

 University of Groningen

Exploring the cost and performance benefits of AWS Step Functions using a data processing
pipeline
Mathew, Anil; Andrikopoulos, Vasilios; Blaauw, Frank J.

Published in:
2021 IEEE/ACM 14th International Conference on Utility and Cloud Computing (UCC’21), December 6–9, 2021,
Leicester, United Kingdom

DOI:
10.1145/3468737.3494084

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Version created as part of publication process; publisher's layout; not normally made publicly available

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Mathew, A., Andrikopoulos, V., & Blaauw, F. J. (2021). Exploring the cost and performance benefits of
AWS Step Functions using a data processing pipeline. In 2021 IEEE/ACM 14th International Conference
on Utility and Cloud Computing (UCC’21), December 6–9, 2021, Leicester, United Kingdom Association for
Computing Machinery. https://doi.org/10.1145/3468737.3494084

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1145/3468737.3494084
https://research.rug.nl/en/publications/6f8c493e-2c16-490d-b753-f52103a3765b
https://doi.org/10.1145/3468737.3494084

Exploring the cost and performance benefits of AWS Step
Functions using a data processing pipeline

Anil Mathew
a.palayiparambil.mathew@student.rug.nl

University of Groningen
Groningen, The Netherlands

Vasilios Andrikopoulos
v.andrikopoulos@rug.nl
University of Groningen

Groningen, The Netherlands

Frank J. Blaauw
f.j.blaauw@researchable.nl

Researchable B.V.
Groningen, The Netherlands

Abstract
In traditional cloud computing, dedicated hardware is substituted
by dynamically allocated, utility-oriented resources such as virtual-
ized servers. While cloud services are following the pay-as-you-go
pricing model, resources are billed based on instance allocation
and not on the actual usage, leading the customers to be charged
needlessly. In serverless computing, as exemplified by the Function-
as-a-Service (FaaS) model where functions are the basic resources,
functions are typically not allocated or charged until invoked or
triggered. Functions are not applications, however, and to build
compelling serverless applications they frequently need to be or-
chestrated with some kind of application logic. Amajor issue emerg-
ing by the use of orchestration is that it complicates further the
already complex billing model used by FaaS providers, which in
combination with the lack of granular billing and execution details
offered by the providers makes the development and evaluation of
serverless applications challenging.

Towards shedding some light into this matter, in this work we
extensively evaluate the state-of-the-art function orchestrator AWS
Step Functions (ASF) with respect to its performance and cost. For
this purpose we conduct a series of experiments using a serverless
data processing pipeline application developed as both ASF Stan-
dard and Express workflows. Our results show that Step Functions
using Express workflows are economical when running short-lived
tasks with many state transitions. In contrast, Standard workflows
are better suited for long-running tasks, offering in addition detailed
debugging and logging information. However, even if the behavior
of the orchestrated AWS Lambda functions influences both types
of workflows, Step Functions realized as Express workflows get
impacted the most by the phenomena affecting Lambda functions.

CCS Concepts
• Software and its engineering→ Software performance;Cloud
computing.

Keywords
Serverless, AWS Step Functions, AWSLambda, Function-as-a-Service
(FaaS), Serverless Cost, Serverless Performance

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UCC’21, December 6–9, 2021, Leicester, United Kingdom
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8564-0/21/12.
https://doi.org/10.1145/3468737.3494084

ACM Reference Format:
Anil Mathew, Vasilios Andrikopoulos, and Frank J. Blaauw. 2021. Exploring
the cost and performance benefits of AWS Step Functions using a data
processing pipeline. In 2021 IEEE/ACM 14th International Conference on
Utility and Cloud Computing (UCC’21), December 6–9, 2021, Leicester, United
Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3468737.3494084

1 Introduction
Serverless computing is a new and exciting form of utility com-
puting that allows users to run event-driven and granularly billed
applications without addressing operational logic [Baldini et al.
2017a]. According to a recent market report1, the market size of
serverless computing will reach USD 7.72 billion by the end of 2021
and grow further, making it a compelling paradigm for the deploy-
ment of cloud applications. Function-as-a-Service (FaaS) is a form
of serverless computing that allows executing code in response to
events without the complex infrastructure associated with building
and launching microservices applications [Grogan et al. 2020].

Amazon Web Services (AWS), the pioneer in FaaS offerings,
launched AWS Lambda in 2014allowing to run functions called
Lambda functions or simply Lambdas for short, natively written
in a set of commonly used programming languages like Node.js,
Java, C#, Python, .NET, and Go. A single Lambda cannot be inde-
pendently used to construct complex applications, and a typical
complex enterprise serverless application contains multiple Lamb-
das. As Lambdas are stateless with no affinity to the underlying
and overall infrastructure, they lack adequate integration and coor-
dination mechanisms, making orchestration cumbersome [López
et al. 2018]. Orchestration is a way to construct serverless applica-
tions with multiple steps and complex logic programmatically or
graphically [Baldini et al. 2017b] by combining them into work-
flows. AWS supports workflow-based orchestrations of distributed
systems with the help of AWS Step Functions (ASF)2, which allows
designing workflows as sets of states.

As ASF orchestrates Lambdas into Step Functions, all the ad-
vantages of the former [Baird et al. 2017] are available for it, like
for example scalability [Albuquerque Jr et al. 2017], fine-grained
billing [Van Eyk et al. 2017], and low operational costs and complex-
ity [Kuhlenkamp et al. 2020]. At the same time, ASF-based orches-
tration inherits and amplifies existing issues with using Lambda.
Serverless, for example, comes with the promise of cost efficiency
but according to [Eivy and Weinman 2017], it has surprisingly
complicated economics. To quote the authors: “The devil is in the

1Source: https://www.marketsandmarkets.com/Market-Reports/function-as-a-
service-market-127202409.html

2https://aws.amazon.com/step-functions/

https://doi.org/10.1145/3468737.3494084
https://doi.org/10.1145/3468737.3494084
https://doi.org/10.1145/3468737.3494084
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://aws.amazon.com/step-functions/

details, and the economic benefits of serverless computing heavily
depend on the execution behavior and volumes of the application
workloads”. Works like [Baldini et al. 2017a; Van Eyk et al. 2018]
highlight the lack of an actual cost and performance benchmark,
making it difficult for customers to adopt a serverless model. The
situation is even more challenging for applications realized using
serverless function orchestrators such as ASF since the execution
cost compounds the Lambda cost along with the charges incurred
for managing the orchestration itself. The lack of a cost monitoring
or estimating tool that provides fine granular billing and execution
details hinders the understanding of the involved billing model
even further, as the case remains to be for FaaS solutions in gen-
eral [Leitner et al. 2019]. As a result, application developers are at a
loss on how to design their serverless applications cost-efficiently.

Towards addressing this issue, this paper investigates how var-
ious parameters impact the cost and performance of a serverless
application realized using Step Functions orchestrating Lambdas.
To this effect, we conduct an experiment-driven quantitative analysis
on how a number of identified parameters can impact a sample
application in the form a data processing pipeline [Densmore 2021].
We show that in many aspects, realizing a serverless application
based onASF efficiently can be challenging and/or counter-intuitive.
To the extent of our knowledge, and at the time of writing this,
there are no other empirical studies that investigate the effect of
various parameters on ASF with respect to cost and performance.
This work therefore has implications for both the state of the art
and for practitioners.

The remainder of this paper is organized as follows. We first
present background details on the involved technologies in Sec-
tion 2. In Section 3, we present an experimental design for evaluat-
ing ASF in terms of cost and performance, followed by the outcomes
of the experiments in Section 4. Based on these observations, in
Section 5, we discuss the lessons that we learned and that we think
are relevant for practitioners that aim at using ASF as their function
orchestrator when developing an application, while sketching our
future work on the topic. Next, we present related work in Section 6.
Finally, Section 7 concludes this work with a short summary.

2 Background
AWS, with the debut of AWS Lambda in 2014, is the first large pub-
lic cloud vendor to offer FaaS. AWS is the leader in the serverless
space, with 80% of the serverless use cases choosing them as their
deployment platform [Eismann et al. 2020b]. When looking into
their pricing model, FaaS solutions in general feature a GB-second
billing model depending on the allocated memory size and execu-
tion duration. Here the customer is also charged for each invocation
and its execution duration typically in 100 ms increments. As of
June 2021, for example, AWS Lambda is charging $0.20 per 1M
requests and $0.0000166667 for every GB-second. This price varies
based on the region where AWS Lambda is hosted3. In addition,
in December 2020, AWS revised its Lambda pricing with precision
at the level of 100 ms to 1 ms. This change decreases the price for
most Lambdas, more so for short-duration functions.

3https://aws.amazon.com/lambda/pricing/

Serverless solutions inspire programmers to decompose large
monolith applications into fine granular functions using the pro-
cess of FaaSification [Spillner 2017; Spillner and Dorodko 2017],
making them more manageable to understand and reusable. FaaS
offerings are biased towards simple functions that only run for a
short while, use limited CPU and memory, and process relatively
small amounts of data. However, functions alone are not applica-
tions but merely tasks, and to build compelling FaaS applications,
the functions need to be orchestrated. [Van Eyk et al. 2017; Yan
et al. 2016] envisioned this complex orchestration in the form of
workflows. In this regard, the serverless workflow orchestration
offerings by the “Big Four” public vendors i.e. AWS Step Functions
(debuting on December 2016), Azure Durable Functions (June 2017),
IBM Composer (October 2017), and Google Workflows (August
2020), are still relatively young technologies, with ASF being the
most mature of them [López et al. 2018]. The survey by [Bocci et al.
2021] provides an overview of various research efforts focusing on
these offerings.

ASF in particular provides its users with a visual interface for
debugging and monitoring, and allows workflow design by defining
states and transitions as finite state machines written in Amazon
States Language, a custom JSON-based Domain Specific Language
(DSL). The states are either a task or a language construct that
influences the flow between states. AWS Lambda and other AWS
services can be incorporated in ASF to build business-critical appli-
cations. When defining an ASF model, there is a mandatory start
and end state, and every state must declare its successor, being a suc-
cessful, transition, failed, or end state. Step Functions support two
workflow types. Standard workflows can be used for long-running,
durable, and auditable workflows, while Express workflows are suit-
able for high-volume, event-processing workloads4. The former
have at-most-once model workflow execution semantics suitable
for non-idempotent tasks and can run for up to one year. In contrast,
the latter has at-least-once model semantics suitable for idempo-
tent tasks and can run for up to five minutes. Furthermore, Express
workflows support massive concurrency for workflow execution
and nearly unlimited state transitions compared to Standard. Be-
cause Express executions are capped with a limit of 5 minutes,
however, Express does not support any integrations with other
services or implementing patterns that require the state machine
to wait. Irrespective of their type, ASF workflow executions are af-
fected by cold starts of their orchestrated Lambdas. This means that
when a workflow is initiated for the very first time, all associated
Lambdas will start with some provisioning delay called a cold start,
but any subsequent workflow invocation will reuse the Lambdas
and experience a warm start [Manner et al. 2018].

The pricing model varies between the two ASF workflow types.
As of June 2021, executing a Standard workflow costs $0.025 per
1,000 state transitions. Since there is a minimum of three transitions
for any workflow (one for the workflow to reach the start activity,
one to reach its final one, and at least one intermediate state), cus-
tomers need to pay at least $0.000075 for each successful Standard
workflow execution, and $0.00005 for each failed execution. Express

4https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-
express.html

https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html

Choice
StartAtStart NextHandle Garmin

Webhook Next
Save Garmin

Webhook
Landing Zone Choice

Check Activity
Type

Fetch Garmin
Fit File

Choice

Choice
Check

Webhook
Type

End

Choice

Choice
Check

Purpose Type
Next

Next

Next
Save Garmin

Processed Data

NextUpload to
Baseplatform

Event/Log Monitoring

Data
Sources Ingestion Landing Zone Transformation Purpose Zone

Process Garmin
Dailies

Figure 1: Garmin serverless data processing pipeline using ASF

workflows on the other hand cost the customers $1.00 per 1 million
requests and the duration is priced based on the allocated memory:
• $0.00001667 per GB-second ($0.0600 per GB-hour) for the first
1,000 GB-hours

• $0.00000833 per GB-second ($0.0300 per GB hour) for the next
4,000 GB-hours

• $0.00000456 per GB-second ($0.01642 per GB-hour) beyond that.

3 Experiment Design
3.1 Application Under Test
To evaluate ASF, we will be adopting a serverless data processing
pipeline as our test application. A data processing pipeline [Dens-
more 2021] is a type of application that enables a smooth, automated
flow of data that processes data through a sequence of connected
processing steps. Serverless computing supports new possibilities
in designing pipelines that realize high scalability, elasticity, and
performance while minimizing the cost and development effort.
[Pogiatzis and Samakovitis 2021], for example, showed that a data
processing pipeline constructed entirely using serverless technolo-
gies facilitated a cost effective and practical solution for sparse
event processing.

The data processing pipeline to be used is one for Garmin5
activity tracking data that was developed as part of an exploratory
case study for Researchable B.V.6 The ASF modeled application
supports the processing of two possible Garmin data types, namely
Garmin Daily Summaries and Garmin Activity Files7. The former
offers a high-level view of the user’s entire day, and the latter
provides actual files recorded by the wearable as part of a fitness
activity, including GPS coordinates, all recorded sensor and any
product-specific data. Figure 1 visualizes the high-level architecture
for the Garmin serverless data pipeline divided into the following
activity zones, as advocated by [Pogiatzis and Samakovitis 2021]:
1. Data Source Zone: This zone consists of the integrations that

the application accepts. For this work this entails accepting
webhook requests from Garmin Connect.

2. Ingestion Zone: This zone takes care of handling the webhook
requests that can either be PING/PUSH requests for Daily Sum-
maries or Activity Files; in the latter case the file is fetched from
Garmin using the provided callback URL.

5https://connect.garmin.com
6https://researchable.nl
7https://developer.garmin.com/fit

3. Landing Zone: Data fetched/received from Garmin are stored
in this zone before any processing.

4. Transformation: Garmin data are modified using transforma-
tion logic.

5. Purpose Zone : The final zone either saves the data to a server-
less database or pushes the data to Baseplatform (a proprietary
backend system used by Researchable).

When the serverless data processing pipeline receives either type
of Garmin data, it will require a total of nine state transitions for
successful completion, including two mandatory states, i.e., start
and stop. This path also includes three Choice states and four Task
states8. A Choice state adds branching logic to a state machine
that is necessary to take the appropriate path based on the data
ingested. The Lambda task state is responsible for invoking AWS
Lambdas within ASFs. In the following we will be focusing on
running all our experiments using Garmin Daily Summaries only in
order to have comparable results throughout all the experiments. All
Lambdas have been implemented and deployed using the Node.js
14 runtime. The source code for the pipeline, together with the
material required to reproduce the experiments discussed below
are available on GitHub9.

3.2 Experimental Setup
Aswith similar works for investigating AWS Lambda (see Section 6),
our experiments are designed to investigate the performance (in
terms of execution time) and cost characteristics of ASF. For this
purpose, we first need to identify the parameters that are more
likely to influence these two metrics.

More specifically, and as discussed in the previous section, ASF
has two workflow variants, and both are priced differently. Stan-
dard workflows are charged by the total number of state transitions
across all state machines, including retries, and as such the number
of state transitions should be taken into account for our experi-
ments. In contrast, Express workflows are charged only based on
the number of workflow requests and their duration. The duration
between state transitions has an obvious effect on performance in
both cases which also needs to be investigated.

Furthermore, ASF is used to orchestrate Lambdas, and the im-
pacts of factors affecting Lambdas like the startup type and allocated
memory [Back and Andrikopoulos 2018; Cordingly et al. 2020; Gro-
gan et al. 2020; Manner et al. 2018] are also expected to propagate

8https://docs.aws.amazon.com/step-functions/latest/dg/concepts-states.html
9https://github.com/anil-rug/cost_performance_asf_data_processing_pipeline

https://connect.garmin.com
https://researchable.nl
https://developer.garmin.com/fit
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-states.html
https://github.com/anil-rug/cost_performance_asf_data_processing_pipeline

Table 1: Experimental Setup. Startup type refers to enforced cold starts (Cold) for all Lambdas versus regularly occurring ones
(Warm). Runs per configuration indicates number of executions per combination of the other configuration options.

Parameters
Lambdas Configuration

Workflow Type Startup type Memory size (MB) Runs per configuration

1
Lambdas

Memory Size
Standard & Express Cold & Warm 128, 256 & 512 90

2 Startup Type

3
Workflow

State Transition Duration Standard & Express Cold & Warm 128, 256 & 512 100
4 Number of States Standard & Express Cold & Warm 256 30
5 Execution Duration Standard & Express Warm 256 10

6
Load

Payload Standard Warm 256 10
7 Concurrent Load Standard Cold & Warm 256 30/100

to the function orchestrator. Additionally, factors like payload and
concurrency need to be taken into consideration too, as these pa-
rameters can vary when executing the workflow and might impact
performance and cost. Table 1 summarizes the seven parameters to
consider in the experiments discussed below, organized in three dis-
tinct categories: parameters related to the effect of lambdas on ASF
execution (memory size and startup type), related to the workflow
itself (state transition duration, number of states, total execution
duration), and finally related to the input load of the application
(payload size and concurrent load requests).

For each of these parameters under investigation we take into
account the following configuration options, as shown in Table 1:
• Workflow Type: ASF has two workflow execution types, namely
Standard and Express, as discussed above. In most experiments
both workflow types are to be used.

• Lambdas Configuration
– Startup Type: As discussed in the previous section, ASF work-
flows are affected by the cold starts of the Lambdas they
orchestrate. As Lambdas retain their execution environment
for a non-deterministic period, a guaranteed cold start has
to be enforced for each consecutive run by updating all the
Lambdas involved in the workflow before the ASF workflow
execution is invoked. The former case is indicated by “Warm”
and the latter by “Cold” in the table.

– Memory Size: We have restricted the allocated memory size
for orchestrated Lambdas to 128, 256, and 512 MB for our
evaluation, as these sizes are more than sufficient to serve the
needs of our data processing pipeline.

• Execution Runs: Depending on the experiment, and in order to
control for performance variability, we execute multiple runs and
aggregate the results in our findings. Table 1 shows the number
of runs per combination of the other parameters. In experimental
setup #1, for example, there are 90 runs for Type set to Standard,
Startup type to Cold, and Memory size to 128 MB; then 90 more
runs for 256 MB and so on, for a total of 2 × 90 × 2 × 3 = 1080
executions.
To conduct our experiments, the cost and performance for all

workflow executions needs to be inspected. However, using na-
tive AWS cost monitoring services like AWS Billing10 and Cost

10https://docs.aws.amazon.com/account-billing

Explorer11 is not sufficient for different reasons. AWS Billing does
not offer granular billing details for a single execution but aggre-
gates it monthly/daily/hourly, and AWS Cost Explorer refreshes
cost data only daily. This delayed and non-granular billing fails
to provide low-level cost/performance information per workflow
execution. Instead, for this purpose we built a custom dashboard
monitoring the duration and granular cost of workflow executions.

3.3 Experiments
The experiments to be conducted investigate the following:

3.3.1 Effect of Lambdas on ASF: For the first experiment we inves-
tigate the effect of allocated memory size and startup type to both
workflow types. Experimental setups #1 and #2 in Table 1 are used
for this purpose. Notice that when we discuss the warm startup
type here and for the rest of the experiments, the results will also
contain (some) cold starts since we are not “warming up” the ASF
workflows prior to taking measurements; however, the cold startup
type is ensured to consist exclusively by cold starts. We feel that
comparing this average/expected versus the worst case scenario is
a better foundation for understanding how ASF actually behaves
in practice.

3.3.2 Workflow: In order to look into how the workflow itself
affects the cost and performance of an ASF we design three experi-
ments, focusing on a different parameter each time:

State Transition Duration: This experiment intends to evaluate
the effects of intermediate transition or idle time between states on
the overall cost and performance for Standard and Express workflow
type executions. Experimental setup #3 in the table is used for this
purpose. This experiment is similar to the previous one, but this
time the logs from the workflows executions are to be used to
distinguish between time spent in each state and on transitioning
between them.

Number of States: For this experiment we iteratively re-model
and re-implement the data processing pipeline by merging individ-
ual tasks so that the workflow consists of:

11https://aws.amazon.com/aws-cost-management/aws-cost-explorer

https://docs.aws.amazon.com/account-billing
https://aws.amazon.com/aws-cost-management/aws-cost-explorer

(1) 7 + 2 states: This is the original implementation specified in
Section 3.1 and it comprises of 4 Lambda task States and 3
Choice States, plus the obligatory start and end states.

(2) 4 + 2 states: 3 Choice States were removed and the Lambda
States remain the same.

(3) 3 + 2 states: combined “Handling of Garmin Webhook” and
“Save Garmin Webhook to Landing Zone” activities into one;
hence a total of 3 intermediate states.

(4) 2 + 2 states: combined “Handling of Garmin Webhook”, “Save
Garmin Webhook to Landing Zone,” and “Process Garmin data”
Lambda States, for a total of 2 intermediate states.

(5) 1 + 2 states: combined all Lambda States into one.

The experiment is executed 30 times for each of these variants of
the workflow with all Lambdas involved being allocated 256 MB of
memory, as shown in Table 1, Experimental setup #4.

Execution Duration: Experiment setup #5 in Table 1 shows the
configuration used to evaluate the effect of overall workflow ex-
ecution duration on ASF workflows. The involved Lambda tasks
have been modified by adding progressively longer sleep times to
them (0/7.5/15 s to each task) to induce latency, to a maximum of 5
minutes, since this is the cap of Express workflows (see Section 2).

3.3.3 Load: In these two experiments we investigate how ASFs
behave when input load changes in two ways. One, by changing
the amount of incoming data to be processed by the application,
and two, by doing multiple concurrent requests:

Payload: In the previous experiments the same Daily Summary
single entry of size 0.9 KB has been used as an input. For this exper-
iment the same ASF workflow will be executed using Experimental
setup #6 in the table 10 times in each case for a linearly growing
payload size ranging from 0.9 KB (size of a single data entry in the
payload) to ∼200 KB, the maximum size imposed by ASF at the
time of conducting our experiments (June 2021).

Concurrent Load: In this experiment we intend to study the effect
of workflows being triggered concurrently in two sub-experiments,
each structured to follow a two-step process (setup #7 in Table 1).
The first step is to initiate multiple instances of the workflow con-
currently so that we would encounter one or more cold starts. Then,
for the second step, we invoke the subsequent concurrent execu-
tions instantly after the first step to analyze how the workflow
executions handle the concurrent load. For the first sub-experiment
we first run 10 workflows simultaneously, followed by 20 execu-
tions. For the second one, we equalize the load between the two
steps and execute 50 workflows concurrently in each step.

4 Results
In the following we present our findings with respect to the exper-
iments described in the previous section. Their implications are
discussed in the following section.

4.1 Effect of Lambdas
Memory Size: Figures 2 and 3 depict the workflow execution du-
ration and cost, respectively, using 128, 256, and 512 MB memory
size and cold/warm starts. Based on these results, we observe that:

Figure 2: ASF execution duration vs allocated AWS Lambda
memory for Standard & Express workflow executions
(warm [W] and cold [C] starts)

Figure 3: ASF execution cost vs Lambdas memory for Stan-
dard & Express workflow executions (warm/cold starts).
Both consolidated (total) and Step Function-only costs are
shown in the figures.

• With increased memory, the overall cost slightly rises by 1.35%
(warm) and 0.38% (cold) on average across all memory config-
urations even if there is a decrease in the execution duration
for Standard workflows. This is expected because the ASF state
transition cost remains constant throughout all memory config-
urations and the Lambda cost is the only differentiating factor.

• When looking at the Express workflow, the trend shows that
similarly the cost increases with more allocated memory for
(mostly) warm startups. However, for cold startups the cost
decreases with the increase in memory. The latter behavior is
because of the drastic difference in execution duration with the
change in memory configuration (22.155 s for 128 MB vs 7.635 s
for 512 MB, on average).

Startup Type: Based on the same figures, but looking specifically at
the startup types, we conclude that:

• The startup type of Lambdas has a significant impact on the
execution duration and the overall cost of the execution. ASF
executions that experience (mostly) warm starts execute on av-
erage 85.82% faster than executions that have been performed
using only cold starts. This behavior is noticed for both the
Standard and Express workflows.

Figure 4: Transitions-only vs total duration for Standard &
Express workflow executions using different Lambda mem-
ory sizes and experiencing warm [W] and cold [C] starts

• As Lambda costs are calculated based on the memory allocated
for the Lambda and the duration of execution, cold starts result
into a higher incurred cost overall.

• This cost difference between warm and cold starts is much more
obvious for Express workflows compared to Standard workflows,
as the AWS Lambda execution duration directly influences the
cost of the former. In contrast, the ASF cost for the latter is
basically not determined by the Lambdas execution duration.
Thus an increase in Lambda execution duration caused by cold
starts has a more severe effect on ASF Express workflows.

4.2 Workflow
State Transition duration: With respect to the effect of state tran-
sition duration on the workflow execution, the following can be
concluded based on Figure 4:

• Express workflows have in general minimal state transition/idle
time, spending less than 20 ms on average in state transition. On
the other hand, for Standard workflows, the total state transition
duration is on average between 350 ms to 670 ms, which is
much higher when compared to Express, for an average of 3.27%
(cold) and 33.1% (warm) of the total execution time spent in
state transition. This considerable idle time can be attributed to
the fact that Standard workflows store state information while
Express workflows do not offer any state transition details (see
next section for more).

• The absence of storing state transition information behavior
makes Express workflow overall slightly faster than Standard
workflow executions, everything else being the same.

Number of States: Figures 5 and 6 plot the experimental results for
decreasing the amount of states in the same application for both
ASF workflow types. Based on them we conclude that:

• Choice states do not have a severe impact on the application’s
performance, as indicated by the transition from 7 to 4 states in
the figure. The slight difference in performance (420 ms on aver-
age) is mainly due to the transition time for Standard workflows.
For Express workflows, this improvement is negligible (less than
10 ms) as this workflow does not store state information transi-
tion from one state to another.

Figure 5: ASF execution duration & cost vs number of work-
flow states for Standard workflow executions; both the aver-
age consolidated cost (i.e. including Lambda costs) and the
pure Step Function cost are plotted for the latter

Figure 6: ASF execution duration & cost vs number of work-
flow states for Express workflow executions (as in the previ-
ous figure)

• Reducing states has a significant positive impact on both per-
formance and cost when executing using Standard workflows
with a cold start: decreasing the number of states from 7 to 1,
for example, resulted in an improvement of 19.62% and 56.87%,
respectively. In contrast, when the execution experiences mostly
warm starts, the performance is alike for all cases; however,
overall the cost declines with a decrease in states.

• Express workflows experience better performance but trivial
cost benefits with a decrease in states for executions with a cold
start. On the other hand, executing the workflow in either a
distributed or monolith pattern, i.e. with too many or a single
state using the Express workflow has negligible monetary and
performance gains for warm starts.

• For the executions with a cold start, decreasing the Lambda states
improves overall performance as the total latency incurred for
cold start initialization by AWS Lambda drops.

Execution Duration: Figure 7 shows the results of the experiment
to understand the effect of execution duration on Standard and Ex-
press costs. For Standard workflows, and since Standard workflow
execution cost depends on step transitions, we observe that the
cost does not vary with the increase in execution duration. For Ex-
press workflows, however, the step function cost keeps increasing

Figure 7: ASF execution duration vs total cost plot for Stan-
dard & Express workflow executions

Figure 8: Payload size vs ASF execution duration (left y-axis)
vs AWS Lambda cost (right y-axis) for Standard workflow
executions

linearly with an increase in step execution duration, to the point
that it overtakes the cost for the execution of the same workflow
in Standard for longer running Step Functions. For the Garmin
Daily Summaries workflow, this tipping point is at around 215 s
total execution time, after which it becomes more cost efficient to
execute the same workflow in Standard, everything else being the
same.

4.3 Load
Payload: Figure 8 has been plotted based on the experiment results
to understand the effect of payload size on workflow execution.
Below are the conclusions that can be drawn from the graph:
• With the increase in payload size, both overall ASF execution
duration and AWS Lambda costs increase proportionally.

• The presence of outliers (spikes in the figure) indicates that the
relative AWS Lambda costs are much lower even with higher
tasks duration. On further analysis, it is observed that roughly
50% of the time is actually used for state transition. This behavior
can be corroborated using the Effect of State Transition Dura-
tion Experiment (Section 4.2), where it is shown that Standard
executions incorporate higher state transition time.

Concurrent Load: Figures 9 and 10 plot the results of our experi-
ments to understand the effect of concurrent requests on workflow
execution. As expected, the performed experiments show that ASF

Figure 9: Sub-experiment 1 (Standard workflow executions):
10 + 20 concurrent executions

Figure 10: Sub-experiment 2 (Standard workflow execu-
tions): 50 + 50 concurrent executions

can be executed concurrently and at scale, and that the effects of
AWS Lambda are propagated to the ASF execution. At the same time,
and with more concurrent workflow executions, several runs take
longer than average to finish as spinning up new Lambda instances
to serve all the requests introduces latency and thus negatively
impacts performance. With respect to the two sub-experiments
using Experimental setup #7 in the table:
• During the initial step of the first sub-experiment, all the work-
flows underwent some cold start duration. The cold start can
be seen in the graph as the orange bars. In the subsequent ex-
ecutions, where 20 workflows were triggered concurrently, 10
workflows ran without any cold start duration, i.e. reused the
previous warm Lambdas, with the remaining 10 showing cold
starts of varying duration, indicating that new Lambdas needed
to be initiated. The executions that did not have any cold start
associated with them executed much faster (73.191% on average)
than those that had, making them more performant for both
workflows and economical for Express workflow.

• During the initial execution set in the second sub-experiment
(50 workflows), only some Lambdas experienced a cold start
(orange bars in the figure). The chart shows that the executions
that experienced a cold start took (much) more time than the
executions that did not have a cold start — 14.041 s on average to
be precise. Despite the ASF being triggered concurrently, some
of the executions from the first 50 workflows do not have a cold
start duration because they reused existing warmed-up Lambdas,

despite being invoked concurrently in our load. Furthermore,
the subsequent execution set of the next 50 workflows did not
have any cold start at all, showing that multiple instances of the
Lambdas were warm and ready for reuse without starting a new
Lambda instance. Surprisingly, the execution duration for the
second set was considerably higher when compared to both the
first set of 50 workflows and the previous sub-experiment.

5 Discussion & Future Work
5.1 Implications
In this experimental evaluation, we performed a total of 7 experi-
ments to understand the effects of various parameters on ASF with
the support of an application realized as a Step Function. We will
now discuss the implications of these results for practitioners and
researchers when considering adopting ASF for FaaS orchestration.

First, when examining the effects of AWS Lambda memory al-
location on ASF, we observed that cold start latency decreases with
an increase in Lambda memory size, thus resulting in ASF executions
with better performance. This finding complied with the observa-
tions from e.g. [Wang et al. 2018] and implies that AWS allocates
CPU power proportionally to the defined memory size, suggesting
that the more the CPU power, the environment boot-up becomes
faster. Contrary to expectations, however, and even if the increase
in memory size reduces execution duration, the workflow execution
cost appears to be inversely proportional and actually increasing for
warm starts in both Standard and Express workflows. This result may
be explained by the fact that the execution duration for warm Lamb-
das varies insignificantly, and the cost of higher memory Lambdas
surpasses the slight decrease in execution duration. A similar trend
is also seen for the Standard workflow with a cold start, but the
disparity between the different memory sizes is not so drastic. On
the contrary, Express workflow executions with cold start show a
downwards trend in cost with increased memory, signifying that
the workflow execution duration significantly impacts ASF cost.

Our experiment for evaluating the effects of Lambda startup
type confirms that cold and warm starts have a substantial impact
on workflow execution. It is seen however that cold starts impact
the cost for Express workflows considerably more than for Standard
workflows as the execution duration directly controls the Express
workflows execution cost. So, if an application is expected to have a
considerable amount of cold starts, due to e.g. having intermittent
load, Express workflows would not be the recommended.

Another important finding is that ASF Express workflows have
significantly less state transition times when compared to Standard
workflow execution. A possible explanation for this might be that
Express workflows persist state transitions in memory while the
Standard workflow stores the state details to a disk. The persistence
of states on disk makes Standard workflow more fault-tolerant, and
if a state fails, then that particular state needs to be restarted. How-
ever, for the Express workflow, the entire state machine needs to be
restarted in case of failure. This will incur additional unexpected
costs as reported also by practitioners [Leitner et al. 2019]. Another
possible explanation for this latency is that Standard workflows
store each state’s input and output data using the execution his-
tory and provide a visual debugging interface. Express workflows

do not have additional overhead as logs are confined to Amazon
CloudWatch12, and logs are stored using a nonblocking behavior.

When looking at the cost viewpoint on the number of states,
Standard workflows are heavily influenced by it as pricing is based
on state transitions.With the decrease in the number of states, the
Standard workflow cost decreases proportionally. If the workflow is
executed using only cold starts, the workflow with the least number
of transitions is more performant and runs with the least duration.
On the contrary, if the execution encounters mostly warm starts,
the execution durations are similar. At the same time, most of the
conducted experiments hugely advocate using Express workflows for
short-lived tasks. Tasks that require a prolonged duration however
show that Express workflows can be pricier than Standard work-
flows, which is influenced mostly by the number of state transitions.
A Standard workflowwith the least possible number of states seems
therefore a viable option if a user wants to take advantage of the
detailed execution history and visual console for debugging. How-
ever, this reduction of states impacts flexibility and granularity and
increases coding effort, reducing developer happiness. On the other
hand, if the user adopts an Express workflow, it is not necessary
to worry about the number/type of states as they can be used judi-
ciously. However, this happens at the expense of losing access to
the rich information available for Standard executions.

The most obvious finding to emerge from the investigation is
that as the payload size grows, so will the workflow execution duration.
This increase in duration is because the Lambdas need to perform
more complicated processing and handle more extensive data. An-
other reason for this increased duration can be attributed to the
larger payloads being transitioned between states as the state transi-
tion time gradually increases with a larger payload size. Identifying
the proportional impact of these two performance degradation
points is however left for future work. Concurrent execution of ASF
workflows impacts both performance and cost, mainly due to the cold
and warm starts of AWS Lambdas. If Lambdas are experiencing
concurrent invocations, AWS will initialize them simultaneously
as expected. Our experiment shows, however, that a sudden spike
in requests in a short period negatively impacts the overall perfor-
mance. Moreover, the number of concurrent requests can be limited
by the type of workflow, as discussed in Section 2. If the application
expects massive ingestion of data simultaneously and results at
near real-time latency, then ASF adopters must look into managing
the concurrency for AWS Lambdas by investigating the reserved
or provisioned concurrency options13 instead.

One final point that emerges by looking across the various exper-
iments is that the two ASF workflow types behave effectively as two
different systems instead of two variants of the same orchestration
system. Especially the differences in state transition management
and their attached pricing model hint heavily at different implemen-
tations. Verifying this supposition e.g. experimentally is however
left as the task for further research.

5.2 Limitations
Our experiments were performed using Lambdas deployed only
on the Node.js 14 Lambda runtime environment. Lee et al. [Lee

12https://aws.amazon.com/cloudwatch
13https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency

https://aws.amazon.com/cloudwatch
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency

et al. 2018] report fluctuations in the cost and performance of FaaS
functions across different languages and FaaS platforms. While
we did not investigate whether the performance of different lan-
guages/runtime environments can impact ASF, we believe that our
primary conclusions are applicable irrespective of the program-
ming language. This study can be repeated using another runtime
environment to confirm this hypothesis in the future.

Furthermore, and although the current work is based on using a
single Garmin serverless data processing pipeline application, the
findings suggest that these observed results are not constrained to
this particular use case. These experimental result trends should
be reproducible when used on different ASF-realized use cases like
media processing, microservice orchestration, and even machine
learning serverless applications. Hence, these experiments need
to be extended to examine more serverless applications developed
using ASF as part of future work. Apart from assessing different use
cases, the effects of other service integrations must be evaluated.

Finally, a natural progression of this work is to utilize the identi-
fied list of experiments and extend it to other FaaS orchestration
systems like Azure Durable Functions, Google Workflows, and IBM
Cloud Composer. Then the results from those evaluations can be
compared to our observations, enabling serverless adopters to select
from a broader range of vendors and finally more informed deci-
sions while selecting a particular FaaS vendor and its corresponding
FaaS orchestration system.

6 Related Work
Previous studies like [Eismann et al. 2020a; Elgamal 2018; Villamizar
et al. 2016] provide various analyses and techniques to perform
and evaluate cost and performance modeling of serverless solu-
tions, but they are primarily focused on tuning AWS Lambda and
equivalent FaaS offerings. Works by [Back and Andrikopoulos 2018;
Hellerstein et al. 2018; Malawski et al. 2017; Shahrad et al. 2019;
Wang et al. 2018] provide their insights into how Lambda memory
size, cold starts, and communication overhead influence overall
performance and cost. Other approaches such as [Malawski et al.
2020] and [Kuhlenkamp et al. 2019] are looking into the suitability
of AWS Lambda and other FaaS offerings for implementing data
pipelines. However, our research focuses primarily on ASF and
the side effects of implementing a serverless solution using ASF to
coordinate multiple Lambdas into flexible workflows that are easy
to debug and modify.

From works that discuss specifically ASF, Lin et al. [Lin and
Khazaei 2020] use ASF and AWS Lambdas to evaluate their pro-
posed Probability Refined Critical Path Greedy algorithm (PRCP)
to optimize cost and performance of Lambdas defined using ASF
workflows. However, this research concentrates on AWS Lambdas
and does not consider the state transition duration and workflow
type. Moreover, most of the work presented does not reflect the lat-
est billing model for AWS Lambda which rounds up the duration to
the nearest millisecond with no minimum execution time. In [López
et al. 2018] the authors compared three primary function orchestra-
tion systems: IBM Composer, ASF, and Azure Durable Functions.
The authors concluded that ASF is the most mature one as it was
the first to be available on the market and the most performant

project for short and long-running orchestrations. The investiga-
tion also states that ASF has limited programmability constructs
than other services, like a lack of parallel programming support,
callback pattern, and nested workflows. However, in the past few
years, ASF has advanced drastically by offering all these constructs,
and even introducing the Express workflow type.

The work of [Bharti et al. 2021] modeled several sequential com-
position workflows like reflexive, fusion, async, chaining, and client-
based scheduling using ASF and IBM Cloud Function Sequences.
The study shows that the compositions implemented in IBM Cloud
Function Sequences perform better than ASF workflows for both
language runtimes, i.e., Python and Node.js. However, the authors
also conclude that the cold start problem is more prominent for the
IBM offering when compared to ASF.

[Wen and Liu 2021] performed the first empirical study on char-
acterizing and comparing the leading FaaS orchestration systems,
i.e., ASF, Azure Durable Functions, Alibaba Serverless Workflow14,
and Google Cloud Composer15. The authors compared their charac-
teristics from six dimensions: orchestration, data payload limit, par-
allelism support, execution time limit, reusability, and supported de-
velopment languages. Furthermore, theymeasured the performance
of these orchestration systems under varied experimental settings:
activity complexity, data-flow complexity, and function complexity
using sequence and parallel applications scenarios. Based on their
findings, ASF has been recommended by the authors for activity-
intensive sequence, data flow-intensive sequence (or parallel), and
function-sensitive sequence (parallel) tasks when considering the
total execution time and orchestration overhead.

The mentioned investigations show a thriving interest in ASF
serverless workflows, their performance benefits, and their ability
to enable users to implement function composition. However, even
with increasing interest, the lack of in-depth information regarding
ASF and its workflow types hinders its adoption. Furthermore,
the performed studies focus on ASF Standard workflow without
considering the consequences the Express workflow can have on the
application’s performance. Finally, another vital aspect that these
studies fail to consider is the cost impact for the workflow execution.
Therefore, our findings and implications serve as baselines and
suggestions for developers in adopting ASF workflow and choosing
the most suitable type of workflow based on cost and performance.

7 Conclusion
In this work we performed an in-depth experimental study concen-
trating on the performance and cost effects on both ASF Standard
and Express workflows with the help of an ASF-realized application.
More specifically, we looked at various parameters and their impact
on the cost/performance tradeoff by performing experiments on
a serverless data processing pipeline use case. In particular, we
investigated the effects of allocated memory size and cold/warm
starts of orchestrated Lambdas, number of state transitions and
state transition duration, total execution duration, payload size,
and concurrent executions.

Our experiments show that Standard workflows are suitable for
long-running tasks with few states, as they are priced by the number

14https://www.alibabacloud.com/product/serverless-workflow
15https://cloud.google.com/composer

https://www.alibabacloud.com/product/serverless-workflow
https://cloud.google.com/composer

of state transitions. So, even if a workflow takes months or millisec-
onds to execute, the price of workflow execution remains the same.
Hence, workflows that expect an enormous volume of executions
and have a considerable amount of transitions would not be ideal
for executing using Standard workflows. We then observed that Ex-
press workflows with its billing similar to AWS Lambda (execution
run, memory consumed, and total execution duration) is well suited
for short-lived tasks even if the workflow has many state transi-
tions. There is however an application-specific tipping point after
which Express stops being more cost-efficient than Standard. An-
other interesting finding is that Express workflows execute faster
than Standard workflows, as states are not persisted in Express
workflows and state transitions happen in memory. On the other
hand, Standard workflows persist the state on the disk and support
history execution, which allows for better development support.
When looking at Lambdas, cold starts have a massive impact on
the step function execution. This effect impacts the performance of
all workflow executions but has a much more noticeable influence
on ASF Express workflows when coming to their cost. Increasing
the allocated memory of the involved Lambdas improved the per-
formance of the workflow execution, but the overall execution cost
ended up being higher in some cases. Finally, we saw that the work-
flow execution duration increases with the increase in payload size,
and therefore incoming application load needs to be taken also into
consideration.

Acknowledgments
This workwas supported by ITEA3 and RVOunder grant agreement
No. 17038 VISDOM (https://visdom-project.github.io/website).

The authors would like to thank the reviewing program com-
mittee members for their insightful comments and suggestions in
improving this paper.

References
Lucas F Albuquerque Jr, Felipe Silva Ferraz, RFOliveira, and SMGaldino. 2017. Function-

as-a-service x platform-as-a-service: Towards a comparative study on FaaS and
PaaS. In ICSEA. 206–212.

Timon Back and Vasilios Andrikopoulos. 2018. Using a microbenchmark to compare
function as a service solutions. In European Conference on Service-Oriented and
Cloud Computing (ESOCC). Springer, 146–160.

Andrew Baird, George Huang, Chris Munns, and Orr Weinstein. 2017. Serverless
architectures with aws lambda. Amazon Web Services (2017).

Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche Ishakian,
NickMitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski, et al. 2017a.
Serverless computing: Current trends and open problems. In Research Advances in
Cloud Computing. Springer, 1–20.

Ioana Baldini, Perry Cheng, Stephen J Fink, Nick Mitchell, Vinod Muthusamy, Ro-
dric Rabbah, Philippe Suter, and Olivier Tardieu. 2017b. The serverless trilemma:
Function composition for serverless computing. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. 89–103.

Urmil Bharti, Deepali Bajaj, Anita Goel, and SC Gupta. 2021. Sequential Workflow in
Production Serverless FaaS Orchestration Platform. In Proceedings of International
Conference on Intelligent Computing, Information and Control Systems. Springer,
681–693.

Alessandro Bocci, Stefano Forti, Gian-Luigi Ferrari, and Antonio Brogi. 2021. Secure
FaaS orchestration in the fog: how far are we? Computing (2021), 1–32.

Robert Cordingly, Hanfei Yu, Varik Hoang, David Perez, David Foster, Zohreh Sadeghi,
Rashad Hatchett, and Wes J Lloyd. 2020. Implications of Programming Language
Selection for Serverless Data Processing Pipelines. In 2020 IEEE DASC/PiCom/CBD-
Com/CyberSciTech. IEEE, 704–711.

James Densmore. 2021. Data Pipelines Pocket Reference Book. O’Reilly Media, Inc.
Simon Eismann, Johannes Grohmann, Erwin Van Eyk, Nikolas Herbst, and Samuel

Kounev. 2020a. Predicting the Costs of Serverless Workflows. In Proceedings of the

ACM/SPEC International Conference on Performance Engineering (ICPE). 265–276.
Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes

Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru Iosup. 2020b. Serverless
applications: Why, when, and how? IEEE Software 38, 1 (2020), 32–39.

Adam Eivy and Joe Weinman. 2017. Be wary of the economics of “Serverless” Cloud
Computing. IEEE Cloud Computing (2017).

Tarek Elgamal. 2018. Costless: Optimizing cost of serverless computing through
function fusion and placement. In 2018 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 300–312.

Jake Grogan, Connor Mulready, James McDermott, Martynas Urbanavicius, Murat
Yilmaz, Yalemisew Abgaz, Andrew McCarren, Silvana Togneri MacMahon, Vahid
Garousi, Peter Elger, et al. 2020. A Multivocal Literature Review of Function-
as-a-Service (FaaS) Infrastructures and Implications for Software Developers. In
European Conference on Software Process Improvement. Springer, 58–75.

Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-Smith, Vikram
Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless computing: One
step forward, two steps back. arXiv preprint arXiv:1812.03651 (2018).

Jörn Kuhlenkamp, SebastianWerner, Maria C Borges, Karim El Tal, and Stefan Tai. 2019.
An evaluation of faas platforms as a foundation for serverless big data processing.
In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing (UCC). 1–9.

Jörn Kuhlenkamp, Sebastian Werner, and Stefan Tai. 2020. The ifs and buts of less is
more: a serverless computing reality check. In 2020 IEEE International Conference
on Cloud Engineering (IC2E). IEEE, 154–161.

Hyungro Lee, Kumar Satyam, and Geoffrey Fox. 2018. Evaluation of production
serverless computing environments. In 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD). IEEE, 442–450.

Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer. 2019. A mixed-
method empirical study of Function-as-a-Service software development in industrial
practice. Journal of Systems and Software 149 (2019), 340–359.

Changyuan Lin andHamzeh Khazaei. 2020. Modeling and Optimization of Performance
and Cost of Serverless Applications. IEEE Transactions on Parallel and Distributed
Systems 32, 3 (2020), 615–632.

Pedro García López, Marc Sánchez-Artigas, Gerard París, Daniel Barcelona Pons,
Álvaro Ruiz Ollobarren, and David Arroyo Pinto. 2018. Comparison of faas orches-
tration systems. In 2018 IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC Companion). IEEE, 148–153.

Maciej Malawski, Kamil Figiela, Adam Gajek, and Adam Zima. 2017. Benchmark-
ing heterogeneous cloud functions. In European Conference on Parallel Processing.
Springer, 415–426.

Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela. 2020.
Serverless execution of scientific workflows: Experiments with hyperflow, aws
lambda and google cloud functions. Future Generation Computer Systems 110 (2020),
502–514.

Johannes Manner, Martin Endreß, Tobias Heckel, and Guido Wirtz. 2018. Cold start in-
fluencing factors in function as a service. In 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion). IEEE, 181–188.

Antreas Pogiatzis and Georgios Samakovitis. 2021. An Event-Driven Serverless ETL
Pipeline on AWS. Applied Sciences 11, 1 (2021), 191.

Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
implications of function-as-a-service computing. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 1063–1075.

Josef Spillner. 2017. Transformation of Python Applications into Function-as-a-Service
Deployments. (May 2017). arXiv:1705.08169 [cs.DC]

Josef Spillner and Serhii Dorodko. 2017. Java Code Analysis and Transformation into
AWS Lambda Functions. (Feb. 2017). arXiv:1702.05510 [cs.DC]

Erwin Van Eyk, Alexandru Iosup, Simon Seif, and Markus Thömmes. 2017. The SPEC
cloud group’s research vision on FaaS and serverless architectures. In Proceedings
of the 2nd International Workshop on Serverless Computing. 1–4.

Erwin Van Eyk, Lucian Toader, Sacheendra Talluri, Laurens Versluis, Alexandru Ut,ă,
and Alexandru Iosup. 2018. Serverless is more: From paas to present cloud comput-
ing. IEEE Internet Computing 22, 5 (2018), 8–17.

Mario Villamizar, Oscar Garces, Lina Ochoa, Harold Castro, Lorena Salamanca, Mauri-
cio Verano, Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zambrano, et al.
2016. Infrastructure cost comparison of running web applications in the cloud
using AWS lambda and monolithic and microservice architectures. In 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid).
IEEE, 179–182.

Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael Swift.
2018. Peeking behind the curtains of serverless platforms. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). 133–146.

Jinfeng Wen and Yi Liu. 2021. An Empirical Study on Serverless Workflow Service.
arXiv preprint arXiv:2101.03513 (2021).

Mengting Yan, Paul Castro, Perry Cheng, and Vatche Ishakian. 2016. Building a Chatbot
with Serverless Computing. In Proceedings of the 1st International Workshop on
Mashups of Things and APIs (Trento, Italy) (MOTA ’16, Article 5). Association for
Computing Machinery, New York, NY, USA, 1–4.

https://visdom-project.github.io/website
https://arxiv.org/abs/1705.08169
https://arxiv.org/abs/1702.05510

	Abstract
	1 Introduction
	2 Background
	3 Experiment Design
	3.1 Application Under Test
	3.2 Experimental Setup
	3.3 Experiments
	3.3.1 Effect of Lambdas on ASF:
	3.3.2 Workflow:
	3.3.3 Load:

	4 Results
	4.1 Effect of Lambdas
	4.2 Workflow
	4.3 Load

	5 Discussion & Future Work
	5.1 Implications
	5.2 Limitations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

