

 University of Groningen

On the relation between architectural smells and source code changes
Sas, Darius; Avgeriou, Paris; Pigazzini, Ilaria; Arcelli Fontana, Francesca

Published in:
Journal of Software: Evolution and Process

DOI:
10.1002/smr.2398

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sas, D., Avgeriou, P., Pigazzini, I., & Arcelli Fontana, F. (2022). On the relation between architectural
smells and source code changes. Journal of Software: Evolution and Process, 34(1), [e2398].
https://doi.org/10.1002/smr.2398

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.1002/smr.2398
https://research.rug.nl/en/publications/c65da79e-1c6f-4ab5-9050-a013fa9aa9ef
https://doi.org/10.1002/smr.2398

R E S E A R CH A R T I C L E - EM P I R I C A L

On the relation between architectural smells and source code
changes

Darius Sas1 | Paris Avgeriou1 | Ilaria Pigazzini2 | Francesca Arcelli Fontana2

1Bernoulli Institute for Mathematics,

Computer Science, and Artificial Intelligence,

University of Groningen, Groningen, The

Netherlands

2Department of Informatics, Systems, and

Communications, University of Milano-

Bicocca, Milan, Italy

Correspondence

Darius Sas, University Of Groningen,

University of Groningen Faculty of Science

and Engineering (FSE), Bernoulliborg,

Nijenborgh 9, Groningen 9747 AG, The

Netherlands.

Email: d.d.sas@rug.nl

Funding information

Horizon 2020 Framework Programme, Grant/

Award Number: 780572; Rijksdienst voor

Ondernemend Nederland, Grant/Award

Number: 17038

Abstract

Although architectural smells are one of the most studied type of architectural tech-

nical debt, their impact on maintenance effort has not been thoroughly investigated.

Studying this impact would help to understand how much technical debt interest is

being paid due to the existence of architecture smells and how this interest can be

calculated. This work is a first attempt to address this issue by investigating the rela-

tion between architecture smells and source code changes. Specifically, we study

whether the frequency and size of changes are correlated with the presence of a

selected set of architectural smells. We detect architectural smells using the Arcan

tool, which detects architectural smells by building a dependency graph of the system

analyzed and then looking for the typical structures of the architectural smells. The

findings, based on a case study of 31 open-source Java systems, show that 87% of

the analyzed commits present more changes in artifacts with at least one smell, and

the likelihood of changing increases with the number of smells. Moreover, there is

also evidence to confirm that change frequency increases after the introduction of a

smell and that the size of changes is also larger in smelly artifacts. These findings hold

true especially in Medium–Large and Large artifacts.

K E YWORD S

architectural smells, architectural technical debt, empirical study, software repository mining,
technical debt, technical debt interest

1 | INTRODUCTION

Architectural smells (ASs) are defined as “commonly-used (although not always intentional) architectural decisions that negatively impact system

quality.”1 ASs manifest themselves in the system as undesired dependencies, unbalanced distribution of responsibilities, and excessive coupling

between components and in many other forms that break one or more software design principles and good practices, ultimately affecting main-

tainability and evolvability.2 We note that the presence of AS does not always inevitably indicate that there is a problem, but it points to places in

the system's architecture that should be further analyzed.2 ASs are considered as a type of architectural technical debt (ATD), as they (may) result

in increased complexity and “can make future changes more costly or impossible.”3 The interest of the research community in AS has grown expo-

nentially over the past years: According to a systematic mapping study by Verdecchia et al,4 they are one of the most studied types of ATD.

Research work on AS has ranged from broad studies that define new smell types and study their evolution over time5–7 to more specific ones

that focus on a particular architecture style (e.g., AS in systems built with Model-View-Controller [MVC] or Microservices8). Few studies, however,

Received: 23 January 2021 Revised: 23 September 2021 Accepted: 6 October 2021

DOI: 10.1002/smr.2398

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.

J Softw Evol Proc. 2022;34:e2398. wileyonlinelibrary.com/journal/smr 1 of 21

https://doi.org/10.1002/smr.2398

https://orcid.org/0000-0003-3383-3298
mailto:d.d.sas@rug.nl
https://doi.org/10.1002/smr.2398
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/smr
https://doi.org/10.1002/smr.2398
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.2398&domain=pdf&date_stamp=2021-10-27

have extensively investigated the impact of AS on maintenance effort. Although ASs are considered detrimental to software maintenance, forcing

developers to pay high technical debt interest,1 there is little empirical evidence to explore and confirm this phenomenon. Although there has been

research on the impact of code smells on maintenance effort, ASs seem completely independent from code smells9 and arguably more severe.

This study addresses this gap by exploring the impact of a specific set of AS on maintenance effort in terms of the actual changes made by

developers to the source code. Specifically, we compare the frequency and size of changes between source code artifacts affected and not

affected by ASs. We perform the comparison both by controlling for the size of the artifacts and without any control for size, to eliminate size as

a confounding factor. We consider change frequency, that is, the number of times an artifact was changed across multiple versions, and change size,

that is, the number of lines of code (LOC) added, deleted, and modified,* as proxies of the effort spent, based on previous work: Change frequency

is a factor that was found to affect maintenance effort,10,11 whereas change size (also referred to as code churn or Total Amount of Changes

(TACH)—see Section 4) was used to estimate the effort in previous studies.12,13 This can give an indication of how much technical debt interest

(rather than the actual interest per se) is paid by developers due to the presence of the detected smells (not all changes entail paying interest—see

Threats to Validity section). Furthermore, our findings can be used towards building a model to calculate, based on actual changes, the ATD inter-

est3 paid when maintaining artifacts affected by AS.

The ASs considered in this study are Cyclic Dependency (CD), Hub-Like Dependency (HL), Unstable Dependency (UD), and God Component

(GC).2,5,14 We selected to study these smells as they are some of the most prominent architecture smells, and there already exist tools that pro-

vide their automatic detection.

The novel contributions of this study are (1) the vast majority of related work examines code smells, while we focus on ASs, which were found to

be independent from code smells;9 (2) we study four different types of AS, and only CD was previously investigated by other studies, whereas the

other three were overlooked; (3) we provide a new, interesting view of how AS affect artifacts before and after the introduction (RQ2).

The rest of the paper is structured as follows: Section 2 summarizes similar work from the literature; Section 3 describes in detail the goals,

research questions, and the selected projects of this study; Section 4 reports the data collected as well as the collection process; Section 5 pre-

sents the data analysis procedures; Section 6 reports and examines the obtained results; Section 7 discusses our interpretation of the results and

compares them with similar findings from the literature; Section 8 enunciates the threats to the validity of this study; and finally, Section 9 con-

cludes the paper and considers possible future work.

2 | RELATED WORK

2.1 | Impact of ASs

In a recent work, Le et al15 defined a set of six ASs based on an automated reverse architecture model extraction. Next, they investigated whether

files affected by ASs (i.e., smelly files) are more likely to have issues (extracted from issue-tracking systems) associated to them than clean files.

Additionally, they also checked if smelly files are more change-prone than clean files. The case study was performed on eight different open-

source Java systems, and the results confirmed that smelly files are more fault- and change-prone in the eight systems analyzed. Contrary to the

work of Le et al,15 in our work, we investigate a different set of ASs based on concrete software artifacts, rather than on architectural recovery

views; we use 31 projects, rather than eight, and we measure several facets of change-proneness (not only the number of commits a file has chan-

ged), using a well-established suite of metrics.

Oyetoyan et al6 have studied the relation between CD and the change frequency of the affected classes near them on twelve Java open-

source systems. They investigated both general CD between classes and special kinds of CD (e.g., cycles that contain both parents and children

classes, abbreviated as STK, and cycles across branches of the package containment tree) that have been conjectured to be particularly undesir-

able. Their results show that the presence of cycles does increase the change frequency of the classes affected and of the neighbor classes, but

this is not true for classes affected by STK cycles in most of the systems considered. Moreover, their findings also suggest that classes belonging

to cycles spanning across branches of the package containment tree (the tree of the packages) do not exhibit a higher correlation with change fre-

quency. Our work differs from this study in the following aspects: We investigate four types of smells, including CD, both at class and package

level; our data include more systems and more commits per system; and we use multiple well-established metrics to measure change.

2.2 | Impact of antipatterns, design patterns, and design smells

Khom et al16 investigated the effect of antipatterns (classes that embody poor design choices and stem in-between design and implementation16),

on class and change proneness. More specifically, the authors investigated whether classes participating in antipatterns have a higher likelihood

*See Section 4 for a full description.

2 of 21 SAS ET AL.

than others to change or be involved in issues documenting faults. Their study focused on four open-source Java systems and a total of

54 releases. Their findings confirmed that classes participating in antipatterns are more change prone than others. Specifically, the MessageChain

antipattern has been found to consistently have the greatest impact on change proneness across all the four systems analyzed. The impact of the

other antipatterns largely depends on the studied system. Concerning fault proneness, the results are very similar to what was observed for

change proneness.

Another work on antipatterns and their relation with changes and faults was published by Jaafar et al.17 In their work, rather than focusing on

problematic classes as previous studies, they focused on classes that depend upon classes affected by antipatterns and/or participate in design

patterns. Their work focused on six design patterns and 10 antipatterns detected throughout 39 releases of four systems. The findings indicate

that classes having dependencies with antipatterns are more prone to fault, whereas this is not always true for classes with dependencies with

design patterns. Additionally, the findings also show that classes depending upon antipatterns are more prone to logic faults and structural

changes, whereas classes depending on design patterns are more prone to code addition and syntax faults.

Sharma et al18 conducted an empirical study to investigate the relationship between design and AS in C# projects. Their distinction between

design and architecture smells corresponds to our distinction between class-level and package-level smells. In their work, Sharma et al. studied

the existence of a possible correlation between design and architectural smells to determine whether they capture the same concept. More spe-

cifically, they focused on collocation and causation, by investigating the temporal relationship between design and architectural smells to find out

whether one type of smell causes the other. The results of the analysis show evidence of the individuality and uniqueness of design smells with

respect to architectural smells.

2.3 | Impact of code smells

Aniche et al19 have studied the impact of code smells on change and fault-proneness in MVC architectures prior to performing a qualitative analy-

sis involving the developers of the 120 projects they considered. The projects were automatically extracted from GitHub, and the authors defined

a set of smells specifically tailored for the MVC architecture by surveying 53 developers. The results concerning change and fault proneness show

that classes affected by smells are more prone to change than non-smelly classes; traditional smells seem to have a stronger negative impact,

although when controlling for size the difference is less marked on change proneness. No impact was observed on fault proneness when control-

ling for size for both MVC-specific and traditional smells.

Another study on code smells and change-proneness was done by Khomh et al.20 In their work, the authors study the impact of 29 code

smells on change proneness in two open-source Java projects. More precisely, they investigate whether smelly classes are more change-prone,

how the number of smells influences this aspect, and differences in this impact between the different smell types. Their findings show that smelly

classes are in fact more change prone in both projects analyzed. Additionally, they also show that a higher number of smells often imply a high

change proneness. They also found that HasChildren,MessageChainClass, NotAbstract, and NotComplex smell types have the highest change prone-

ness, but this is heavily project-dependant.

This study, in contrast, focuses on ASs, and as it was found in a previous study, ASs are independent from code smells.9 Moreover, ASs, con-

trary to code smells, affect multiple classes and/or packages, have complex structures (e.g., dependencies among the affected components), and

require large refactorings in order to be removed.2 This means that research on code smells is not applicable to ASs, and the only similarity with

code smells in this regard is that each type of AS needs to be investigated individually.

3 | CASE STUDY DESIGN

The present study is designed and reported following the guidelines published by Runeson et al.21 Specifically, the case study design follows an

embedded multiple-case format: multiple cases, each having numerous units of analysis, as shown in Figure 1. The individual source code files and

packages analyzed for a given project constitute the units of analysis; the projects represent the cases. The domain of the project (e.g., web ser-

vice and database) is the context, containing one or multiple cases.

3.1 | Terminology

In the next sections, we will use the term change frequency to indicate the number of times an artifact undergoes any kind of change in a given

number of commits. For example, if an artifact changes in 3 commits out of the 100 considered, its change frequency is .03.

The term change size refers to the sum of the number of LOC added, deleted, and/or modified to/from an artifact in a single given commit.

This is commonly referred to as code churn. A formal definition of how we measure changes is provided in Section 4.

SAS ET AL. 3 of 21

Finally, we note that we use the terms commit and version interchangeably. Additionally, the term release is used when a certain commit/

version is explicitly packaged and tagged for public release.

3.2 | Goal and research questions

The goal of this study is to understand the impact of ASs on source code changes. Using the Goal-Question-Metric approach,22 the goal can be

formulated as follows:

Analyse changes in source code artifacts for the purpose of understanding the impact of architectural smells with respect to the

frequency and size of those changes from the point of view of software developers and architects in the context of open source

Java software systems.

By (Java) source code artifacts, we mean both source code files (classes) and source code packages.

The goal can be broken down into three main research questions, as follows.

RQ1 Do classes and packages with smells change more frequently than classes and packages without smells?

RQ1a Do different smell types have a different impact on frequency of change?

RQ1b Does the number of smells have a different impact on frequency of change?

We ask this question to shed some light on the actual relationship between the existence of ASs and the change frequency of classes and

packages. Such a relationship, in case it exists, confirms that ASs' presence correlates with increased maintenance effort, with respect to the fre-

quency of changes of the affected artfacts.

The two subquestions, RQ1a and RQ1b, further explore the connection between ASs and change frequency by looking at how different smell

types and multiple smells correlate to changes.

RQ2 What is the difference in the change frequency of an artifact before and after a smell is introduced?

This question aims at identifying whether the introduction of a smell impacts the change frequency of a certain artifact. More precisely, it

provides insights on whether the presence of the smell can be related to an increased change frequency in an affected artifact. Theoreti-

cally, one would expect that the introduction of a smell leads to an increase in the change frequency in (at least some of) the artifacts

affected by the smell. Finally, the results of this research question, in case we do find evidence of such an increase, will strengthen the find-

ings of RQ1.

RQ3 Is the size of the changes in source code artifacts affected by smells, larger than in nonaffected artifacts?

This question focuses on the magnitude, or size, of the changes made (in terms of added, deleted, and changed LOC) to the artifacts that are

affected by smells. Theoretically, these artifacts should exhibit bigger changes (thus more complex ones) because working on an suboptimal design

is harder and thus requires changing more LOC to be maintained. Bigger changes, in most scenarios (e.g., fixing bugs, adding features, and

refactoring), mean developers have spent more time to implement them, resulting in a higher amount of interest paid.12,13

F IGURE 1 The case study design using Runeson et al.'s representation21

4 of 21 SAS ET AL.

We emphasize that, with these research questions we are not seeking to establish causality between smells and changes by any means, but

rather we aim at investigating correlations. This is further explained in the Section 7.

Finally, a replication package, containing the protocol, the data, the R scripts, and a collection of 14 plots that visualize the data, is available

online†.

3.3 | Analyzed projects

To conduct our study, we selected the 31 projects listed in Table 1. The inclusion criteria used during the selection of the projects were as

follows:

1. Nontrivial Java projects with at least 10.000 LOC in the last commit;

2. Actively maintained and used by the community (the Contributors page on GitHub should show a consistently active development‡);

3. At least 3 years of active development on GitHub (or similar sites).

During the selection process, we also strove to diversify the domains of the included systems as much as possible, as indicated in Table 1, as

well as to increase as much as possible the period of analysis taken into consideration. To this end, our dataset contains 31 projects, with an aver-

age period of analysis of 11.5 years, a maximum of 22.1 years, and a minimum of 3.5 years with an average of 126.8 commits analyzed per pro-

ject. Figure 2 reports the distribution of the total number of LOC of the commits analyzed for each project.

4 | DATA COLLECTION

For every system S listed in Table 1, we analyzed one commit (or version) v every 4 weeks, from the first commit available in the repository to the

latest on the main branch (either master or trunk). We selected a 4-week-long interval between each commit because we wanted to ensure that

the change-related metrics we selected were calculated at a meaningful level of granularity, allowing enough files to change from one commit to

the next one. Such custom intervals were used in similar contexts by previous studies.23–25 Additionally, a fixed interval between commits avoids

the introduction of bias and ensures the results are consistent across the different release rates of our projects.24 The selection of the 4-week-

long interval is further discussed in the Threats to Validity section. The change-related data were extracted using git diff between each pair of

consecutive commits. The period of analysis started from the first ever commit available on the repository to the last one available as of May

2021. Next, as part of our data cleaning process, we removed the commits with no changes at the beginning and ending of a project, as these

entail inactive leading and trailing periods.

For every artifact x, namely, class c or package p, in each commit v, we collected the following independent variables: (1) a boolean variable

denoting whether x was affected by ASs or not, (2) four boolean variables indicating whether a certain type of smell affects x, (3) and an integer

variable counting the total number of smell instances per smell type that affected it. We also measure for every artifact x the changes in the sys-

tem using a well-established suite of metrics provided by Elish and Al-Khiaty26 —these are the dependant variables in our study:

1. Change Has Occurred (CHO). This metric is the basis for calculating the change frequency of an artifact. CHO measures whether a class c, or

package p, has changed or not in the current commit v with respect to the previous commit v � 1 in the dataset:

CHOvðcÞ¼
1 if c has changed in v

0 otherwise

�
CHOvðpÞ¼

_p
c � p

CHOðcÞ:

Note that to calculate CHO for a package p (i.e., right-most formula), we do a binary sum (i.e., binary OR) between all the elements c directly

contained in p.

2. Percentage of Commits a Class has Changed (PCCC). This metric computes the change frequency of an artifact using CHO and is represented

as a percentage to normalize it. The metric was described and used in previous studies27,28 and is basically the FRCH metric defined by Elish

and Al-Khiaty26 but normalized as a percentage.

PCCCa
bðxÞ¼

Xb

v¼a
CHOrðxÞ

b�a
�100,

†Visit https://doi.org/10.5281/zenodo.4897281 to download the replication package.
‡See, for example, Accumulo's page https://github.com/apache/accumulo/graphs/contributors for an example of actively developed project.

SAS ET AL. 5 of 21

https://doi.org/10.5281/zenodo.4897281
https://github.com/apache/accumulo/graphs/contributors

TABLE 1 Demographics of the projects analyzed in this study

Category Project

Commits

analyzed First commit Last commit

KLOC 1st–last
commit Description

Data storage and

management

accumulo 99 December 23, 2011 November 1, 2019 193–237 Data Storage System

calcite 81 November 23, 2014 May 21, 2021 109–187 Dynamic Data

Management

cassandra 136 April 10, 2009 November 4, 2019 36–178 Distrib. NoSQL

database

chukwa 73 October 31, 2008 April 1, 2019 8–31 Data Collection

jackrabbit 155 December 24, 2006 November 4, 2019 94–241 Content Repository

jackson 93 February 6, 2012 November 5, 2019 31–59 Data Binding Library

Web engines and

web tools

httpcomp. 126 February 9, 2006 October 3, 2019 0–33 HTTP Toolset

jspwiki 186 August 25, 2001 November 1, 2019 1–32 Wiki Engine

retrofit 51 June 1, 2015 June 18, 2020 3–10 Android HTTP client

spring-boot 47 October 31, 2017 May 31, 2021 91–143 Spring-based project

manager

struts 158 April 24, 2006 November 4, 2019 24–41 Web Apps

Framework

Search engines elasticsearch 49 July 16, 2015 March 26, 2019 295–614 Search engine

jena 95 June 1, 2012 November 17, 2019 209–348 Semantic Web

lucene 173 October 20, 2001 August 3, 2015 5–453 Search Engine

tika 144 August 17, 2007 November 2, 2019 2–63 Content Analysis

Toolkit

Development tools ant-ivy 130 July 15, 2005 November 2, 2019 10–42 Dependency

Manager

jenkins 186 December 17, 2006 May 29, 2021 14–125 Automation server

jgit 123 November 17, 2009 November 17, 2019 18–113 Java implementation

of Git

selenium 132 February 16, 2011 May 30, 2021 2–53 Automation web

libraries

testng 147 September 21, 2006 October 21, 2019 13–59 Testing Framework

Document

manipulation

pdfbox 137 August 17, 2008 November 3, 2019 26–82 PDF Library

poi 206 March 24, 2002 November 1, 2019 19–99 MS Office API

xerces2 189 January 3, 2000 July 15, 2019 36–116 XML Library

JDBC drivers druid 99 June 23, 2011 November 3, 2019 42–85 Alibaba JDBC Library

pgjdbc 211 September 29, 1997 November 4, 2019 2–30 PostgreSQL JDBC

driver

Networking and

messaging

activemq 161 January 25, 2006 November 6, 2019 61–177 Message Server

mina 120 March 22, 2005 June 18, 2019 6–28 Network Framework

Game engine libgdx 139 April 22, 2010 May 30, 2021 23–222 Game engine

Data binding fastjson 104 September 14, 2011 April 5, 2021 12–41 Alibaba JSON data

mapper

gson 99 September 27, 2008 May 14, 2021 6–10 Google JSON data

mapper

Utility guava 83 January 11, 2010 July 25, 2019 33–117 Google Core Library

Note: Dates refer to the period of analysis taken into consideration, not age of the system. Additionally, the categories are only indicative.

6 of 21 SAS ET AL.

where v is the commit for which CHO is computed and [a, b] is the interval of commit indexes considered. Intuitively, this metric counts the

number of commits where an artifact has undergone changes and divides it by the number of commits in the period considered.

3. TACH. Also called change size, or code churn, is the sum of added LOC (NAL), deleted lines (NDL), and twice the changed lines (NCL) because

the last commit26 for a given class c or package p:

TACHðcÞ¼NALðcÞþNDLðcÞþ2�NCLðcÞ TACHðpÞ¼
Xp
c � p

TACHðcÞ:

The calculation of TACH for packages is simply the sum of TACH for each class c directly contained in p.

To collect the data, we used a combination of two tools: Arcan5 and ASTracker.14 Arcan collected the artifacts affected by ASs in each

selected commit in the history of the systems directly from the source code files. The output of Arcan is a graph file containing the depen-

dency network of the commit analyzed, including the smells detected. The algorithms used to detect ASs are explained in detail by Fontana

et al. in their paper.5 The detection is based on the software design principles reported by Martin et al29 and Martin Lippert.2 In short, CD

is detected using a Depth-First Search algorithm that visits all the nodes in the dependency graph while checking, which were already vis-

ited. UD is detected using Martin's Instability metric:30 If the majority of a package's dependencies are less stable than itself, then it is mar-

ked as an UD smell. HL is detected by simply looking at the number of incoming and outgoing dependencies a certain artifact has: If the

sum of these dependencies surpasses a certain system-based threshold, then the artifact is marked as a hub. Finally, GC is detected using

an automatically calculated variable threshold31 using the distribution of the total amount of LOC of the packages in a benchmark of over

100 systems; the packages in the analyzed system are then compared with this threshold and the artifacts surpassing it are marked as

GCs.§

Arcan's results were validated in different studies. A first validation of the results of Arcan was performed on two open-source projects

with a precision of 100%.5 Next, the results of Arcan were also validated in an industrial setting by two different studies: first on industrial

C/C++ projects obtaining 50% precision32 and then on industrial Java projects obtaining 70% precision.33 The precision metric was chosen

as the main indicator of Arcan's performance because the true positive rate was found to be the main concern for developers during the

mentioned studies.

The second tool we used, ASTracker, computed the abovementioned change metrics and identified the elements affected by each smell.

ASTracker's main feature is to track ASs from one version to the next (i.e., link the same instances detected in two adjacent versions), but for this

study, it was only used to calculate the change metrics as stated above. To guarantee the correctness of the implementation of the change met-

rics, we used thorough unit testing.

§See https://fse.studenttheses.ub.rug.nl/19603/ for more details.

F IGURE 2 The distribution of the total number of lines of code of each version for each project

SAS ET AL. 7 of 21

https://fse.studenttheses.ub.rug.nl/19603/

At last, the Peregrine high-performance computing cluster, offered by the University of Groningen, provided the computational power neces-

sary to carry out the whole data collection process.

5 | DATA ANALYSIS

5.1 | Controlling for size

Changes to source code files are intuitively more frequent in files of greater size (i.e., more LOC). In fact, source code size has been empiri-

cally found to interfere with the actual findings in several cases.34,35 Thus, source code size is a confounding factor in our analysis that could

skew the results unpredictably and obfuscate the impact of smells on change frequency and size. To mitigate this threat, as already men-

tioned in the Sections 1 and 2, the data analysis will include controlling for size. Specifically, we will analyze the data both by considering all

artifacts (without controlling for source code size) and by grouping the artifacts (either classes or packages) into four size groups, based on

their effective LOC. This way we can compare how smells impact files of similar size. The groups are defined as follows: Small = [1, Q1),

Medium–Small (M–Small) = [Q1, Q2), Medium–Large (M–Large) = [Q2, Q3), and Large = [Q3, Q4), where Q1, Q2, Q3, and Q4 are the first, sec-

ond, third, and fourth quartiles, respectively, of the distribution of the LOC of classes (or packages, when working with smells affecting pack-

ages) in a given project. This means that these values differ for each project. Table 2 shows the quartiles of the LOC distribution in the

whole dataset.

This approach was proposed by Aniche et al. in a previous study.19 We adopted it as it allows us to compare smelly and non-smelly artifacts

with comparable size. This method guarantees that all four groups have the same number of files, which is an important prerequisite to ensure

that the results of the study are not skewed. Indeed, if we were to partition the files, for example, with a range of 45 LOC per group, the resulting

small group (0–45 LOC) would have 200K+ artifacts, whereas the others just a few thousands. This imbalance would greatly affect the outcome.

5.2 | RQ1—Do classes and packages with smells change more frequently than classes and packages without
smells?

For this RQ, we statistically analyze the significance of the association between changes in affected and nonaffected artifacts. The Fisher's exact

test of independence36 is performed on two categorical variables: In our case, these variables are CHO and whether this artifact is affected by a

smell. The input to the test is a contingency table where all the possible values of the two (categorical) variables are listed on the rows and col-

umns of the table, respectively. The null and alternative hypotheses of the tests (one test for each 4-month-long period considered) are as

follows:

• Null hypothesis HRQ1
0 : Artifacts affected by smells are equally likely to be subject to changes than artifacts not affected by smells (π1 ¼ π2)

• Alt. hypothesis HRQ1
1 : Artifacts affected by smells are more likely to be subject to changes than artifacts not affected by smells (π1 > π2)

where π1 and π2 represent the proportions of the two categories with respect to the overall population.

To ensure the test is supported, we need to make sure that the proportions in the contingency tables used to run the tests are not

excessively unbalanced towards one category. Contingency tables are likely to be unbalanced if the time period is too small because only

limited changes can happen in a certain amount of time and that time cannot be enough to determine whether the correlation is present

or not. In other words, given that there are more nonchanging files than changing files, a period of 1 month is likely to be insufficient for

enough files to change. Thus, we aggregated our data to a 4-month granularity (rather than 1month); this is approximately the average

release rate we mined from the Git tags of our projects. We call these “versions” pseudo-releases. Thus, for each pseudo-release v, we test

for the null hypothesis, namely, whether there is no statistical difference in the proportions of changes for artifacts affected and not

affected by ASs. This analysis will include all types of smells, both at class and package level, detected by Arcan.

TABLE 2 Distribution of the lines of code metric in classes and packages in the whole dataset

0% 25% (Q1) 50% (Q2) 75% (Q3) 100% (Q4)

Class 1 10 27 77 14,990

Package 1 549 1340 2976 59,074

8 of 21 SAS ET AL.

The next step is to compare the percentages of pseudo-releases that do show a significant difference (accepting HRQ1
1) and the pseudo-

releases that do not show any significant difference (accepting HRQ1
0), which will allow us to answer RQ1. Note that we opted to perform one test

per commit per project, rather than one test per project, to ensure that the imbalance in changes detected is not the result of a few change hot-

spots throughout the history of the system but rather a more constant phenomenon. The confidence level used for this test and all the following

tests is equal to α¼ :05.

5.2.1 | RQ1a—Do different smell types have a different impact on frequency of change?

In order to answer RQ1a, we used a logistic regression model.36 This kind of model allows to predict the value of a binary dependant variable

given a set of multiple independent variables. Moreover, it can be exploited to compute the effect size between the dependant variable and each

independent variable, to identify which variable influences the outcome. In this case, we chose the CHO metric (see Section 4) as dependant vari-

able and the number of smell instances of each smell type t as independent variables.

The hypotheses of this analysis are as follows:

• Null hypothesis HRQ1a
0 : The type of smells does not have an impact on the occurrence of changes of artifacts.

• Alt. hypothesis HRQ1a
1 : The type of smells does have an impact on the occurrence of changes of artifacts.

The analysis was performed individually for each 4-month commit period, for all projects. Then, for each type of smell, we counted the num-

ber of times that the p values obtained by the logistic regression were significant.

5.2.2 | RQ1b—Does the number of smells have a different impact on frequency of change?

For RQ1b, we used the nonparametric Mann–Whitney statistical test to check whether the average number of smells per commit in artifacts that

do not change and in artifacts that do change is statistically similar. Formally, we calculate

changedðvÞ¼
XCv

x

nvðxÞ
jCv j unchangedðvÞ¼

XUv

x

nvðxÞ
jUv j

where Cv is the set of artifacts x that changed in commit v, Uv is the set of unchanged artifacts, and nv(x) counts the number of smells x has in v.

The hypotheses for this analysis are as follows:

• Null hypothesis HRQ1b
0 : The number of smells in artifacts that do not change is equal to the number of smells in artifacts that do change

(μunchanged ¼ μchanged)

• Alt. hypothesis HRQ1b
1 : The number of smells in artifacts that do not change is less than the number of smells in artifacts that do change

(μunchanged < μchanged)

with μ representing the mean of the populations (changed and unchanged). Additionally, to further reinforce the findings, we also check

whether there is any correlation (using Spearman's ρ) between the number of smells an artifact is affected by and the number of changes or

their size.

5.3 | RQ2—What is the difference in the change frequency of an artifact before and after a smell is
introduced?

The analysis for this research question will look at the PCCC metric of a certain artifact before and after a smell is introduced in that element. We

then aggregate the data per project and perform a Wilcoxon signed-rank test36 for each project.

Formally, for every artifact x affected by a smell in the lifetime of a system S, we compute

dSðxÞ¼PCCCafterðxÞ�PCCCbeforeðxÞ,

SAS ET AL. 9 of 21

where PCCCbeforeðxÞ¼PCCCi
kðxÞ and PCCCafterðxÞ¼PCCCk

j ðxÞ with i being the commit index where x first appeared, k where it was first affected

by a smell, and j when it was last affected by a smell or the final commit. Artifacts with either a before or after window smaller than 5 commits

were filtered out to avoid skewed data. The values assumed by dS for the selected artifacts from S are used as input for the test.

The hypotheses for this test are as follows:

• Null hypothesis HRQ2
0 : The change frequency of artifacts before and after a smell is introduced is the same (θdS ¼0)

• Alt. hypothesis HRQ2
1 : The change frequency of artifacts after a smell is introduced is greater than before (θdS >0)

where θ represents the true median of the underlying population. Additionally, using the Shapiro–Wilk test, we also test for the normality of

dS to ensure we chose the appropriate statistical test.

5.4 | RQ3—Is the size of the changes in source code artifacts affected by smells, larger than in nonaffected
artifacts?

For this RQ, we want to investigate if there is a significant difference in the variance of the size of the changes in affected versus nonaffected arti-

facts in each commit analyzed. We look at the variance because the majority of commits have a relatively small change size, whereas few commits

(e.g., the pull requests) have a very large change size.

To determine whether there is a significant difference in these two groups (smelly vs. non-smelly), we perform a Brown–Forsythe test for the

homogeneity of variance.36

For each commit v, we compute the aggregate change size (TACH metric) of changing artifacts by averaging all the change sizes for that com-

mit. Formally,

smellyðvÞ¼
XAv

x

TACHðxÞ
jAv j cleanðvÞ¼

XNv

x

TACHðxÞ
jNv j ,

where Av is the set of affected artifacts in a commit v and Nv the non-smelly artifacts. Note that we use the term “clean” to indicate non-smelly

artifacts for conciseness.

Next, we test the following hypotheses on those two variables for each project:

• Null hypothesis HRQ3
0 : The variance in change size is equal in affected and clean artifacts by smells (σ2smelly ¼ σ2clean)

• Alt. hypothesis HRQ3
1 : The variance in change size is not equal in affected and clean artifacts (σ2smelly ≠ σ2clean)

where σ2smelly and σ2clean represent the true variance in the underlying populations.

6 | RESULTS

6.1 | Relation between change frequency and smelly artifacts (RQ1)

The results of the Fisher's tests (main question of RQ1) performed on each 4-month period of the 31 systems analyzed are pretty straightforward

when not controlling for size. Figure 3 reports in detail the number of 4-month periods (or pseudo-releases) where the null hypothesis was

accepted, rejected, or the test was unsupported by the data. The proportion of smelly artifacts that change is consistently higher than non-smelly

artifacts that change in 82% of the total 4-month periods analyzed in most of the projects (rejecting HRQ1
0). In other words, artifacts with smells

do change more frequently. For the remaining 18%, if we remain conservative and assume that the 11.5% of the unsupported tests are accepted,

the smelly and non-smelly artifacts are equally likely to change (accepting HRQ1
0). Note that the unsupported tests are usually the ones

corresponding to the pseudo-releases in the early phases of the project with a relatively little number of smells and/or changes. We also note that

these percentages hold for the majority of the projects, with six exceptions: Elasticsearch, Jena, HTTP-components, Guava, Retrofit, and Spring-

boot. These projects exhibit the opposite scenario, with more than 50% of the pseudo-releases featuring changes in non-smelly artifacts (neither

accepting nor rejecting HRQ1
0). This can be at least partially explained in all six cases: They either have a very low density of smells (HTTP-

10 of 21 SAS ET AL.

components and Retrofit) or the actual proportion of smelly components that change is lower (up to 10 times) than non-smelly components that

change (Elasticsearch, Guava, and Jena).

When adjusted for size (using the LOC—see Section 5.1), the results depicted in Table 3 show that for Medium–Large and Large artifacts, the

null hypothesis HRQ1
0 was rejected 66.1% and 78.9% of the times on average across all projects, respectively. For Small andMedium–Small artifacts,

percentages drop to 30.2% and 45.4%, respectively. In total, HRQ1
0 was rejected 55.7% of the times and accepted 30.2%, whereas in the remaining

14.1% of times, the analysis was unsupported.

Ultimately, the results controlled for size do not deviate too much from the uncontrolled ones but allow us to discern that the larger the file,

the more an artifact is likely to change if affected by a smell.

6.1.1 | RQ1a

The aim of answering RQ1a was to understand if the specific type of the smells affecting the artifacts has an impact on the occurrence of

changes. Table 4 introduces the results of the multinomial logistic regression model. For each type of smell, it shows the proportion of the

4-month-long periods where the null hypothesis was rejected. A large number of rejected instances mean that the given type of smell has a signif-

icant effect on the dependant variable of the regression model, that is, the occurrence of changes. The table reports all the statistically significant

rates where a variable was considered relevant in the prediction of a change. Each column is a different model calibrated for that size group

(or using all files in the case of “Uncontrolled”). We first notice that all the variables exhibit an increase in significance as we look at size groups of

larger files. There seems to be no particular smell type, perhaps only excluding HL, that provides a clear contribution to the regression model over

the other types.

The results imply that, in most cases, HL is the smell that contributes the most to changes; however, there is no sufficient evidence to affirm

that there is a clear distinction between different types of smell. Thus, we conclude that we accept HRQ1a
0 and affirm that there is no significant dif-

ference in the prediction power of different smell types on source code changes.

6.1.2 | RQ1b

Furthermore, for RQ1b, we tested whether the number of smells (including 0) affecting an artifact is an important variable contributing to

its change frequency. The test results, depicted in Figure 4, show that in all projects, but two (Guava and Pgjdbc), the average number of

smells in changing artifacts is statistically higher than in nonchanging artifacts (rejecting HRQ1b
0) when not controlling for size. If

we consider the different size groups, the rejection rate is higher in the larger ones, whereas in the Small group, we reject HRQ1b
0

only twice. Additionally, larger size groups also have a larger Cliff's Delta coefficient with 31 tests having δ> .5 in the Large and

F IGURE 3 Results of the Fisher's test for each project (averages: accepted: 6.5%; rejected: 82.1%; unsupported: 11.4%)

SAS ET AL. 11 of 21

TABLE 3 Percentages of rejected HRQ1
0 per project by size group (averages: accepted: 33.6%; rejected 59.1%; unsupported: 7.3%)

% p value <.05

Project Small Med.–Small Med.–Large Large

accumulo 38.5 65.4 96.2 100.0

activemq 78.0 65.9 100.0 100.0

ant-ivy 57.6 57.6 90.9 100.0

calcite 67.9 64.3 75.0 71.4

cassandra 74.3 94.3 100.0 100.0

chukwa 0.0 31.6 42.1 63.2

druid 40.0 84.0 96.0 100.0

elasticsearch 30.0 43.3 43.3 43.3

fastjson 7.4 33.3 85.2 88.9

gson 3.8 0.0 30.8 69.2

guava 37.0 0.0 25.9 29.6

httpcomp. 2.6 13.2 36.8 39.5

jackrabbit 15.2 69.6 84.8 84.8

jackson 33.3 95.8 100.0 100.0

jena 9.3 29.6 38.9 44.4

jenkins 44.7 72.3 95.7 100.0

jgit 48.4 77.4 96.8 96.8

jspwiki 31.9 70.2 68.1 89.4

libgdx 8.6 28.6 78.3 100.0

lucene 38.6 47.7 56.8 75.0

mina 25.8 12.9 38.7 67.7

pdfbox 54.3 77.1 94.3 100.0

pgjdbc 24.5 35.8 64.2 79.2

poi 36.5 55.8 92.3 100.0

retrofit 0.0 0.0 3.7 11.1

selenium 18.0 36.0 40.0 62.0

spring 14.8 3.7 25.9 44.4

struts 40.0 32.5 85.0 95.0

testng 5.4 5.4 37.8 100.0

tika 13.5 51.4 70.3 91.9

xerces2 35.4 52.1 56.2 97.9

Avrg. 30.2 45.4 66.1 78.9

TABLE 4 Results of the multinomial logistic regression in percentage of commits a variable was statistically significant in predicting a change
(rejecting HRQ1a

0)

Commits % when variable is significant

Variable Small Med.–Small Med.–Large Large Uncontrolled

Cyclic Dependency 12.2 14.1 20.2 29.1 39.7

Unstable Dependency 8.3 14.6 20.6 32.4 29.7

Hub-Like Dependency 22.1 22.3 26.7 44.6 51.9

God Component – – – 30.5 38.5

12 of 21 SAS ET AL.

M–Large groups against the 3 in the M–Small and Small groups, highlighting the difference in magnitude between the values of the two variables

tested.

To better grasp the contrast in smell density between changing and nonchanging artifacts in different size groups, Figure 5 plots the

density (i.e., # commits) of the (average) number of smells of these two categories. In the figure, one can see how the average number of

smells in changing and nonchanging artifacts varies in the commits in our dataset. When no smells affect an artifact (leftmost side of the

plot), in several commits, only the smaller files change. But looking at the Medium–Large and Large files, we observe both curves

shifting in shape and moving towards the right of the plot, with the changing artifact curve growing larger and distantiating itself

from the nonchanging artifacts curve. This means that for artofacts with more smells, the larger they are, the more likely they are to

change.

Figure 6 shows how the change frequency varies by the number of smells affecting an artifact, with different colors representing different

projects. As it can be noted, there is a steep increase in the number of changes as the number of smells increases from 0 to 15, before stabilizing

and slightly growing towards the end of the plot.¶ The Spearman statistical correlation tests show that 8 projects show a strong (ρ ≥ .7) positive

F IGURE 5 Average number of smells in changing/not-changing artifacts in all the analyzed commits by size groups

¶For reference, the right-most project in yellow-ish/ocra is Cassandra. Per-project plots are available in the replication package.

F IGURE 4 Mann–Whitney tests testing HRQ1b
0 by size groups

SAS ET AL. 13 of 21

correlation; 7 show a moderate (.5 ≤ ρ < .7) positive correlation; 5 projects have a weak (.3 ≤ ρ < .5) correlation; for 2 projects, there is little-to-no

correlation (ρ < .3); and for the remaining 9 projects, p > .05.

In summary, the more smells affecting an artifact, the higher the change frequency for that artifact.

6.2 | Impact on change frequency after the introduction of a smell (RQ2)

Whereas the results of RQ1 hint that changes are more likely, and more frequent, in smelly artifacts, they do not tell us anything

about the effects of the introduction of a smell on the change frequency of a particular artifact throughout its lifetime. This particular

aspect is considered and tested by RQ2 through a series of Wilcoxon signed-rank tests; this was confirmed to be suitable in this case

because most of the projects have their dS (as defined in Section 5.3) function not normally distributed. Note that we do not control

for size for this RQ because this is a temporal analysis; thus, there is no way to establish exactly which size category one artifact

belongs to, as the LOC fluctuate over time. The results, presented in Table 5, indicate that for 16 projects (57.1%), there is an increase

in the frequency of changes (in the PCCC metric, to be precise) after a smell is introduced. For 12 projects (42.9%) instead, the oppo-

site holds, and more changes happen before the introduction of the smell. Finally, 3 projects did not contained enough samples and

were ignored.

We can further inspect the distribution of dS in Figure 7, where we can see how the distribution of changes to the artifacts is skewed either

towards the “before” or “after” the introduction of a smell side, depending on the project. Therefore, we can conclude that, in some cases, the

introduction of an AS has increased the frequency of changes in the affected component. We offer a potential explanation for the 12 projects

(skewed towards the “before” part) that do not conform to this trend in the Section 7, but we would like to note that 9 of the 16 projects for

which we rejected the null hypothesis had n ≤ 30, whereas the accepted ones only had 6. This means that the tests were likely accepted because

of an insufficient number of samples.

6.3 | Comparison of magnitude of changes in smelly and non-smelly artifacts (RQ3)

For this last question, when testing the null hypothesis HRQ3
0 on all projects, without adjusting for the size of the artifacts, we reject it for all of

them – meaning that change size (TACH metric) in artifacts affected by smells has a consistently higher variance than the non-smelly ones. How-

ever, when controlling for the size of the affected artifacts, a different picture emerges. The results are presented in Figure 8. Smaller classes and

packages do not exhibit this pattern as consistently as the larger ones do; in fact, in Small artifacts, we note the opposite in the majority of the

projects. For Large, M–Large, and M–Small artifacts, the results are consistent in rejecting the null hypothesis HRQ3
0 . This can be further visualized

in Figure 9, where the violin plots of the average change size of smelly and non-smelly artifacts in the analyzed commits can be visually compared

for each size group. The more elongated the shape of the violin, the larger the variance in the corresponding group. By observing this figure, we

note that the change size in smelly artifacts tends to increase (the violin shifts upwards) as the size of the artifacts increases. In stark contrast, the

F IGURE 6 Average change frequency by number of smells per project (color-coded). Locally Estimated Scatterplot Smoothing (LOESS)
regression curve shows the trend

14 of 21 SAS ET AL.

violin shapes of the non-smelly group are surprisingly similar across the four different groups; this contrast highlights the impact of smells on

affected artifacts w.r.t. change size.

Hence, both visual analysis and statistical tests converge to the same conclusion that smelly artifacts undergo changes of higher magnitude

than non-smelly artifacts, especially in larger artifacts. More precisely, smelly artifacts have an average change size (TACH) across all the projects

of 1608, whereas non-smelly artifacts settle at 109. The difference is one order of magnitude higher in smelly artifacts; we note that the smelly

artifacts also have a higher variance.

7 | DISCUSSION

In the following section, we discuss and elaborate on the results presented above.

TABLE 5 Wilcoxon signed-rank results and the sample size (# of artifacts) for the test (HRQ2
0 rejected in bold) (total: accepted: 42.9%; rejected:

57.1%)

Project p value Null Hyp. Obs.

accumulo .50 Accepted 11

activemq <.01 Rejected 120

ant-ivy <.01 Rejected 64

calcite <.01 Rejected 75

cassandra .30 Accepted 178

chukwa <.01 Rejected 17

druid .61 Accepted 47

elasticsearch .04 Rejected 28

fastjson .83 Accepted 31

gson .50 Less than 10 obs. 5

guava <.01 Rejected 34

httpcomp. <.01 Less than 10 obs. 9

jackrabbit <.01 Rejected 82

jackson .28 Accepted 12

jena .86 Accepted 11

jenkins <.01 Rejected 178

jgit <.01 Rejected 42

jspwiki <.01 Rejected 59

libgdx .30 Accepted 98

lucene <.01 Rejected 220

mina <.01 Rejected 22

pdfbox <.01 Rejected 103

pgjdbc .07 Accepted 23

poi .25 Accepted 36

retrofit .04 Less than 10 obs. 4

selenium .03 Rejected 16

spring-boot .02 Rejected 25

struts .05 Accepted 13

testng .97 Accepted 15

tika .17 Accepted 33

xerces2 <.01 Rejected 86

SAS ET AL. 15 of 21

From the obtained results, we have empirically confirmed that ASs (at least the ones considered for this study), exhibit a correlation with the

change frequency and change size of the artifacts they affect and especially the larger artifacts. As stated previously, our goal was to seek and

establish correlation, rather than causality.

The results from RQ1 show that artifacts affected by at least one smell exhibit more changes than artifacts without smells. We also saw that

as the number of smells increases, so does the likelihood of the affected artifact to change. Interestingly, we found evidence suggesting that the

four different types of smells that we studied affect change frequency in a similar way. Theoretically speaking, the main drawback associated with

the UD smell type5 is an increased likelihood to change caused by a low stability of the artifacts it depends upon.30 Indeed, while we observed

that UD-affected artifacts have an increased change frequency, we also expected them to have a higher change frequency than artifacts affected

by the other smell types. However, this is not what we observed, as all four smell types seem to have a similar effect on change, with HL surpass-

ing UD in fact. The HL smell was hypothesized to be quite prone to propagate changes due to its numerous dependencies, which increase the

F IGURE 7 Density of Percentage of Commits a Class has Changed (PCCC) before and after the introduction of a smell (dS function)

F IGURE 8 Brown–Forsythe tests results by size groups for H3
0

16 of 21 SAS ET AL.

likelihood that a change propagates to the central component before rippling to the components depending on it (see related work14 for further

information). Given this theoretical description, we would predict that changes may propagate within the structure of HL smells, but we did not

expect it to deviate from the other smell types and surpass UD.

The results of RQ2 show an increase in change frequency after the introduction of a smell. This finding implies that the introduction of a smell

leads to an increase in the effort developers spend on the particular artifact(s) affected by that smell compared with the period of time that arti-

fact was not affected by any smell. Note that change frequency and size were used to estimate the effort spent by a developer in previous studies

too.10,11,37 Nonetheless, it is interesting to note that this result is not valid for all of the projects considered, and in some cases, the opposite situa-

tion occurs. We conjecture that this result is highly dependant on how development teams decide to implement new functionality in the system.

If developers reuse existing classes, then these classes are likely to require changes for a longer period of time and especially after a smell affects

them (as seen from our results). If developers do not reuse existing classes and implement a new functionality in new classes and packages, then

old and smelly classes are less likely to be changed, because they serve their purpose as they are without requiring further changes. More gener-

ally, in the “old” features of a system, very little maintenance effort is spent on good design and architecture, for example, by refactoring smells;

this means that components affected by smells rarely get changed.

A perfect example of this is provided by the project PgJDBC. PgJDBC, among other projects, has a package named “v2,” suggesting that func-
tionality for the previous release (“v1”) is implemented separately in a different package. The classes implementing the functionality for the previ-

ous release are thus no longer extended, and therefore, they no longer change, but they are still kept in the repository in order to support legacy

functionality. Assuming that at least some of these classes were affected by smell, the resulting effect is that their change frequency after the

smell was introduced is close to zero. Moreover, given that these are open source projects, we cannot assume that they undergo constant devel-

opment, and changes in the popularity of a project may influence how many pull requests, commits, and changes are performed. Ultimately, these

two factors greatly influence the variability in the results obtained from RQ2.

With the obtained results from RQ3, there is additional evidence to support that developers spend more time on smelly artifacts, where we

noticed a consistently larger change size—again, especially in the larger files. This is especially true in pull requests commits, the type of commits

where usually new functionality, or big bug fixes, are introduced. This result becomes even clearer when observing Figure 9: There is a strong con-

trast between the constant change size in non-smelly artifacts across the four different size groups, versus the increasing change size in smelly

artifacts. This clearly shows the spending of extra effort to perform changes in smelly artifacts.

Putting together the results of all the three research questions, we conclude that developers are not only compelled to make more fre-

quent changes to smelly artifacts but also to make larger changes. Ultimately, if we assume that change is a proxy of the effort spent

maintaining the components affected by smells,10,11 the technical debt interest of those components is increased by two factors: change fre-

quency and change size. An important caveat is that these findings do not include any input from the actual developers; therefore, further

research is required in order to understand the full extent to which ASs perturb development activities from the perspective of software prac-

titioners themselves. For the time being, we can conclude that ASs constitute a high risk, as their accumulation can increase technical debt

interest to unsustainable levels.

A common trend in our results is that smelly Large and Medium–Large smelly files exhibit statistically different patterns in change frequency

and size in contrast to the Small and Medium–Small groups. It is interesting to explore why this happens mostly in these size groups. The main rea-

son is that GC and HL are defined based on the number of LOC or incoming and outgoing dependencies of the affected artifact. Namely, they

F IGURE 9 Violin plots of the distribution of the average change size (Total Amount of Changes [TACH] metric) in the analyzed commits
grouped by smelly and non-smelly artifacts (log scale)

SAS ET AL. 17 of 21

cannot affect small artifacts by definitions. Smaller artifacts can however still be impacted by a HL smell if they depend on the hub (central arti-

fact), because change may propagate to them from the hub. This difference between smaller and larger files has a clear implication for researchers:

We advise the development of better prioritization methods for refactoring ASs by prioritizing smells affecting larger artifacts; these are the ones

where developers pay the most technical debt interest.

Finally, some of the findings that emerged from this study match what Oyetoyan et al6 and Le et al15 have found in their own works. Specifi-

cally, our results from RQ1 match what Le et al15 found; namely, the average number of changes in smelly files is higher than in non-smelly files

(see Figure 6). On top of that, we have also shown how the number of changes positively correlates with the number of smells (RQ1b). Answering

RQ1a instead, we have noted among others that potentially not all types of cycles are impactful on changes. This corroborates what Oyetoyan

et al6 found about CDs; that is, certain types of cycles do not have an impact on changes. However, we did not investigate precisely which cate-

gory of cycles does so and neither if they affect neighbor artifacts; we consider this future work.

8 | STUDY LIMITATIONS

The identified limitations of this study are described in terms of reliability, external validity, and construct validity as described by Runeson et al.21

Internal validity was not considered as we did not examine causal relations.21

8.1 | Construct validity

Construct validity concerns to what extent this study is measuring what it is claiming to be measuring.21 To ensure construct validity, we adopted

the well-known case study design guidelines provided by Runeson et al21 and iteratively revised the protocol during the duration of the study.

Thus, the data collection and analysis processes were meticulously planned and implemented to ensure that the final results would answer pre-

cisely the three main research questions of interest of this study.

One concrete threat to construct validity is the arbitrary selection of the 4-week interval between the analyzed commits. While the selection

of this particular interval was computationally convenient (i.e., more commits would pose higher requirements for processing time), in the more

active projects, this time interval might have caused the loss of information for frequency-related metrics. For instance, a class might have chan-

ged several times during the course of 4 weeks, but we only count it is as one big change. As a result, the coarse-grained frequency data may have

impacted the analysis and thus the results of RQ2. Additionally, this interval might clash with the culture of each development team in pushing

changes to the central repository and the size of those changes. However, the very selection of this particular interval also partially mitigated this

risk, if we compare our study with related work, where most studies7,15,16 use time in-between releases, which is usually longer and more suscep-

tible to the risks mentioned above.

Similarly, the pseudo-release data aggregation we performed for RQ1 might be incorrect even though it is based on empirical evidence. The

problem is that we used the date the Git tag was added, which might not match the official release date of that release. To mitigate this risk, we

manually inspected all the dates and ensured they were reasonable and matched the versions' numbering order (e.g., v1.1 comes before v1.2, and

their dates match such order). Tags with different release numbers but with the same date were removed.

Another threat to construct validity is related to our use of change frequency and size as indicators of technical debt interest. The same indi-

cators have been used in previous studies,37,38 as there is no way to directly measure technical debt interest. However, it is important to keep in

mind that they are only proxies and the actual interest paid by developers might vary significantly. Thus, assuming that an increase in change fre-

quency and size corresponds to a direct increase in technical debt interest paid by the development team while implementing new features, or

making changes to the code base, is not always correct. The more frequent and bigger changes required to implement those features may be a

result of the inherent difficulty of implementing the features themselves or even other external factors. On the other hand, it is also unlikely that

all the new features and changes are characterized by inherently difficult elements to design and implement.

8.2 | External validity

This aspect of validity reflects to what extent the results of this study can be fitted to the whole population of projects considered and relatable

contexts.

Two threats have been identified in this case. The first one involves the types of projects we selected for our study. While all of them are

open source projects, 18 of them are projects from the Apache Foundation, and only 13 are non-Apache projects. The imbalance is caused by the

fact that most Apache projects have a very long and consistent history, which made them more likely to be adopted for our analysis. We decided

to mitigate this aspect by diversifying as much as possible the application domains of the selected projects. Moreover, we collected our data from

18 of 21 SAS ET AL.

31 projects, considerably more than what had been done by previous, similar studies (i.e., Le et al7 used 14 projects; Le et al15 used 8 projects,

and Oyetoyan et al6 used 12 projects), thus strengthening external validity.

The other threat to external validity concerns the ASs we used for our analysis. It is very hard to generalize the results to other ASs, and it is

probably not possible to do so with enough confidence for every type of smell. This very much depends on the type of smell and the detection

strategy for that smell. Therefore, we cannot claim any generalization of our results to other ASs.

8.3 | Reliability

Reliability is the aspect of validity focusing on the degree to which the data and the analysis depend on the researchers performing them.

All the tools and the data used in this study are freely available online (see related studies and footnote 2) to allow researchers to study or

replicate our results using the same data or even a different set of projects.

The intermediary findings and data analysis steps were all inspected and discussed by all the authors of this paper to ensure their reliability.

Moreover, similar data collection and analysis techniques have been also used in previous studies on code smells (e.g., Khomh et al.20) and ASs

(e.g., Le et al.15), assuring that it is indeed possible to do this type of analysis for these types of artifacts.

9 | CONCLUSIONS AND FUTURE WORK

The present study has thoroughly investigated the relationship between a set of four ASs and the changes in the affected components. In total,

31 projects, adding up to a total of 360 years of development and over 305 million LOC, were statically analyzed and then statistically tested

against our hypotheses.

The main findings of this case study show that (1) artifacts affected by ASs change more frequently than non-smelly artifacts; (2) the type of

the smell does not have a significant correlation with changes; (3) the more smells affect an artifact the more likely it is to change; (4) the change

frequency of an artifact increases after the introduction of a smell in the majority of the systems; and (5) the size of changes is significantly higher

in smelly artifacts than in non-smelly ones. These findings are especially valid for artifacts belonging to the Medium–Large and Large size groups.

We thus concluded that ASs are very likely to be associated with an increase in the technical debt interest developers pay each time they work

on artifacts affected by smells.

Given the results obtained from our RQs, it would be interesting to explore how the presence of ASs is perceived by the very developers and

architects of a software system. More specifically, a natural continuation of RQ1 is to investigate if practitioners do perceive that affected compo-

nents are more prone to changes than nonaffected components and whether there is any difference, in this regard, between different types of

smells. Concerning RQ2, it would be interesting to explore how the introduction of a smell is perceived, what lead to the introduction of the smell,

and whether developers were aware of it. Finally, for RQ3, a possible research direction is to understand whether the difference measured in our

study has a perceivable impact by developers and architects; in other words, to study how big changes must be in order to make a difference in

the effort perceived.

ACKNOWLEDGMENTS

We would like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the

Peregrine High Performance Computing cluster. This work was supported by the European Union's Horizon 2020 research and innovation pro-

gramme under grant agreement No. 780572 SDK4ED (https://sdk4ed.eu/), as well as ITEA3 and RVO under grant agreement No. 17038

VISDOM (https://visdom-project.github.io/website/).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in Zenodo at https://doi.org/10.5281/zenodo.4459015.

ORCID

Darius Sas https://orcid.org/0000-0003-3383-3298

REFERENCES

1. Garcia J, Popescu D, Edwards G, Medvidovic N. Identifying architectural bad smells. In: 2009 13th Proceedings of the European Conference on Soft-

ware Maintenance and Reengineering, CSMR; 2009; Kaiserslautern, Germany:255-258.

2. Lippert M, Roock S. Refactoring in Large Software Projects: Performing Complex Restructurings Successfully: John Wiley & Sons, Inc; 2006. http://eu.

wiley.com/WileyCDA/WileyTitle/productCd-0470858923.html

SAS ET AL. 19 of 21

https://sdk4ed.eu/
https://visdom-project.github.io/website/
https://doi.org/10.5281/zenodo.4459015
https://orcid.org/0000-0003-3383-3298
https://orcid.org/0000-0003-3383-3298
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470858923.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470858923.html

3. Avgeriou P, Kruchten P, Ozkaya I, Seaman C. Managing technical debt in software engineering (Dagstuhl Seminar 16162). Dagstuhl Rep. 2016;6(4):

110-138. http://drops.dagstuhl.de/opus/volltexte/2016/6693

4. Verdecchia R, Malavolta I, Lago P. Architectural technical debt identification: the research landscape. In: 2018 ACM/IEEE International Conference on

Technical Debt. Gothenburg, Sweden; 2018:11-20. http://www.ivanomalavolta.com/files/papers/TechDebt_2018.pdf

5. Fontana FA, Pigazzini I, Roveda R, Zanoni M. Automatic detection of instability architectural smells. In: Proceedings - 2016 IEEE International Confer-

ence on Software Maintenance and Evolution, ICSME 2016; 2016; Raleigh, NC, USA:433-437.

6. Oyetoyan TD, Falleri JR, Dietrich J, Jezek K. Circular dependencies and change-proneness: an empirical study. In: 2015 IEEE 22nd International Con-

ference on Software Analysis, Evolution, and Reengineering, SANER 2015 - Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2015;

Montreal, QC, Canada:241-250.

7. Le DM, Behnamghader P, Garcia J, Link D, Shahbazian A, Medvidovic N. An empirical study of architectural change in open-source software systems.

In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories; 2015; Florence, Italy:235-245.

8. Neri D, Soldani J, Zimmermann O, Brogi A. Design principles, architectural smells and refactorings for microservices: a multivocal review. SICS Softw-

Intens Cyber-Phys Syst. 2019:35:3-15.

9. Arcelli Fontana F, Lenarduzzi V, Roveda R, Taibi D. The Journal of Systems and Software Are architectural smells independent from code smells? An

empirical study. J Syst Softw. 2019;154:139-156. https://doi.org/10.1016/j.jss.2019.04.066

10. Sjoberg DIK, Yamashita A, Anda BCD, Mockus A, Dyba T. Quantifying the effect of code smells on maintenance effort. IEEE Trans Softw Eng. 2013;

39(8):1144-1156.

11. Olbrich S, Cruzes DS, Basili V, Zazworka N. The evolution and impact of code smells: a case study of two open source systems. In: 2009 3rd Interna-

tional Symposium on Empirical Software Engineering and Measurement, ESEM 2009; 2009; Lake Buena Vista, FL, USA:390-400.

12. El-Emam K. A methodology for validating software product metrics. Technical Report NRC 44142, Nat'l Research Council of Canada; 2000.

13. Mockus A, Votta LG. Identifying reasons for software changes using historic databases. In: Conference on Software Maintenance. IEEE; 2000; San

Jose, CA, USA:120-130.

14. Sas D, Avgeriou P, Arcelli Fontana F. Investigating instability architectural smells evolution: an exploratory case study. In: 35th International Confer-

ence on Software Maintenance and Evolution. IEEE; 2019; Cleveland, OH, USA:557-567. https://ieeexplore.ieee.org/document/8919109/

15. Le DM, Link D, Shahbazian A, Medvidovic N. An empirical study of architectural decay in open-source software. In: Proceedings - 2018 IEEE 15th

International Conference on Software Architecture, ICSA 2018. IEEE; 2018; Seattle, WA, USA:176-185. https://ieeexplore.ieee.org/document/

8417151/

16. Khomh F, Penta MD, Guéhéneuc YG, Antoniol G. An exploratory study of the impact of antipatterns on class change- and fault-proneness. Empir

Softw Eng. 2012;17(3):243-275.

17. Jaafar F, Guéhéneuc YG, Hamel S, Khomh F, Zulkernine M. Evaluating the impact of design pattern and anti-pattern dependencies on changes and

faults. Empir Softw Eng. 2016;21(3):896-931.

18. Sharma T, Singh P, Spinellis D. An empirical investigation on the relationship between design and architecture smells. Empir Softw Eng. 2020;25(5):

4020-4068. https://doi.org/10.1007/s10664-020-09847-2

19. Aniche M, Bavota G, Treude C, Gerosa MA, van Deursen A. Code smells for Model-View-Controller architectures. Empir Softw Eng. 2018;23(4):2121-

2157.

20. Khomh F, Di Penta M, Guéhéneuc YG. An exploratory study of the impact of code smells on software change-proneness. In: Proceedings - Working

Conference on Reverse Engineering, WCRE; 2009; Lille, France:75-84.

21. Runeson P, Höst M, Rainer A, Regnell B. Case Study Research in Software Engineering - Guidelines and examples. John Wiley & Sons, Inc; 2012.

22. van Solingen R, Basili V, Caldiera G, Rombach HD. Goal Question Metric (GQM) Approach. Encyclopedia of Software Engineering. 2nd edition. Wiley;

2002.

23. Nagappan N, Ball T. Using software dependencies and churn metrics to predict field failures: an empirical case study. In: First International Symposium

on Empirical Software Engineering and Measurement (ESEM 2007); 2007; Madrid, Spain:364-373.

24. Kouroshfar E, Mirakhorli M, Bagheri H, Xiao L, Malek S, Cai Y. A study on the role of software architecture in the evolution and quality of software. In:

IEEE International Working Conference on Mining Software Repositories. IEEE Computer Society; 2015; Florence, Italy:246-257.

25. Arcelli Fontana F, Avgeriou P, Pigazzini I, Roveda R. A study on architectural smells prediction. In: 2019 45th Euromicro Conference on Software Engi-

neering and Advanced Applications (SEAA); 2019; Kallithea, Greece:333-337.

26. Elish MO, Al-Khiaty MAR. A suite of metrics for quantifying historical changes to predict future change-prone classes in object-oriented software.

J Softw Evol Process. 2013;25(5):407-437. http://doi.wiley.com/10.1002/smr.1549

27. Arvanitou EM, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P. A Method for Assessing Class Change Proneness. In: Proceedings of the 21st Interna-

tional Conference on Evaluation and Assessment in Software Engineering (EASE'17). Association for Computing Machinery, New York, NY, USA;

2017:186-195. https://doi.org/10.1145/3084226.3084239

28. Zhang J, Sagar S, Shihab E. The evolution of mobile apps: an exploratory study. In: Proceedings of the 2013 International Workshop on Software

Development Lifecycle for Mobile (DeMobile 2013). Association for Computing Machinery, New York, NY, USA; 2013:1-8. https://doi.org/10.1145/

2501553.2501554

29. Martin RC, Grenning J, Brown S. Clean Architecture: A Craftsman's Guide to Software Structure and Design. Prentice Hall; 2018.

30. Martin R. OO Design Quality Metrics. Qual Eng. 1994;8(4):537-542.

31. Fontana FA, Ferme V, Zanoni M, Yamashita A. Automatic metric thresholds derivation for code smell detection. In: International Workshop on Emerg-

ing Trends in Software Metrics, WETSoM; 2015; Florence, Italy:44-53.

32. Martini A, Fontana FA, Biaggi A, Roveda R. Identifying and prioritizing architectural debt through architectural smells: a case study in a large software

company. European Conference on Software Architecture. Cham: Springer; 2018:320-335. http://link.springer.com/10.1007/978-3-030-00761-4_21

33. Arcelli Fontana F, Locatelli F, Pigazzini I, Mereghetti P. An Architectural Smell Evaluation in an Industrial Context. (c): 68–74; 2020.
34. El Emam K, Benlarbi S, Goel N, et al. The confounding effect of class size on the validity of object-oriented metrics IEEE Transactions on Software

Engineering, 27 (2001). IEEE Trans Softw Eng. 2001;27(7):630-650. http://ieeexplore.ieee.org/document/935855/

35. Zhou Y, Leung H, Xu B. Examining the potentially confounding effect of class size on the associations between object-oriented metrics and change-

proneness. IEEE Trans Softw Eng. 2009;35(5):607-623.

20 of 21 SAS ET AL.

http://drops.dagstuhl.de/opus/volltexte/2016/6693
http://www.ivanomalavolta.com/files/papers/TechDebt_2018.pdf
https://doi.org/10.1016/j.jss.2019.04.066
https://ieeexplore.ieee.org/document/8919109/
https://ieeexplore.ieee.org/document/8417151/
https://ieeexplore.ieee.org/document/8417151/
https://doi.org/10.1007/s10664-020-09847-2
http://doi.wiley.com/10.1002/smr.1549
https://doi.org/10.1145/3084226.3084239
https://doi.org/10.1145/2501553.2501554
https://doi.org/10.1145/2501553.2501554
http://link.springer.com/10.1007/978-3-030-00761-4_21
http://ieeexplore.ieee.org/document/935855/

36. Sheskin DJ. Handbook of Parametric and Nonparametric Statistical Procedures. 5th ed. Chapman & Hall/CRC; 2007.

37. Nugroho A, Visser J, Kuipers T. An empirical model of technical debt and interest. In: Proceedings - International Conference on Software Engineering.

New York, New York, USA: ACM Press; 2011:1-8. http://portal.acm.org/citation.cfm?doid=1985362.1985364

38. Ampatzoglou A, Michailidis A, Sarikyriakidis C, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P. A framework for managing interest in technical debt: An

industrial validation. In: Proceedings - International Conference on Software Engineering. Gothenburg, Sweden; 2018:115-124.

How to cite this article: Sas D, Avgeriou P, Pigazzini I, Arcelli Fontana F. On the relation between architectural smells and source code

changes. J Softw Evol Proc. 2022;34(1):e2398. doi:10.1002/smr.2398

SAS ET AL. 21 of 21

http://portal.acm.org/citation.cfm?doid=1985362.1985364
info:doi/10.1002/smr.2398

	On the relation between architectural smells and source code changes
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Impact of ASs
	2.2 Impact of antipatterns, design patterns, and design smells
	2.3 Impact of code smells

	3 CASE STUDY DESIGN
	3.1 Terminology
	3.2 Goal and research questions
	3.3 Analyzed projects

	4 DATA COLLECTION
	5 DATA ANALYSIS
	5.1 Controlling for size
	5.2 RQ1-Do classes and packages with smells change more frequently than classes and packages without smells?
	5.2.1 RQ1a-Do different smell types have a different impact on frequency of change?
	5.2.2 RQ1b-Does the number of smells have a different impact on frequency of change?

	5.3 RQ2-What is the difference in the change frequency of an artifact before and after a smell is introduced?
	5.4 RQ3-Is the size of the changes in source code artifacts affected by smells, larger than in nonaffected artifacts?

	6 RESULTS
	6.1 Relation between change frequency and smelly artifacts (RQ1)
	6.1.1 RQ1a
	6.1.2 RQ1b

	6.2 Impact on change frequency after the introduction of a smell (RQ2)
	6.3 Comparison of magnitude of changes in smelly and non-smelly artifacts (RQ3)

	7 DISCUSSION
	8 STUDY LIMITATIONS
	8.1 Construct validity
	8.2 External validity
	8.3 Reliability

	9 CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	 DATA AVAILABILITY STATEMENT

	REFERENCES

