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Editorial

Before the Congress

by Antti Kupiainen (IAMP President)

A much awaited part of the International Congress of Math-
ematical Physics has in recent years been the prize ceremony
taking place during the opening day of the Congress. In that
ceremony are awarded the IAMP prizes, which are the Henri
Poincaré Prize and the IAMP Early Career Award and also
the International Union of Pure and Applied Physics prizes
for young scientists. The Henri Poincaré Prize is sometimes
called the Nobel prize of IAMP, “recognizing outstanding con-
tributions in mathematical physics” whereas the ECA could be

viewed as the analogue of the Fields Medal, being reserved for scientists whose age is less
than 35. To qualify to the IUPAP prize one has to have at most eight years of research
experience following the PhD.

The Henri Poincaré Prize was instituted in 1997 and funds for it are generously
provided by the Daniel Iagolnizer Foundation. The Early Career Award and the IUPAP
prizes are much more recent: this year is the second time they are given. The ECA is
funded by IAMP, i.e. by our membership dues.

During their relatively short time in existence these prizes have come to occupy an
important role in the mathematical physics community. They of course provide us an
opportunity to show our appreciation of the best work done in our field, but they also
serve as windows through which to portray IAMP to the external world. For these reasons
it is important that we devote proper attention to the prize selection process. For the
IAMP prizes this process is started every three years by the appointment by the IAMP
Executive Committee of a special Prize Committee (or rather two committees for the two
categories of prizes). The prize committee will then seek nominations for the prizes from
our members and upon reaching a decision presents the proposal for winners to the EC,
which upon vote gives the final endorsement.

The EC’s have during the past years made every effort to appoint to the prize commit-
tees prominent members of our community that are representative of the various fields it
contains. I think this has so far worked very well and our prize committees have done an
excellent job. However, an equally important part of the process is that of nominations.
After all the best expertise on what is happening in our field is to be found among our
members. It is unreasonable to expect the prize committee to do the selection process
without outside input. This would place too much burden on their time and subject the
final choice to the bias that necessarily is in any finite size committee. This is why we
call for nominations and indeed by and large there has been good participation by our
members. However, unfortunately there is a lot to improve in the care with which the
nominations have been done so far. To reach the best results the prize committees need
good letters emphasizing the key contributions of the nominees, and a list of experts who
could be contacted for more information. This will save their time for the real work they
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are best qualified to do, namely the comparison of the candidates. Submitting a name,
even a well known one, is definitely not enough to be called a nomination letter. However,
the typical nomination seems to be more like this than what the committees really would
need.

The reason for this state of affairs is of course partly in us, the EC, for not providing
more instructions to the nomination process. To remedy this we are going to draft for the
next round of nominations directions of what a nomination letter is supposed to contain.
Although a proper nomination requires more work on part of the proposer I hope it does
not diminish the desire by our members to make proposals.

Let me finish this note by a small bit of reminiscence. The first time I took part
in ICMP was 33 years ago in the Lausanne meeting right after finishing my PhD. I
still remember vividly how terrified I was when I was entering the podium to give my
first conference talk ever. I also remember the excitement of participating in this great
gathering of my community. There are nowadays of course many more meetings than in
those times, but large congresses providing a panorama of a whole field are still not that
common. Mathematical physics is a bigger field than in those days and nobody masters
more than a small corner of it, but nevertheless we have a community with enough
common language to be able to follow at least all the plenary talks of the ICMP. Thus
send your students and postdocs to Aalborg this August to provide them that excitement
and to keep our community thriving!
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Stochastic integrability and the KPZ equation

by Herbert Spohn (Munich, Germany)

Herbert Spohn received his Ph.D. in physics at the Ludwig-Maximi-
lians-Universität, München. He is now professor for Mathemati-
cal Physics at the Zentrum Mathematik, Technical University Mu-
nich, with joint appointment in the Physics Department. His
main research focus is nonequilibrium statistical mechanics. He
has published “Large Scale Dynamics of Interacting Particles” with
Springer-Verlag and “Dynamics of Charged Particles and Their Ra-
diation Field” with Cambridge University Press.

Spohn was awarded the 2011 Dannie Heineman Prize for Math-
ematical Physics, the 2011 Leonard Eisenbud Prize for Mathematics
and Physics, the 2011 Caterina Tomassoni Prize, and a Ph.D. hon-
oris causa of Université Paris-Dauphine. He served in the IAMP
executive committee 1997–1999 and as president 2000–2002.

As a common experience from basic courses in Classical Mechanics, for some mechanical
systems the equations of motion can be solved up to quadratures, while others persist
to deny such access. This experience can be formalized and leads to the notion of an
integrable system. For a Hamiltonian system with n degrees of freedom, one requires
to have at least n functions on phase space, Hj, j = 1, . . . , n, which are in involution,
meaning that the Poisson brackets {Hi, Hj} = 0 for i, j = 1, . . . , n, see [1] for details.
H1, say, is the system’s Hamiltonian. Then the manifold {Hj = cj, j = 1, . . . , n} has the
structure of an n-torus and the motion is characterized by at most n frequencies. Hence,
up to deformation, the motion looks like the well-known Lissajous figures.

The text book example is the motion of a particle subject to a central potential.
More spectacular is the observation that integrability persists for particular systems with
a large number of degrees of freedom, which first surfaced indirectly through the discovery
of solitary wave solutions by N.J. Zabusky and M.D. Kruskal [2] for the Korteweg-de-Vries
equation in one dimension and for a chain of nonlinear coupled oscillators by M. Toda
[3]. A very rich field ensued. In the following my focus will be on the aspect of many
interacting components.

Naturally one may wonder how integrability survives under quantization. A Hamilto-
nian operator, H , allows for many commuting operators. Thus a simple minded extension
from the classical case will not do and there seems to be no generally agreed upon defi-
nition of quantum integrability. On the other side there are clear signatures to identify a
quantum integrable system (once it is found), to name only a few: the Bethe ansatz, the
Yang-Baxter equation, and a factorized S-matrix.

From the perspective of statistical mechanics it is also a natural issue to understand
whether and how integrability extends to stochastic systems. To have one distinction
very clear, many systems of 2D equilibrium statistical mechanics are integrable, the
correspondence being related to the fact that the transfer matrix has a structure akin to a
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quantum integrable system. In contrast, here I discuss stochastic time evolutions modeled
as a Markov process, either diffusion or jump. As a linear operator, the generator, L,
of the Markov process has possibly some structural similarity to −H , hence it seems
reasonable to expect a corresponding version of integrability. On the other side, eLt is
already the normalized transition probability; there are no probability amplitudes, the
partition function equals 1, and the largest real part of the eigenvalues is 0.

With R. Dobrushin the Russian probability school pioneered the many component
aspect. Integrability is usually first associated with R. Glauber’s exact solution of the
one-dimensional stochastic Ising model [4]. This solution is based on what is now called
duality, a concept introduced and generalized to other systems by F. Spitzer in the very
influential article [5]. The dual description is here in terms of evolution equations for the
time-dependent correlation functions, which decouple for integrable systems. An example
is the symmetric simple exclusion process on the one-dimensional lattice Z. In this
model there is at most one particle per site and, under this restriction, particles perform
independently nearest neighbor symmetric random walks. The generator L equals −H
with H the Hamiltonian of the ferromagnetic Heisenberg chain. (In this case, duality
holds in arbitrary dimension and also for longer-range symmetric jumps.)

On the level of duality, none of the signatures known for quantum integrability make
their appearance. This situation changes drastically as we turn to the asymmetric version
of the simple exclusion process, ASEP (now 1D and n.n. do matter). A particle at site
j jumps to site j + 1 with rate p and to site j − 1 with rate q, q + p = 1, provided the
destination site happens to be empty. The symmetric case corresponds to q = p = 1

2
.

The generator can be written in the notation of quantum spin chains. If σz
j = 1 means

site j is occupied by a particle, then

L =
1

4

∑

j∈Z

(⇀
σ j ·

⇀
σ j+1 − 1 + 2i(p− q)(σx

j σ
y
j+1 − σy

jσ
x
j+1)

)

. (1)

Note that L is not symmetric. All eigenvalues are in the open left hand plane except for
0. On a ring with a fixed number of particles, the unique invariant measure is the uniform
distribution. The other eigenvectors are determined through the Bethe ansatz [6]. Much
more powerful is the Bethe ansatz inspired expression for the transition probability eLt

discovered by C. Tracy an H. Widom [7]. Their expression is still extremely complicated
and to simplify further one has to specify some initial conditions. A widely studied choice
is the initial step, for which the half lattice {j ≤ 0} is empty and {j ≥ 1} is occupied. For
q > p Tracy and Widom write a Fredholm determinant for the probability distribution
of xj(t), the position of the j-th particle at time t. Much earlier K. Johansson [8] found
a distinct Fredholm determinant for a related quantity in the totally asymmetric limit
q = 1 (TASEP). Both results serve as the stepping stone for an intricate asymptotic
analysis eventually arriving at objects familiar from random matrix theory.

Very recently one accomplished to cross the border from discrete jump processes to a
particular stochastic PDE, which reads

∂

∂t
h =

1

2

( ∂

∂x
h
)2

+
1

2

∂2

∂x2
h+W , x ∈ R , t ≥ 0 , (2)
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and is the 1D version of the equation first proposed by Kardar, Parisi, and Zhang [9] as
a model for growing interfaces. Here h(x, t) is viewed as a height function and W (x, t) is
white noise in space-time. Integrability is seen most explicitly for the sharp wedge initial
condition,

h(x, 0) = −1

δ
|x| with δ → 0 , (3)

which, at δ = 1, should be understood as the analogue of the once integrated initial step.
(2) together with (3) looks very singular, and it is. For smooth initial data the solution
is constructed by L. Bertini and G. Giacomin [10] and for the sharp wedge in [11].

The KPZ equation turns linear through the Cole-Hopf transformation

Z = eh . (4)

Then
∂

∂t
Z =

1

2

∂2

∂x2
Z +WZ , Z(x, 0) = δ(x) , (5)

from which one concludes that the exponential moments of h are linked to the attractive
δ-Bose gas in one dimension, which is a quantum integrable system solvable through the
Bethe ansatz. For example, for (2) together with (3),

E(Z(0, t)n) = 〈0|e−tHn|0〉 (6)

with Hn the n particle attractive Lieb-Liniger hamiltonian,

Hn = −1

2

n
∑

j=1

∂2

∂x2
j

− 1

2

n
∑

i 6=j=1

δ(xi − xj) , (7)

and |0〉 the state where all n quantum particles are at 0. Unfortunately, the moments
in (6) increase as exp(n3), which makes a rigorous control difficult. But replica schemes
have been employed and yield fascinating results [12, 13, 14, 15, 16].

Currently the integrability of the KPZ equation can be deduced only indirectly by
taking a continuum limit of the asymmetric simple exclusion process, where the lattice
spacing is ε, the time scale ε−2, and the asymmetry q − p =

√
ε with ε ≪ 1. To give an

impression, I record the generating function for the height at the origin at time t,

E
(

exp
[

− e−seh(t)+(t/24)
])

= det(1− P0Ks,tP0) . (8)

Here the determinant is in L2(R), P0 projects onto [0,∞), and Ks,t is an operator with
integral kernel

Ks,t(x, y) =

∫

R

(

1 + e−(t/2)1/3λ+s
)−1

Ai(x+ λ)Ai(y + λ)dλ (9)

with Ai the Airy function. P0Ks,tP0 is of trace-class. For large t, h(t) ∼= −t/24 +
(t/2)1/3ξ, where the random amplitude ξ is Tracy-Widom distributed, just as is the
largest eigenvalue of a GUE random matrix in the large N limit. (8) together with (9)
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was obtained independently in [11, 17, 18]. In this context the introductory review [19]
is highly recommended, with some complementary information provided in [20].

The integrability of the KPZ equation triggered further advances. One interesting
direction is to consider discretized versions of the stochastic heat equation (5). Somewhat
unexpectedly, the completely asymmetric discretization turns out to be more tractable
and one starts from the equations of motion

d

dt
Zj(t) = Zj−1(t)− Zj(t) +

(

d
dt
bj(t)

)

Zj(t) , Zj(0) = δj0 , j ∈ Z , (10)

where {bj(t), j ∈ Z} is a collection of independent, standard Brownian motions. N.
O’Connell [21] established a close connection between logZn(t) and the last particle in
the open quantum Toda chain of n sites. Very recently A. Borodin and I. Corwin [22]
explain how Macdonald functions enter the picture. They are the eigenfunctions of the
commuting set of Macdonald operators. In the future, for sure, the interface between
stochastic and quantum integrability will be further elucidated.

While we emphasized the notion of integrability, let me add as a fairly extended
footnote that the predictions based on the exact solutions have been confirmed recently
in spectacular experiments [23], see also the expository article [24]. Of course, physical
systems are much more complex than simple models like the TASEP. But on a large
space-time scale microscopic details hardly matter, except for generic properties, like
the condition of a sufficiently local update rule. In fact, such universal behavior can be
proved for the integrable models discussed, but it should hold at much greater generality,
including physical systems. In the experiment [23] one studies droplet growth in a thin
film of turbulent liquid crystal. The film thickness is 12 µm, while the droplet grows
laterally to a size of several mm. The droplet consists of the stable DSM2 phase and is
embedded in the metastable DSM1 phase. Hence the interface is a line and it advances
through nucleation events where the stable phase is created out of the metastable one. On
average, the solution to the KPZ equation with sharp wedge initial data has a parabolic
profile which self-similarly widens linearly in t and thus models one section of the droplet.
By the physical conditions, the droplet growth is isotropic, guaranteeing that the non-
universal coefficients do not depend on the direction of growth, which is the basis for high
precision sampling of entire probability density functions. In fact, the GUE Tracy-Widom
distribution for the height fluctuations is confirmed with accuracy. It is also observed
that for flat initial conditions, h(x, 0) = 0, the height fluctuations switch from GUE to
GOE statistics, implying that some features of the initial conditions are still visible in
the large scale universal limit.
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Negligible numbers

by Olaf Teschke (Zentralblatt MATH / FIZ Karlsruhe, Germany)

This article first appeared in the EMS Newsletter 82, December 2011.
Reprinted with permission.

The question “Who is the top author in mathematics?” may appear to be a less sensible
one, but some weeks ago, Microsoft1 was bold enough to answer this: it’s Claude Shannon
with more than 11,000 citations, followed by Warren Weaver and Barry Simon. The Top
Ten were completed by Ingrid Daubechies, Elias M. Stein, Sir Michael Atiyah, William
Feller, Scott Kirkpatrick, Mario P. Vecchi and C.D. Gelatt - making up a list one would
expect from such an attempt: objective, transparent, and meaning nothing.2

Actually, less transparent, after looking into the details. Having such a ranking,
one might ask what might be the origin of the most blatant failures for inclusion and
omission. In general, mistakes of the first type are more obvious, and can be usually
traced back to some systematic misconceptions of the criteria (or even, as in the case
of several recent events pertaining ISI rankings, active enhancement of the data). In
the list above, Kirkpatrick, Vecchi and Gelatt reached their position due to their single
Science publication on simulated annealing. The main contribution to the citation count
comes from outside mathematics, so the completely different citation behaviour in another
discipline is sufficient to push a single borderline article.

On the other hand, knowing the vast citations in physics, one might wonder why e.g.
Witten didn’t made it to the top: the simple answer is that he is just not considered by
Microsoft as a mathematician, so his more than 31,000 citations didn’t help. Merely a
standard remark is that people from outside the American System are typically mistreated
by such measures: No comparable citation achievements for Kolmogorov or Gelfand.
A funny footnote is that both Bernhard Riemann the German-writing guy (36) and
Bernhard Riemann the English-writing guy (26) belong to the very bottom. (I won’t go
into the often discussed details for journal rankings - it might be sufficient to say that
the Annals don’t make it into the top 20 of the Microsoft Math ranking).

The example illustrates, in a nutshell, some of the problems inherent to bibliometric
computations:

Systems, classification, and data quality may influence the outcome heavily. There
are many possible error sources, and the dependence on the input is not stable: A mis-
assigned single publication may completely change the results. (Which, by the way, also
contradicts one of the main assumptions of bibliometrics: that it is sufficient to evaluate
a small fraction of “core data” to obtain comprehensive results). Nice interfaces and

1http://academic.research.microsoft.com/?SearchDomain=15
2Now, a few weeks later, the site has switched to another bibliometric ranking criterion as a standard,

the H-index. This result is a quite different top list, where Shannon goes to math oblivion, while Simon,
Atiyah, Lions, Yau and Fan are in the top).
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Figure 1: Top mathematicians, according to a certain citation count.

features may be tempting for the user, but are no good replacement for contents; indeed,
the generation of pseudo-knowledge may often be more dangerous than no information
at all.

With a continuing demand for citation-related measures, however, it was at least worth
a try to investigate what might be the outcome on a corpus like the Zentralblatt MATH
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database, which is both more homogeneous and far more complete in its area compared
to the example above (Microsoft considers about 1 Mio. articles as mathematics which
include a lot of descriptive statistics and computer science compared to > 3 Mio. in
Zentralblatt MATH). With the addition of a considerable amount of references during
the last two years, one might at least hope to have a critical mass; and there might be
the hope that some intrinsic knowledge of the data originating from mathematics may
help to avoid common pitfalls.

The starting point were about 7, 000, 000 (raw) reference data in Zentralblatt MATH,
which contain about 5, 000, 000 in display-ready format and about 4, 000, 000 reliably
identified (a necessary basis for statistics). One immediately realizes that this means only
a small fraction of the 3 Mio. articles have such reference lists — indeed, the number
is about 200, 000 (or less than 10%). The main difficulty is, indeed, getting reliable
data — the scale of the figures is indeed similar to those in MathSciNet (ca. 5, 500, 000
identified references for about 300, 000 articles of 2.7 Mio.) or ISI (< 100 journals both in
the lists of pure and applied mathematics compared to > 2000 currently existing). The
exclusion of most journals (like e.g. Chaos, Solitons & Fractals or International Journal
of Nonlinear Sciences and Numerical Simulation whose citation enhancement has been
the topic of recent discussions) from the reference list helps to avoid some distortions but
implicitly acknowledges that citation statistics are no suitable objective measure (indeed,
an exclusion decision will always be a subjective one, however well-founded).

The possible influence of the uncertainties of the author identification has been already
a subject of several articles in this column3. By now, the progress is sufficiently substantial
to expect only minor errors from this source compared to the influence of the lack of
reference data for most articles.

Taking this ambiguity into account, the different samples indicated nevertheless sev-
eral tendencies. First, in the short scale articles and authors from mathematical physics
completely dominated the top lists. Article from the very border of mathematics (like of
Albert and Barabási on Statistical mechanics of complex networks) could easily collect
enough citations from mathematical physics to make it to every short-term tops. The
situation becomes slightly different when enlarging the timescale — to give an impression,
we list the 20 top-referenced authors for the overall database: Louis Nirenberg, Barry
Simon, Pál Erdős, Theodore E. Simos, Elias M. Stein, Stanley Osher, Shing-Tung Yau,
Sir Michael Atiyah, Hans Grauert, Saharon Shelah, Häım Brézis, Edward Witten, Peter
D. Lax, Olvi L. Mangasarian, Jürgen Moser, Michio Jimbo, Isadore M. Singer, Elliott
H. Lieb, Chi-Wang Shu, Pierre-Louis Lions. Though this is certainly no longer fully
physics-dominated, several heavy biases become visible: at best, one may describe the
list as mixed, with citations in some cases collected in a rather short period and thanks
to intense citation behaviour in the field, other through decades. The complete absence
of several fields of mathematics is especially striking (this continues when going down to
the top 50). Obviously, even within pure mathematics, different fields cite differently, so
one cannot expect to find anything from a comparison without completely dissolving the
unity of mathematics (including the splitting of authors who work in different fields).

3See, e.g., EMS Newsletter 79 (March 2011)
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On the journal level, it may hence not come as a surprise that (slightly depending
on the timescale) mathematical physics perform quite well: their impact factors (for
Zentralblatt MATH data) puts e.g. Archive for Rational Mechanics and Analysis or
Communications in Mathematical Physics just behind Acta Mathematica, Annals, In-
ventiones or Communications on Pure and Applied Mathematics, and in front of many
others. A good illustration is a correlation display like the one of D. Arnold and K. Fowler
for journals in applied mathematics4. While they used the four Australian categories for
math journals, we performed a similar test for a sample of journals w.r.t. the internal
Zentralblatt MATH categories (which serve primarily to decide workflow schedules, but
are naturally influenced by their mathematical content):

Figure 2: Correlation between impact factor and journal categories

The results are striking - there is even less correlation than in the Arnold/Fowler
example. Some patterns can be identified, but only for negative correlation: Fast Track
journals with very low impact factors are often high-quality Russian, low category journals
with high impact factors belong to the class which has been recently under the suspicion
of enhancing citations. As mentioned, the correlation with the field appears to be much
higher than with the category.

Finally, there was some hope that one could resolve the effects at least partially by
evaluating review citations instead of references. They are much less numerous, and
are the result of an additional intellectual analysis. Even more important, they are
expected to be much more homogeneous throughout the database. Unfortunately, these
expectations are only fulfilled partially. Several negative effects mentioned above can be
excluded, but it turns out that reviewers in different fields cite still different within their

4Nefarious numbers, EMS Newsletter 80 (June 2011)
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reviews. As an example, the top list would now look like Pál Erdős, H. M. Srivastava,
Israel M. Gelfand, Sergio Albeverio, Noga Alon, Häım Brézis, Vladimir G. Mazya, Jean
Bourgain, Béla Bollobás and again one would miss some very well-known names.

From a certain viewpoint, the most satisfying results were produced when asking for a
huge difference between the publication and the citation: when requiring a mathematical
viability of several decades (the Jahrbuch data contribute heavily to such a statistic),
one ends up with probably agreeable collections containing Riemann, Poincaré, Hilbert,
Hardy, Ramanujan, Banach, Weyl, Kolmogorov, Gödel, von Neumann (all of them, by
the way, outdone by their younger colleagues when using other counts). Fortunately, we
do not need citation statistics to generate this; unfortunately, it may be hard to convince
politicians that such long-term evaluation measures may be best suited for mathematics.

14 IAMP News Bulletin, April 2012



On the prevalence of non-Gibbsian states

On the prevalence of non-Gibbsian states in mathe-

matical physics

by Aernout C.D. van Enter (Groningen, The Netherlands)

Aernout van Enter received his PhD in theoretical physics in 1981
at the University of Groningen (supervisors N.M. Hugenholtz and
M. Winnink). After a number of temporary positions at Heidelberg
University, the Technion (Haifa) and the University of Texas at
Austin, alternating between mathematics and physics departments,
he returned to Groningen where he is now an honorary professor
in the Johann Bernoulli Institute of Mathematics and Computer
Science of Groningen University. He has mainly worked on lattice
models in statistical mechanics, both ordered and disordered ones.
The theory of Gibbs states and the occurrence of non-Gibbsian states
has been one of his main research interests for a number of years.

Gibbs measures are the main object of study in equilibrium statistical mechanics, and are
used in many other contexts, including dynamical systems and ergodic theory, and spatial
statistics. However, in a large number of natural instances one encounters measures that
are not of Gibbsian form. We present here a number of examples of such non-Gibbsian
measures, and discuss some of the underlying mathematical and physical issues to which
they gave rise.

Introduction

Gibbs measures according to DLR

Gibbs (or DLR) measures, or Gibbs states, are the main objects in classical equilibrium
statistical mechanics. They were introduced in the sixties by Dobrushin, Lanford and
Ruelle, as probability measures on systems of infinitely many particles (or spins) in infinite
volume, satisfying a set of consistent conditional probabilities for configurations in finite
volumes, conditioned on external configurations. This is expressed by the so-called DLR
equations. These conditional probabilities are of the Gibbsian form Cst exp−βH , where
the Hamiltonian H describes the interactions between particles both inside the volume
and between the volume and the outside. In particular for classical lattice models, the
theory of infinite-volume statistical mechanics has developed in substantial detail, see
e.g. [18]. Gibbs measures also play a role in various other domains, such as Dynamical
Systems, non-equilibrium theory, Interacting Particle Systems, Euclidean Quantum Field
Theory, ergodic theory, spatial statistics and pattern recognition.

For finite-range interactions, Gibbs measures satisfy a spatial Markov property, for
regular infinite-range potentials a weak form thereof, which goes by the names of the
“ almost Markov” or “quasilocality” property. For discrete bounded-spin models this
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property is equivalent with the conditional probabilities being continuous functions of
the boundary conditions, in the product topology.

It is a nontrivial result that in fact equivalence holds: any measure whose conditional
probabilities are quasilocal is a Gibbs measure for a regular interaction, once it satisfies
a natural nonnullness condition.

Effective descriptions and the Gibbs-non-Gibbs question

In many parts of statistical physics use is made of effective interparticle Hamiltonians.
That is, one tries to describe a system in which one forgets about small-scale details, but
that still can be described by a Hamiltonian, which contains only properties of larger-
scale entities. (E.g. an effective molecular Hamiltonian does not include properties of the
constituent atoms, electrons or quarks, but only -effective- forces between molecules). To
make this notion mathematically precise, that is, to decide if such an effective Hamiltonian
exists, the quasilocality property mentioned above needs to be checked for an appropriate
measure (in the example above, that would be the measure restricted to all the molecular
degrees of freedom). However, it has turned out, initially rather surprisingly, that in many
natural examples this quasilocality property is violated, and no regular interaction can
be found: the measure is non-Gibbsian. Often, the Gibbsian or non-Gibbsian character
of a measure depends on certain parameters of the problem under consideration, such
as temperature, magnetic field, time, or rescaling parameters, in an a priori non-obvious
way.

Examples of such contexts that occur in statistical mechanics are renormalisation
group theory, the theory of disordered systems and the theory of stochastic dynamics
(interacting particle systems).

In renormalisation group theory, a renormalisation group map is a kind of coarse-
graining map. One considers only a subset of coarse-grained or “renormalised” objects
(spins, fields), and then considers the restriction or projection of Gibbs states on those. In
physical terms, one integrates out some short-range degrees of freedom. In probabilistic
terms, one takes the marginal of a probability measure on a subset of random variables,
often called the set of “block spins”. This renormalised measure then is supposed to
be describable by a renormalised Hamiltonian. The philosophy of renormalisation group
theory is based on studying the properties of this map from original to renormalised
Hamiltonians in some appropriate space. The ultimate goal is to determine the fixed
points of this map, together with their stability properties, and to relate them to the
critical behaviour inside corresponding “universality classes”, which are classes of physical
systems with the same critical exponents. In this way, critical behaviour is expected to
follow from the properties of certain renormalisation group maps. This paradigm is based
on the assumption that such a map exists, in other words, that the renormalised measure
is in fact a Gibbs measure.

It is precisely this step which has turned out to be doubtful in a variety of circum-
stances. The first clear indication that defining a well-behaved renormalisation group
map might be problematical was found by Griffiths and Pearce [19] and the nature of the
problem was identified shortly after by Israel [20]. A first extensive analysis appeared in
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[6]. We will see the mechanism in the particularly simple example of the decimation trans-
formation later on. Although in a majority of cases the predictions of the renormalisation
group approach about the nature of phase transitions and critical properties are not af-
fected, in some cases, especially in the theory of first-order transitions, non-Gibbsianness
results restricted and even excluded renormalisation group descriptions which had been
proposed in the physics literature.

Follow-up studies identified a variety of other occurrences of non-Gibbsian measures.
A direct generalisation of the above treatment of block-spin maps often works in con-
sidering single-site renormalisations, including dicretisations, the so-called “fuzzy” or
“amalgamation” maps [2, 9, 34].

Another example is provided by low-temperature Gibbs measures, subjected to a high-
temperature or infinite-temperature Glauber (stochastic spin-flip) dynamics. This is an
example from the area of interacting particle systems [28], which models a fast heating
procedure. The initial Gibbs measure after some finite time can become non-Gibbsian.
So instead of raising the temperature [31], one may altogether lose the notion of effective
temperature [7]. The proofs of such non-Gibbsianness results are quite similar to the
ones in a renormalisation group context, but with the distinction that one may consider
now the marginal of a two-time (initial time and end time) system which is of a Gibbsian
form. One can in fact go into more detail, and perform a path-space analysis in which
the whole dynamics is included [8].

Yet another family of occurrences of non-Gibbsian measures is in the theory of disor-
dered spin systems [1]. In such systems the Hamiltonians contains, next to the spin vari-
ables, disorder variables, e.g. occupation numbers or random fields. When a “quenched”
disordered measure is non-Gibbsian, that means that one cannot write it as an “annealed”
measure, that is a Gibbs measure for an effective Hamiltonian. Physically, in a quenched,
fast cooled, system the disorder is frozen, while the spins equilibrate; in other words,
the disorder variables are slow and the spins fast. In annealed, slowly cooled, systems
the disorder variables equilibrate with the spins, and there is only one timescale, and
there are no fast or slow variables. Probabilistically, for a quenched measure the disorder
variables are independent, identically distributed; conditioned on the disorder variables
the spins are distributed according to a Gibbs measure. Annealed measures are Gibbs
measures on a product space of spin and disorder variables. The impossibility of writing
a quenched measure as an annealed measure is in contrast to what has been proposed
in the physics literature as the Morita approach [11, 23, 25] where one aims to compute
a “grand potential”, an effective interaction for a quenched measure, viewed as a Gibbs
measure (an annealed one).

Gibbs measures and non-Gibbsian measures

Notation and Definitions

We will consider lattice spin systems with a single-spin space Ω0, on a lattice Zd, and
a configuration space Ω = Ω0

ZD

. We will, for simplicity, mainly consider Ising models,
for which Ω0 = {−1,+1}. We will indicate the spin variables at site i by σi, ωi, ηi, and
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similarly spin configurations in a volume Λ by σΛ, ωΛ, ηΛ.
We will consider Gibbs measures, which are defined for absolutely summable interac-

tions Φ via the DLR equations. An interaction Φ is a (translation-invariant) collection of
functions ΦX(σX). Each ΦX describes an energy contribution in a finite subset X of the
lattice. Absolute summability means that

∑

0∈X ||ΦX || < ∞. This implies that any finite
change in an infinite-volume configuration only comes with a finite energy cost (or gain),
uniformly in the external configuration. Such interactions form an interaction (Banach)
space. The DLR equations say that given an external configuration ηΛc , the probability
(density) of configurations in a volume Λ is given by the Gibbs expression

µηΛc

Λ (σΛ) =
exp−βHΦ

Λ (σΛηΛc)

ZηΛc

Λ

,

where
HΦ

Λ =
∑

A; A∩Λ 6=∅

ΦA(σΛηΛc).

This should hold for all volumes Λ, internal configurations σΛ and external configurations
ηΛc . The conditional probabilities given above have a continuous (in the product topol-
ogy) version due to the summability of the interaction. This means that the conditional
expectation of any local observable cannot change much between two configurations which
are identical in a sufficiently large environment, and are different only far away, whatever
the configuration in this finite environment is. Each such configuration is thus a point of
continuity for each conditional expectation.

It also turns out to be true that a measure having a continuous version of its con-
ditional probabilities, and satisfying a nonnullness (or “finite-energy”) condition, is a
Gibbs measure for a reasonable interaction. The finite-energy condition for Gibbs mea-
sures follows immediately from the absolute summability. See e.g. [6, 15, 18] for further
background.

In the standard nearest-neighbour Ising model we have

−HΛ =
∑

<i,j>∈Λ

σiσj +
∑

<i∈Λ,j∈Λc>

σiηj.

Decimating the Ising model, a paradigmatic example

Decimation, in which one considers just a subset of the spins, is a conceptually easy
example of a renormalisation group map. Let us consider the even decimation of the
two-dimensional Ising model, in which σ′

i,j = σ2i,2j . Thus we consider only a quarter of
the spins, namely those on sites with both coordinates even. Those primed spins will
be our renormalised or “visible” spins. If the original Gibbs measure is at low enough
temperature, the primed measure defined by taking the marginal of this measure on the
primed spins is non-Gibbsian. Indeed, let us fix all primed spins in a large box in an
alternating configuration. Then the other, “invisible” spins in the box don’t feel any
influence from them, due to cancellation effects. Thus the conditioned system of the
invisible spins, forms a spin system on a lattice with periodic holes, a “decorated” lattice.
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Any configuration of the visible (renormalised) spins acts as a condition in a condi-
tional probability of the invisible-spin system, conditioned on it. But it is the alternating
configuration which will be the one that we will show to be responsible for non-Gibbsian
behaviour.

If in an annulus outside the box all visible spins are plus (that is, they are pointing
upwards), we have a plus-like boundary condition, for any condition of the invisible spins
outside the annulus. Now let us unfix the visible spin at the origin. Then this spin has a
positive expectation, larger than some constant, uniformly in the size of the box. Making
the visible spins minus outside the box produces a negative expectation. Thus the visible
spin at the origin, conditioned on a large surrounding alternating configuration of visible
spins has a large change in expectation, when one changes the configuration far away.

Notice that the phase transition in the system of invisible spins gets translated in a
nonlocal influence –action at a distance– between the visible spins, violating the quasilo-
cality condition for the measure on the visible spins. This renormalised measure thus
is non-Gibbsian. The alternating configuration is a point of discontinuity of the spin
at the origin, conditioned on (considered as a function of) the visible spins. This argu-
ment works if the temperature is low enough, as the decorated lattice has a strictly lower
transition temperature than the original Ising model.

Although there are other choices possible than the alternating configuration, we expect
that in fact for most choices of the primed-spin configuration continuity holds.

It can be shown that renormalising different Gibbs measures for the same interaction
results in the renormalised measures being either all Gibbsian or all non-Gibbsian.

By similar arguments other decimated measures become non-Gibbsian. This includes
a finite number of decimations applied to Ising models in dimension at least two in a
weak field at low temperatures, or (arbitrarily often) repeated decimations in zero field
at low temperatures. In the zero-field case the alternating configuration is neutral, in
that it does not favour either the plus or the minus phase. The Ising model with a small
plus field, does not exhibit multiple phases, but conditioning on a configuration which
is predominantly minus can induce a phase transition. Thus the presence of a phase
transition in the original system is neither necessary, nor sufficient, for the transformed
measure to be non-Gibbsian.

On the other hand, at high temperatures, and also for decimation in strong fields, the
transformed measures are Gibbsian. Thus, as Griffiths and Pearce [19] already noticed,
one can define renormalisation group maps where one does not really need it, away from
phase transitions (and even then not always). For mathematical details, see [6]. But
even then, the renormalisation group map on the space of summable interactions has
unexpected spectral properties, indicating that this space, although giving rise to proper
Gibbs measures, is already too large to properly implement renormalisation group ideas
in (see [35]).

Extensions I: Renormalisation, stochastic dynamics, discretisations

The occurrence of non-Gibbsian measures is actually quite widespread. Indeed, in a
topological sense, they occur generically, for a residual set (that is, a countable intersection
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of dense open sets) in the set of probability measures [21].
Similar results as proven above for decimation can be proven for a variety of renor-

malisation group transformations. For example, one can prove non-Gibbsianness for Ising
models subjected to majority-rule transformations (in which a renormalised spin equals
the sign of the majority of the spins in a block) at low temperatures in any external field,
various random versions thereof (the Kadanoff transformations), etc.

Beyond renormalisation group transformations, similar results hold also for evolved
Ising systems, under a high-temperature Glauber (stochastic spin-flip) dynamics. Start-
ing from a low-temperature Gibbs measure in the phase-transition regime, for a short
time the evolved measure is Gibbsian, but at larger times it becomes non-Gibbsian, and
then it stays so for any finite time in this transient, nonstationary, regime. This is true al-
though the measure converges exponentially fast to a very well-behaved high-temperature
Gibbs measure. Other sources of non-Gibbsian measures are single-site coarse-grainings.
In the dynamical case the visible spins are evolved spins, and the invisible ones the initial
spins. For single-site coarse-graining (fuzzy [34] or amalgamation [2]) maps, fine details
become invisible, and one can only observe coarser details, the fuzzy, or amalgamated,
spins.

In all these examples, the presence of a transition in the invisible spins, conditioned
on some special configuration of the visible spins, gets translated into the fact that this
special configuration is a point of discontinuity (a “bad point”). If for no possible condi-
tioning a phase transition occurs, the transformed or evolved measure is a Gibbs measure.
This typically happens if the transformation is close to unity. Examples of Gibbsian
regimes are very-short-time evolutions, or very fine discretisations for initial systems that
are at not too low temperatures.

Let me emphasize that the absence or presence of these transitions is for conditioned
systems, and not for the original, untransformed system, which may or may not be in a
phase transition regime.

Extensions II: Trees and Mean-Field theory. Path approach

Related results can be proven in a mean-field setting, in this case, the (dis)continuity to
be investigated of, for example, a spin expectation, is not any more of that of a function of
the external configurations in the product topology. Rather, the conditional expectation
value of a spin is seen as a function of some order parameter, such as a magnetisation.
This approach has especially been pioneered by C. Külske, see e.g. [26, 30].

In the above context, the “bad points” are exceptional, that is they have measure zero.
In other situations, in particular in the random field Ising model, and also for evolved
unstable Gibbs measures on trees, it can even happen that almost all or all configurations
become bad [5, 24]. Gibbs measures on trees differ from those on lattices in that, due
to the large boundary terms, at low temperatures one can have metastable and even
unstable homogeneous Gibbs measures, corresponding to different types of solutions of
a self-consistency equation. In this sense they violate the variational principle that says
that all Gibbs measures minimise a free energy density. Due to this, the Gibbsian and
non-Gibbsian properties of the evolved measures can be very different for different initial
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Gibbs measures for the same initial interaction.
Recently, in the dynamical Gibbs-non-Gibbs transitions a more refined analysis has

led to the identification of bad objects (bad points or bad measures) as points or measures
which can have different, competing, histories. A large-deviation analysis on the level of
trajectories in a space of paths then becomes required. The corresponding rate functions
are sums of an initial rate function, and a dynamical rate function, which can be computed
as a particular Lagrangian by the methods developed in [14]. For these developments we
refer to [8, 13, 33, 17]. A bad value of the magnetisation then would be one which can
have two quite different origins, starting from either a positive or a negative value, for
example.

Further generalizations. Other sources of non-Gibbsianness.

The above description has been mostly about discrete-spin models, but extensions to
continuous, possibly unbounded, spin systems also exist. In the bounded-spin case of
vector models, the case which has in particular been studied is that of stochastic time
evolutions, see e.g. [10]. Continuous-spin systems have been studied either be subjected to
single-site or weakly interacting diffusions, or (as mentioned before) to discretisation. In
the unbounded-spin case, the notion of what is a Gibbs measure for a “decent” interaction
becomes a bit more arbitrary. For some of the literature on this issue, see [3, 27, 32]. In
the case of discretisation of vector spins one determines the angle of an XY (vector) spin
up to finite precision, obtaining a “visible” clock-spin measure, which in the Gibbsian
situation has a summable clock-spin interaction, but at very low temperatures becomes
non-Gibbsian [9].

Other examples of non-Gibbsian measures abound, including random-cluster (Fortuin-
Kasteleyn) measures, invariant measures for stochastic evolutions, g-measures, which sat-
isfy a one-sided version of the continuity (Gibbs) property of their conditional probabili-
ties, lower-dimensional projections of Gibbs measures, sign-fields of massless Gaussians....
See e.g. [16] and for earlier results [15, 6] or the special Vol 10(3) of the journal “Markov
Processes and Related Fields”. Next to a violation of the quasilocality property, another
way of proving non-Gibbsianness which works in some of the above cases, is showing either
anomalous large-deviation properties, or a violation of the non-nullness (or finite-energy)
condition.

Another, as yet unexplored, direction is about quantum statistical mechanical sys-
tems. In this case one is still looking for a characterisation of Gibbs or KMS states which
can actually be checked in examples. Conditional probabilities have no analogue in a
quantum context, which makes the above classical analysis not applicable.

Conclusions

Although a variety of examples of non-Gibbsian measures have by now been discovered,
the significance of this fact still appears somewhat controversial.

Mathematically, the phenomenon seems quite widespread, and we have developed
a fairly systematic approach to handle a lot of examples, many of which are measures
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showing up in natural circumstances.
One response has been to try to make non-Gibbsian measures “ as Gibbsian as pos-

sible”, by weakening the definition of what a Gibbs measure is. This approach, which
was suggested by R.L. Dobrushin, has led to the notions of almost, weak and intuitively
weak Gibbs measures [29, 4, 12]. As a warning, it should be noted that the quenched
random field Ising measure, which can be shown to be weakly Gibbsian, (that is, one can
define a Hamiltonian which is defined almost everywhere with respect to this measure),
violates the variational principle [24]. This implies that measures from these classes can
be substantially less well-behaved than regular Gibbs measures.

Physically, non-Gibbsianness reflects the presence of some nonlocal correlations, de-
scribable by interactions that have an extremely long range. They are not even summable
and represent some “actions at a distance”. In the theory of the renormalisation group,
as applied to critical phenomena, the appearance of long-range interactions often leads to
these interactions belonging to a different universality class, even if they are summable.
Hence there is serious cause for concern if terms appear which are even worse. Ideally,
a renormalisation group map would act on a subspace of interactions within the same
universality class.

The fact that a proposed algorithm is mathematically ill-defined may or may not
invalidate results which are obtained by approximate methods. However, for a math-
ematical physicist to develop a systematic understanding when and when not to trust
renormalisation-group folklore remains a big challenge. Similar questions arise if one tries
to introduce effective temperatures, or effective potentials of the Morita (quenched-as-
annealed) type.

If one can prove the Gibbsianness of a measure, one can in principle trust numerical
approximations, and hopefully obtain some proper error bounds. However, even that
appears to be a much harder problem than one would a priori expect [22].
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[27] C. Külske, F. Redig: Loss without recovery of Gibbsianness during diffusion of continuous spins.
Prob. Theory Relat. Fields 135, 428-456 (2006).

[28] T. M. Liggett: Interacting Particle Systems. Springer Classics in Mathematics, reprint from the
1985 Edition (2005).

[29] C. Maes, A. van Moffaert and F. Redig Almost Gibbsian versus weakly Gibbsian measures. Stoch.
Proc. Appl. 79, 1-15 (1999).

[30] A. Le Ny: Gibbsian Description of Mean-Field Models. In: In and Out of Equilibrium, Eds.
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News from the IAMP Executive Committee

Call for bids for the ICMP 2015

The executive committee (EC) invites bids for the organization of the ICMP 2015.

The site of the next ICMP conference will be decided by the EC after non-binding
consultation of the general assembly. The site of ICMP 2015 will be decided at the EC
meeting in Aalborg in August 2012, following a meeting of the general assembly.

According to IAMP rules, the bid to organize the (n+ 1)st ICMP has to be made no
later than one month before the nth ICMP. A letter of application should be sent to the
Secretary, preferably in electronic form, no later than July 6, 2012. It should contain a
description of the proposed dates and facilities as well as a sketch of the congress budget,
in particular, the expected cost per participant.

Bidders are welcome to present their bids at the EC meeting as well as at the General
Assembly meeting in Aalborg (on August 5 and 6, 2012). The IAMP cannot cover
expenses of the bidders.

It is IAMP continuing policy to avoid any form of discrimination and the EC is
committed to ensuring this in the bidding process.

For more details see also http://www.iamp.org/page.php?page=page_congress.
The IAMP officers are happy to answer any questions the potential bidders may have

to prepare their bid.

New individual members

IAMP welcomes the following new members

1. Ram Band, Mathematics Department, University of Bristol, United Kingdom

2. Alex Bloemendal, Mathematics Department, Harvard University, USA

3. Leander Geisinger, Department of Physics, Princeton University, USA

4. Antti Knowles, Mathematics Department, Harvard University, USA

5. Yoram Last, Institute of Mathematics, The Hebrew University, Jerusalem, Israel

6. Tadahiro Miyao, Institute for Fundamental Sciences, Setsunan University, Osaka,
Japan

7. Jeremy Quastel, Mathematics Department, University of Toronto, Canada

8. Katarzyna Rejzner, II. Institut für Theoretische Physik, Universität Hamburg, Ger-
many

9. Serge Richard, Institut Camille Jordan, Université Claude Bernard Lyon 1, France

10. Nicolas Rougerie, Laboratoire de Physique et Modélisation des Milieux Condensés,
Université Grenoble 1, France
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11. Kevin Schnelli, Mathematics Department, Harvard University, USA

12. Jun Yin, Mathematics Department, University of Wisconsin, Madison, USA

13. Mei Yin, Mathematics Department, University of Texas at Austin, USA

Recent conference announcements

Operator Theory and Mathematical Physics (OTAMP)
June 11–14, 2012, Centre de Recerca Matemàtica (CRM), Barcelona, Spain
http://www.crm.cat/Activitats/Activitats/2011-2012/OTAMP/web-otamp/

This conference is partly funded by the IAMP.

Mechanics: classical, statistical and quantum
Conference in Honour of the 70th Birthday of Giovanni Gallavotti
July 2 - 5, 2012, Rome, Italy
http://ricerca.mat.uniroma3.it/ipparco/convegno70/index.html

This conference is partly funded by the IAMP.

3rd Feza Gürsey International Summer School in Mathematical Physics
June 20 - July 6, 2012, Feza Gürsey Institute Kandilli, Istanbul, Turkey
http://www.fezagurseysummerschool.com

Spectral Theory and Differential Equations
International Conference dedicated to the 90th birthday of Vladimir A. Marchenko
August 20 24, 2012, Kharkiv, Ukraine
http://www.ilt.kharkov.ua/marchenko2012

Complex patterns in wave functions – drums, graphs, and disorder
September 5 - 7. 2012
http://royalsociety.org/events/Complex-patterns-in-wave-functions/

Open positions

Faculty position at KU Leuven

KU Leuven invites applications for a mathematical physicist in the Department of Physics
and Astronomy, working in the area of mesoscopic phenomena and condensed matter
physics, to start in October 2013. Please contact Christian.Maes@fys.kuleuven.be for
more information. The electronic application can start from http://www.kuleuven.

be/personeel/jobsite/vacatures/science.html#2013_2014 under number 22/2012
where the official announcement and further information are posted. The candidates
have an excellent track record in the research of complex systems as from problems in
statistical mechanics and have interest in collaborating with other theoretical and/or
experimental scientists in their field of research. The candidates are also dedicated to
education in mathematics or physics at university level.

The deadline for application is September 30, 2012.
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Post-doctoral positions

1. A two - year postdoc position is available, funded by NWO, to work on the topic
of Hidden symmetries, new and dual models of interacting particle systems. The
project has as targeted starting date before September 1, 2012.

The postdoc will spend one year at TU Delft and one year at Rijksuniversiteit
Groningen and will work with the main investigators F. Redig and A.C.D. van
Enter. Besides he will have the opportunity to collaborate within an international
network related to this and comparable projects, situated in Modena ( C. Giardina,
G. Carinci) and Warwick ( S. Grosskinsky).

More information and details about the project and the position can be obtained
from F. Redig (http://dutiosb.twi.tudelft.nl/~redig) and A.C.D. van Enter
(http://www.math.rug.nl/dsmp/People/AernoutvanEnter).

Interested candidates are asked to send a letter of motivation and CV to F. Redig
(f.h.j.redig@tudelft.nl) and A.C.D. van Enter (avanenter@gmail.com)

Deadline for applications: April 30, 2012.

2. A 2-years postdoc position in mathematical physics within the ERC project CoM-
BoS (Collective Phenomena in Classical and Quantum Many Body Systems; PI:
Alessandro Giuliani) is now open. The position will be based in the Mathematics
Department of the University of Roma Tre and will start in January, 2013. For
more informations about the position and details about how to apply, please visit
http://www.mat.uniroma3.it/users/giuliani/public_html/erc/index.html

Deadline for applications: June 3, 2012.

PhD student positions

The Dept. of Mathematics, Stockholm university, Sweden, is looking for good candidates
for two PhD student projects in analysis and mathematical physics. Possible research
projects are devoted to spectral theory of singular differential equations and to quantum
graphs. The candidates should have a strong background in operator theory, differential
equations and spectral analysis, as well as in quantum mechanics.

Duration: 4 years (5 years if 20 % teaching included). Starting: Fall 2012. Salary:
approx. 2 500 Euro/month. More information is available at the web-page: http://

www2.math.su.se/~pak/PhD.html. Before you apply send an e-mail to pak@math.su.se
(Pavel Kurasov) or luger@math.su.se (Annemarie Luger) . How to apply see: http://

www.math.su.se.
Deadline for applications: May 2, 2012.

Manfred Salmhofer (IAMP Secretary)
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Obituary

Vladimir Savelievich Buslaev

Vladimir Savelievich Buslaev, an outstanding Russian mathematician and one of the
leaders of the modern Saint-Petersburg mathematical school, died suddenly on March
14th, 2012, aged 74.

Since his early years as a student, Buslaev was associated with the Department of
Mathematics and Mathematical Physics of Saint-Petersburg State University. His scien-
tific advisors were O.A. Ladyzhenskaya and L.D. Faddeev. V. S. Buslaev was a member
of the faculty of Physics for fifty years, and Head of Department for the last 12 years.

Buslaev’s area of interests and the variety of his results were remarkably wide. His
works on the mathematical theory of diffraction and wave propagation, scattering theory,
nonlinear equations, quasi-classical and adiabatic asymptotic methods, as well as the
theory of difference equations with periodic coefficients have been highly recognized by
the mathematical community world wide.

Buslaev’s most important result in diffraction theory was the rigorous justification of
the high-frequency asymptotics of waves scattered by a two-dimensional convex obstacle.
Speaking about this problem, one should mention a short but extremely elegant paper in
which he presented a heuristic derivation of these asymptotics by means of the Wiener
integral.

Buslaev’s works on long-range scattering and on many-particle scattering are widely
known. Together with V.B. Matveev, Buslaev introduced the notion of modified wave
operators for the case of potentials decaying slower than the Coulomb potential. He
was responsible for several profound results within the analytic theory of many-particle
scattering. Together with S.P. Mercuriev, he derived the trace formulas, described the
singularities of the scattering matrix and found the asymptotics of eigenfunctions for
many-particle quantum systems.

V.S. Buslaev was co-author of the famous Buslaev-Faddeev trace formulas. Later
on, having developed very involved analytic technique, he generalized this result to the
multi-dimensional case. These trace formulas became an important tool in the proof of
integrability.

V.S. Buslaev did pioneering work in the theory of nonlinear equations, notably con-
cerning the question of the large time behavior of solutions of integrable nonlinear equa-
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tions. Together with V.V. Sukhanov, he carried out a rigorous analysis in the case of
the Korteweg-de Vries equation. Soon after that, in collaboration with L.D. Faddeev and
L.A. Takhtajan, he worked out the Hamiltonian interpretation of the scattering theory
for this equation. Furthermore, together with G.S. Perelman, he obtained a series of
results on the nonlinear scattering and the asymptotic stability of solitons for general
nonlinear wave equations.

V.S. Buslaev wrote a number of well-known papers on asymptotic analysis. In par-
ticular, he developed an original approach to the study of the asymptotics of solutions of
periodic Schrödinger equations with adiabatic perturbations. Using this approach, he ob-
tained results concerning the spectral properties of Bloch electrons in external fields and
the asymptotics of Stark-Wannier resonances (with L.A. Dmitrieva and with A. Grigis).
Together with A.A. Fedotov, he developed a version of the complex WKB method for dif-
ference equations in the complex plane, which was applied to study quasi-classical proper-
ties of the spectrum of Harper equation. In collaboration with A.M. Budylin, V.S. Buslaev
obtained a series of results on the quasi-classical analysis of pseudo-differential operators
with symbols discontinuous with respect to both dual variables. These results were then
applied to a number of problems in the asymptotic analysis of integrable differential
equations and to problems of quantum statistical physics and hydro- and aero-dynamics.
One should also mention Buslaev’s paper concerning a new invariant approach to the
canonical Maslov operator.

Several times during his mathematical carrier V.S. Buslaev turned his attention to
the problems of diffraction and wave propagation. He devoted many papers to the study
of sound propagation in the ocean. His best known results in this field are the four-ray
formulas for the sound field near the surface of a deep sea and the description of the
scattering of high-frequency sound waves by synoptic rings (adiabatically inhomogeneous
structures) in the ocean (in collaboration with A.A. Fedotov).

Over a long period V.S. Buslaev, together with A.A. Fedotov, studied difference equa-
tions with periodic coefficients on the real line and in the complex plane. He considered
the monodromization method – a renormalization method which was developed in the
course of this work – and the related results as being among the most important of his
achievements.

The papers of Vladimir Savelievich Buslaev, his ideas and methods became starting
points for various new research directions in modern mathematical physics.

Many of Buslaev’s students have now become well-known mathematicians. He taught
his young colleagues to focus on non-trivial concrete problems, to search for the key
analytic features of these problems and to consider the work with formulas as central.
From his point of view this way of thinking was a principal characteristic of the St.
Petersburg mathematical school.

Vladimir Savelievech Buslaev was an extraordinary personality. His ideas and results
will be treasured by the mathematical community for many years to come, and his pupils
and colleagues will always remember him as a brilliant scientist and a wonderful man.

Ludvig Faddeev, Alexander Fedotov, Alexander Its, Ari Laptev,

Alexander Sobolev, Tatyana Suslina, Vitali Tarasov, Dimitri Yafaev
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