 and 3.5.
�

Coordinate Descent Algorithm
As explained at the start of this section the constraints in Theorem 3.4 and

3.5 are in the form of Bilinear Matrices Inequalities. Therefore it is necessary to
implement an appropriate procedure to solve such a problem. It can be found
in the literature several numerical ways of dealing with BMI as, for instance, a
combination of line search and a sequence of LMI as presented in [121]. Although
of great interest, an analysis of the techniques to solve the BMI in Theorems 3.4
and 3.5 would fall outside the scope of this thesis. Due to that, we will focus on a
procedure that is extensively used in the literature known as the Coordinate Descent
Algorithm (CDA), as implemented in [108], or [119]. The specific approach
implemented in the present paper was first introduced in [44].

By inspection, it is possible to observe that all the non-linearities are ”caused”
by the state-feedback controller K. A usual workaround for those non-linearities is
to fix the state-feedback controller and solve the resulting LMI. Assume that there
exists a state-feedback controller K, and apply this controller in the constraints
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(3.83), (3.84),(3.85), and (3.86) for the H∞ case, or (3.105), (3.106), (3.107),
(3.108), (3.109), (3.110), (3.111), and (3.112) for the H2 case. If a feasible
solution is found it may or may not be the optimized solution, due to the choice of
the state-feedback controller. The CDA algorithm is described as in Algorithm 2.

Algorithm 2: Coordinate Descent Algorithm

Input: Kl,γ−1,tmax,ε
Output: Ac,Bc,Cc,Cf ,Df

1 Design stabilizing state-feedback controller(e.g. [112]).
2 Fix K in the LMI constraints for the H∞ case or for the H2 case, and solve it

to obtain the matrices Zi, Zi, and G` for the H∞ case, or Ti, Ti, and G` for
the H2 case, or Zi, Ti, and G` for the mixed case.

3 Fix Zi, Zi, G` for H∞ case, or Ti, Ti, and G` for the H2 case, or Zi, Ti, and
G` for the mixed case, and solve the same LMI constraint and now obtain
Ac`, Bc`, Cc`, Cf`, Df`, and the upper bound values γc, γr for the H∞ case
and λc, λr for the H2 case.

4 If γ
t−1
c −γtc
γt−1
c

6 ε or t 6 tmax, go back to step 2.

3.1. REMARK. Note that the initial condition for Kl can be obtained from the results
in [112], which is a state-feedback controller with similar MJLS assumptions. If the
first iteration finds a feasible solution then the CDA will eventually converge to a better
solution, and the amount of iteration is set using the stop criterion ε.

3.3.4 Simulations Results

In the same manner as in the other examples in this chapter we use the coupled
tank. The discrete-time domain space-state model is

A1,2 =
[−0.0239 −0.0127

0.0127 −0.0285

]
, B1,2 = [ 0.71 0

0 0.71 ] ,

Jw 1,2 = 0.01B1,2, Jf 1,2 = I2×2,

L1 = I2×2, L2 = 02×2, Hw 1,2 = 0.1I2×2, Hf 1,2 = 02×2,

C1 = I2×2, C2 = 02×2, D1 = I2×2, D2 = 02×2.

The transition matrix, initial distribution, and φk` are

P = [ 0.8 0.2
0.6 0.4 ] , µ′ = [ 0.7

0.3 ] , Ψ = [ 0.7 0.3
0.6 0.4 ] . (3.133)

The SFDC obtained using Theorem 3.4 is
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Ac1 =
[

0.5053 0.1653
−0.2767 0.4161

]
, Ac2 =

[
0.2048 0.0686
−0.1065 0.1725

]
,

Bc1 =
[−0.8252 −0.2487

0.5756 −0.8252

]
, Bc2 =

[−0.7180 −0.2263
0.5173 −0.7661

]
,

Cc1 = 10−4
[−0.1854 −0.0811

0.0043 −0.1406

]
, Cc2 = 10−4

[
0.4957 0.3046
−0.0602 0.3867

]
,

Cf1 = 10−6
[−0.1244 −0.0451

0.0547 −0.1130

]
, Cf2 = 10−6

[−0.5927 −0.2846
0.2542 −0.6101

]
,

Df1 = 10−5
[−0.2573 −0.0176
−0.0419 −0.1089

]
, Df2 = 10−5 [ 0.6632 0.0647

0.0588 0.3256 ] .

The SFDC obtained using Theorem 3.5 is

Ac1 =
[

0.5929 0.0388
0.0201 −0.1255

]
, Ac2 =

[−0.5929 −0.0388
−0.0201 0.1255

]
,

Bc1 = 10−6
[−0.2409 −0.0079

0.0093 −0.3303

]
, Bc2 = 10−6 [ 0.3691 0.0010

0.0044 0.0364 ] ,

Cc1 =
[

0.8648 0.0728
0.0108 −0.1349

]
, Cc2 =

[−0.8053 −0.0366
−0.0460 0.2186

]
,

Cf1 = 10−13
[

0.0748 −0.0001
0.0000 −0.1463

]
, Cf2 = 10−13

[−0.0835 0.0001
−0.0000 0.1375

]
,

Df1 =
[

43.2163 −0.0000
−0.0000 7.5839

]
, Df2 =

[−33.2163 0.0000
0.0000 2.4161

]
.

For the last, the SFDC obtained using Theorem 3.6 is

Ac1 =
[

0.5929 0.0388
0.0201 −0.1255

]
, Ac2 =

[−0.5929 −0.0388
−0.0201 0.1255

]
,

Bc1 = 10−6
[−0.2409 −0.0079

0.0093 −0.3303

]
, Bc2 = 10−6 [ 0.3691 0.0010

0.0044 0.0364 ] ,

Cc1 =
[

0.8648 0.0728
0.0108 −0.1349

]
, Cc2 =

[−0.8053 −0.0366
−0.0460 0.2186

]
,

Cf1 = 10−13
[

0.0748 −0.0001
0.0000 −0.1463

]
, Cf2 = 10−13

[−0.0835 0.0001
−0.0000 0.1375

]
,

Df1 =
[

43.2163 −0.0000
−0.0000 7.5839

]
, Df2 =

[−33.2163 0.0000
0.0000 2.4161

]
.

Monte Carlo Simulation

The same setup from the other examples was also implemented in this simulation.
The Monte Carlo simulation with 300 iterations was performed, and the results
obtained are shown in the following manner, first we present the output signal
obtained using Theorem 3.4, 3.5 and, 3.6, in Figs. 3.5a, 3.5b, the average and
standard deviation of the control signal obtained using Theorems 3.4, 3.5, 3.6 is
presented in Fig. 3.7a, 3.7b, and 3.7c show the residue signals acquired for each
case, and the evaluation function in Fig, 3.8.

Observe that all controllers manage to stabilize the system, even in the presence
of the fault, however, some presented a higher level of steady-state error after the
fault, which is expected, since this controller was not designed to mitigate nor
accommodate the fault. The important aspect that is observed in Figs. 3.5a, 3.5b
that all controllers designed simultaneously worked properly.
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(a) Mean for first output signal obtained using
Theorems 3.4, 3.5, and 3.6 .
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(b) Mean for second output signal obtained
using Theorems 3.4, 3.5, and 3.6.

Figure 3.5: The Mean of the output signals obtained for SFDC designed via Theorem
3.4(blue curve), 3.5(red curve), and 3.6(magenta curve). All three curves were
obtained when there is a fault, except for the green curve which represents the
states without fault.

Now we present Figs. 3.6a, 3.6b, 3.6c which represents the mean and standard
deviation for the control signal using Theorems 3.4, 3.5, and 3.6 respectively.
Observe that all control signals presented a proper behavior and standard deviation.
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(a) Mean and standard deviation for control
signal obtained using Theorem 3.4.
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(b) Mean and standard deviation for control
signal obtained using Theorem 3.5
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(c) Mean and standard deviation for control
signal obtained using Theorem 3.6

Figure 3.6: Mean and standard deviation for all control signals acquired using the
SFDC designed via Theorems 3.4(blue curve), 3.5(red curve), and 3.6(magenta
curve).

Therefore, the controller side of the SFDC works properly.
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The residue behavior obtained via Theorems 3.4, 3.5, and 3.6 are presented in
Figs. 3.7a, 3.7b, and 3.7c. Regarding the residue signal obtained with Theorems
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(a) Mean and standard deviation for residue
signal obtained using Theorem 3.4.
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(b) Mean and standard deviation for residue
signal obtained using Theorem 3.5
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-1

0

(c) Mean and standard deviation for residue
signal obtained using Theorem 3.6

Figure 3.7: Mean and standard deviation for all residue signals acquired using the
SFDC designed via Theorems 3.4(blue curve), 3.5(red curve), and 3.6(magenta
curve).

3.4, 3.5, and 3.6 presented a similar behavior, however, the result obtained using
3.4 in 3.7a show a slightly better performance. Observe that the standard deviation
for all three approaches is low. Leading to a low chance of false alarms.

The last result obtained via Monte Carlo simulation is the behavior of the
evaluation function for each case. This result is presented in Fig. 3.8 Fig.3.8
allows us to state that the results obtained using Theorem 3.4 presented a better
performance, but all the proposed approaches successfully detected the fault, hence,
all approaches are viable solution for the FDI problem.

3.4 Fault Accommodation Formulation for MJLS with
Parameter Estimation

The Fault Accommodation Control problem is a particular class of FTC, which uses a
different approach when compared to the usual FTC in the literature. The majority
of FTC approaches consider the occurrence of faults during the design process of
a static controller. In the case of FAC, two controllers are working alongside each
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Figure 3.8: The mean value of the evaluation function signal for three distinct
cases, where the blue curve represent the results using Theorem 3.4, the red curve
represent the results obtained via 3.5, the black curve represents the results through
Theorem 3.6, the green curve portrays the evaluation function signal when there is
no fault signal, and the indigo line denotes the threshold TH.

other where the first one is designed for the nominal conditions while the other
one will be active when a fault occurs.

For the FAC problem, we consider the following MJLS formulation

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)uTotal(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k),

x(0) = x0,

(3.134)

where the vectors x(k) ∈ Rnx , y(k) ∈ Rnp , w(k) ∈ Rnd , f(k) ∈ Rnf , uTotal(k) ∈
Rnu are respectively, the system state, output, exogenous input, fault signal, the
control input, and θ(k) denotes the mode of a Markov chain which is initialized at
θ0. The nominal control is provided by a state-feedback controller

u(k) = Kθ̂(k)x(k), (3.135)

where x(k) ∈ Rnx represents the states of system (3.134).

Fig.3.9 depicts the overall block diagram of the MJLS along with the FAC
controllers K` for the nominal one and Kc` for the faulty ones.

As shown in Fig.3.9, the signal utotal(k) is the sum of the nominal control signal
u(k) and the fault compensation control signal h(k), as in

uTotal(k) = u(k) + h(k). (3.136)
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System
Gθ(k)

Controller
Kθ̂(k)

FAC Kcθ̂(k)

Fault f(k)

uTotal(k)

u(k)Noise w(k) x(k)

h(k)y(k)

Figure 3.9: Fault accommodation control scheme diagram under the assumption
that the network model is not accessible.

Consequently, in nominal conditions the signal h(k) is close to zero. In other
words, the fault compensation control signal only acts in the presence of a fault as
expected.

The FAC controller Kc is assumed to have the following structure

Kc :


η(k + 1) = Aθ̂(k)η(k) + Mθ̂(k)u(k) + Bθ̂(k)y(k),

h(k) = Cθ̂(k)η(k),

η(0) = η0,

(3.137)

where η ∈ Knη represents the FAC state vector, u(k) and y(k), are respectively, the
control signal from the nominal controller and the measured signal from the system.
It is of utmost importance to note that the FAC does not depend on the index θ(k).
Instead, it depends solely on the index θ̂(k), which is one of the novelties of the
present work.

As presented in Figure 3.9 the closed-loop for system (3.134), the state feedback
control law (3.135), and the proposed FAC (3.137) can be compactly written as

Gaug :


x̄(k + 1) = Āθ(k)θ̂(k)x̄(k) + J̄θ(k)θ̂(k)w̄(k),

z̄(k) = C̄θ(k)θ̂(k)x̄(k) + D̄θ(k)θ̂(k)w̄(k),

x̄(0) = η0,

(3.138)

where x̄(k) = [x(k) η(k)] and w̄(k) = [w(k) f(k)], with the augmented matrices
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given by

Āi` =

[
Ai −BiK` BiC`

B`Ci −M`K` Ai

]
, J̄i` =

[
Ji Fi

B`Di 0

]
. (3.139)

As previously stated, the main purpose of this work is to provide a FAC design,
as in (3.137), where the supplementary control signal will accommodate the
fault signal. This accommodation for the H∞ case is described by the difference
o(k) = Fθ(k)f(k)−Bθ(k)h(k), which we desire to be close to zero. From the above,
the optimization problem regarding the H∞ case can be described as

‖Gaug‖∞ = sup
‖w̄‖2 6=0,w̄∈L2

‖o‖2
‖w̄‖2

< γ, γ > 0, (3.140)

where the augmented matrices C̄i` and D̄i` are given by

C̄i` = [ 0 −BiC` ] , D̄i` = [ 0 Fi ] . (3.141)

The use of the H2 norm as a performance criteria is due to the similarities to the
LQR controllers, which are known in the literature for its good performance and
reliability. Therefore, the optimization problem for the H2 case can be described as

‖Gaug‖22 =

m∑
s=1

N∑
i=1

µi‖o‖22 < δ, (3.142)

where the augmented matrices are

C̄i` = [ 0 −BiC` ] , D̄i` = [ 0 Fi ] .

It is important to point out that the controller K` is obtained beforehand, for
instance the controller in [112], but any other controller that guarantees stability
in the same condition can be implemented.

3.4.1 H∞ Fault Accommodation Control Design for MJLS with
Parameter Estimation

Our first main result on the procedures to design the FAC for the H∞ norm case is
presented in Theorem 3.7 below.

3.7. THEOREM. There exist a mode-dependent FAC as described in (3.137) satisfying
the constraint (3.140) for some γ > 0 if there exist symmetric matrices Zi, Xi, M11

i` ,
M22
i` , S11

i` , S22
i` and matrices M21

i` , N11
i` , N12

i` , N21
i` , N22

i` , S21
i` , R`, A`, B`, M`, and C`
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with compatible dimensions such that inequalities[
Zi • • •
Zi Xi • •
0 0 γ2I •
0 0 0 γ2I

]
>
∑
`∈Mi

φi`

M11
i` • •

M21
i` M22

i` •
N11
i` N12

i` S11
i` •

N21
i` N22

i` S21
i` S22

i`

 , (3.143)


M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Π5,1
i` Π5,2

i` Ei(Z)Ji Ei(Z)Fi Ei(Z) • •
Π6,1
i` Π6,2

i` R`Ji+R`B`Di R`Fi 0 Π6,6
i` •

−BiC` 0 0 Fi 0 0 I

 < 0, (3.144)

with

Π5,1
i` = Ei(Z)Ai − Ei(Z)BiK` + Ei(Z)BiC`, Π5,2

i` = Ei(Z)Ai − Ei(Z)BiK`,

Π6,1
i` = R`(Ai −BiK` +BiC` + A` + B`Ci −M`K`),

Π6,2
i` = R`(Ai −BiK` + B`Ci −M`K`), Π6,6

i` = Her(R`)− Ei(X) + Ei(Z),

hold for all i ∈ K and for all ` ∈Mi .

Proof: The proof is based on the results presented in [44] and [61]. We impose
as before, the structure of the matrices Pi and P−1

i of (3.10)-(3.11) as

Pi =
[
Xi •
Ui X̂i

]
, P−1

i =
[
Z−1
i •
Vi Ŷi

]
. (3.145)

Also define the matrices τi and υi as

τi =
[

I I
ViZi 0

]
, υi =

[
I Ei(X)
0 Ei(U)

]
. (3.146)

Observing that (3.144) is diagonal block, we can also write that Her(R`) > Ei(X −
Z) > 0, and as a by-product R` is non-singular. Setting Ui = −X̂i, allow us to
rewrite the matrices Pi and P−1

i as

Pi =
[

Xi •
Zi−Xi Xi−Zi

]
, (3.147)

P−1
i =

[
Z−1
i •

Z−1
i Z−1

i +(Xi−Zi)−1

]
. (3.148)

Hence, (3.146) are now

τi = [ I II 0 ] , υi =
[
I Ei(X)
0 Ei(Z−X)

]
. (3.149)

Following the same idea from the proofs provided for the FDF case in Section
3.2. As R` is non-singular, and using the results presented in [46, 61], we get
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that R`Ei(X −Z)−1R′` > Her(R`) +Ei(Z −X), so that the constraint (3.144) still
hold if the diagonal term Her(R`) +Ei(Z −X) is substituted by R`Ei(X −Z)−1R′`,
resulting in 

M11
i` • • • • • •

M21
i` M22

i` • • • • •
N11
i` N12

i` S11
i` • • • •

N21
i` N22

i` S21
i` S22

i` • • •
Ξ5,1
i` Ξ5,2

i` Ei(Z)Ji Ei(Z)Fi Ei(Z) • •
Ξ6,1
i` Ξ6,2

i` Ξ6,3
i` Ξ6,4

i` 0 Ξ6,6
i` •

−BiC` 0 0 Fi 0 0 I

 > 0, (3.150)

where

Ξ5,1
i` =Ei(Z)Ai − Ei(Z)BiK` − Ei(Z)BiC`, Ξ5,2

i` = Ei(Z)Ai − Ei(Z)BiK`,

Ξ6,1
i` =R`(Ai −BiK` +BiC` + A` + B`Ci −M`K`),

Ξ6,2
i` =R`(Ai −BiKi + B`Ci −M`K`),

Ξ6,3
i` =R`Ji +R`B`Di, Ξ6,4

i` = R`Fi, Ξ6,6
i` = R`Ei(X − Z)−1R′`.

Now defining the matrix Πi` as

Πi` =
[
Ei(Z)−1 I

0 R−T` Ei(X−Z)

]
, (3.151)

and pre and post multiplying (3.150) by diag(I, I,Πi`, I), and its transpose, respec-
tively, we get that  τ ′iMi`τi • • •

Ni`τi Si` • •
υ′iĀi`τi υ

′
iJ̄i` υ

′
iEi(P )−1υi •

C̄i`τi D̄i` 0 I

 > 0. (3.152)

By pre and post multiplying (3.152) by diag(τ−1
i , I, υ−1

i , I), and after that using
the Schur complement to the resulting constraint, we obtain that (3.11) holds. At
last, observing that (3.143) can be rewritten as[

τ ′iPiτ •
0 γ2I

]
>
∑
`∈Mi

φi`

[
τ ′iMi`τi •
Ni`τi Si`

]
, (3.153)

we get, after pre and post multiplying (3.153) by diag(τ−1
i , I), that constraint

(3.10) holds. Since (3.10)-(3.11) hold for the closed-loop system as in (3.138), we
get from Lemma 3.3 that ‖Gaug‖∞ < γ, and the claim follows. �

3.2. REMARK. Notice that the matrices for the FAC controller in (3.137) and satisfying
(3.140) are directly obtained from the solution of the inequalities (3.143), (3.144).
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3.4.2 H2 Fault Accommodation Control Design for MJLS with
Parameter Estimation

We present now the design of an FAC for the H2 norm case.

3.8. THEOREM. There exists a mode-dependent FAC Kc as in (3.137) satisfying the
constraint (3.142) for some δ > 0 if there exist symmetric matrices Ti, Oi, W 11

i` ,
W 22
i` , V 11

i` , V 22
i` and matrices W 21

i` , V 21
i` , R`, A`, B`, M`, and C` with compatible

dimensions such that the inequalities

N∑
i=1

∑
`∈Mi

µiφi`Tr(
[
W 11
i` •

W 21
i` W 22

i`

]
) < δ2, (3.154)

[
Ti •
Ti Oi

]
>
∑
`∈Mi

φi`

[
V 11
i` •
V 21
i` V 22

i`

]
, (3.155)


W 11
i` • • • •

W 21
i` W 22

i` • • •
Ei(T )Ji Ei(T )Fi Ei(T ) • •

R`Ji+R`B`Di R`Fi 0 Θ4,4
i` •

0 Fi 0 0 I

 > 0, (3.156)


V 11
i` • • • •
V 21
i` V 22

i` • • •
Θ̌3,1
i` Θ̌3,2

i` Ei(T ) • •
Θ̌4,1
i` Θ̌4,2

i` 0 Θ̌4,4
i` •

−BiC` 0 0 0 I

 > 0, (3.157)

with

Θ4,4
i` = Her(R`) + Ei(O)− Ei(T ), Θ̌3,1

i` = Ei(T )(Ai −BiK` +BiC`),

Θ̌3,2
i` = Ei(T )(Ai −BiK`), Θ̌4,1

i` = R`(Ai −BiK` +BiC` + A` + B`Ci −M`K`),

Θ̌4,2
i` = R`(Ai −BiK` + B`Ci −M`K`), Θ̌4,4

i` = Her(R`) + Ei(O)− Ei(T ),

hold for all i ∈ K and for all ` ∈Mi.

Proof: The proof uses a similar scheme as the one of Theorem 3.7. Consider Q̄i in
(3.16)-(3.19) with the following form

Q̄i =
[
Oi •
Ūi Ôi

]
, Q̄−1

i =
[
T−1
i •
V̄i T̂i

]
, (3.158)

and define the matrices ηi and σi by

ηi =
[

I I
V̄iTi 0

]
, σi =

[
I Ei(T )

0 Ei(Ū)

]
. (3.159)
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It follows from (3.156)-(3.157) that R` is non-singular. By imposing Ūi = −Ôi and
recalling that Q̄iQ̄−1

i = I, we can rewrite (3.158) as

Q̄i =
[

Oi •
Ti−Oi Oi−Ti

]
, Q̄−1

i =
[
T−1
i •
T−1
i Υ1i

]
, (3.160)

where Υ1i = T−1
i − (Oi − Ti)−1, and we can also rewrite (3.159) as

νi = [ I II 0 ] , σi =
[
I Ei(T )
0 Ei(T−O)

]
. (3.161)

Using the same idea applied as in the proof of Theorem 3.7 we get that R`Ei(O −
T )−1R′` > Her(R`) + Ei(T −O). Let us rewrite (3.156)-(3.157) as follows W 11

il • • • •
W 21
il W 22

il • • •
Ei(T )Ji Ei(T )Fi Ei(T ) • •

R`Ji−R`B`Di R`Fi 0 T33 •
0 Fi 0 0 I

 > 0, (3.162)

T33 = Her(R`) + Ei(O)− Ei(T ),

and 
V 11
i` • • • •
V 21
i` V 22

il • • •
Ψ3,1
i` Ψ3,2

i` Ei(T ) • •
Ψ4,1
i` Ψ4,2

i` 0 R`Ei(O−T )−1R′` •
−BiC` 0 0 0 I

 > 0, (3.163)

Ψ3,1
i` = Ei(T )(Ai −BiK` +BiC`), Ψ3,2

i` = Ei(T )(Ai −BiK`),

Ψ4,1
i` = R`(Ai −BiK` +BiC` + A` + B`Ci −M`K`),

Ψ4,2
i` = R`(Ai −BiK` +Bi + B`Ci −M`K`).

By defining

Π̄i` =
[
Ei(T )−1 I

0 R−T` Ei(O−T )

]
,

pre and post multiplying (3.162) by diag(I, I, Π̄i`), and (3.163) by diag(I, I, Π̄i`, I)

we get [
Wi` • •
σ′iJ̄i` σ

′
iEi(Q̄)−1σi •

D̄i` 0 I

]
> 0, (3.164)[

ν′iR̄i`νi • •
σ′iĀi`νi σ

′
iEi(Q̄)−1σi •

C̄i`νi 0 I

]
> 0. (3.165)

By pre and post multiplying (3.164) by diag(I, σ−1
i , I), and (3.165) by diag(ν−1

i , σ−1
i , I)

we get that (3.17), (3.19), hold with the closed-loop matrices of system (3.138).



80 3. FDF and FAC for Markovian Jump Linear Systems with Parameter Estimation

Consequently we can rewrite (3.154) as

ν′iQ̄iνi >
∑
`∈Mi

φi`ν
′
iR̄i`νi. (3.166)

Therefore, it is noticeable that (3.154) and (3.16) are equivalent, we can see that
(3.18) is also satisfied by pre and pos multiplying (3.166) by ν−1

i . From Lemma
3.2, ‖Gaug‖2 < δ, and the claim follows. �

Remark: As for the H∞ case, the matrices for the FAC controller in (3.137)
and satisfying (3.142) are directly obtained from the solution of the inequalities
(3.154)-(3.157).

3.4.3 Mixed H2/H∞ Fault Accommodation Control Design for
MJLS with Parameter Estimation

Now we provide the design of mixed H2 / H∞ FAC for MJLS with partial informa-
tion on the jump parameter.

By inspecting the BMI constraints provided in Theorems 3.7 and Theorem 3.8
we can observe that the structure to solve the FAC problem is similar. This similarity
allows us to also obtain a mixed solution.

The main motivation to provide the mixed solution is that the FAC will consider
both H∞ and H2 norms during the design process. On the one hand, a guaranteed
H∞ norm implies that the closed-loop system is robust against external noise
signals. On the other hand, the energy of the control signal is minimized in the H2

design approach which is desirable as there is no parallel actuators in the systems.
Bearing in mind this information, we provide the mixed design of a FAC using

the BMI conditions for Theorem 3.7 and 3.8. Hence, we rewrite the constraints as

φ = {Zi, Xi,M
11
i` ,M

22
i` , S

11
i` , S

22
i` ,M

21
i` , N

11
i` , N

12
i` , N

21
i` , N

22
i` , S

21
i` , Ti, Oi,W

11
i` ,

W 21
i` ,W

22
i` , V

11
i` , V

21
i` , V

22
i` R`,A`,B`,M`,C`, i ∈ N, ` ∈Mi} (3.167)

κ = {{Zi, Xi,M
11
i` ,M

22
i` , S

11
i` , S

22
i` ,M

21
i` , N

11
i` , N

12
i` , N

21
i` , N

22
i` , S

21
i` , Ti, Oi,W

11
i` ,

W 21
i` ,W

22
i` , V

11
i` , V

21
i` , V

22
i` R`,A`,B`,M`,C`}i` ∈ φ|

(3.143)-(3.144) and (3.154)-(3.157) hold for some γ and δ} (3.168)

in which case, the mixed H∞ and H2 optimization problem is given by

inf
φ∈κ
{γ2ζ + δ2β}, (3.169)

for given weighting scalars ζ > 0, β > 0.
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3.9. THEOREM. There exists a mode-dependent FAC Kc as in (3.137) such that
‖Gaug‖∞ < γ and ‖Gaug‖2 < δ for given γ > 0 and δ > 0 if there exist symmet-
ric matrices Zi, Xi, M11

i` , M22
i` , S11

i` , S22
i` , Ti, Oi, W 11

i` , W 22
i` , V 11

i` , V 22
i` and the

matrices M21
i` , N11

i` , N12
i` , N21

i` , N22
i` , S21

i` , W 21
i` , V 21

i` , R`, A`, B`, M`, and C` with
compatible dimensions such that inequalities, (3.143), (3.144), (3.154), (3.155),
(3.156) and (3.157) hold for all i ∈ N and for all ` ∈Mi.

Proof: The proof for Theorem 3.9 is a direct consequence of Theorems 3.7 and 3.8.
�

3.3. REMARK. It is important to mention that the level of conservatism in Theorem
3.9 is higher in comparison to that of Theorem 3.7 and Theorem 3.8, since Theorem
3.9 considers the BMI constraints (3.143)-(3.144) from Theorem 3.7 and (3.154)-
(3.157) from Theorem 3.8 simultaneously. Note that the number of variables for each
theorem is

Theorem 3.7→ 10× imax × `max + 2× imax + 5× `max + 1

Theorem 3.8→ 6× imax × `max + 2× imax + 5× `max + 1

Theorem 3.9→ 16× imax × `max + 4× imax + 5× `max + 2

It is noteworthy that the number of variables in Theorem 3.9 is not the direct sum of
the variables in Theorem 3.7 and 3.8, because matrices R`, A`, B`, M`, and C`, which
are the matrices that compose the FAC (3.137), are present in the BMIs constraints
of Theorem 3.7 and 3.8. Regarding the number of BMI constraints Theorem 3.7 has
2× imax× `max BMIs, Theorem 3.8 have 4× imax× `max BMIs, and the number of BMIs
in Theorem 3.9 is the sum of BMIs in Theorems 3.7 and 3.8, therefore, the number of
BMI is 6× imax× `max. Hence, the region of feasible solutions in Theorem 3.9 is smaller
in comparison to the ones for Theorem 3.7 and Theorem 3.8, and by consequence
increasing the computational effort necessary to solve Theorem 3.9.

Coordinate Descent Algorithm
As stated previously, the constraints in Theorem 3.7 and 3.8 are Bilinear Matrices

Inequalities (BMI). For solving these optimization problems with BMI constraints,
there are a number of approaches presented in literature, to name a few, [108] or
[119]. In this paper, we use the Coordinate Descent Algorithm (CDA) for solving
the problems which is also used and presented in [44]. The CDA is presented below.

In the above algorithm, the input φ is the stop criteria and tmax is the maximum
number of interactions allowed.

3.4. REMARK. The controller used in the CDA can be obtained using any design
approach, but it is recommended to use a controller that is also under the MJLS
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Algorithm 3: Coordinate Descent Algorithm.

1 Input: K`, γ, tmax, φ.
2 Output: A`, B`, M`, C`.
3 Initialization:

4 While: γt−1−γt
γt−1 6 η or t 6 tmax do:

5 Step 1: Solve the constraint in Theorem 3.7 or 3.8 considering C` as
a constant, which can be obtained using [112] . Obtain the values of R`,
and Zi for the Theorem 3.7 or R` Ti for the Theorem 3.8.

6 Step 2: Solve the constraint in Theorem 3.7 or 3.8 this time using
the values of R`, and Zi or R`, and Ti obtained in Step 1 and C` as a
variable. Obtain the value of γ.

framework. If the first iteration is feasible, the algorithm will at least keep the same
result obtained, or improve the results.

3.4.4 Simulations Results

For the illustrative example we used the exact same matrices that represent the
coupled tank presented in Appendix A. The only necessary addition is the detector
matrix information as in

Γ = [ 0.65 0.35
0.75 0.25 ] . (3.170)

The fault-compensation controller obtained designed using Theorem 3.7 is

A1 =
[

0.0535 −0.1895
−0.1481 0.4341

]
, A2 =

[
0.0458 0.0214
−0.0254 0.0574

]
,

B1 =
[−0.0238 0.0539

0.0542 −0.1331

]
, B2 =

[−0.0239 0.0540
0.0542 −0.1332

]
,

M1 =
[

0.7693 −0.4043
−0.2708 1.5212

]
,M2 =

[
0.0492 0.0630
−0.0040 −0.0587

]
,

C1 =
[

0.0149 −0.0409
−0.0307 0.1017

]
, C2 =

[
0.0570 −0.1254
−0.1222 0.3138

]
.

and the upper bound of the H∞ norm value is γ = 2.2.
The fault-compensation controller obtained designed using Theorem 3.8 is

A1 =
[−0.0857 0.0121
−0.0129 −0.0769

]
, A2 =

[−0.0995 0.0141
−0.0149 −0.0893

]
,

B1 =
[−0.0293 0.0036
−0.0044 −0.0230

]
, B2 =

[−0.0340 0.0042
−0.0051 −0.0267

]
,

M1 =
[

0.1734 −0.0256
0.0259 0.1620

]
, M2 =

[−0.0118 0.0091
−0.0083 −0.0133

]
,

C1 =
[

0.0130 −0.0007
0.0006 0.0047

]
, C2 =

[−0.0130 0.0007
−0.0006 −0.0047

]
.

and the upper bound of the H2 norm value is γ = 1.49.
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Monte Carlo Simulation

The simulation setup is the same as in Section 2.4, where the fault is a sinusoidal
signal 0.025sin(k), and the system is subjected to a white noise with zero mean
and deviation equal to 0.01. The Monte Carlo simulation with 300 rounds was
performed.

In this simulation it is presented a comparison between the proposed approaches
in Theorem 3.7, 3.8 and a nominal solution using solely the state-feedback con-
troller, which is designed using [112]. The results obtained are presented in two
distinct sets of graphics, the first set presents the situation when the system is
subjected to fault, and the second set is the situation where there is no fault. The
sets are organized in the following manner: in Fig. 3.10a we present the mean
and standard deviation for both tank levels h1 and h2 obtained using Theorem 3.7,
in Fig. 3.10b we present the mean and standard deviation for both tank levels h1

and h2 obtained using Theorem 3.8, the third graphic represents the mean and
standard deviation for both tank levels h1 and h2 obtained using solely the nominal
controller, the fourth graphic compares the mean of both previous graphics. The
fifth graphic is the mean and standard deviation of the control signal obtained using
Theorem 3.7, the sixth graphic is the mean and standard deviation of the control
signal obtained using Theorem 3.8, the fifth graphic is the mean and standard
deviation of the control signal obtained using the nominal controller, and the sixth
graphic is the comparison of the fourth and fifth graphics.

In Fig. 3.10d it is possible to observe that the proposed approaches mitigated
the effect of the fault when compared to the nominal approach. Another important
aspect is that the standard deviation obtained in all simulation are all similar, which
is important since it shows the second-moment stability. As shown in Fig. 3.10d,
the mitigation is noticeable for the approach in Theorems 3.7, and 3.8, which was
the aim of the approaches. Regarding the control signal, as shown in Fig.3.10h the
control signal presented a discrepancy between the control signal obtained using
the Theorems 3.7, 3.8 and the nominal controller, however, this difference is not
relevant.

Now for the analysis of the simulation without fault, it is important to ob-
serve that the effect of the accommodation controller in the nominal situation
was neglectable, which is desirable, since the FAC should not alter the nominal
performance. From Fig. 3.11d we may state that there is no noticeable difference
between all three curves, the same can be said regarding the standard deviation.
Therefore, the results in Theorems 3.7, and 3.8 are suitable solutions for the FAC
problem.
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Figure 3.10: Mean and standard deviation for the states and control signal obtained
using the FAC designed via Theorems 3.7, 3.8, 3.9, and the nominal control. These
results were obtained via simulation where the system is subjected to an oscillatory
fault.
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3.5 Concluding remarks

In this chapter we provided the theoretical results to design an FDF and FAC under
the MJLS with parameter estimation, furthermore, we also illustrated the viability
of the methods presented using some examples. From the results obtained via
simulation, we can say that the proposed approach worked as expected. For the
next chapter, we introduce the design of the FDF and FAC under the Markov Jump
Lur’e Systems.
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Figure 3.11: Mean and standard deviation for the states and control signal obtained
using the FAC designed via Theorems 3.7, 3.8, 3.9, and the nominal control. These
results were obtained via simulation where the system is subjected to an abrupt
fault.



Chapter 4

FDF for Markovian Jump Lur’e Systems

A
S already discussed in the previous chapters all systems are inherently sub-
jected to faults, including communication loss. However, another intrinsic
aspect that is present in the majority of the systems is the non-linear behav-

ior. The earlier results presented herein, are based on the premise that it is possible
to linearize the system and get a proper model. Yet, in some cases, linearizing the
system removes a crucial behavior of the system [70]. Therefore the use of a proper
framework that considers the nonlinear behavior is of utmost importance. For that
reason, here we are using the Markovian Jump Lur’e System, which allows us to
model the network as in the previous chapter and add the nonlinear behavior at
the same time.

The results presented in this chapter were published in the following:

• Subsection 4.2 presented the Fault detection filter for discrete-time Markov
jump Lur’e systems, was published and presented in the European Control
Conference 2021 [21].

4.1 Preliminary for Markovian Jump Lur’e Systems

Consider the discrete-time Markov jump Lur’e system as

G :


x(k + 1) = Aθ(k)x(k) +Gθ(k)ϕθ(k)(p(k)) + Jθ(k)w(k),

p(k) = Cθ(k)x(k),

z(k) = Czθ(k)x(k) +Hθ(k)ϕθ(k)(p(k)) +Dθ(k)w(k),

(4.1)

where vectors x(k) ∈ Rnx , p(k) ∈ Rnp , z(k) ∈ Rnz , and w(k) ∈ Rnw , represent
the system states, the output related to the nonlinearity, the system output, and
the exogenous input, respectively. We consider that w(k) ∈ L2. The term ϕ(.) is
considered to be a memoryless non-linearity. Observe that all the terms in (4.1) are
dependent on the index θ(k), which represents as before the Markov chain jump
parameter [100].

The N non-linearities ϕi(·) are restricted by the following assumptions:

• Assumption I: ϕi(0) = 0
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• Assumption II: for each non-linearity there exist positive define matrices
Ωi ∈ Rnp×np for all p ∈ Rnp , ` = 1, · · · , np, such that

ϕi(`)(p)[ϕi(p)− Ωip](`) 6 0. (4.2)

As described in [71], the non-linearities ϕi(.) satisfy their respective cone bounded
sector conditions and are assumed to be decentralized, which allow us to write

SC(ϕi(.), p,Λi) = ϕi(p)
′Λi[ϕi(p)− Ωip] 6 0, (4.3)

where Λi ∈ diag(λq,i)q=1,··· ,np ∈ Rnp×np are diagonal positive semidefinite matri-
ces, considering (4.2) we can say that (4.3) holds for all i ∈ K, for all p ∈ Rnp . As
a by product of (4.2) the inequality (4.3) holds for

[Ωip]`[ϕi(p)− Ωip]` 6 0, (4.4)

which implies that

0 6 ϕi(p)
′Λiϕi(p) 6 ϕi(p)

′ΛiΩip 6 p
′Ω′iΛiΩip, ∀p ∈ Rnp , (4.5)

when Λi is a diagonal positive semi definite matrix. Now we present the Mean
Square Stable (MSS) definition used throughout this work.

4.1. DEFINITION. System (4.1) with w(k) = 0 is MSS if, for any initial condition
x(0) = x0 ∈ Rnx , and initial distribution θ(0) = θ0 ∈ K,

lim
k→∞

E{x(k)′x(k)|x0, θ0} = 0. (4.6)

For a detailed discussion, see [33, 55].

4.1.1 Candidate Lyapunov function

We define the candidate Lyapunov function as

V :

{
K× Rnx → R,
(i, x)→ x′Pix+ 2(ϕ′i(Cix))∆iΩiCix,

(4.7)

where matrix Pi ∈ Rnx×nx , ∀i ∈ K is symmetric positive definite, and the diagonal
matrix ∆i ∈ Rnp×np is positive definite.

Observe that inequality (4.5) allows us to define a lower bound, as in vi(x) =

x′Pix, and an upper bound, v̄i(x) = x′(Pi + 2C ′iΩ
′
i∆iΩiCi)x, for the candidate
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Lyapunov function. By consequence,

vi(x) 6 V (i, x) 6 v̄i(x),∀i ∈ K (4.8)

From the above, we can state that the candidate Lyapunov function possess these
properties:

• V (i, x) > 0,∀x ∈ Rnx , i ∈ K, which is guaranteed by the left hand of the
inequality (4.8).

• V (i, x) = 0 if and only if x = 0,∀i ∈ K. This property is guaranteed by
imposing that Pi > 0 in the inequality (4.8).

• V (i, x) is radially unbounded, ∀i ∈ K.

The main reason to use this particular Lyapunov function is to allow us to draw
results solely under Assumptions I and II. As consequence, it is no longer required
any further assumptions regarding the slope of the non-linearity, which is the
classical approach for the discrete-time domain Lur’e system, [64, 65, 66].

4.1.2 H∞ norm for Markovian Jump Lur’e Systems

Assume that the system (4.1) is MSS and x0 = 0. Its H∞ norm [34] is then given
by

‖G‖∞ = sup
0 6=w∈L2,θ0∈K

‖z‖2
‖w‖2

. (4.9)

An upper bound γ > 0 for the H∞ norm can be acquired by using the following
lemma which is based on the stochastic stability constraints presented in [64, The-
orem 5].

4.1. LEMMA. Consider that the Assumptions I and II are satisfied. System (4.1) is
stochastic stable and the norm constraint ‖G‖∞ 6 γ holds if there exist symmetric
Pi > 0 and diagonal positive semidefinite matrices Ti, Wi, ∆i such that the following
LMI 

Pi • • • • •
(Wi−∆i)ΩiCi 2Ti • • • •

(Ei(W )−Ei(∆))ΩiCiAi Π̌ 2Ei(W ) • • •
0 0 Π γ2I • •
Czi Hi 0 Di I •

Ei(P )Ai Ei(P )Gi 0 Ei(P )Ji 0 Ei(P )

 > 0, (4.10)

is satisfied for all i ∈ K, where Π̌ = (Ei(W )− Ei(∆))ΩiCiGi, Π = J ′iC
′
iΩi(Ei(W )−

Ei(∆)).
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Proof: Let us show that if there are matrices Pi > 0 such that (4.10) is satisfied
then ‖G‖∞ 6 γ. Pre- and post-multiplying (4.10) by diag(I, I, I, I, I,Ei(P )−1) and
applying Schur complement in (4.10), we get thatA′iEi(P )Ai−Pi+C′ziCzi • • •

Π̃ G′iEi(P )Gi+H
′
iHi−2Ti • •

(Ei(∆)−Ei(W ))ΩiCiAi (Ei(∆)−Ei(W ))ΩiCiGi −2Ei(W ) •
J′iEi(P )Ai−D′iCzi J′iEi(P )Gi+D

′
iHi Π Π̌

 6 0, (4.11)

where Π̃ = G′iEi(P )Ai + ∆iΩiCi − TiΩiCi +H ′iCzi, Π = J ′iC
′
iΩi(Ei(∆)− Ei(W )),

Π̌ = J ′iEi(P )Ji+D
′
iDi−γ2. Pre- and post-multiplying (4.11) by [x(k)′ ϕi(p(k)) ϕi(p(k+

1)) w(k)], and following a routine computation, we obtain

x(k + 1)′Eθ(k)(P )x(k + 1) + 2ϕθ(k+1)(p(k + 1))′Eθ(k)(∆)Ωθ(k+1)Cθ(k+1)x(k + 1) · · ·
+ x(k)′Pθ(k)x(k) + 2ϕθ(k)(p(k))′∆θ(k)Ωθ(k)Cθ(k)x(k) · · ·
− 2SC(ϕθ(k+1)(k + 1), p(k + 1),Eθ(k)(W )) · · ·
− 2SC(ϕθ(k)(k), p(k), Tθ(k)) + z(k)′z(k)− γ2w(k)′w(k) 6 0. (4.12)

Considering that the σ-field Fk is generated by the variables {x(l), w(l), θ(l); l =
0, · · · , k} we get that x(k + 1)′Eθ(k)(P )x(k + 1) = E(x(k + 1)′Pθ(k+1)x(k + 1)|Fk).
Hence E(x(k+1)′Eθ(k)(P )x(k+1)) = E(x(k+1)′Pθ(k+1)x(k+1)). In what follows,
we recall that SC(.) 6 0 as in (4.3). From (4.12), and summing over k from 0 to T,
we get

T∑
k=0

E
[
x(k + 1)′Pθ(k+1)x(k + 1) · · ·

+ 2ϕθ(k+1)(p(k + 1))′∆θ(k+1)Ωθ(k+1)Cθ(k+1)x(k + 1) · · ·
− x(k)′Pθ(k)x(k)− 2ϕθ(k)(p(k))′∆θ(k)θ(k)Ωθ(k)Cθ(k)x(k) · · ·
− 2SC(ϕθ(k+1)(k + 1), p(k + 1),Wθ(k+1))︸ ︷︷ ︸

60

− 2SC(ϕi(k), p(k), Tθ(k))︸ ︷︷ ︸
60

· · ·

+ z(k)′z(k)− γ2w(k)′w(k)

]
6 0.

It follows then that

E(V (T + 1))− E(V (T)) +
T∑
k=0

E(‖z(k)‖2)− γ
T∑
k=0

E(‖w(k)‖2) 6 0. (4.13)

Considering w(k) = 0 and recalling that C ′ziCzi > dI we obtain from (4.13) that∑T
k=0 E(‖x(k)‖2 6 1

αE(V (0)) and taking the limit as T→∞ yields the stochastic
stability property. When x0 = 0, it follows from (4.13) that

∑T
k=0 E(‖x(k)‖2) −

γ
∑T
k−0 E(‖w(k)‖2) 6 0. By taking the limit T→∞, we obtain the desired result.

�
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4.2 Fault Detection Filter for Markov Jump Lur’e Sys-
tems

The scheme that describes the Fault Detection Filter is presented in Fig. 4.1.
Observing the topology in Fig.4.1 we need to describe the system, control law, and

System
Gθ(k)

ϕθ(k)(.) Filter Gθ(k)

ϕθ(k)

u(k)

Noise w(k) z(k)

re(k)y(k) ϕθ(k) r(k)Fault f(k)

Figure 4.1: Fault Detection Scheme for Lur’e systems.

the Fault Detection Filter (FDF), to provide the design of the FDF.

The Markov Jump Lur’e System subject to faults is described as

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) +Gθ(k)ϕθ(k)(y(k)) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k),

z(k) = Czθ(k)x(k) +Hθ(k)ϕθ(k)(y(k)) +Dθ(k)w(k) + Eθ(k)f(k),

(4.14)

where x(k) ∈ Rnx represents the system states, u(k) ∈ Rnu represents the control
input, w(k) ∈ Rnw denotes the exogenous input, z(k) ∈ Rnz represents the output
signal, and f(k) ∈ Rnf denotes the fault signal. We assume that w(k), f(k), ∈ L2.
Recall that, ϕi(·) is under the assumptions I and II in (4.2). The index θ(k)

represents the Markov chain, as described in (4.1).

The control signal is obtained using the state feedback controller

K :
{
u(k) = Kθ(k)x(k) +Rθ(k)ϕθ(k)(y(k)). (4.15)

The main objective in this paper is to design a Fault Detection Filter to generate
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a residue signal r(k), the FDF is defined as

F :


η(k + 1) = Aηθ(k)η(k) +Mηθ(k)u(k) + Bηθ(k)z(k) + Lηθ(k)ϕθ(k)(y(k)),

r(k) = Cηθ(k)η(k) +Dηθ(k)z(k),

η(0) = η0,

(4.16)

where η(k) ∈ Rnx represents the filter states, u(k) ∈ Rnu represents the control
input, r(k) ∈ Rnr denotes the residue signal, and f(k) ∈ Rnf denotes the fault
signal.

Considering that re(k) = r(k)− f(k), we get the augmented system

Gaug :


x(k + 1) = Ãθ(k)x̃(k) + G̃θ(k)ϕ̃θ(k)(y(k)) + J̃θ(k)w̃(k),

y(k) = C̃θ(k)x̃(k),

z(k) = C̃zθ(k)x̃(k) + H̃θ(k)ϕ̃θ(k)(y(k)) + D̃θ(k)w̃(k),

(4.17)

where x̃(k) = [x(k) η(k)], ϕ̃θ(k)(y(k)) = ϕθ(k)(y(k)), w̃(k) = [w(k) f(k)], hence,
the augmented matrices that compose system (4.17) are

Ãi =

[
Ai +BiKi 0

MηiKi + BηiCzi Aηi

]
, G̃i =

[
BiRi +Gi
MηiRi + Lηi

]
,

J̃i =

[
Ji Fi
BηiDi BηiEi

]
, C̃zi =

[
DηiCzi Cηi

]
,

D̃i =
[
DηiDi DηiEi − I

]
, H̃i = DηiHi, C̃i =

[
Ci 0

]
. (4.18)

Define the performance criterion for the H∞ norm case as:

‖Gaug‖∞ = sup
‖w̌‖2 6=0,w̃∈L2

‖re‖2
‖w̃‖2

< γ, (4.19)

where the main purpose is to design the FDF as in (4.16) minimizing the H∞ gain
γ > 0 for the augmented system (4.17).

4.2.1 H∞ Fault Detection Design for MJS Lur’e Systems

4.1. THEOREM. Consider that both Assumptions I and II are satisfied. There exists a
filter as in (4.16) such that (4.17) is stochastic stable and ‖Gaug‖∞ 6 γ if there exist
symmetric positive matrices Zi, Xi, matrices with appropriate size Oηi, ∇i, Γi, Υi,
and diagonal positive semidefinite matrices Ti, Wi, ∆i ∈ Rny×ny such that the LMI
constraints (4.20) are satisfied for all i ∈ K where

Π̃ = (Ei(W )− Ei(∆)ΩiCi(Ai +BiKi), Π4,3 = (Ei(W )− Ei(∆))ΩiCi(BiRi +Gi),
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

Zi • • • • • • • •
Zi Xi • • • • • • •

(Ei(W )−Ei(∆))ΩiCi (Ei(W )−Ei(∆))ΩiCi 2Ti • • • • • •
Π̃ Π̃ Π4,3 2Ei(W ) • • • • •
0 0 0 Π5,4 γ2I • • • •
0 0 0 Π6,4 0 γ2I • • •

DηiCzi+Cηi DηiCzi DηiHi 0 DηiDi DηiEi−I I • •
Ei(Z)(Ai+BiKi) Ei(Z)(Ai+BiKi) Π10,3 0 Ei(Z)Ji Ei(Z)Fi 0 Ei(Z) •

Π11,1 Π11,2 Π11,3 0 Π11,8 Π11,9 0 Ei(Z) Ei(X)

 > 0,

(4.20)

Π5,4 = J ′iC
′
iΩi(Ei(W )− Ei(∆)), Π6,4 = F ′iC

′
iΩi(Ei(W )− Ei(∆)),

Π10,3 = Ei(Z)(BiRi +Gi), Π11,1 = Ei(X)(Ai +BiKi) + ΓiKi +∇iCzi +Oηi,
Π11,2 = Ei(X)(Ai +BiKi) + ΓiKi +∇iCzi, Π11,3 = Ei(X)(BiRi +Gi) + ΓiRi + Υi,

Π11,8 = Ei(X)Ji +∇iDi, Π11,9 = Ei(X)Fi +∇iEi.

If a feasible solution is obtained, then a suitable FDF is given byAηi = Ei(Z−X)−1Oηi,
Bηi = Ei(Z − X)−1∇i, Mηi = Ei(Z − X)−1Γi, Lηi = Ei(Z − X)−1Υi, Cηi, and
Dηi.

Proof: Firstly, we introduce the variable substitutions Oηi = Ei(Z − X)Aηi,
∇i = Ei(Z −X)Bηi, Γi = Ei(Z −X)Mηi, and Υi = Ei(Z −X)Lηi in (4.20). Now
consider the structure, extracted from [62], for Pi, Ei(P ), as

Pi =
[
Xi Ui
U ′i X̂i

]
, P−1

i =
[
Yi Vi
V ′i Ŷi

]
, (4.21)

Ei(P ) =
[

Ei(X) Ei(U)

Ei(U)′ Ei(Û)

]
, Ei(P )−1 =

[
R1i R2i

R′2i R3i

]
. (4.22)

We define the matrices αi and σi as

αi =
[

I I
V ′i Y

−1
i 0

]
, σi =

[
R−1

1i Ei(X)

0 Ei(U)′

]
. (4.23)

From (4.21) we get that Ui = Zi −Xi, Vi = V ′i , Vi = Z−1
i , as well as R−1

1i = Ei(Z),
as in [61]. Therefore, we can write the following matrices

α′iPiαi =
[
Zi Zi
Zi Xi

]
, σ′iEi(P )σi =

[
Ei(Z) Ei(Z)
Ei(Z) Ei(Z)

]
,

(Ei(W )− Ei(∆))ΩiC̃iαi = [ (Ei(W )−Ei(∆))ΩiCi (Ei(W )−Ei(∆))ΩiCi ] ,

(Ei(W )− Ei(∆))ΩiC̃iÃiαi = [ (Ei(W )−Ei(∆))ΩiCi(Ai+BiKi) (Ei(W )−Ei(∆))ΩiCi(Ai+BiKi) ] ,

C̃ziαi = [DηiCzi+Cηi DηiCzi ] , σ′iÃiαi =
[
Ei(Z)(Ai+BiKi) Ei(Z)(Ai+BiKi)

Π2,1 Π2,2

]
,

Π2,1 = Ei(X)(Ai +BiKi) + Ei(U)MηiKi + Ei(U)BηiCzi + Ei(U)Aηi,
Π2,2 = Ei(X)(Ai +BiKi) + Ei(U)MηiKi + Ei(U)BηiCzi,

(Ei(W )− Ei(∆))ΩiC̃iG̃i = [ (Ei(W )−Ei(∆))ΩiC̃i(BiRi+Gi) ] , H̃i = DηiHi,
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σ′iG̃i =
[

Ei(Z)BiRi+Ei(Z)Gi
Ei(X)(BiRi+Gi)+Ei(U)(MηiRi+Lηi)

]
, D̃i = [DηiDi DηiEi−I ] ,

σ′iJ̃i =
[

Ei(Z)Ji Ei(Z)Fi
Ei(X)Ji+Ei(U)BηiDi Ei(X)Fi+Ei(U)BηiEi

]
.

From the above LMI, (4.20) can be rewritten as
α′iPiαi • • • • •

(Wi−∆i)ΩiC̃iαi 2Ti • • • •
(Ei(W )−Ei(∆))ΩiC̃iÃiαi Π̂i 2Ei(W ) • • •

0 0 Πi γ2I • •
C̃ziαi H̃i 0 D̃i I •
σ′iÃiαi σ′iG̃i 0 σ′iJi 0 Π̌

 > 0, (4.24)

where

Π̂i = (Ei(W )− Ei(∆))ΩiCiGi, Πi = J̃ ′iC̃
′
iΩi(Ei(W )− Ei(∆)),

Π̌ = σ′iEi(P )−1σi.

Pre- and post-multiplying (4.24), respectively, by diag(α−1
i , I, I, I, I, I, σ−1

i ), and
after that pre- and post-multiplying it by diag(I, I, I, I, , I, I,Ei(P )), we get that
the LMI constraint (4.20) implies the LMI constraint (4.10). It follows subsequently
that (4.17) is stochastic stable and that ‖G‖∞ 6 γ. �

4.2.2 Simulations Results

For the illustrative simulation for the Lur’e system, we used the classic example
of a mass-spring from [71]. A deeper discussion about the model is presented in
Appendix A. The matrices that compose the discretized model of the mass-spring
system are

A1,2 =
[−0.0101 0.9588
−0.0160 −0.0181

]
, B1,2 =

[
62.0699
−0.0513

]
, G1,2 = [ 0

0.15 ] , J1,2 = 0.01×B1,2,

F1,2 = B1,2, C1 = I2, C2 = 02×2, Cz1 = I2, Cz2 = 02×2,

H1,2 = 02×1, D1,2 = 10−3I2×1, E1,2 = 02×1, Ω1 = 0.75, Ω2 = 0.50,

P = [ 0.8 0.2
0.8 0.2 ] . (4.25)

The matrices that compose the control law in (4.15) are

K1 = [−0.0002 −0.0158 ] , K2 = [−0.0368 −0.2877 ] ,

R1 = [ 5.5373×10−03 ] , R2 = [ 2.1034e×10−03 ] ,

The non-linearity is φ(y) = Ωi(y)3, i ∈ [1, 2]. The noise signal is a white noise in
the broad sense, with null mean and standard deviation of 0.1.
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The FDF designed using Theorem 4.1 is

Aη1 =
[−0.0097 −0.1416

0.0001 0.0012

]
, Aη2 = 10−7

[−0.0257 −0.2720
0.0007 0.0374

]
,

Bη1 =
[

1.0522 105.2372
−0.0165 −0.0713

]
, Bη2 =

[−2.0240 2.0240
0.0172 −0.0172

]
,

Mη1 =
[

6.6740
−0.0034

]
, Mη2 = 10−6

[−106.1402
9.7246

]
,

Lη1 =
[−19.3626
−0.0282

]
, Lη2 = 103

[−1.4337
0.1238

]
,

Cη1 = 10−5 [ 0.0781 −0.1328 ] , Cη2 = 10−5 [ 0.0170 −0.1342 ] ,

Dη1 = 10−5 [−0.1711 −0.1893 ] , Dη2 = 10−5 [ 0.1335 −0.1333 ] ,

and the upper bound is γ = 0.92.

Monte Carlo Simulation

Observing the matrices of system (4.25), we consider that the fault in this example
represents problems with the actuator. The specific fault signals represent that the
actuator performance drops by 10% starting at t = 125s. A Monte Carlo simulation
with 300 iterations was performed, and the results are presented in Fig.4.2, Fig.4.3,
which represent, respectively, the residue signal, and the evaluation function.
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(a) Residue signal obtained using the FDF
designed via Theorem 4.1.
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(b) Residue signal obtained using the FDF
designed via Theorem 4.1 without fault
signal.

Figure 4.2: The mean and standard deviation of the residue signal obtained using
the FDF designed via Theorem 4.1.

In Fig. 4.2, it can be observed that the FDF designed using Theorem 4.1 properly
reacted to the fault signal as designed. Regarding the residue signal without fault
in Fig. 4.2, when there is no fault signal the residue is close to zero for the entire
simulation. It is not completely zero due to the presence of the noise signal w(k)

and to the switching behavior from the Markov Jump Systems.
Fig. 4.3 presents the evaluation function that is represented by the mean and

standard deviation. It can be seen from this figure that the designed FDF is able
to detect the fault in all cases within the range of [127 132]s. It shows that the
designed FDF provides a satisfactory level of reliability. The above simulation
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(a) Evaluation function obtained using the
FDF designed via Theorem 4.1.
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Figure 4.3: The mean and standard deviation of the evaluation function obtained
using the FDF designed via Theorem 4.1.

results show that the proposed method can provide a feasible solution for the fault
detection problem.

4.3 Concluding remarks

In this chapter, we presented Lemma 4.1 and the design of an FDF under the
assumption that the non-linear system is subjected to network communication loss,
which was model by using Markov Jump Lur’e Systems. In the next Chapter, we
will tackle the FDF and FAC problem from another point of view, based on the
linear parameter varying systems instead of the Markov Jump Systems.



Chapter 5

FDF and FAC for LPV Systems with
Uncertain Parameters

T
HIS chapter introduces the results regarding the Fault Detection and Fault
Accommodation using the Linear Parameter varying as a base. An important
premise in this chapter is that the LPV parameter is not directly accessible.

To circumvent this issue usually, we implement an estimation process to gather
the LPV parameter, when these procedures are implemented normally we assume
that the estimation is precise, however, this is not completely true, and in some
occasions there will be a discrepancy between the parameter and the estimation.
To deal with this imprecision and guarantee the FDF and FAC performance we
added this imprecision during the design process using the multi-simplex approach
to model an additive noise on the parameter.

The results presented in this chapter were published in the following:

• Subsection 5.3 presented the H∞ and H2 Gain Scheduled Fault Detection
Filter, which was published in IEEE ACCESS October 2021, [23].

• Subsection 5.4 presented the H∞ and H2 Gain Scheduled Fault Accommoda-
tion, which was published and presented in the 4th IFAC Workshop on Linear
Parameter Varying systems 2021, [22].

5.1 Notations

5.1. DEFINITION. The unit-simplex ΛN of dimension N ∈ N, with N > 2 is defined
as

ΛN = {ζ ∈ RN :

N∑
i=1

ζi = 1, ζi > 0, i = 1, . . . , N}. (5.1)

5.2. DEFINITION. The multi-simplex Λm,N is defined as the Cartesian product of
m simplexes (as in Definition (5.1)) with dimension of N , that is, Λm,N = ΛN ×
· · · × λN with the Cartesian product containing m terms. Thus any θ ∈ Λm,N
can be decomposed as θ = (θ1, θ2, . . . , θm), with θi = (θi1, θi2, . . . , θiN ) ∈ ΛN ,
i ∈ {1, . . . ,m}.
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5.3. DEFINITION. Homogeneous polynomial: For a unit-simplex ΛN of dimension
N ∈ N, a polynomial g(θ), θ ∈ ΛN is named a homogeneous polynomial of degree
l ∈ N if all its monomials have the same total degree l. As an example, assuming
θ = [θ1, θ2] ∈ Λ2, and g(θ) = θ3

1 + θ2
1θ2 + θ1θ

2
2 + θ3

2, g(θ) is said to be homogeneous
polynomial with a degree of l = 3. Set K(l)

N as the set of N -tuples obtained from
all possible combinations of N nonnegative integers kj , j = 1, ..., N , with sum
k1 + k2 + . . .+ kN = l. A homogeneous polynomials with o degree is defined as

A(θ) =
∑
k∈K(l)

N

θkAk, (5.2)

where θk = θk11 .θk22 . · · · .θkNN = ΠN
j=1θ

kj
j .

5.2 Preliminary for LPV Systems

Consider the following discrete-time LPV system

G :=

{
x(k + 1) = Aθ(k)x(k) + Jθ(k)w(k),

z(k) = Cθ(k)x(k) +Dθ(k)w(k),
, (5.3)

where x(k) ∈ Rnx represents the state vector, w(k) ∈ Rnw represents the exogenous
input, and the z(k) ∈ Rnz denotes output signal. We assume that the matrices
Aθ(k), Jθ(k), Cθ(k), Dθ(k) in (5.3) depend on the parameter θ(k) in the affine form
as

Aθ(k) = A0 +

m∑
i=1

θi(k)Ai, (5.4)

where A0, . . . , Am are given matrices and θ(k) = (θ1(k), . . . , θm(k)) are bounded
time-varying parameters satisfying |θi(k)| 6 ti, ti ∈ R+, i = 1, . . . ,m, ∀ k > 0.
Similarly for Jθ(k), Cθ(k), Dθ(k). Observe that the affine form is a particular case of
the parameterized form in (5.2) with a degree of 1. Note that if we describe the
matrices in (5.3) as polynomials with a degree equal to 0, system (5.3) becomes
parameter-independent.

5.2.1 H∞ Guaranteed Cost Analysis

In this subsection, we introduce a few concepts that will be important later on
regarding the H∞ norm. The H∞ norm is a classical performance criterion that
can be computed using the Bounded Real Lemma (BRL), as proposed in [40] for
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LPV systems. For the system as in (5.3), its H∞ norm is defined by

‖G‖∞ = sup
‖w(k)‖2 6=0

‖z(k)‖2
‖w(k)‖2

, w(k) ∈ L2. (5.5)

In the following lemma, based on the conditions from [39], we present the
Bounded Real Lemma (BRL) for LPV systems where an upper bound for the H∞
norm is computed via parameter-dependent LMIs. For the sake of simplicity we set
θ = θ(k), and ψ = θ(k + 1).

5.1. LEMMA. If there exists a symmetric positive definite matrix Pθ, such that[ Pψ • • •
PθA

′
θ Pθ • •

J′θ 0 γI •
0 CθPθ Dθ γI

]
> 0, (5.6)

holds for all θ(k), k > 0, then γ is an upper bound for the H∞ norm of system (5.3),
that is, ‖G‖∞ < γ.

The proof for Lemma 5.1 can be found in [48, Lemma 3].

5.2.2 H2 Guaranteed Cost Analysis

The H2 norm is a performance criterion that is associated with the energy of the
impulse response of the system, or in other words,

‖G‖2 = lim sup
T→∞

E

{
1

T

T∑
k=0

z(k)′z(k)

}
, (5.7)

where T is a positive integer that represents the time horizon and w(k) is a standard
white noise (Gaussian zero-mean in which the covariance matrix is equal to the
identity matrix) as defined in [6].

Considering an asymptotically stable system in the form (5.3), an upper bound
for its H2 norm can be obtained by a set of parameter-dependent LMI constraints,
as introduced in [39] and shown in the following lemma.

5.2. LEMMA. If there exist symmetric positive definite matrices Pθ, and Wθ, such that[
Pψ−AθPθA′θ •

J′θ I

]
> 0, (5.8)[

Wθ−DθD′θ •
PθC

′
θ Pθ

]
> 0, (5.9)

and
Tr (Wθ) < λ2, (5.10)
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hold for all θ(k), k > 0, then λ is an upper bound for the H2 norm of system (5.3),
that is, ‖G‖2 < λ.

Lemma 5.2 and its proof are presented in [39, Theorem 2].

5.3 Gain Scheduled Fault Detection Formulation

Consider the following LPV discrete-time system

Gf :=

{
x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k) +Dfθ(k)f(k),
(5.11)

where x(k) ∈ Rnx represents the state vector, u(k) ∈ Rnu denotes the control input,
w(k) ∈ Rnw is the exogenous input and f(k) ∈ Rnf is the fault signal. We also
consider that the signals w, f ∈ L2 and recall that the time-varying parameter θ(k)

is bounded as |θi(k)| 6 ti, ti ∈ R+, i = 1, . . . ,m, ∀ k > 0.
The major component in a Fault Detection and Isolation process is the Fault

Detection Filter (FDF), which we can describe as follows

F :=

{
η(k + 1) = Aηθ̂(k)η(k) + Mηθ̂(k)u(k) + Bηθ̂(k)y(k),

r(k) = Cηθ̂(k)η(k) + Dηθ̂(k)y(k),
(5.12)

where η(k) ∈ Rnη denote the filter state and r(k) ∈ Rnr is the residue signal. Note
that the FDF (5.12) depends only on the estimated parameter θ̂. We assume that
the FDF in (5.12) can be written in the affine form similarly to (5.4), so that the
matrices in (5.12) are defined as

Aηθ̂(k) = Aη0 +

m∑
i=1

θ̂i(k)Aηi, (5.13)

Hence, the main focus of this chapter is to design all the matrices in Aηi, Mηi, Bηi,
Cηi, Dηi, i ∈ {1, . . . ,m}.

Parameter under additive uncertainty

One of the major premises of the present chapter is that the time-varying parame-
ters θ(k) are not directly accessible. Instead, we implement estimation procedures
to gather an estimation θ̂(k) of the time-varying parameter θ(k), which are not com-
pletely precise, meaning that we must assume that θ̂(k) is an inexact measurement
of θ(k). The design under the assumption of inexact measurements is dealt with
a general model described in [75],[89], in which we assume that the estimated
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parameters θ̂(k) is a sum of the actual parameter θ(k) with an orthogonal additive
uncertainty σ(k), that is

θ̂i(k) = θi(k) + σi(k), i = 1, . . . ,m (5.14)

where |σi(k)| 6 di, di ∈ R+, i = 1, . . . ,m. Thus, the domain of (θ(k), σ(k)) is as
displayed in Fig.5.1.

−ti

−di

di

ti0

0

θi(k)

σi(k)

Figure 5.1: Feasible region for each pair (θi(k), σi(k)), borrowed from [89].

From the aforementioned discussion, we may define the augmented system
which depends on both time-varying parameter θ(k), θ̂(k), by taking e(k) = r(k)−
f(k), as

Gaug :=

{
x̌(k + 1) = Ǎθ̂(k)θ(k)x̌(k) + J̌θ̂(k)θ(k)w̌(k),

e(k) = Čθ̂(k)θ(k)x̌(k) + Ďθ̂(k)θ(k)w̌(k),
, (5.15)

where we consider the augmented vectors x̌ = [x′(k) η′(k)]′, w̌ = [u′(k) d′(k) f ′(k)]′.
In order to simplify the visualization of the resulting LMIs, we consider hereafter
θ = θ(k), and θ̂ = θ̂(k). The following augmented matrices can be obtained:

Ǎθ̂θ =
[

Aθ 0
Bηθ̂Cθ Aηθ̂

]
, J̌θ̂θ =

[
Bθ Jθ Fθ
Mηθ̂ Bηθ̂Dθ Bηθ̂Dfθ

]
,

Čθ̂θ = [ Dηθ̂Cθ Cηθ̂ ] , Ďθ̂θ = [ 0 Dηθ̂Dθ Dηθ̂Dfθ−I ] .

Based on the augmented system as above, we can define theH∞ Fault Detection
problem as follows.
H∞ Fault Detection problem: Given a desired H∞-gain γ > 0, design the FDF as
in (5.12) such that the H∞ norm of the augmented system (5.15) satisfies

‖Gaug‖∞ = sup
‖w̌‖2 6=0,w̌∈L2

‖e‖2
‖w‖2

< γ. (5.16)
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Similarly, we can define the H2 Fault Detection problem as follows.
H2 Fault Detection problem: Given a desired H2-gain λ > 0, design the FDF as
in (5.12) such that the H2 norm of the augmented system (5.15) satisfies

‖Gaug‖2 = lim sup
T→∞

E

{
1

T

T∑
k=0

e(k)′e(k)

}
< λ. (5.17)

Change of variables

From the discussion presented in the previous sub-sections, a major assumption
in this chapter is that the parameter used by the filter is an estimation of the real
one affecting the system. To deal with this assumption it is necessary to employ
some procedures to design the fault detection filter (5.12). Using, for instance,
the procedures given in [12, 75], we can perform a variable transformation to
deal with this type of parameter subjected to additive uncertainty. These variable
transformations, applied to our context can be seen as

αi1(k) =
θi(k) + ti

2ti
, α̂i1(k) =

σi(k) + di
2di

,

and the original parameters are retrieved as

θi(k) = 2tiαi1(k)− ti, σi(k) = 2diα̂i1(k)− di,
i = 1, · · · ,m.

Thus we have that αi(k) = (αi1(k), αi2(k)) and α̂i(k) = (α̂i1(k), α̂i2(k)) belong
to the unit-simplex as in (5.1) with N = 2, so that α(k) = (α1(k), . . . , αm(k)) and
α̂(k) = (α̂1(k), . . . , α̂m(k)) belong to the multi-simplex Λm,2 = Λ2 × · · · × Λ2 with
m terms. We set α̃(k) = (α(k), α̂(k)) ∈ Λm,2 × Λm,2, where α(k) is related to
θ(k), and α̂(k) to σ(k) (the additive noise time-varying parameter). Notice that
the matrices in system (5.3) and in the FDF in (5.12) can be rewritten using the
new multi-simplex α̃(k), following the procedure explained in [75], which uses the
polynomial homogenisation process presented in [87].

Another assumption made for the numerical procedure is that the parameters
are arbitrarily fast in time so that, by consequence, θ(k + 1) is independent from
θ(k).

When using the parser ROLMIP [2], associated with YALMIP [77], this proce-
dure is as simple as setting the degrees of the multi-simplex polynomials and the
parameter boundaries. Thus for the numerical procedure, this change of variable
will be applied to derive the FDF in (5.12).
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

Π1,1 • • • • • • •
Π2,1 −W ′22θ+ξ(Her(∇θ̂)) • • • • • •
Π3,1 ∇θ̂+ξK′

2θ̂
W ′11β−Her(K1θ̂) • • • • •

Π4,1 ∇θ̂+ξK̄′
θ̂

W ′12β−K̄
′
θ̂
−K2θ̂ W

′
22β−Her(K̄θ̂) • • • •

Π5,1 ξ(K2θ̂Bθ+Γθ̂)′ B′θK
′
1θ̂

+Γ′
θ̂

B′θK
′
2θ̂

+Γ′
θ̂
−γ2I • • •

Π6,1 ξ(K2θ̂Jθ+Ωθ̂Ddθ)′ J′θK
′
1θ̂

+D′dθΩ′
θ̂
J′θK

′
2θ̂

+D′dθΩ′
θ̂

0 −γ2I • •
Π7,1 ξ(K2θ̂Fθ+Ωθ̂Dfθ)′ F ′θK

′
1θ̂

+D′fθΩ′
θ̂
F ′θK

′
2θ̂

+D′fθΩ′
θ̂

0 0 −γ2I •
Π8,1 Cηθ̂ 0 0 0 Dηθ̂Ddθ Dηθ̂Dfθ−I −I


< 0,

(5.18)

5.3.1 Theoretical Results

In this section, we describe the main contributions of this chapter on the design
of the fault detection filters for solving the previously defined H2, and H∞ fault
detection problems. It is important to stress that the results will be presented in
terms of the original parameters θ(k) and θ̂(k) to highlight that the derived filter
only depends on the measurable parameter θ̂(k). For the numerical procedure,
the change of variable presented in Section 5.3 should be applied so that we
end up with multi-simplex polynomials with the new multi-simplex parameter
α̃ ∈ Λm,2 × Λm,2. As before, for the sake of simplicity in what follows we set
θ = θ(k), θ̂ = θ̂(k) and β = θ(k + 1), and by feasible θ, β, θ̂ we mean that the
constraints imposed in Section 5.3 are satisfied.

H∞ Fault Detection Filter Design for LPV with uncertain parameter

In the following theorem, we present the design of LPV FDF via LMI to obtain a
guaranteed H∞ upper bound of the augmented system in (5.15).

5.1. THEOREM. For a desiredH∞ upper bound γ > 0, if there exist symmetric positive
definite matrices W11θ, and W22θ and matrices W12θ, K1θ̂, K2θ̂, K̄θ̂, Ωθ̂, ∇θ̂, Γθ̂, Cηθ̂,
Dηθ̂ with compatible dimensions and a given scalar parameter ξ ∈ ]−1 1[ such that
(5.18) with

Π1,1 = −W11θ + ξ(Her(K1θ̂Aθ + Ωθ̂Cθ)),

Π2,1 = −W ′12θ + ξ(∇′
θ̂

+K2θ̂Aθ + C ′θΩ
′
θ̂
), Π3,1 = K1θ̂Aθ + Ω′

θ̂
Cθ + ξK ′

1θ̂
,

Π4,1 = K2θ̂Aθ + Ω′
θ̂
Cθ + ξK̄ ′

θ̂
, Π5,1 = ξ(K1θ̂Bθ + Γθ̂)

′,

Π6,1 = ξ(K1θ̂Jθ + Ωθ̂Ddθ)
′, Π7,1 = ξ(K1θ̂Fθ + Ωθ̂Dfθ)

′, Π8,1 = Dηθ̂Cθ,

holds for all feasible θ, β, θ̂ then the LPV FDF (5.12) with Aηθ̂ = K̄−1

θ̂
∇θ̂, Bηθ̂ =

K̄−1

θ̂
Ωθ̂, Mηθ̂ = K̄−1

θ̂
Γθ̂, Cηθ̂ = Cηθ̂, and Dηθ̂ = Dηθ̂ solves the H∞ fault detection

problem (5.16).
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Proof: We apply the variable substitutions ∇θ̂ = K̄θ̂Aηθ̂, Ωθ̂ = K̄θ̂Bηθ̂, Γθ̂ =

K̄θ̂Mηθ̂, Cηθ̂ = Cηθ̂, and Dηθ̂ = Dηθ̂ in (5.18). Assuming the structure ofWθ, Kθ̂,
as

Wθ =
[
W11θ W12θ

W ′12θ W22θ

]
, Kθ̂ =

[
K1θ̂ K̄θ̂
K2θ̂ K̄θ̂

]
, (5.19)

as well as the augmented matrices in (5.15), the inequality (5.18) can be rewritten
as −Wθ+ξ(Her(Kθ̂Ǎθθ̂)) Ǎ′

θθ̂
K′
θ̂
−ξKθ̂ ξKθ̂ J̌θθ̂ Č

′
θθ̂

Kθ̂Ǎθθ̂−ξK
′
θ̂

−Wβ−Kθ̂−K
′
θ̂
Kθ̂ J̌θθ̂ 0

ξJ̌′
θθ̂
K′
θ̂

J̌′
θθ̂
K′
θ̂

−γ2I Ď′
θθ̂

Čθθ̂ 0 Ďθθ̂ −I

 < 0. (5.20)

Moreover (5.43) can be written as

Qθθ̂β + U ′
θθ̂
K′
θ̂
V + V ′Kθ̂Uθθ̂ < 0, (5.21)

where

Qθθ̂β =

−Wθ 0 0 Č′
θθ̂

0 −Wβ 0 0

0 0 −γ2I Ď′
θθ̂

Čθθ̂ 0 Ďθθ̂ −I

 ,
U ′
θθ̂

=

[
Ǎ′
θθ̂

−I
J̌′
θθ̂
0

]
, V ′ =

[
ξI
I
0
0

]
. (5.22)

Now, we pre- and post-multiply the inequality (5.50) by[
I Ǎ′

θθ̂
0 0

0 J̌′
θθ̂

I 0

0 0 0 I

]
, (5.23)

and its transpose, respectively, and after that applying the Schur complement and
using arguments similar to those explained at the end of the proof for Theorem 5.2
we end up obtaining constraints that are equivalent to those for the bounded real
lemma (5.6), concluding the proof. �

H2 Fault Detection Filter Design for LPV with uncertain parameter

The next theorem presents the LPV FDF design using an upper bound for the
guaranteed cost for the H2 norm of the system (5.15).

5.2. THEOREM. For a desired H2 upper bound λ > 0, if there exist symmetric positive
definite matrices Y11θ, Y22θ, Mθ, and matrices Y12θ, X1θ̂, X2θ̂, X̄θ̂, Ωθ̂, ∇θ̂, Γθ̂, Cηθ̂,
Dηθ̂ with compatible dimensions, and a given scalar parameter ξ ∈ ]−1 1[ such that
the following inequalities
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Tr(Mθ) < λ2, (5.24)
−Y11θ+ξ(Her(X1θ̂Aθ+Ωθ̂Cθ)) • • • • • •
−Y12θ+ξ(X2θ̂Aθ+Ωθ̂Cθ+∇′

θ̂
) −Y22θ+ξHer(∇θ̂) • • • • •

X1θ̂Aθ+Ωθ̂Cθ+ξX1θ̂ ∇θ̂+ξX′
2θ̂

Y11β−X′1θ̂−X1θ̂ • • • •
X2θ̂Aθ+Ωθ̂Cθ+ξX̄θ̂ ∇θ̂+ξX̄′

θ̂
Y ′12β−X2θ̂−X̄

′
θ̂
Y22β−Her(X̄θ̂) • • •

ξ(B′θX
′
1θ̂

+Γ′
θ̂
) ξ(B′θX

′
2θ̂

+Γ′
θ̂
) B′θX

′
1θ̂

+Γ′
θ̂

B′θX2θ̂+Γ′
θ̂
−I • •

ξ(J′θX
′
1θ̂

+D′dθΩ′
θ̂
) ξ(J′θX

′
2θ̂

+D′dθΩ′
θ̂
) J′θX

′
1θ̂

+D′dθΩ′
θ̂
J′θX

′
2θ̂

+D′dθΩ′
θ̂

0 −I •
ξ(F ′θX

′
1θ̂

+D′fθΩ′
θ̂
) ξ(F ′θX

′
2θ̂

+D′fθΩ′
θ̂
) F ′θX

′
1θ̂

+D′fθΩ′
θ̂
F ′θX

′
2θ̂

+D′fθΩ′
θ̂

0 0 −I

 < 0,

(5.25)
Mθ • • • • •

C′θD
′
ηθ̂

Y11θ • • • •
C′
ηθ̂

Y ′12θ Y22θ • • •
0 0 0 I • •

D′dθD
′
ηθ̂

0 0 0 I •
D′fθD

′
ηθ̂
−I 0 0 0 0 I

 > 0, (5.26)

hold for all feasible θ, β, θ̂, then the LPV FDF (5.12) with Aηθ̂ = X̄−1

θ̂
∇θ̂, Bηθ̂ =

X̄−1

θ̂
Ωθ̂, Mηθ̂ = X̄−1

θ̂
Γθ̂, Cηθ̂ = Cηθ̂, and Dηθ̂ = Dηθ̂ solves the H2 fault detection

problem (5.17).

Proof: First, apply the variable substitution ∇θ̂ = X̄θ̂Aηθ̂, Ωθ̂ = X̄θ̂Bηθ̂, Γθ̂ =

X̄θ̂Mηθ̂, Cηθ̂ = Cηθ̂, and Dηθ̂ = Dηθ̂ in (5.25). Considering the augmented matrices
given in (5.15), and the following structures for Xθ̂, Yθ, Yβ ,

Xθ̂ =
[
X1θ̂ X̄θ̂
X2θ̂ X̄θ̂

]
, Yθ =

[
Y11θ •
Y21θ Y22θ

]
, Yβ =

[
Y11β •
Y21β Y22β

]
, (5.27)

we can rewrite the constraint (5.25) as[−Yθ+ξ(Her(Xθ̂Ǎθθ̂)) Ǎ′
θθ̂
X′
θ̂
−ξXθ̂ ξXθ̂ J̌θθ̂

• Yβ−Her(Xθ̂) Xθ̂ J̌θθ̂
• • −I

]
< 0. (5.28)

Rewriting (5.28) we get

Qθβ + U ′
θθ̂
X ′
θ̂
V + V ′Xθ̂Uθθ̂ < 0 (5.29)

where

Qθβ =

[
−Yθ 0 0
• Yβ 0
• • −I

]
, Uθθ̂ = [ Ǎθθ̂ −I J̌θθ̂ ] , V = [ ξI I 0 ] .

Let the null space for Uθθ̂ and V be given by

NU =

[
I 0
Ǎθθ̂ J̌θθ̂

0 I

]
, and NV =

[−I 0
ξI 0
0 I

]
. (5.30)
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Now, if we pre- and post-multiply (5.28) by N ′U and NU , respectively, and apply
twice the Schur complement to the result of this procedure we recover the condi-
tions presented in (5.8) with Pθ = Y −1

θ and Pψ = Y −1
β . Regarding the constraints

(5.26) we consider the same variable substitutions as at the start of the proof. After
that, applying twice the Schur complement we obtain the constraint (5.9) with
Wθ = Mθ. �

Mixed H2 / H∞ Fault Detection Filter Design for LPV with uncertain parame-
ter

In this section, we provide a mixed procedure aiming to improve the FDI per-
formance combining the results for H2 and H∞ norms introduced earlier in this
section. A simple approach to obtain a mixed solution when dealing with LMI
constraints to solve both optimization problems simultaneously, for instance, we
can consider the following two optimization statements

(i) Assume a weighting scalar ν, we solve the constraints assuming an objective
function of the form

g(λ, γ) = inf{νλ+ (1− ν)γ}, (5.31)

where ‖Gaug‖22 < λ and ‖Gaug‖2∞ < γ.

(ii) Given one of the upper bounds of the H2 or H∞ norms, λ > 0 or γ > 0,
respectively, we solve the constraints in order to minimize the other upper
bound.

Before we introduce the main result of this section, consider the following set
of variables

ψ =
{
W11θ > 0, W12θ, W22θ > 0, X1θ̂, X2θ̂, Y11θ,K1θ̂, Y12θ, Y22θ,K2θ̂,

Mθ > 0, X̄θ̂ = K̄θ̂ > 0,∇θ̂, Ωθ̂, Γθ̂, Cηθ̂, Dηθ̂

}
, (5.32)

ψ1 =
{
W11θ > 0, W12θ, W22θ > 0, X1θ̂, X2θ̂, Y11θ,K1θ̂, Y12θ, Y22θ,K2θ̂,

Mθ > 0, X̄θ̂ = K̄θ̂ > 0,∇θ̂, Ωθ̂, Γθ̂, Cηθ̂, Dηθ̂

}
∪ ζ1 (5.33)

where ζ1 denotes the set containing λ and γ.
The next theorem provides a sufficient condition for the FDF design for the

mixed H2/H∞ problem.

5.3. THEOREM. If for a given upper bounds λ > 0 and γ > 0 there exist ψ as in
(5.32) such that the inequalities (5.18), and (5.24)-(5.26) hold for all feasible θ, β,
θ̂, then a suitable LPV FDF as in (5.12) which solves simultaneously the H∞ and H2
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fault detection problems (5.17) and (5.16) is given by Aηθ̂ = X̄−1

θ̂
∇θ̂, Bηθ̂ = X̄−1

θ̂
Ωθ̂,

Mηθ̂ = X̄−1

θ̂
Γθ̂, Cηθ̂ = Cηθ̂, and Dηθ̂ = Dηθ̂. Alternatively, one can consider both or

one of the upper bounds λ and γ, as variables, and solve the optimization problems in
ψ1 (5.33) according to the stages (i) or (ii).

Proof: The proof follows directly from the proofs for Theorems 5.1 and 5.2. �

5.1. REMARK. Notice that Theorems 5.2, 5.1 and 5.3 are LMI conditions that provide
the system performance regarding the H∞, H2, and H2/H∞, respectively. Observe
that the LMI conditions in (5.24), (5.25), (5.26), and (5.18) , are defined as infinite
dimensional optimization problem that must be solved. By using the change of
variables presented in sub-section 5.3 and explained at the beginning of this section,
we can re-write the LMI optimization problems in terms of the new multi-simplex
parameter α̃ ∈ Λm,2 × Λm,2. This sort of optimization problems is hard to deal with
but, however, they can be handled by using the modern LMI Parsers as ROLMIP [2]
and YALMIP [77], which allow us to set polynomial degrees for the optimization
variables. This type of polynomial relaxation permits the problem to be rewritten as
an analysis of the positivity of homogeneous polynomial matrices (see Definition 5.3),
which is the procedure made by the ROLMIP, and after that the next step is to use a
semidefinite programming solver to acquire the solution.

5.2. REMARK. Note that in Theorems 5.2, 5.1, and 5.3 the variables that define if the
FDF is in the Robust form or in the Affine form, are ∇θ̂, Ωθ̂, Γθ̂, Cηθ̂, Dηθ̂, and X̄θ̂. If
the degree of those homogeneous polynomial matrices are set to be 0, the FDF designed
will be Robust, meaning that the FDF obtained will be parameter-independent. For a
homogeneous polynomial matrices degree equal to 1, the FDF obtained will be in the
affine form. Observe that a higher degree of the homogeneous polynomial can be set,
leading to the design of FDF with a higher degree. It is important to discuss that it
is also allowed to change the degree of the other variables in Theorems 5.2, 5.1, and
5.3, such as Y11θ, Y12θ, Y22θ, Mθ, W11θ, W12θ, and W22θ , with this choice mainly
affecting the level of conservatism and the computational effort.

5.3.2 Simulations Results

As in the previous sections, we are using the coupled-tank model with a fault signal
representing an abnormal input on the first tank. The LPV parameter in the tank
couple models a flux variation in the connection between tanks. The matrices that
compose the system on the LPV formulation is given by

A1 =
[−0.0239 −0.0127

0.0127 −0.0285

]
, A2 = [ 0 1

1 0 ] , B = [ 0.71 0
0 0.71 ] , J = [ 0.0071 0

0 0.0071 ] ,

F = [ 0.71
0 ] , C = I2×2, D = [ 0.01 0

0 0.01 ] , E = [ 0
0 ] , |θ(k)|6ti=0.03 ,



108 5. FDF and FAC for LPV Systems with Uncertain Parameters

where F has the same structure of the control input matrix B, representing an
abnormal input in the first tank, and the matrix E is null since we do not consider
that there is a sensor fault during the simulation. Observe that the only matrix that is
subjected to LPV is matrixA, representing a variation in the valve that connects both
tanks. Regarding the estimation parameter, we need to set a specific value for the
range of σ(k) beforehand. We can find in the literature some possible ways to obtain
this range, see for instance [89], where a Monte Carlo simulation is performed
to obtain this information which is a reliable method to find this range when
implementing the FDI. However, since finding the range of σ(k) is not the focus
of the present chapter, we arbitrarily set the range of σ(k) as |σ(k)| 6 di = 0.01.
To obtain the estimated parameter θ̂ we implemented the Recursive Least Square
(RLS) algorithm [94, 104]. We note that any other adaptive filter algorithms can
also be implemented to obtain θ̂, such as H∞ adaptive filter algorithm or Least
Mean Square-based algorithm.

Remark: Note that the level of reliability in the estimation process is directly
connected with the value of σ(k), as the less reliable the process the higher the
value of σ(k) must be.

The parameter θ(k) behavior is presented in Fig. 5.2 which we assume to be

0 150 300

Instant k

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(k)

(k)

Figure 5.2: Behavior for the Linear-Parameter variable θ(k) and σ(k).

the representation of an imprecision in the valve that interconnects the first tank
with the second one.

In the sequence, we present the simulation results given in two distinct parts,
the upper bound behavior analysis, and temporal analysis. First, we analyze the
obtained values for the upper bounds λ and γ when performing a search in the
scalar ξ in the range ]−1 1[ with 100 steps with the same length. These values for
the upper bounds are shown in Fig. 5.3.

Examining the curves in Fig. 5.3, for the first behavior we can observe is that the
values of γ and λ considering the robust form are higher than the affine structure.
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Figure 5.3: Upper bounds γ and λ behavior for Theorem 5.1 and 5.2 when scalar ξ
varies. Rob denotes the results using the Robust structure, and Aff represents the
results using Affine structure.

This is an expected result, mainly due to the less amount of variable in the LMIs
that leads to a higher level of conservatism imposed in the optimization problem.

Following a similar procedure, we consider the mixed H2/H∞ guaranteed costs
approach. For that, we assume a fixed upper bound γ = 0.01 related to the upper
bound for H∞ and we search for the minimum value of λ, as it was introduced in
statement (ii) in Subsection 5.3.1. In Fig. 5.4 we present the obtained values for
the upper bound λ given the aforementioned information when the scalar ξ varies
in the same interval as previously used.

-1 -0.5 0 0.5 1
0
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0.6

0.8

Theorem 5.3

Figure 5.4: Behavior of the upper bound λ for Theorem 5.3 when ξ varies and
γ = 0.01. Rob denotes the results using the Robust structure, and Af represents the
results using Affine structure.

Looking at the curves shown in Fig. 5.4 a few statements can be made. Re-
garding the robust form of the FDF, we see that the first feasible solution for
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Theorem 5.2 is provided at ξ = 0.5. As expected, the upper bound values are higher
considering the robust structure for the FDF when compared to the affine structure.

Similarly to what we observe in Figs.5.3 and 5.4, the higher values obtained
for the upper bounds are the ones assuming the Robust form for the FDF in all the
studied approaches.

The robust filter obtained using Theorem 5.1 to provide the upper bounds for
the H∞ norm is given by

Aηrob
=
[−1.07 −87.06

0.01 1.08

]
, Bηrob

=
[−1.057 −82.75

0.0007 1.058

]
, Mηrob

=
[−0.47
−0.00

]
,

Cηrob
= [ 0.49 38.31 ] , Dηrob

= [ 0.49 38.35 ] .

The affine structure obtained from Theorem 5.1 to provide upper bounds for the
H∞ norm is given by

Aηaff1
=
[−0.89 −70.49

0.01 0.87

]
, Aηaff2

=
[

0.12 4.89
−0.00 −0.06

]
,

Bηaff1
=
[−0.93 −70.16
−0.00 0.89

]
, Bηaff2

=
[

0.09 71.08
−0.00 −0.91

]
,

Mηaff1
=
[−0.75

0.00

]
, Mηaff2

=
[−0.71

0.00

]
,

Cηaff1
= [ 0.49 38.96 ] , Cηaff2

= [ 0.00 0.04 ] ,

Dηaff1
= [ 0.49 38.96 ] , Dηaff2

= [−0.49 −38.91 ] .

Regarding the results obtained for the H2 norm using Theorem 5.2, the robust filter
is given by

Aηrob
=
[−1.02 −10.09

0.01 0.12

]
, Bηrob

=
[−1.00 −10.07

0.00 0.15

]
, Mηrob

=
[−0.70
−0.00

]
,

Cηrob
= [ 0.49 4.91 ] , Dηrob

= [ 0.49 4.90 ] .

The affine filter obtained with Theorem 5.2 is given by

Aηaff1
=
[−1.02 −3.75

0.01 0.05

]
, Aηaff2

=
[−0.00 −0.03

0.00 −0.01

]
,

Bηaff1
=
[−0.99 −3.99
−0.00 0.08

]
, Bηaff2

=
[

0.00 3.97
−0.00 −0.10

]
,

Mηaff1
=
[−0.71
−0.00

]
, Mηaff2

=
[−0.70
−0.00

]
,

Cηaff1
= [ 0.49 1.82 ] , Cηaff2

= [ 0.00 0.04 ] ,

Dηaff1
= [ 0.50 1.95 ] , Dηaff2

= [−0.49 −1.90 ] .

Regarding the mixed H2 / H∞ results, the robust filter obtained using Theorem
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5.3 is given by

Aηrob
=
[−1.02 −12.16

0.01 0.11

]
, Bηrob

=
[−1.00 −12.14

0.00 0.14

]
, Mηrob

=
[−0.71

0.00

]
,

Cηrob
= [ 0.49 36.28 ] , Dηrob

= [ 0.49 36.24 ] .

The matrices for the affine structured using Theorem 5.3 are given by

Aηaff1
=
[−1.02 −4.23

0.01 −0.00

]
, Aηaff1

=
[−0.00 1.13

0.00 −0.01

]
,

Bηaff1
=
[−1.00 −3.81

0.00 0.01

]
, Bηaff2

=
[−0.00 5.04

0.00 −0.02

]
,

Mηaff1
=
[−0.71

0.00

]
, Mηaff2

=
[−0.70
−0.00

]
,

Cηaff1
= [ 0.49 32.34 ] , Cηaff2

= [ 0.00 −16.76 ] ,

Dηaff1
= [ 0.49 32.25 ] , Dηaff2

= [−0.50 −49.21 ] .

Monte Carlo Simulation

Using the similar setup as defined in the previous section, the major difference is
that the network dropout is not accounted for in this simulation, since the designs
proposed in this Section do not deal with this particular problem. For instance,
matrix C is static. The Monte Carlo simulation with 300 iterations was performed
and the results are divided into two classes the Robust, and Affine results. For
each class, we provide the following results, the mean and standard deviation of
the residue signal obtained using Theorems 5.1, 5.2, and 5.3, and after that the
evaluation function for the respective residues.

In Figs. 5.5a, 5.5b, 5.5c , we present some temporal simulations using all the
FDF designed using Theorem 5.1, 5.2, 5.3 in the Robust forms. Firstly, we present
the residue signal obtained. Observing Figs. 5.5a, 5.5b, and 5.5c, allow us to
conclude that all three cases presented a low standard deviation and similar residue
signal. The result obtained using Theorem 5.3 presented a small advantage when
compared with the results obtained with Theorems 5.1 and 5.2, since it provided
the higher values. This information can be verified after the evaluation process,
which will be displayed next. In Figs. 5.6a, 5.6b and 5.6c we can see that the
interval where the fault was detected was respectively k = [121 132] for Theorem
5.1, k = [134 146] for Theorem 5.2, and k = [119 126] for Theorem 5.3. We can
see that the evaluation function for Theorem 5.3 has a stepper curve and a shorter
detection range (7) showing that the FDF designed has a higher performance. As
expected the evaluation function when there is no fault is almost null in all cases.
Now in Fig. 5.7 the evaluation function for all the robust cases are presented. We
assume that the threshold is equal to TH = 10. Analyzing Fig.5.7 we can confirm
that the better performance is provided by Theorem 5.3. But observing all curves
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signal obtained using Theorem 5.1.
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Figure 5.5: Mean and standard deviation for the residue signal (with and without
fault) obtained using the FDI in the robust form designed via Theorem 5.1 (blue
curve), 5.2 (red curve), and 5.3 (magenta curve).

we can confirm that all the FDF in the robust form designed using Theorem 5.1,
5.2, and 5.3 are viable solutions for the FDI problem. Another important aspect is
that the evaluation function when there is no fault is almost null during the entire
simulation, which is different from FDF counterparts in Chapters 2, 3 that consider
Markov Jumps.

In Figs. 5.8a, 5.8b, 5.8c , we present some temporal simulations using all the
FDF designed using Theorem 5.1, 5.2, 5.3 in the Affine forms. We present now
the residue signal gathered during the simulation. Note that in Fig.5.8a the higher
value and the smaller standard deviation, which provide a fast and at the same
time reliable detection process. On the other hand, results presented in Fig. 5.8b
the level of reliability is lower since the standard deviation is higher, which may
lead to false alarms. This particularity observed in the results in 5.8b, is expected
due to the fact this design is based solely on H2 norm, which does not mitigate
the exogenous disturbance. Figs. 5.9a, 5.9b, and 5.9c the detection interval are
respectively, k = [120 126], k = [137 156], and k = [122 125]. Once again, the
FDF designed using Theorem 5.3 provided a better performance, regarding the
steepness of the curve and the standard deviation. Besides these performance
differences, all three approaches behave as intended.

The evaluation function obtained using the Affine form are presented in Fig.5.10
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tion function obtained using Theorem 5.1.
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tion function obtained using Theorem 5.2
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Figure 5.6: Mean and standard deviation for the evaluation function (with and
without fault) obtained using the FDI in the robust form designed via Theorem 5.1
(blue curve), 5.2 (red curve), and 5.3(magenta curve).
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Figure 5.7: The mean value of the evaluation function signal for three distinct
cases, where the blue curve represent the results using Theorem 5.1, the red curve
represent the results obtained via 5.2, the magenta curve represents the results
through Theorem 5.3, and the cyan line denotes the threshold TH.

As expected the results obtained using Theorem 5.1 presented the better perfor-
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Figure 5.8: Mean and standard deviation for the residue signal (with and without
fault) obtained using the FDI in the affine form designed via Theorem 5.1 (blue
curve), 5.2 (red curve), and 5.3(magenta curve).

mance, but closely followed by the results using Theorem 5.3. All the solutions are
seen as viable solutions for the FDI problem, however, the results for Theorem 5.2
are more prone to false alarms.

5.4 Gain Scheduled Fault Accommodation Formula-
tion

Consider the following discrete-time linear system, that depends on time-varying
parameters

G :

{
x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) +Bθ(k)h(k) + Jθ(k)w(k) + Fθ(k)f(k),

y(k) = Cθ(k)x(k) +Dθ(k)w(k) +Dfθ(k)f(k),
(5.34)

where x(k) ∈ Rnx , u(k) ∈ Rnu , w(k) ∈ Rnw , and y(k) ∈ Rny , are the system states,
control input, exogenous input, and the measurement signal, respectively. The fault
signal is represented by f(k) ∈ Rnf . The fault accommodation control signal is
denoted by h(k) ∈ Rnu . It is assumed that the signals w(k), f(k) ∈ L2. As defined
for the FDF in the previous section, the index θ(k) represents the same bounded
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(a) Mean and standard deviation for evalua-
tion function obtained using Theorem 5.1.
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(b) Mean and standard deviation for evalua-
tion function obtained using Theorem 5.2.
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Figure 5.9: Mean and standard deviation for the evaluation function (with and
without fault) obtained using the FDI in the affine form designed via Theorem 5.1
(blue curve), 5.2 (red curve), and 5.3(magenta curve).

50 100 150 200 250 300

Instant k

0

5

10

15

20

25

30

35

40

45

E
V

A
L
(k

)

EVAL(k) for Theorem 5.1 Aff

EVAL(k) for Theorem 5.2 Aff

EVAL(k) for Theorem 5.3 Aff

Threshold

Figure 5.10: The mean value of the evaluation function signal for three distinct
cases, where the blue curve represent the results using Theorem 5.1, the red curve
represent the results obtained via 5.2, the magenta curve represents the results
through Theorem 5.3, and the indigo line denotes the threshold TH.

time-varying parameter.
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Another particularity presented in the previous section that also remains true
here, is that the matrices that compose the system (5.34), are all in the affine form,
as described in (5.4).

The change of variable presented in Section 5.3 is also implemented here, since
the premise of the time-varying parameter θ(k) is not precisely known, and the
assumption of θ(k) is contaminated by an additive disturbance σ(k), where σ is
also a bounded parameter.

Assuming the nominal situation (without fault signal), system (5.34) is con-
trolled by a state-feedback controller, as in [39]. Therefore, the nominal control
law is described as

u(k) =

(
K0 +

m∑
i=1

θ̂(k)iKi

)
︸ ︷︷ ︸

=:Kθ̂(k)

x(k). (5.35)

Since the problem we tackle in this chapter regards the occurrence of faults, the
access of the system states x(k) is unrealistic. Therefore, we assume that the states
are estimated using some type of adequate procedure. However, for the sake of
simplicity, we are omitting the notation to avoid overcrowding the equations.

The present chapter aims to provide a fault accommodation controller with the
main purpose of producing an auxiliary control signal whenever a fault occurs, or
no input otherwise. The fault compensation controller can be described by

Kc :


η(k + 1) = Aθ̂(k)η(k) + Mθ̂(k)u(k) + Bθ̂(k)y(k),

h(k) = Cθ̂(k)η(k),

η(0) = η0, θ̂(0) = θ̂0,

(5.36)

where η(k) ∈ Rnη represents the FAC signal, u(k) and y(k) are, respectively, the
control signal from the regular controller and the measured signal from the system.
Note that the nominal controller (5.35), and the Fault Accommodation controller
(5.36) depend both only on the estimated LPV parameter θ̂(k). Therefore, the
matrices that compose the FAC (5.36) can be written using the affine form, as
in (5.4), where the matrices affinely depend on θ̂(k). Thus, the system (5.34)
depends on the parameter θ(k), while the state-feedback controller (5.35) and FAC
controller (5.36) depend on the parameter θ̂(k).

The augmented system with the state feedback control law (5.35) and with the
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FAC (5.36) is given by

Gaug :


x̄(k + 1) = Āθ(k)θ̂(k)x̄(k) + B̄θ(k)θ̂(k)w̄(k),

o(k) = C̄θ(k)θ̂(k)x̄(k) + D̄θ(k)θ̂(k)w̄(k),

x̄0 = η0,

(5.37)

where x̄(k) = [x′(k) η′(k)]′ and w̄(k) = [w′(k) f ′(k)]′. To simplify the visualization
of the resulting LMIs, we omit the time-dependency in the time-varying parameters
by considering hereafter θ = θ(k), and θ̂ = θ̂(k). The augmented matrices are as
follows:

Āθθ̂ =
[

Aθ−BθKθ̂ BθCθ̂
Bθ̂Cθ−Mθ̂Kθ̂ Aθ̂

]
, B̄θθ̂ =

[
Jθ Fθ

Bθ̂Dθ Bθ̂Dfθ

]
,

C̄θ = [ 0 −BθCθ̂ ] , D̄θ = [ 0 Fθ ] .
(5.38)

The main goal of this chapter is to design a FAC as presented in (5.36) where
the difference o(k) = Fθ(k)f(k) − Bθ̂(k)h(k) is close to zero, meaning that the
fault accommodation control signal will suppress the fault signal. Therefore, the
optimization problem for the H∞ norm is described as

‖Gaug‖∞ = sup
‖w̄‖2 6=0,w̄∈L2

‖o‖2
‖w̄‖2

< γ, (5.39)

where γ > 0, as similarly described in [39]. For the H2 norm case, the optimization
problem is given by

‖Gaug‖2 = lim sup
T→∞

E

{
1

T

T∑
k=0

o(k)′o(k)

}
< λ, (5.40)

where λ > 0, T is a positive integer that represents the time horizon, w̄(k) in (5.37)
is a standard white noise (Gaussian zero-mean in which the covariance matrix is
equal to the identity matrix), and E represents the expected value operator, see
[39] for more details.

5.4.1 Theoretical Results

In this section, we present our main results on obtaining a gain-scheduled fault
accommodation controllers for LPV systems, having as performance indexes the
H∞ and H2 norms.

It is essential to explain that the results will be presented in terms of the original
parameters θ(k) and θ̂(k) to feature that the FAC designed depends solely on the
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measured parameter θ̂(k). Afterwards, in order to solve the theorems presented in
this section, it is imperative the use of the change of variables in sub-section 5.3
and rewriting all matrices in terms of the multi-simplex parameter α̃ ∈ Λm,2. As
previously stated, to easy the notation, we set θ = θ(k), θ̂ = θ̂(k), and β = θ(k+ 1).

H∞ Fault Accommodation Control Design

Firstly, we present a theorem for obtaining a gain-scheduled FAC using the H∞
norm.

5.4. THEOREM. If there exist symmetric positive definite matricesW11θ,W22θ matrices
W12θ, Y1θ̂, Y2θ̂, Y̌θ̂, Ωθ̂, ∇θ̂, Γθ̂, Cηθ̂ with compatible dimensions, and a given scalar
parameter ξ such that the following inequality


Π1,1 Π1,2 Π1,3 Π1,4 ξ(Y1θ̂Jθ+Ωθ̂Dθ) ξ(Y̌θ̂Fθ+Ωθ̂Dfθ) 0

• Π2,2 Π2,3 Π2,4 ξ(Y2θ̂Jθ+Ωθ̂Dθ) ξ(Y̌θ̂Fθ+Ωθ̂Dfθ) BθCηθ̂
• • Π3,3 Π3,4 Y1θ̂Jθ+Ωθ̂Dθ Y̌θ̂Fθ+Ωθ̂Dfθ 0

• • • Π4,4 Y2θ̂Jθ+Ωθ̂Dθ Y̌θ̂Fθ+Ωθ̂Dfθ 0

• • • • −γ2I 0 0

• • • • • −γ2I 0
• • • • • • −I

 < 0, (5.41)

with

Π1,1 = −W11θ + ξHer(Y1θ̂Aθ − Y1θ̂BθKθ̂ + Ωθ̂Cθ − Γθ̂Kθ̂),

Π1,2 = −W12θ + ξ(Y1θ̂BθCηθ̂ +∇θ̂ + (A′θ −K′θ̂B
′
θ)Y̌

′
θ̂ + C′θΩ

′
θ̂ −K

′
θ̂Γ
′
α̃),

Π1,3 = (A′θ −K′θ̂B
′
θ)Y

′
1θ̂ + C′θΩ

′
θ̂ −K

′
θ̂Γ
′
θ̂ − ξY1θ̂,

Π1,4 = (A′θ −K′θ̂B
′
θ)Y

′
2θ̂ + C′θΩ

′
θ̂ −K

′
θ̂Γ
′
θ̂ − ξY̌θ̂,

Π2,2 = −W22θ̂ + ξHer(Y1θ̂BθCηθ̂ +∇θ̂),

Π2,3 = C′ηθ̂B
′
θY
′
1θ̂ +∇′θ̂ − ξY2θ̂, Π2,4 = C′ηθ̂B

′
θY
′
1θ̂ + Γ′θ̂ − ξY̌θ̂,

Π3,3 = −W11β − Her(Y1θ̂), Π3,4 = −W12β − Y̌θ̂ − Y
′
2θ̂, Π4,4 = −W22β − Her(Y̌θ̂),

holds for all θ, θ̂, β, under the boundaries |σi(k)| 6 di, |θi(k)| 6 ti, then a suitable
linear parameter-varying FAC, as in (5.36), is given by Aηθ̂ = Y̌ −1

θ̂
∇θ̂, Bηθ̂ = Y̌ −1

θ̂
Ωθ̂,

Mηθ̂ = Y̌ −1

θ̂
Γθ̂, and Cηθ̂, and (5.39) is satisfied.

Proof: Consider the augmented matrices in (5.37), and the following structure
for Wθ, Wβ , Yθ̂

Wθ =
[
W11θ W12θ

W ′12θ W22θ

]
, Wβ =

[
W11β W12β

W ′12β W22β

]
, Yθ̂ =

[
Y1θ̂ Y̌θ̂
Y2θ̂ Y̌θ̂

]
. (5.42)

From the above, the constraints (5.41) can be rewritten as

Q+ U ′
θθ̂
Y′
θ̂
V + V ′Yθ̂Uθθ̂ < 0, (5.43)
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where

Q =

−Wθ 0 0 C̄′
θθ̂

0 −Wβ 0 0

0 0 −γ2I D̄′
θθ̂

C̄θθ̂ 0 D̄θθ̂ −I

 , Uθθ̂ = [ Āθθ̂ −I B̄θθ̂ 0 ] , V ′ = [ ξI I 0 0 ] . (5.44)

Pre- and post-multiplying (5.43) by

Bθθ̂ =

[
I Ā′

θθ̂
0 0

0 B̄′
θθ̂
I 0

0 0 0 I

]
, (5.45)

and then applying the Schur complement we have that (5.41) implies the constraint
in [48, Lemma 3], which yields (5.39), completing the proof. �

H2 Fault Accommodation Control Design

We present as follows a theorem that proposes a FAC having the H2 norm as a
performance index.

5.5. THEOREM. If there exist symmetric positive definite matrices W11θ, W22θ, Mθ

and matricesW12θ, X̌θ̂, X1θ̂, X2θ̂, Ωθ̂, ∇θ̂, Γθ̂, Cηθ̂ with compatible dimensions, and
a given scalar parameter ξ such that the following inequality


Ψ1,1 Ψ1,2 Ψ1,3 Ψ1,4 ξ(X1θ̂Jθ+Ωθ̂Dθ) ξ(X̌θ̂Fθ+Ωθ̂Dfθ)

• Ψ2,2 Ψ2,3 Ψ2,4 ξ(X2θ̂Jθ+Ωθ̂Dθ) ξ(X̌θ̂Fθ+Ωθ̂Dfθ)

• • Ψ3,3 Ψ3,4 X1θ̂Jθ+Ωθ̂Dθ X̌θ̂Fθ+Ωθ̂Dfθ

• • • W22θ−Her(X̌θ̂) X2θ̂Jθ+Ωθ̂Dθ X̌θ̂Fθ+Ωθ̂Dfθ
• • • • −I 0
• • • • • −I

 < 0, (5.46)

with

Ψ1,1 = −W11θ + ξHer(X1θ̂Aθ −X1θ̂BθKθ̂ + Ωθ̂Cθ − Γθ̂Kθ̂),

Ψ1,2 = −W12θ + ξ(X1θ̂BθCηθ̂ +∇θ̂ + (A′θ −K ′θ̂B
′
θ̂
)X̌ ′

θ̂
+ C ′θΩ

′
θ̂
−K ′

θ̂
Γ′
θ̂
),

Ψ1,3 = (A′θ −K ′θ̂B
′
θ)X

′
1θ̂

+ C ′θΩ
′
θ̂
−K ′

θ̂
Γ′
θ̂
− ξX1θ̂,

Ψ1,4 = (A′θ −K ′θ̂B
′
θ)X

′
2θ̂

+ C ′θΩ
′
θ̂
−K ′

θ̂
Γ′
θ̂
− ξX̌θ̂,

Ψ2,2 = −W22θ + ξHer(X1θ̂BθCηθ̂ +∇θ̂), Ψ2,3 = C′
ηθ̂
B′θX

′
1θ̂

+∇′
θ̂
− ξX2θ̂,

Ψ2,4 = C′
ηθ̂
B′θX

′
1θ̂

+ Γ′
θ̂
− ξX̌θ̂, Ψ3,3 = −W11β − Her(X1θ̂),

Ψ3,4 = −W12β − X̌θ̂ −X
′
2θ̂
,
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Mθ 0 Bθθ̂Cηθ̂ 0 Fθ
• W11θ W12θ 0 0
• • W22θ 0 0
• • • I 0
• • • • I

 > 0, (5.47)

Tr(Mθ) > λ2, (5.48)

holds for all θ, β, θ̂ under the boundaries |σi(k)| 6 di, |θi(k)| 6 ti, then a suitable
linear parameter-varying FAC as in (5.36), is given by Aηθ̂ = X̌−1

θ̂
∇θ̂, Bηθ̂ = X̌−1

θ̂
Ωθ̂,

Mηθ̂ = X̌−1

θ̂
Γθ̂, and Cηθ̂ which satisfies (5.40).

Proof: Consider the augmented matrices in (5.37), and the following structure for
Wθ, Wβ , Xθ̂

Wθ =
[
W11θ W12θ

W ′12θ W22θ

]
, Wβ =

[
W11β W12β

W ′12β W22β

]
,

Xθ̂ =
[
X1θ̂ X̌θ̂
X2θ̂ X̌θ̂

]
. (5.49)

The inequality (5.46) can be rewritten as

Q + U ′
θθ̂
X′
θ̂
V + V ′Xθ̂Uθθ̂ < 0, (5.50)

where

Q =

[
−Wθ 0 0

0 −Wβ 0
0 0 −I

]
, U ′

θθ̂
=

[
Ā′
θθ̂

−I
B̄′
θθ̂

]
, V =

[
ξI
I
0

]
. (5.51)

Assume the null bases for U and V as

N ′U =
[
I Ā′

θθ̂
0

0 B̄′
θθ̂

0

]
, N ′V =

[−I ξI 0
0 0 I

]
. (5.52)

By pre- and post-multiplying (5.50) by NU , and, using the Schur complement twice
we obtain the same constraints as presented in [39, Theorem 2]. The results within
[39] show that [39, Theorem 2] is equivalent to (5.40). Concerning the constraint
(5.48), we use the same variable substitution as described at the start of the proof
and applying the Schur complement twice we get that the constraint (5.48) is
equivalent to the second constraint in [39, Theorem 2]. This concludes the proof.
�.

Coordinate Descent Algorithm

Note that the constraints in Theorem 5.4 and 5.5 are BMIs, due to the term
Cηθ̂ multiplying other variables in the problems. To solve an optimization problem
in the context of BMI forms, we can use, for instance, the Coordinate Descent
Algorithm (CDA), as it was applied in [18]. The algorithm implemented to solve
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the constraints in this chapter is given as follows.

Algorithm 4: Coordinate Descent Algorithm.

1 Input: K0
θ̂
, γ0 or λ0, tmax, φ.

2 Output: Aηθ̂, Bηθ̂, Mηθ̂, Cηθ̂.
3 Initialization:

4 While: γt−1−γt
γt−1 6 φ or t 6 tmax do:

5 Step 1: Solve the constraint in Theorem 5.4 or 5.5 considering Cθ̂ as
a constant, to initialize the algorithm the first value of Cηθ̂ can be set as K
which can be obtained using the results in [80]. Obtain the values of Y1θ̂,
for the Theorem 5.4 or X1θ̂ for the Theorem 5.5.

6 Step 2: Solve the constraint in Theorem 5.4 or 5.5 this time using
the values of Y1θ̂ or X1θ̂ obtained in Step 1 and Cηθ̂ as a variable. Obtain
the value of γt+1 for Theorem 5.4 or λt+1 Theorem 5.5.

Notice that the inputs K0
θ̂

represent the starting value of Cηθ̂, γ
0 or λ0 are the

input to calculate the stop criteria at the first iteration, φ is the stop criteria, and
tmax is the maximum number of iterations.

5.4.2 Simulations Results

To illustrate the viability of the proposed approaches, we apply our method to a
simple quarter vehicle model system, [82]. The states vector for the linearized
model is x(k) is obtained from the discretization of x(t) = [zs żs zus żus], which
represents the displacement for the sprung mass, its variation, the displacement for
the mass unsprung, and its variation. The matrices that compose the discrete-time
system are

A1 =

[
0.99 0.01 0.00 0.00
−0.23 0.97 0.05 0.02
0.01 0.00 0.98 0.00
1.75 0.17 −14.42 0.81

]
, A2 =

[
0.99 0.00 0.00 0.00
−0.19 0.98 0.04 0.01
0.00 0.00 0.98 0.00
1.75 0.17 −14.42 0.81

]
,

B1 =

[ −0.00
−0.017
0.0006
0.13

]
, B2 =

[ −0.00
−0.018

0.00
0.14

]
, J =

[
0.00
−0.02
0.00
0.014

]
, F =

[ −0.00
−0.018

0.00
0.14

]
,

C = [ 1 0 0 0
0 0 1 0 ] , D = [−0.01

0.10 ] , Df = [ 0
0 ] , |θ(k)|6ti=0.05,

|σ(k)|6di=0.005

from where we can see that the time-varying parameter θ(k) affects the dynamical
behavior of the system in A and B, forming a polytope with 2 vertices. In this way,
matrices A1, B1, and A2, B2 represent the vertices of such polytope. The other
matrices are not affected by the time-varying parameter, therefore, their degree of
dependence on the parameter θ(k) is 0. Note that, matrix F has the same structure
of the control input matrix B, for the purpose of representing an abnormal input.
Since in this example we are not considering the presence of any sensor fault, we
have that, Df is null. We assume that the nominal gain-scheduled state-feedback
controllers are obtained using the method described in [80, Lemma 2], where the
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authors search for such controllers in the context of LPV systems without faults.
The resulted controller for the system of this example is

Kaff1 = [−0.1201 −0.2372 6.3420 0.4433 ]× 104,

Kaff2 = [ 0.3094 0.0391 −1.5798 0.0369 ]× 104.

The range of the disturbance σ(k) is defined a priori, and we arbitrarily set its range
in |σ(k)| 6 di = 0.005. The value of θ̂(k) is obtained in a practical situation by
implementing a variate of the filter, such as Recursive Least Square (RLS) algorithm
[94, 104].

In the first part of this example, we apply separately Theorems 5.4 and 5.5
searching, respectively, for the upper bounds of the H∞ and H2 norms (γ and λ).
For doing so, we perform a search in the scalar ξ in the range ]−0.9 0.9[ with 10
steps with the same length. A discussion about the ξ range is made in [99].

Additionally, we consider the affine and robust structures for the FDF, that is,
one structure that depends on the estimated parameter with degree 1 and another
with degree 0. The upper bounds γ and λ obtained with the aforementioned
considerations are shown in Fig. 5.11. From this figure, note that the scalar
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Figure 5.11: Upper bound behavior for Theorems 5.4 (H∞ norm) and 5.5
(H2 norm) when scalar ξ vary for the Robust, and Affine form.

search was more effective for the Robust form than the results obtained using the
Affine form. This discrepancy was expected since the Robust form is a more restrict
optimization problem, hence, performing the scalar search provides a higher impact
on the results for the Robust form. Summing up, the results presented in Fig. 5.11,
shows that the using Affine form in this example provides better results since the
upper bound values obtained for bothH∞ andH2 norms are in general, lower than
the values obtained for the Robust form. Therefore, for the temporal simulations,
we analyze the results obtained using solely the affine form, which we highlight as
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follows.

Monte Carlo Simulation

Here we implement a Monte Carlos Simulation since the parameter θ̂(k) has some
imprecision, meaning it is not completely deterministic.

The FAC in the affine form obtained applying Theorem 5.4 with ξ = −0.6 is
given by

A∞ηaff0
=

[
0.97 0.31 0.10 0.02
−1.09 −0.03 1.71 −0.21
0.09 0.31 0.53 0.06
1.59 1.04 −24.05 0.19

]
, B∞ηaff0

=

[
0.31 0.03
−0.95 −0.07
0.31 0.03
0.73 0.49

]
A∞ηaff1

=

[ −0.13 3.84 7.10 0.14
−24.64 29.02 153.36 −2.17

3.21 −5.35 −19.71 0.13
−92.32 453.01 596.26 26.82

]
, B∞ηaff1

=

[
3.65 0.36
31.79 3.17
−6.04 −0.60
463.43 46.33

]
,

M∞ηaff0
=

[
0.00
0.02
−0.00
0.11

]
, M∞ηaff1

=

[
0.00
0.02
0.00
−0.21

]
,

C∞ηaff0
= [−2.09 −0.08 8.54 −0.65 ] 104,

C∞ηaff1
= [−0.87−0.105.59−0.19 ] 104.

The affine filter obtained with Theorem 5.5 with ξ = −0.6 is given by

A2
ηaff0

=

[
0.99 0.00 −0.00 0.00
−0.47 2.11 −0.77 0.15
0.02 0.27 0.81 0.03
3.04 −24.91 −30.92 −2.16

]
, B2

ηaff0
=

[ −0.01 0.01
1.16 0.01
0.26 −0.01
−25.21 −0.07

]
,

A2
ηaff1

=

[ 1.04 0.41 −0.13 0.05
9.78 107.58 −32.81 13.87
−0.27 −3.46 1.79 −0.45
−79.73 −846.70 225.81 −109.05

]
,

B2
ηaff1

=

[ 0.41 −0.05
104.11 −11.68
−3.77 0.39
−807.37 91.51

]
, M2

ηaff0
=

[−0.00
−0.03
0.01
0.19

]
,

M2
ηaff1

=

[
0.00
−0.01
−0.00
0.02

]
, C2

ηaff0
= [−0.40 −0.04 1.27 −1.02 ] 103,

C2
ηaff1

= [−2.72 −2.44 7.52 −2.95 ] 103.

For this example, we consider that the fault signal f(k) represents an oil leak,
which reduces the damping capability of the system. Consider that the leak started
at t = 2.5s, which reduces the damping capability by 20%, and then it gradually
lowers until it reaches a reduction of 50%.

We show in Figs. 5.12 and 5.13, the respectively results regarding the output
and control signals. From Fig.5.12, it can be seen that the control design based
on the Affine form provides a smoother behavior for all three situations of faults.
This particular behavior happens mainly due to the lower level of conservatism
of the Affine form, and also due to the parameter variation throughout all the
simulation time. Additionally, both FAC approaches provide an accommodation
behavior as intended. However, when we compare the FAC approaches with that of
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the nominal controller, the FAC approaches yield a more aggressive control signal,
which is an expected behavior. In summary, the proposed fault accommodation
control approaches provided a suitable solution to mitigate the fault signal, and at
the same time do not interfere with the controller when there is no fault.
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Figure 5.12: Mean of the states signal obtained using FAC designed in the affine via
Theorems 5.4 (black curve) and 5.5 (green curve), where the system is subjected
to a fault.
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Figure 5.13: Mean of the control signal obtained using FAC designed in the affine
via Theorems 5.4 (black curve) and 5.5 (green curve), where the system is subjected
to a fault.

5.5 Concluding remarks

In this chapter, we presented the theoretical results obtained for the FDF and FAC
using the LPV systems assuming that the parameter is not accessible. Hence, the
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assumption of the imprecision is incorporated during the FDF and FAC process. We
also provided an illustrative example, and the results obtained allow us to state
that the proposed methods are viable.





Chapter 6

Conclusions

W
E summarize in a list the main contributions of this thesis and we point out
possible topics that can be tackled in the near future based on the results
herein.

6.1 Contribution

The main focus of this thesis was the development of procedures to design Fault
Detection Filters to be implemented in an FDI scheme, and Fault Accommodation
Controller to mitigate the effect of faults on ongoing processes.

• In Chapter 2 we addressed the FDF and FAC design under the assumption
that the network that is responsible to transmit the information packet is
semi-reliable. To model such behavior, we proposed that the FDF and FAC
design was made under the Markovian Jump Linear Systems framework,
which allow us to use Markov chains to model the network behavior and its
particularities. The main contributions in Chapter 2 were the design of FDF
using H∞-norm, H2-norm, H− index, Mixed H2/H∞, and Mixed H−/H∞
under the MJLS framework [13, 14, 16, 47]. For the contributions regarding
the FAC problem, we proposed the H∞ FAC design for MJLS [20].

• In Chapter 3, we kept tackling the FDF and FAC problem from the MJLS
point of view but adding the assumption that the network mode is not
instantly accessible. This new assumption is important because the idea of the
instantaneous access to the network is not realistic from a practical standpoint.
To deal with this issue we proposed the use of the MJLS approach which
uses Hidden Markov modes to model this inaccessibility. The contributions
in Chapter 3, were divided into three sections on FDF, SFDC, and FAC. The
results referring to the FDF section were the design using H∞-norm, H2-
norm, and the Mixed H2/H∞ [15, 17]. The novelty regarding SFDC part is
the SFDC design using H∞-norm, H2-norm, and Mixed H2/H∞ [18]. The
results for the FAC section were the FAC design using H∞-norm, H2-norm,
and Mixed H2/H∞ [19].
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• In Chapter 4 we focus our effort on providing an FDF and FAC design where
the network behavior was considered and adding the possibility to consider
a Lur’e type non-linearity that occurs in the system. This proposition is of
utmost importance since all systems are non-linear on some extent, and
on some occasion, the use of linearization processes may not provide an
adequate solution. Therefore, it is important to put into account those non-
linear behaviors to provide a more trustworthy solution for the FDF and FAC
designs. The contribution of Chapter 4 was the design of FDF for Lur’e MJS
using H∞-norm [21].

• In Chapter 5 we changed the pace and tackled the FDF and FAC design
problem from another point of view, which was achieved using the Linear
Parameter Vary framework. Following a parallel idea from Chapter 3, we
assumed that the LPV parameter was not directly accessible. Hence, the
parameter was estimated, but we assume that the estimated parameter was
not precise, meaning that the parameter was contaminated by additive noise.
To add the imprecision in the parameter and still guarantee the performance,
we proposed the use of the Multi-simplex technique to model an additive noise
in the parameter. From the practical point of view, this idea is interesting,
since it allows us to implement less sophisticated identification processes
to gather the LPV parameter in real-time. The contribution in Chapter 5
were the design of Gain-Scheduled FDF and FAC for LPV systems using the
H∞-norm, H2-norm, and Mixed H2/H∞. The FDF was submitted at IEEE
ACCESS and the results regarding the FAC are presented in [22].

6.2 Further Research

There are many routes that we could take after the results proposed in this the-
sis. Some are closer to the results presented, and others are more exciting and
challenging.

• A more direct way to follow the results herein would be to design an FDF and
FAC, under the assumption that network mode is not directly accessible, and
also considers that the system presents a non-linear behavior. This would be
a direct association of Chapters 3, 4.

• One increment that may be possible is to derive the H− index LMI con-
straint for the MJLS under the assumption that the parameter is not directly
accessible. And them design the FDF or FAC under these circumstances.

• Another possible follow-up would be the assumption that the Markov chain is
not homogeneous and redraw the results presented in Chapter 2. Removing
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the assumption that the Markov chain is homogeneous imposes some new
challenges. A possible way to deal with these new issues would be to use the
framework from Chapter 2, and use the techniques from Chapter 5 to model
the transition matrix with time-varying parameters. This approach is allowed
under the assumptions made presented in [1].

• Another possible path would be the transition from the model-based approach
to the data-driven strategy. That would be interesting due to the fact that in
some circumstances the data-driven design may be more advantageous when
compared with the model-based. Those discrepancies were discussed in the
first chapter of this dissertation. This could be achieved by using the approach
presented in [85]. [85] provided an approach to design LPV controller using
a data-driven strategy, which can be extended to FDF and FAC design.





Appendix A

Numerical Examples Modeling and Basic
Results

Here, we briefly explain and provide the necessary references of the models em-
ployed in the simulations throughout this thesis.

A.1 Coupled tank model

The model using in the majority of the examples in the thesis was the coupled tank
model, since it is a good benchmark model to test the viability of the approaches,
[53]. We borrowed the numerical values from the specific educational system. A
diagram that represents the structure of the system is presented below, We can

u1(k) u2(k)

H1

H2

Tank 1 Tank 2

Figure A.1: Coupled tank model.

describe the dynamic of this system by writing an equation that denotes the sum of
inputs and output flows on each tank. The height of each tank is determined by
the sum of flows which rules the volume on each tank.

p∑
i=1

Qini(t)−
l∑

j=1

Qoutj (t) = Acs
∂H(t)

∂t
(A.1)
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where Acs represents the area of tanks cross section. The flow output can be written
as

Qoutj (t) = α
√

2gH(t) (A.2)

where α represent the cross section of the output pipe or the interconnection pipe.
Hence, the non-linear system that models the dynamics is

∂H(t)

∂t
=

1

Acs

p∑
i=1

Qini(t)−
1

Acs

( l∑
j=1

α
)√

2gH(t) (A.3)

Obtaining the LTI model using Taylor series, considering that the non-linear system
is at an equilibrium point. Assuming a specific value of H0 and Qin0

allow us to
write

∂Ĥ(t)

∂t
= χĤ(t) + ΞQ̂in(t) (A.4)︷ ︸︸ ︷

H(t)−H0

Ĥ(t)

∂t
=

−αq
Acs
√

2gH0︸ ︷︷ ︸
χ

(H(t)−H0)︸ ︷︷ ︸
Ĥ(t)

+
1

Acs︸︷︷︸
Ξ

(Qin(t) −Qin0)︸ ︷︷ ︸
Q̂in(t)

(A.5)

Now considering both tanks, one can write the dynamic equations as

∂Ĥ1(t)

∂t
=
Q1
in1

(t)

Acs
−
α
√√

2gH1(t)

Acs
−
α
√√

2g(H1(t)−H2(t))

Acs
(A.6)

∂Ĥ2(t)

∂t
=
Q1
in2

(t)

Acs
−
α
√√

2gH2(t)

Acs
+
α
√√

2g(H1(t)−H2(t))

Acs
(A.7)

(A.8)

Considering the state vector as H̄(t) = [H1(t) H2(t)]′. The LTI dynamic matrix A is
acquired as

A =
1

Acs

[ αg√
2gH1

0

− αg√
2gH1

0−H
2
0

− αg√
2gH1

0−H
2
0

αg√
2gH1

0−H
2
0

αg√
2gH2

0

− αg√
2gH1

0−H
2
0

]
. (A.9)

Now, the parameter values from the educational kit [53] are presented in Table
A.1.

For the last step, we used a zero order holder with sampling time of 0.05s. The
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g m/s2 Gravitational acceleration 9.8
Acs m2 Tank cross section area 0.40
α m2 Interconnection pipe cross section area 0.01
H1

0 m2 height initial condition for the first tank 0.16
H2

0 m2 height initial condition for the second tank 0.22

Table A.1: Numerical parameter of the coupled tank model.

discrete time domain state space model obtained is

A =
[−0.0239 −0.0127

0.0127 −0.0285

]
(A.10)

A.2 Mass-Spring System

For the approaches that consider Markov Jump Lur’e systems a more appropriate
example is the mass-spring system from [71]. A representation of this model is
given by Fig. A.2 We can write the equation that represents the dynamic of the

m
u(t)

f(t)c

knl

x(t)

Figure A.2: Mass-Spring model, [71].

system as

ẍ(t) +
c

m
ẋ(t) +

k

m
x(t) +

ka2

m
x3(t) =

u(t)

m
w(t). (A.11)

The parameter descriptions and values are presented in table A.2.
We can rewrite the equation in the space-state form as,

A =
[

0 1
− k
m −

c
m

]
, G =

[
0
ka2

m

]
(A.12)

Using the zero-order holder with a sampling time equal to 5ms, the matrices
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m kg Block Mass 12
c Ns/m Dumper viscous friction coefficient 0.1
k N/m Spring elasticity coefficient 0.2
ka2 Spring non-linear elasticity coefficient 0.9

Table A.2: Numerical parameter of the Spring-Mass model.

that compose the state space system in the discrete time domain are given by,

A =
[−0.0101 0.9588
−0.0160 −0.0181

]
, B =

[
62.0699
−0.0513

]
, G = [ 0

0.15 ] , (A.13)

This particular model was used only in the examples in Chapter 4.

A.3 Quarter vehicle

We here use as a numerical example a simple quarter vehicle extracted from
[82] , which is represents a quarter vehicle body using a sprung mass(ms), the
wheel and tire are denoted by the unsprung mass (mus). Those components are
connected by a spring with a stiffness coefficient ks, and a semi-active damper. The
coefficient k1 represents the tire stiffness. The states vector for the linearized model

mus

ms(α)

k1

Semi-
Active
Damper

ks

Figure A.3: Quarter vehicle model.

is x(k) = [zs żs zus żus], which represent the displacement for the sprung mass, its
variation, the displacement for the mass unsprung, and its variation. Therefore, the
space-state matrices are,

Ac =


0 1 0 0

− ks
ms(αk)

c0
ms(αk)

ks
ms(αk)

c0
ms(αk)

0 0 0 1
ks
mus

c0
mus

− ks+k1
mus

− c0
mus

 , J =


0

0

0
ks
mus

 ,



A.4. Network Packet Loss Modeling 135

Bc =


0

− 1
ms(αk)

0
ks
mus

 , F =


0

− 1
ms(αk)

0
ks
mus

 , C =


1 0

0 0

0 1

0 0


′

,

Dd = 0.012×1, Ez = 0.012×1, Df = 0, α(k) = [−0.050.05].

where mus = 37.5 denotes the unsprung mass, ks = 29500 represents the stiffness
of the semi-damper, k1 = 210000 denotes the stiffness of the tires, and c0 = 2850

damping coefficient for the semi-damper. The Linear parameter varying in this
model will be ms the sprung mass, which vary linearly between ms = [315 285].
This variation represents a fast decrease in the sprung mass of the vehicle. The
discretization time is T = 0.025s.

A.4 Network Packet Loss Modeling

As explained throughout the thesis, one of the main advantages provided by the
MJLS framework is the capability of modeling the network packet loss in the
network. This procedure is made by setting the transition probability matrix with
appropriate structure and values that represent the network behavior. The first step
in the network packet loss modeling is the definition of the transition matrix. Firstly,
we need to define the amount modes of the system, to simplify the explanation
here, we will consider only two modes a nominal mode, and the packet loss mode,
by consequence, the transition matrix will be a 2× 2 matrix. Another aspect during
the definition of the transition matrix is the type of Markov chain that will be
implemented. There are plenty of Markov chains that can be used to model a
network, each one has its advantages and disadvantages, a few examples Bernoulli
model [100], Gilbert-Elliot model [60]. A Bernoulli MC is the simplest case of
an MC, using this type of MC to model a network will ignore some key behaviors
in a network since it only describes a series of Bernoulli trials. To describe some
additional behaviors, as the burst communication loss, we can use the Gilbert-Eliot
model [60]. The other part of this procedure is to describe where the packet loss
occurs on the control loop, that is, in the communication between controller and
actuator, or between the controller and sensor, or even both cases. What determines
the packet loss placement in the control loop is the matrices that switches according
to the Markov chain. To model the packet loss between controller and sensor, the
matrices that should switch are Ci, Di. For the packet loss in the communication
between actuator and controller, the matrix is Bi. Regarding the case where we
consider all the packet losses, all matrices Ci, Di, and Bi should switch according to
the Markov chain. For the case where all packet losses are considered the transition
probability matrix implemented is a Kronecker product of the transition probability
matrix from the other two cases, leading to an increased number of modes in the
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Network ”OK” Network ”Droped”ρ

1− ρ

β

1− β

Figure A.4: Diagram of the Markov chain for the Gilbert-Eliot model, for the
Bernoulli model the variables ρ and β are equal.

Plant SensorActuator

Network 1 Network 2Control

Figure A.5: Control loop example.

resulting Markov chain.

A.5 Schur Complement

A.1. LEMMA. The LMI, with the symmetric matrices X e Z[
X Y ′

Y Z

]
> 0 (A.14)

holds if and only if the following statements are true

• {Z > 0, X > Y ′Z−1Y }

• {X > 0, Z > Y X−1Y ′}
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Proof: For the rough sketch of the proof for the necessity, we assume that the
statements above are true, hence

Q =
[
X−Y ′Z−1Y 0

0 Z

]
> 0 (A.15)

defining the non-singular matrix T as

T =
[
I Y ′Z−1

0 I

]
(A.16)

by consequence we get that TQT ′ > 0, since Q > 0. This implies that

TQT ′ =
[
X Y ′

Y Z

]
> 0 (A.17)

A detailed discussion about the proof and applications can be obtained in [11].

A.6 Bounded Real Lemma

Suppose system

G :

{
x(k + 1) = Ax(k) +Bw(k),

y(k) = Cx(k) +Dw(k),
(A.18)

where w(k) ∈ Rm represents the exogenous input, and y(k) ∈ Rp is the measured
output. We can get the H∞ norm, considering the Lyapunov function v(k) =

x(k)′Px(k), and imposing

x(k + 1)′Px(k + 1)− x(k)Px(k) + y(k)′y(k)− γ2w(k)w(k) < 0 (A.19)

[
x(k)
w(k)

]′ [
A′PA−P+C′C A′PB+C′D
B′PA+D′C B′PB+D′D−γ2I

] [
x(k)
w(k)

]
< 0 (A.20)

Matrix A is asymptotically stable and ‖G‖∞ < γ if and only if there exists a
symmetric matrix P > 0 such that[

A′PA−P+C′C A′PB+C′D
B′PA+D′C B′PB+D′D−γ2I

]
< 0. (A.21)

A.7 Finsler Lemma

Considering w ∈ Rn, L ∈ Rn×n and B ∈ Rm×n with the rank (B) < n and B⊥ is
a base for a null space, that it BB⊥ = 0. Therefore, the following statements are
equivalent:
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• w′Lw < 0, ∀w 6= 0 : Bw = 0

• B′⊥LB⊥ < 0

• ∃µ ∈ R : L − µB′B < 0

• ∃X ∈ Rn×m : L+ XB + B′X ′ < 0

The proof can be seen in [10, 45].
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Filtering of discrete-time Markov jump linear systems with uncertain transi-
tion probabilities. International Journal of Robust and Nonlinear Control, 21
(6):613–624, 2011.
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Summary

Model-based Fault Detection (FD) and Fault Accommodation (FA) approaches
have been applied in a variety of cases. We propose several techniques to include
uncertainties in the design process. First, we focus on the design of the Fault
Detection Filter (FDF) and Fault Accommodation Controller (FAC) for Markovian
Jump Linear Systems (MJLS). The MJLS framework allows us to include the
network behavior (packet loss) during the design of the FDF and FAC. Second, we
propose an FDF and FAC design for the MJLS, under the assumption that the Markov
chain mode is not directly accessible. Since we are using the MJLS framework to
model the network behavior, the assumption that the network state is not instantly
accessible is useful because from a practical standpoint this is a truthful assumption.
Third, from the results presented for the MJLS framework, we provided follow-
up results using Lur’e Markov Jump System. This is compelling since on some
occasions the non-linear behavior cannot be ignored. Therefore, applying the
Lur’e MJS framework allows us to consider the same assumptions from MJLS, but
now adds the non-linearities. Fourth, we propose the design Gain-Scheduled FDF
and FAC for Linear Parameter Varying (LPV) systems, under the assumption that
the schedule parameter is not directly acquired. We assume that the schedule
parameter is subject to additive noise. This imprecision is included during the
design, using change of variables and multi-simplex techniques. Finally, throughout
the thesis, we provide some numerical examples to illustrate the viability of the
proposed approaches.





Samenvatting

Foutendetectie en foutenaccommodatie waarin het gebruikt van het systeem model
centraal staat, worden uiteenlopend toegepast. Wij stellen een aantal ontwerpme-
thoden voor die robuust zijn met betrekking tot de onzekerheden in het model. In
onze eerste bijdrage ligt de focus op het ontwerp van een foutdetectiefilter (FDF) en
van een foutaccommodatiecontrole (FAC) voor Markov Sprong Lineaire Systemen
(MSLS). Binnen het kader van MSLS is het mogelijk netwerkeigenschappen, zoals
verlies van een deel van de informatie, mee te nemen bij het ontwerp van een FDF
of een FAC. Aansluitend hierop stellen we een ontwerp van een FDF en een FAC
voor, waarbij we aannemen dat er geen toegang is tot de Markov ketting modus.
De aanname dat de staat van het netwerk niet direct volledig bekend is, is relevant
in de praktijk. Na deze analyse binnen het MSLS-kader breiden wij onze resultaten
uit door ook te kijken naar de Lur’e Markov Sprong Systemen. Hierbij mogen we
dezelfde aannames maken als bij MSLS, maar worden de statische non-lineaire
eigenschappen in de feedback lus meegenomen. Daarna presenteren wij een ont-
werp voor een versterkingsgeregelde FDF en een FAC voor Lineair Parametrisch
Varierende (LPV) systemen, met de aanname dat de modelparameters niet precies
bekend zijn. We nemen ook aan dat er ruis zit op deze parameters. De onzekerheid
van deze parameters wordt meegenomen tijdens het ontwerpproces door middel
van een wisseling van variabelen en multi-simplex technieken. Tot slot, presenteren
we een aantal numerieke en praktische voorbeelden in deze proefschrift, welke
laten zien dat de voorgestelde methoden levensvatbaar zijn.
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