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Abstract
Colorectal carcinoma is the third most common cancer in developed countries and the second leading cause of cancer-related 
mortality. Interest in the influence of the intestinal microbiota on CRC emerged rapidly in the past few years, and the close 
presence of microbiota to the tumour mass creates a unique microenvironment in CRC. The gastrointestinal microbiota 
secrete factors that can contribute to CRC metastasis by influencing, for example, epithelial-to-mesenchymal transition. 
Although the role of EMT in metastasis is well-studied, mechanisms by which gastrointestinal microbiota contribute to the 
progression of CRC remain poorly understood. In this review, we will explore bacterial factors that contribute to the migra-
tion and invasion of colorectal carcinoma and the mechanisms involved. Bacteria involved in the induction of metastasis in 
primary CRC include Fusobacterium nucleatum, Enterococcus faecalis, enterotoxigenic Bacteroides fragilis, Escherichia 
coli and Salmonella enterica. Examples of prominent bacterial factors secreted by these bacteria include Fusobacterium 
adhesin A and Bacteroides fragilis Toxin. Most of these factors induce EMT-like properties in carcinoma cells and, as such, 
contribute to disease progression by affecting cell-cell adhesion, breakdown of the extracellular matrix and reorganisation 
of the cytoskeleton. It is of utmost importance to elucidate how bacterial factors promote CRC recurrence and metastasis to 
increase patient survival. So far, mainly animal models have been used to demonstrate this interplay between the host and 
microbiota. More human-based models are needed to study the mechanisms that promote migration and invasion and mimic 
the progression and recurrence of CRC.
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Abbreviations
APC  Adenomatous polyposis coli
BFT  Bacteroides fragilis toxin
CNF1  Cytotoxic necrotizing factor 1
CRC   Colorectal cancer
ECM  Extracellular matrix
EMT  Epithelial-mesenchymal transition

FGF  Fibroblast growth factor
GAP  GTP-ase activating protein
GelE  Gelatinase E
GPCR  G-protein coupled receptor
JAM  Junctional adhesion molecule
LEE  Locus of enterocyte effacement
MMP  Matrix metalloproteinase
TGF  Transforming growth factor

Introduction

Colorectal carcinoma (CRC) is the third most diagnosed 
cancer in developed countries and the second leading cause 
of cancer-related mortality [1]. CRC comprises many differ-
ent phenotypes. For example, CRCs from diverse molecu-
lar backgrounds vary in growth patterns, histomorphologi-
cal characteristics and protein expression [2]. One of the 
best-studied molecular backgrounds of CRC formation is 
a mutation in the tumour suppression gene Adenomatous 
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Polyposis Coli (APC). This mutation in APC activates the 
Wnt/wingless signalling pathway, promoting prolifera-
tion and proto-oncogene expression [3]. Besides different 
molecular phenotypes, there is also a difference in tumour 
location in the colon [4]. The tumours in the proximal and 
distal colon show differences in histology and patterns of 
metastasis. Tumours in the proximal colon generally show 
flat histologies and commonly spread to the peritoneum. 
Tumours in the descending colon demonstrate polypoid-
like morphologies and tend to spread to the lungs or liver 
[5]. Approximately 20% of patients with CRC already have 
metastases at diagnosis [1], and the most common sites of 
CRC metastases are the lung, liver, and peritoneum [6].

For hematogenic metastasis to be successful, five general 
steps are required. These steps consist of the detachment of 
tumour cells from the primary tumour site (1), intravasation 
(2), survival within the circulation (3), extravasation (4) and 
colonisation at the secondary site (5) [7]. CRC cells can 
undergo epithelial-mesenchymal transition (EMT), a vital 
process in the migration and invasion stage of the metastatic 
cascade. EMT refers to a cell re-programming enabling epi-
thelial cells to lose their adherence to neighbouring cells and 
the extracellular matrix (ECM). Simultaneously, the cells 
acquire mesenchymal properties essential for migration and 
invasion [8]. A typical change in EMT is the loss of E-cad-
herin accompanied by dysregulation of the Wnt signalling 
pathway [9].

Many factors contributing to or initiating this transi-
tion have been extensively studied, such as a high-fat diet, 
smoking, and alcohol use [10–12]. The role of the intestinal 
microbiota on CRC has sparked interest in recent years. Sev-
eral studies have shown an altered composition of the gas-
trointestinal microbiota in CRC [13], and the proximity of 
microbiota to the tumour region provides a unique microen-
vironment. The microbiota that are part of the tumour micro-
environment in CRC contribute to the disease progression 
and recurrence [7].

Although metastasis in CRC is well-studied [14], mech-
anisms by which gastrointestinal microbiota contribute to 
the initiation, invasion, migration and metastasis of CRC 
remain poorly understood. Suggestions are made that the 
gastrointestinal microbiota are of influence on all aspects of 
cancer development. Stakelum et al. previously reviewed the 
role of the gastrointestinal microbiota in the other stages of 
the metastasis cascade [7]. Current evidence suggests that 
the microbiota impacts multiple processes in this cascade. 
For example, F. nucleatum was suggested to contribute to 
local invasion, but can also stimulate the secretion of the 
cytokine CXCL1 [15]. This cytokine participates in prem-
etastatic niche formation in the liver [16]. The gastrointes-
tinal microbes could also secrete factors that can contribute 
to local invasion through the induction of mesenchymal 
properties. Therefore, the primary goal of this review is to 

explore how bacterial factors can contribute to the migra-
tion and invasion of CRC. Additionally, this review aims to 
generate a deeper understanding of the potential mechanisms 
involved.

Mechanisms of CRC invasion and migration

During EMT, loss of the epithelial phenotype at the inva-
sive front results in increased immune system evasiveness 
[17]. This change enables tumour cells to migrate through 
the basal membrane and extracellular matrix, and migrate 
into the bloodstream and lymph nodes [17, 18]. Characteris-
tics frequently found in tumour cells at the invasive tumour 
front include the loss of junctional proteins, induction of 
EMT-related pathways, activation of Matrix Metalloprotein-
ases (MMPs) and membrane ruffling [19]. More recently, 
autophagy gained interest as a regulator of metastasis ini-
tiation [20]. Below, these concepts will be discussed in the 
context of CRC invasion and migration.

Disruption of junctional proteins

Differentiated epithelial cells exhibit apicobasal polarity 
[19], determined by tight junctions and adherence junctions 
(Fig. 1). A steady adherence junction requires the binding 
of E-cadherin to the actin cytoskeleton via the cytoplasmic 
domain of β-catenin. E-cadherin expression inversely cor-
relates with the malignancy of the tumour [21, 22]. In pro-
gressing tumours, loss of E-cadherin or its original localisa-
tion was consistently found. Adherence junctions can link 
a cell to either an adjacent epithelial cell or to the ECM. 
The transmembrane composition of adherence junctions 
depends on the linkage to epithelial cells or ECM. When 
the adherence junction links two epithelial cells, adherence 
junctions consist of cadherins. When the adherence junc-
tion links epithelial cells to the ECM, adherence junctions 
consist of integrins. On the inside of the cell, the integrin or 
cadherin is connected to the contractile protein actin. The 
actin forms belt-like structures on the cytoplasmic surface 
of the cell membrane, supporting the epithelial barrier [23]. 
As metastasis initiation progresses, the E-cadherin-β-catenin 
complex disconnects and the β-catenin is translocated to 
the nucleus [24]. In the nucleus, β-catenin functions as an 
inducer for transcription factors of the Wnt pathway [9]. 
These transcription factors cause a diversity of cellular 
effects regarding cellular adhesion, morphology of the tis-
sue and tumour progression [23]. Wnt target genes include 
E-cadherin repressors ZEB1 and SNAI1. Other Wnt target 
genes are MT1-MMP-9 and LAMC2 [14]. All these upregu-
lated genes are associated with EMT and invasiveness [25]. 
Nuclear β-catenin expression and the loss of membranous 
E‐cadherin showed separately to be prognostic factors for 
cancer prognosis [26].
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A stable epithelial barrier also requires tight cell-cell and 
cell-ECM connections. Tight junctions link adjacent epithe-
lial cells to the basolateral membrane (Fig. 1). The function 
of tight junctions is to divide the epithelial cells into apical 
(body) and basal (blood) compartments. Tight junctions con-
tribute to the barrier function of epithelial cells by control-
ling the diffusion of ions and other small molecules through 
the intercellular space [27]. Essential components of tight 
junctions in EMT are occludin and claudin [28]. Occludin is 
a 65 kDa protein that forms tight associations comparable to 
claudins [29]. Occludin is repressed during EMT of cancer 
cells by transcription factor SNAI1 [28], which is involved in 
the Nf-κB pathway [30]. The downregulation or disruption 
of occludin and claudin promoted cancer cell migration in 
SW620 cell lines [29, 31, 32].

MMP activation

After the loss of contact with the primary tumour, the 
cells need to break through the ECM to spread [33]. Dur-
ing this phase, tumour cells secrete enzymes to degrade 
the ECM. One type of enzyme involved in ECM degrada-
tion is MMPs. MMPs can be divided into six categories, 
according to their substrates. Examples of categories are 
interstitial collagenases, gelatinases and matrilysins [34]. A 
substantial enzyme in CRC spread is MMP-9 [34–36], also 
known as gelatinase B or 92 kDa type IV collagenase [37]. 
Pro-MMP-9 is cleaved into its active form by a subfamily 
of MMPs attached to the plasma membrane in the tumour 
microenvironment [38, 39]. There are two critical steps in 
the process by which MMPs enable cancer cells to degrade 

the ECM. First, MMPs work by degrading ECM macro-
molecules such as collagens, laminins and proteoglycans 
to remove any physical obstacles to invasion [40]. Second, 
MMPs break down the basement membrane of the ECM 
by cleavage of type IV collagen and laminin [41, 42]. Next 
to this direct approach, MMPs serve numerous other roles 
in the invasion process, such as enhancing vascular perme-
ability [43].

Membrane ruffling

A weakened epithelial barrier also contributes to the migra-
tion and invasion of cancer cells by reorganisation of the 
cytoskeleton. Reorganising the cytoskeleton, thereby imped-
ing barrier integrity, is the first step in the detachment of 
metastatic tumour cells [44]. One way of cytoskeleton reor-
ganisation during metastasis is the occurrence of a ruffled 
membrane. A ruffled membrane often appears on the leading 
side of a motile (metastatic) cell, and an increase in ruf-
fling is associated with the active movement of cells [45, 
46]. Membrane ruffling is a complex and rapid process in 
which the protrusion of the cell membrane margins fluctu-
ate abnormally. Ruffles on an adherent cell’s periphery and 
leading edge, as well as ruffling on the dorsal surface, are 
the two most common forms of ruffling. Several cytokines 
have been shown to cause membrane ruffling. Examples of 
these include transforming growth factor (TGF) and fibro-
blast growth factor (FGF) [45]. Overall, membrane ruffling 
has been linked to metastatic status in tumour cells [47]. 
Additionally, membrane ruffling signifies tumour cell motil-
ity and metastatic potential in in vitro [48, 49] and animal 

Fig. 1  Prominent cell-cell and cell-ECM connections in epithelial 
tumour cells. Cell-cell contact is maintained via desmosomes (not 
depicted), gap junctions (not depicted), tight junctions and adherent 
junctions. Cell-ECM contact is maintained via hemidesmosomes (not 
depicted) and focal adhesions. Tight junctions consist of occludin, a 
junctional adhesion molecule (JAM) and claudin. These molecules 

form a complex that is dividing the cell into apical and basal com-
partments. In adherence junctions, β-catenin and E-cadherin form a 
complex at the membrane that binds to the actin cytoskeleton, main-
taining cell-cell adhesion. Focal adhesions consist of integrins, con-
necting proteins and is attached to the actin cytoskeleton on the inside 
of the cell
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[50] studies. A ruffled membrane is also a characteristic of 
autophagosome induction [51].

Autophagy

Autophagy is known as the degradation of intracellular 
components within autophagosomes and plays an ambigu-
ous role in metastasis [20, 52]. Autophagy in metastasis is 
most likely influenced by the cancer stage and tissue type 
[53]. It promotes genome stability and limits necrosis and 
inflammation in the developing stage [54–56]. On the other 
hand, autophagy is an essential process in all steps of metas-
tasis [57]. For example, in highly metastatic tumour cells, 
autophagy induces motility and invasion by promoting focal 
adhesion turnover [58]. However, the exact mechanism by 
which autophagy contributes to EMT remains unclear.

Healthy human gut microbiota

The colon is the portion of the gastrointestinal tract that is 
most densely colonised by microbiota. It is estimated that the 
colon contains around 70 % of the entire human microbiota 
[59]. Spatial differences in bacterial composition were found 
in mice and divided into crypt, faecal and interlaced regions 
[60]. With a 12 times higher prevalence than carcinomas in 
the small intestine, the colon is also the most likely segment 
to develop malignancies [13]. After birth, the bacterial com-
position depends on, for example, the type of child delivery 
and the type of milk feeding. During this period, the hosts’ 
composition is made, and external factors such as antibiotic 
use during childhood can severely influence it [61]. Later 
in life, the microbiota is, amongst other factors, shaped by 
diet and gut epithelial metabolism. Diet and gut epithelial 
metabolism cause both beneficial and unfavourable health 
effects. Members of the Bifidobacterium genus are among 
the first bacteria to colonise the human gastrointestinal 
tract and are considered beneficial to the host’s health. For 
example, Bifidobacterium longum produces acetate, which 
causes upregulation of the barrier function in the host’s gut 
epithelium [62]. Another example is the involvement of Bac-
teroides in carbohydrate metabolism. Bacteroides strains, 
such as Bacteroides fragilis, can metabolise complex carbo-
hydrates and amino acids in the intestinal environment [63]. 
The gut epithelium itself also metabolises dietary fibres and, 
in this way, shapes the colonic microbiota [64]. As such, 
dietary fibre is metabolised into, amongst others, butyrate. 
This process maintains the epithelium in a metabolic state, 
characterised by high oxygen consumption. This high 
oxygen consumption results in epithelial hypoxia, which 
ensures that the microbiota in the colon consists mainly of 
obligate anaerobic bacteria. These anaerobic bacteria aid in 
the digestion of nutrients that the host enzymes cannot pro-
cess. A shift in dietary fibre causes a shift in the microbial 

composition to facultative anaerobic bacteria, a hallmark of 
dysbiosis in the colon. Examples of such facultative anaero-
bic species are Enterococcus faecalis and Escherichia coli, 
which can act as a driver of CRC initiation [65]. During the 
initiation and progression of CRC, the composition shifts 
and bacteria from the Fusobacterium and Bacteroides genera 
merely colonise the gastrointestinal tract [66, 67]. To better 
understand the relationship between an altered composition 
of gastrointestinal microbiota and CRC initiation and pro-
gression, researchers proposed the driver-passenger model, 
as discussed below [68].

The driver‑passenger model

An initial model proposed that colorectal cancers arise from 
chronic immune responses that synergize with microbial 
products to drive carcinogenesis [69]. This model was called 
the alpha-bug model. Recent developments in high-through-
put sequencing technologies have enabled researchers to 
analyse the gut microbial structures of healthy and diseased 
body sites, contradicting this model. Several experimental 
data sets support a possible role for gut microbiota both in 
CRC initiation and progression [70–72]. From these data 
sets, the driver-passenger model was derived. The driver-
passenger model deviates from the alpha-bug model in the 
sense that disease progression causes changes in the micro-
environment of the growing tumour, thus creating a division 
between bacterial drivers and passengers [68].

Bacterial drivers of CRC initiation were defined as an 
abundancy of bacteria with pro-carcinogenic characteris-
tics during cancer initiation [68]. An example of bacteria 
that show these characteristics is the production of DNA-
modifying compounds by E. faecalis and E. coli. E. faeca-
lis produces an extracellular superoxide, which is converted 
into hydrogen peroxide by the cellular metabolism of the 
gut epithelium, resulting in oxidative DNA damage [73]. 
Furthermore, some E. coli strains produce a genotoxin called 
colibactin, which can induce single-strand DNA breaks. The 
DNA damage inflicted increases the mutation rate of affected 
cells [68]. As a result of the changing microenvironment of 
the growing tumour, gut commensals with either tumour-
promoting or tumour-suppressing capabilities (bacterial pas-
sengers) gradually replace the bacterial drivers (alpha bugs 
and their helpers).

Bacterial passengers in CRC are bacteria that, in a healthy 
gastrointestinal tract, are poor colonisers. However, these 
bacterial strains have a competitive advantage in the tumour 
microenvironment that eventually outcompetes the bacte-
rial drivers. Considerable changes in the microenvironment 
during colon carcinogenesis include an altered epithelial 
barrier function and rupture of the epithelium [74–76]. 
As some microbial species are more adapted to this new 
environment, the bacterial passenger species likely have a 
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competitive advantage and are likely to contribute to disease 
progression [68]. Examples of bacterial passengers in CRC 
are Fusobacterium nucleatum and enterotoxigenic Bacte-
roides fragilis species. Although bacterial passengers mainly 
colonize the tumour microenvironment, bacterial drivers and 
passengers can contribute to CRC metastasis via various 
mechanisms. These mechanisms mainly work through the 
previously mentioned induction of the invasion and migra-
tion driving EMT [77].

Bacterial factors contributing to CRC 
invasion and migration

As mentioned, bacterial factors can contribute to these pro-
cesses influencing CRC invasion and migration. Bacteria 
that produce these factors are Fusobacterium nucleatum, 
Enterococcus faecalis, Bacteroides fragilis, Escherichia coli 
and Salmonella enterica. Their secreted factors and possible 
contributions to CRC invasion and migration are described 
below.

Fusobacterium nucleatum

Fusobacterium nucleatum is a gram-negative, anaerobic 
bacterium commonly found in saliva and biofilms in the 
oral cavity. F. nucleatum is an invasive bacterium that con-
tributes to the emergence of several periodontal diseases 
and diseases of the gastrointestinal tract [78]. However, F. 
nucleatum is also prevalent in CRC patients [71, 79], and 
patients with high levels of F. nucleatum have a worse prog-
nosis and develop metastases more often [80, 81]. A recent 
hypothesis concerning the gastrointestinal abundance of F. 
nucleatum is that the species originates from the oral cavity 
and traverses via the gastrointestinal tract to the colon as a 
bacterial passenger in CRC [82]. F. nucleatum attaches to 

other bacteria and cells via fimbriae and non-fimbrial adhes-
ins. Via these proteins, F. nucleatum colonises and contrib-
utes to colonise the gastrointestinal tract [83]. Mechanisms 
by which F. nucleatum promotes migration and invasion in 
CRC are based on the excretion of protein factors. The most 
prominent protein factors include Fusobacterium adhesin 
A (FadA), Keratin7 (KRT7) and Caspase activation and 
recruitment domain 3 (CARD3).

Fusobacterium adhesin A

The factor Fusobacterium adhesin A (FadA) contributes to 
migration and invasion by dissociation of adherence junc-
tions. FadA is a fimbrial adhesin protein. Oligomerisation of 
pre-FadA and mature FadA form an aggregate with a high 
molecular weight, which can attach to and allow the bacte-
rium to invade host cells signalling (Fig. 2) [84]. Solubility 
assays showed that pre-FadA is anchored in the inner mem-
brane of the bacteria, and mature FadA is secreted outside 
of the bacteria, serving as an anchor. During the invasion of 
the host cells, the aggregate intrudes the outer membrane 
of the epithelial cell. FadA contributes to tumour cell dis-
sociation by binding to E-cadherin and subsequent activation 
of β-catenin. Additionally, co-incubation of HCT-116 CRC 
cells with F. nucleatum increased IL-8 and CXCL1, which 
are correlated with increased metastatic potential [15].

Additionally, FadA modulates β-catenin signalling in can-
cerous cells via Annexin A1, a protein specifically expressed 
in proliferating colorectal cancer cells [85]. Annexin A1 is 
involved in the activation of oncogene Cyclin D1 (CCND1). 
Cyclin D1 plays an essential role in CRC progression [86, 
87].

Fig. 2  Schematic overview of 
the proposed effect of the FadA 
complex on adherence junctions 
in epithelial tumour cells. FadA 
binds E-cadherin in adherence 
junctions, resulting in altered 
binding between the E-cadherin 
molecules. Consequently, there 
is a reduction of cell-cell con-
tact between the tumour cells. 
Note: bacterium and epithelial 
cells not drawn to actual scale
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Bacterial peptidoglycan

Bacterial peptidoglycan from F. nucleatum could contrib-
ute to metastasis initiation through activation of autophagy 
signalling. The detection of bacterial peptidoglycan down-
stream induces Caspase activation and recruitment domain 
3 (CARD3) in HCT-116 cells. CARD3 is a protein encoded 
by the Receptor-interacting serine/threonine-protein kinase 
2 (RIPK2) gene. RIPK2 is a mediator of inflammatory 
responses after bacterial infections, during which it is acti-
vated by NOD-like receptors [88, 89]. This inflammatory 
response mainly depends on the recruitment of adaptor 
protein CARD3. The presence of bacterial peptidoglycan 
in early endosomes activates the NOD1-NOD2-RIPK2 
complex. The complex signals through NF-κB and MAP 
kinase (MAPK) for activating immune cells and promoting 
pro-inflammatory cytokines. Although the evidence is still 
preliminary, CRC patient tissue colonised by F. nucleatum 
showed an upregulation in CARD3 [90]. This upregulation 
may promote CRC metastasis by activating autophagy sig-
nalling [91].

Enterococcus faecalis

Enterococcus faecalis is the most prevalent bacterial species 
found in the GI tract with a standard diet [92, 93]. E. faecalis 
is a gram-positive, commensal bacterium that belongs to 
the lactic acid-producing bacteria. The role of E. faecalis in 
CRC is controversial. Although part of the literature indi-
cates a harmful function, strains of E. faecalis are also con-
sidered to have probiotic abilities with great applicability in 
food products. This controversial role of E. faecalis in CRC 
was reviewed previously elsewhere [92]. Nonetheless, E. 
faecalis strains are abundant in CRC tissue [94]. These bac-
teria grow facultative anaerobic and are resistant to extreme 
environmental challenges. Besides the GI tract, E. faecalis 
can be found in the human oral cavity [95]. In the context 
of metastasis, E. faecalis was shown to release gelatinase E 
(GelE), which can activate the collagen-degrading matrix 
metalloproteinase 9 (MMP-9). Below, we will describe GelE 
in more detail.

GelE

GelE can disrupt adherence junctions by degradation of 
E-cadherin. Steck et al. showed that E. faecalis secretes 
GelE, which directly disrupts the intestinal barrier and 
causes inflammation [96]. In transwell cultures, GelE 
derived from E. faecalis triggered a reduced epithelial bar-
rier function and E-cadherin expression when combined 
with pro-inflammatory cytokines. GelE cleaves murine 
recombinant E-cadherin, which suggests that loss of E-cad-
herin can be a direct consequence of exposure to bacterial 

GelE. Indeed, in a colitis susceptible mouse model, GelE 
induced the degradation of E-cadherin, causing loss of the 
epithelial barrier [96]. In contrast, this was not demon-
strated after GelE exposure in a wild-type mouse model, 
suggesting the involvement of pro-inflammatory cytokines. 
Furthermore, GelE regulates enteric epithelial permeability 
via protease-activated receptor 2 (PAR2) [97]. As such, acti-
vation of PAR2 leads to disruption of tight junctions [98], 
whereas E-cadherin degradation leads to the disruption of 
adherence junctions (Fig. 3a). GelE from E. faecalis was 
also shown to activate MMP-9 in colonic tissue by cleaving 
pro-MMP-9 into its active form and activate human plasmi-
nogen, causing supraphysiological degradation of collagen 
[99, 100] (Fig. 3b). Further studies by this group showed 
that this GelE producing E. faecalis promotes colonic cancer 
after colonic surgery in mice, a model for cancer recurrence. 
They also show an increase in colon cancer micrometastases 
in the liver with the presence of this E. faecalis strain in the 
colon [101].

Enterotoxigenic B. fragilis

To date, more than 20 different species of Bacteroides have 
been identified. B. fragilis is an obligate anaerobe bacterium 
found in the entire length of the gastrointestinal tract [102]. 
B. fragilis can be divided in two classes: non-toxigenic B. 
fragilis and enterotoxigenic B. fragilis [103]. In stool sam-
ples from CRC patients, the frequency of enterotoxigenic 
Bacteroides fragilis was found to be increased [104]. CRC 
patients also showed a high rate of enterotoxigenic B. fragilis 
infection [104], and detection of high levels of B. fragilis 
DNA fragments in the blood was associated with metastatic 
disease [105]. These bacteria maintain a healthy gastroin-
testinal microflora in humans by preventing and alleviating 
gastrointestinal inflammation [106, 107].

Bacteroides fragilis toxin

B. fragilis Toxin (BFT) also disrupts adherence junctions. 
Enterotoxigenic B. fragilis produces BFT. The toxin is a 
20 kDa zinc-containing metalloprotease, also known as frag-
ilysin [108]. In the CRC cell-line HT-29, BFT altered cell-
cell attachment when placed on the basolateral membrane 
of epithelial cells [109]. More specifically, BFT cleaved 
E-cadherin, the extracellular domain of adherence junctions 
(Fig. 4), which was shown to be essential to decrease cell-
cell attachment [110]. Cleaving E-cadherin in CRC cells can 
contribute to disease progression by weakening adherence 
junctions [111].
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Fig. 3  Schematic overview of 
the proposed effect of GelE 
on adherence junctions and 
MMP-9 activation. a GelE 
degrades E-cadherin in adher-
ence junctions, resulting in a 
reduction of cell-cell contact 
between the tumour cells. 
b Mechanisms of CRC invasion 
and migration. GelE cleaves 
Pro-MMP-9 into the active form 
MMP-9. As a result, MMP-9 
degrades the ECM resulting in a 
reduction of cell-ECM contact. 
Note: bacterium and epithelial 
cells not drawn to actual scale

Fig. 4  Schematic overview of 
the proposed effect of Bac-
teroides fragilis toxin (BFT) 
on adherence junctions. BFT 
cleaves E-cadherin in adher-
ence junctions, resulting in a 
reduction of cell-cell contact 
between the tumour cells. Note: 
bacterium and epithelial cells 
not drawn to actual scale
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Escherichia coli

In the intestinal flora, Escherichia coli strains are aero-
tolerant anaerobic Gram-negative bacteria. E. coli, as a 
commensal, coexists peacefully with its mammalian host, 
promoting healthy intestinal homeostasis and causing dis-
ease only rarely [112]. Some virulent E. coli strains, on the 
other hand, may colonise the human gastrointestinal tract 
and cause disease. Pathogenic E. coli have been found in 
colon tissue from patients with adenocarcinomas more often 
than in healthy colonic tissue [113, 114], and bacterial E. 
coli DNA fragments in the blood proved an indicator for 
metastasis [105]. These are different from commensal strains 
because they contain pathogenicity islands in their genomes, 
coding for proteins that play a role in the dispersing viru-
lence factors [115]. More specifically, E. coli contributes to 
CRC cell invasion and migration via Cytotoxic Necrotizing 
Factor 1 (CNF1) and effector protein EspF, which we will 
discuss below.

CNF1

CNF1 is a Rho GTPase-activating toxin that induces molec-
ular changes and membrane ruffling in cancerous epithelial 
cells [116]. Examples of these changes include the activation 
of Nf-κB, COX2 expression, the release of pro-inflammatory 
cytokines, and, more importantly, enhanced cellular motility. 
As the transformation of a healthy epithelial cell to a carci-
noma cell coincides with the same pathways, it is conceiv-
able to hypothesize that CNF1-producing E. coli colonisa-
tion can influence cancer development. CNF1 contributes to 
disease progression by activating Rho GTPases, which are 
involved in the configuration of the actin cytoskeleton [117]. 
Overactivation of the actin cytoskeleton causes ruffling of 
the cell (Fig. 5a) [118].

EspF

EspF disrupts the epithelial barrier through the disassembly 
of tight junction proteins (Fig. 5b) via dephosphorylation 
and dissociation of occludin, a crucial part of the molecu-
lar structure of tight junctions. The effector protein EspF 
is a protein encoded in the locus of enterocyte effacement 
(LEE), a pathogenicity island. EspF is shown to be critical 
for decreased transepithelial resistance, a parameter for epi-
thelial barrier function [119].

Salmonella enterica

Salmonellae are Gram-negative, facultative anaerobic path-
ogens that can infect a diversity of organisms [120, 121]. 
Salmonella enterica is a rod-shaped bacterium with an 
actin-like bacterial cytoskeleton that supports this rod [122, 

123]. Several S. enterica serovars can cause severe human 
infections, leading to acute gastroenteritis. Although no cor-
relation between S. enterica and CRC progression has been 
shown yet, colonisation of the tumour microenvironment by 
S. enterica can contribute to the progression of CRC via the 
secretion of enteric bacterial protein AvrA, which we will 
discuss below.

AvrA

The AvrA gene in S. enterica encodes a multifunctional path-
ogenic protein that is injected into host cells and activates 
the β-catenin signalling pathway. AvrA modulates inflam-
mation, epithelial apoptosis, and proliferation by enhanc-
ing the ubiquitination and acetylation of target proteins in 
eukaryotic cell pathways [124, 125]. AvrA is transferred into 
host epithelial cells through a bacterial needle-like appara-
tus, defined as the type three secretion system [126] (Fig. 6). 
This system creates a translocation pore when it encounters 
the target cell. Through this pore, the effector proteins are 
injected. Once in the host cell, AvrA activates the β-catenin 
signalling pathway [127] and suppresses the degradation of 
β-catenin [128, 129]. Notably, the AvrA protein was found 
in samples from human CRC tissue [130], and as such, may 
affect disease progression and metastasis.

Conclusion and future perspectives

Here, we provided an overview of potential mechanisms 
by which gastrointestinal microbiota may promote CRC 
invasion and migration. The close presence of microbiota 
in the tumour area creates a unique microenvironment in 
CRC. Prominent bacteria contributing to metastasis of CRC 
include F. nucleatum, E. faecalis, B. fragilis, E. coli, and S. 
enterica. Most of these bacteria produce virulence factors 
that contribute to EMT, and via this transition, to disease 
progression. The direct mechanism has not been fully elu-
cidated yet, though indirect effects have been reported for 
some virulence factors. Other mechanisms by which gas-
trointestinal bacteria contribute to invasion and migration 
are eliminating cell-cell adhesion, ECM degradation, mem-
brane ruffling, and altering pro-metastatic cell-signalling 
pathways.

To increase patient survival, it is crucial to elucidate the 
mechanism by which bacterial factors promote CRC metas-
tasis. Although we are only starting to uncover the complex 
interactions between CRC, the host and the gastrointestinal 
microbiota, the information available to date has implica-
tions for clinic intervention. Mechanistic insights can lead 
to the establishment of clinically relevant biomarkers indica-
tive of the risk of metastasis. These biomarkers could be 
obtained by screening for, for example, specific bacterial 
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strains, the metabolites or the response of the tumour cells. 
The biomarkers can help optimize treatment plans on a per-
sonal level, increasing the chance of patient survival [131]. 
Recent hypotheses state that each tumour comprises a unique 
on-tumour microbiota consisting of specific bacterial species 
and metabolic profiles [132].

Since the microbiota is closely associated with diet, 
mechanistic insights on how bacteria can promote metastasis 
can also lead to specialised dietary advice for CRC patients 
at risk for metastasis. The dietary advice could be based 
on the composition of the patient’s microbiome or bacterial 
toxins in the blood, indicating which bacterial toxins are 
present in the colon. This strategy is already proposed in 
inflammatory bowel disease [133, 134] and used as a preven-
tive measure for CRC [135]. For the latter, research suggests 

avoiding the intake of nutrients that stimulate dysbiosis and 
intestinal inflammation, like, red meat and high-fat prod-
ucts [136]. On the other hand, diet can enhance colonisation 
resistance to prevent the colonisation of pathogenic bacte-
ria or an overabundance of CRC promoting bacteria [137]. 
Counteracting the colonisation of pathogenic bacteria is a 
strategy also used in the prevention of CRC. Especially high-
fibre products like flaxseed, soy and oat promote the prolif-
eration of phylae that guarantee a favourable modulation of 
the immune system and protection against pathogens [135]. 
Although the microbial composition of the tumour microen-
vironment in metastasizing tumours may differ from that of 
a developing tumour [68], the same principles might apply 
in terms of dietary advice. Nonetheless, research into the 
establishment of a ‘metastatic microbiome’ and preventative 

Fig. 5  Schematic overview 
of the proposed effect of E. 
coli on tight junctions and 
membrane ruffling. a CNF1 
binds to a G-protein coupled 
receptor (GPCR) on the cell 
membrane. The GPCR activates 
GTPase-activating proteins 
(GAPs), leading to Rho GTPase 
activation. Rho GTPase, in 
turn, activates effector proteins 
that cause the cytoskeleton to 
reorganise the membrane in a 
ruffled shape (occurrence of 
invadopodia). Reorganisation 
of the cytoskeleton is regarded 
as the first step in the detach-
ment of metastatic tumour cells. 
b EspF disassembles occludin 
via its dephosphorylation in 
tight junctions, resulting in a 
reduced cell-cell contact. Note: 
bacterium and epithelial cells 
not drawn to actual scale
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dietary advice is still scarce. Other possible strategies to 
prevent the colonisation of pathogenic bacteria include fae-
cal transplantation, probiotics and antibiotics, as will be 
discussed below.

Firstly, faecal microbiota transplantation (FMT) has been 
recently considered for the management of colorectal cancer. 
The main goal of FMT is to diminish inflammatory, prolif-
erative and procarcinogenic pathways. Nonetheless, FMT 
has not yet been thoroughly investigated in CRC, especially 
not in a metastatic context, FMT could aid in reducing meta-
static disease by the replacement of the pathogenic bacteria, 
but warrants further investigation.

Secondly, pathogenic bacteria would preferably be 
replaced by probiotics with the ability to strengthen, for 
example, epithelial barrier integrity [138]. This barrier 
would subsequently prevent metastasis [139]. However, 
when introducing probiotics there are also some limita-
tions. For example, there is a risk of triggering fatal systemic 
inflammatory response syndromes and inadvertent transfer 
of pathogenic organisms [140]. Recent research with E. coli 
showed that in an environment with low microbial diversity, 
probiotic bacteria can accumulate genetic mutations that 
can be potentially harmful to the host [141]. Nevertheless, 
probiotics are well-recognized for the treatment of several 
diseases, including CRC when administered in the right dose 
[142, 143].

Thirdly, antibiotic treatment in the management of CRC 
metastasis showed promising effects. For example, oral 
administration of metronidazole to mice bearing patient-
derived xenografts infected with F. nucleatum resulted in 
a decrease in tumour volume and tumour cell proliferation 
[144]. A retrospective cohort showed that antibiotic expo-
sure during bevacizumab therapy reduced mortality rates in 
male metastatic CRC patients [145]. Additionally, analysis 

of three clinical data sets showed that antibiotic use during 
5-FU chemotherapy is correlated with longer progression-
free and overall survival among metastatic colorectal cancer 
patients [146]. These data suggest that antibiotic treatment 
could limit the metastatic capacity in CRC patients when 
administered during chemo- or immunotherapy. Another 
study showed that the combination of antibiotic use and a 
host with a western diet can cause colonisation of the intes-
tine by collagenolytic microbes, like E. faecalis promoting 
tumour recurrence [101]. The colonisation of collagenolytic 
bacteria cause an altered gut barrier, which, in turn, leads to 
the facilitation of liver metastasis [147, 148].

Therapeutics neutralising the effect of the bacterial fac-
tors could drastically decrease the prevalence of metastatic 
disease in CRC. For example, local phosphate can suppress 
the growth of pathogenic bacteria in biofilms via inhibition 
of quorum sensing, which mediates the formation of the bio-
films [149]. Thus far, bacteria themselves have been used in 
cancer therapy as inducers of the immune response against 
tumour tissue, oncolytic agents and using bacterial spores 
to carry tumoricidal agents [150].

Despite the recent advantages in technology allowing for 
clarifications of mechanisms for EMT, molecular mecha-
nisms of EMT are often poorly understood. For example, 
the mechanism for the loss of function of the E-cadherin-β-
catenin complex is well-known. However, the mechanism 
by which the complex contributes to invasion and metastasis 
remains unclear.

To date, mainly animal and in vitro models have been 
used to demonstrate the interplay between host and microbi-
ota in CRC progression. However, the mechanism for tumour 
invasion and the microbiota are dependent on the host spe-
cies and the virulence factor of the bacterial strain [151, 
152]. Therefore, more human models are needed to study 

Fig. 6  Schematic overview of 
the proposed effect of AvrA 
on intracellular β-catenin and 
β-catenin in adherence junc-
tions. AvrA disassembles the 
β-catenin-E-cadherin complex, 
resulting in reduced cell-cell 
contact. AvrA also promotes 
intracellular β-catenin migra-
tion to the nucleus. In the 
nucleus, β-catenin activates the 
transcription factor Wnt. Wnt 
upregulates genes associated 
with EMT and cancer cell 
invasiveness. Note: bacterium 
and epithelial cells not drawn to 
actual scale
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the mechanisms that promote progression and mimic inva-
sion and migration of CRC. Current human studies mainly 
focus on establishing an association between the presence of 
a particular species and tumorigenesis. Some of these stud-
ies also associate the presence of a particular species with 
prognosis, which is in-depth reviewed by Messaritakis  et 
al. [105]. With the increasing insights on the considerable 
influence that the microbiome has on the body, the amount 
of evidence on the mechanisms of gastrointestinal bacteria 
that contribute to tumour formation has drastically increased 
in the last few years. However, the amount of evidence on 
the mechanisms of gastrointestinal bacteria that contribute 
to tumour progression is still limited. More in-depth stud-
ies into the underlying mechanisms will prove a substantial 
addition to the growing list of significant molecular host-
microbe interactions affecting health and disease.
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