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Mesh Colours for Gradient Meshes

S. D. Baksteen1, G. J. Hettinga1 , J. Echevarria2 and J. Kosinka1

1Bernoulli Institute, University of Groningen, the Netherlands
2 Adobe Research, San Jose, CA, USA

Figure 1: An image of an apple with mesh boundaries (yellow) shown overlaid (far left). Right: The fitted apple using a gradient mesh with
visualised mesh colours rendered with four patches of different resolutions: R = 8,16,32,64,128 (from left to right).

Abstract
We present an extension of the popular gradient mesh vector graphics primitive with the addition of mesh colours, aiming to
reduce the mesh complexity needed to describe intricate colour gradients and textures. We present interesting applications to
user-guided authoring of detailed vector graphics and image vectorisation.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction

The gradient mesh [Ado06] is a vector graphics primitive that al-
lows the user to create a regular quadrilateral mesh that smoothly
interpolates colours between vertices. The shapes of the quadri-
laterals can be manipulated through tangent handles, allowing for
smooth curves to bound the shape. In this way, an image can be
modelled through a deformable mesh of patches.

One downside of this gradient mesh primitive is that in order to
model images with complex colour gradients, or with a high level
of detail, the mesh necessarily becomes dense (see Figure 8, top),
as colours can be specified only at the corners of each quadrilateral;
see Figure 2.

To overcome that limitation, we explore the addition of mesh
colours [YKH08; YKH10] to the gradient mesh primitive, aiming
at decreasing the mesh density needed to represent complex gra-
dients and texture information. Mesh colours are an alternative to
texture mapping for 3D meshes, allowing to map a texture to each
polygon in the mesh, but without the need of complex global pa-
rameterizations.

Our results show that the addition of mesh colours to gradient
meshes removes the burden on the designer to create complicated

meshes just to be able to model colour correctly. Moreover, due
to the sparsity of our meshes we create a fast vectorisation work
flow, where the user has to define only a sparse mesh and the mesh
colours will be automatically fit. We compare our solution with the
locally refinable gradient meshes of [BLHK18].

2. Related Work

We start by briefly reviewing relevant prior work on gradient
meshes and mesh colours.

2.1. Gradient Meshes

A gradient mesh is a popular vector graphics primitive for defining
smooth colour surfaces. It is defined as a mesh of connected 2D
patches, in which each vertex is assigned a colour. As illustrated
in Figure 2, gradient meshes typically make use of bicubic patches
of which the edges are cubic curves. Tangent handles at each ver-
tex guide the geometry of these curves and the spread of colour
inside the patches. As such, gradient meshes provide a way to in-
tuitively interpolate between multiple colours. To increase their ex-
pressiveness, recent extensions include arbitrary manifold topolo-
gies [LKSD17; VK18; HBK19] and interpolation of procedural
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Figure 2: A simple gradient mesh. Left: The vertex colours and
tangent handles. Right: The resulting bicubic interpolant.

noise functions [HvK19]. Traditionally, gradient meshes were only
refinable globally. Locally refinable gradient meshes [BLHK18] al-
low to decrease mesh density. Gradient meshes have been used in
the past for automatic image vectorisation [LHM09; SLWS07]. Our
work aims at efficiently increasing texture detail, especially in the
context of user-guided image vectorisation.

Our gradient meshes consist of bicubic patches bounded by cu-
bic curves, expressed in Hermite form. Each curve is defined by
the positions and tangents at its endpoints. This creates a type of
bicubic patch known as a Ferguson patch [BLHK18].

This patch can be defined as

S(u,v) = H(u)T QH(v)

on [0,1]2, where H(t) =


2t3−3t2 +1
−2t3 +3t2

t3−2t2 + t
t3− t2

 are the cubic Hermite

functions, and

Q =


S(0,0) S(0,1) Sv(0,0) Sv(0,1)
S(1,0) S(1,1) Sv(1,0) Sv(1,1)
Su(0,0) Su(0,1) 0 0
Su(1,0) Su(1,1) 0 0


contains the Hermite control points, namely the positions and first
partial derivatives (tangents) at each vertex of the patch. S(i, j) are
elements of R5 containing (x,y) position and (r,g,b) colour. No-
tably, the (r,g,b) components of Sv(i, j) and Su(i, j) in the above
matrix are set to 0. If neighbouring patches have gradients Sv and
Su in the same directions and magnitude, this creates a tangent con-
tinuous (and actually C1) bicubic interpolation of colours and ge-
ometry across the mesh. The four zeroes in Q represent the mixed
partial derivatives Suv(i, j) of the Ferguson patch.

2.2. Mesh Colours

Mesh colours were originally devised as an alternative to traditional
texture mapping for 3D polygon meshes [YKH08]. They are sim-
ilar to vertex colours, in which each vertex in a mesh is assigned
a colour, and the surface of each patch interpolates between the
colours at its vertices. However, instead of colours being defined
only at the vertices, they are also defined at regularly spaced points
along edges and faces of the surface of each patch.

The resolution R of a mesh colour patch is defined for our pur-
poses as the number of colour positions between each vertex on an

edge, minus one. So a patch with R = 1 specifies colours only at the
vertices, and a patch with R = 2 has one extra colour position on
each edge and one logically in the middle of the patch. Patches can
have an individually defined resolution, meaning that a mesh can
contain patches of varying resolutions. This can be used to adap-
tively give additional detail to complex parts of the mesh, while
leaving low resolution patches to describe low-detail portions, giv-
ing great texture detail with minimal memory usage [YKH10].
Mesh colours have been used in the context of interactive paint-
ing of 3D models and for image vectorisation using (curved) trian-
gles [HEK21], but not in combination with gradient meshes.

3. Method and Implementation

We now detail our primitive, gradient meshes using mesh colours,
and its implementation.

3.1. Framework

Our program renders the mesh using a tessellation shader, which
partitions each patch into many triangles, which are positioned
and coloured according to the parametric definition of the patch
as noted in Section 2.1. A tessellation shader consists of the tessel-
lation control shader (TCS) and the tessellation evaluation shader
(TES). In the TCS, the level of tessellation is determined, which
controls the number of triangles to subdivide the patch into, which
can be determined by the user using a slider in the UI. The tessella-
tion is computed from there, and the resulting triangles are then sent
to the TES, which determines position and parametric position of
each triangle’s vertices based on local coordinates on the patch and
the patch’s vertex positions, and tangents, which are passed into it
from the TCS. Then afterwards, the mesh colours are evaluated on
a per-fragment basis using the interpolated parametric coordinates
as passed from the TCS.

3.2. Texture Arrays

Previous mesh colour implementations [Yuk17] pack patch tex-
tures inside a single two-dimensional texture (with additional
textures for lower mip levels) or advocate the use of bindless-
textures [MSY20]. We opt to use OpenGL Texture2DArrays,
a type of texture that stores many separate 2D textures in a three-
dimensional structure, with the notable limitation that each texture
in the array needs to have the same dimensions. Each patch’s colour
data then receives an index in this texture array. This way, oper-
ations on the mesh colours, such as brushing (Section 3.5), can
be handled efficiently without resorting to recomputing the whole
mesh colour texture.

Using a single Texture2DArray, however, causes a problem.
Because each texture in the array needs to have the same dimen-
sions, there will be wasted space in the textures of lower-resolution
patches, as illustrated in Figure 3. The dimensions of the texture
array will be larger than necessary for the texture of these lower-
resolution patches, wasting memory space in the texture array.

In order to prevent this, multiple texture arrays were used in-
stead of one. This requires the patch resolutions supported by the
program to be restricted, as only a limited number of texture arrays
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Single texture array

Resolution 1

Resolution 2

Resolution 4

Mesh Colours Patch
Resolution 2

3x3 colour data

a)

b)

c)

d)

Figure 3: a) A Ferguson patch with mesh colours shown at R = 2,
along with (b) the representation of its mesh colours in memory.
c) A diagram depicting a patch’s colour data being stored inside
a texture array. The new texture contains empty space surround-
ing the colour data, as the texture array’s dimensions are larger
than the patch’s resolution. d) A resolution 2 patch’s colour data is
stored in the corresponding texture array.

can be used. Resolutions were restricted to R= 2r,r ∈ {0,1, . . . ,7};
i.e. powers of two up to and including 128.

Now, each patch has a power-of-two resolution up to 128, and its
colour data is stored inside one of eight Texture2DArrays cor-
responding to each of these values. Each texture array contains NR
textures of size R+ 1 by R+ 1, where R is its corresponding mesh
colour resolution. This eliminates any waste of memory space, as
each patch’s colour data fits perfectly in one of these texture arrays.
Patches are each assigned an index in the texture array they belong
to, with each texture array being resized when needed to fit new
patches. When the resolution of a patch is changed, the relevant
texture arrays are reconstructed and resized as well. The user can
change the resolution of a patch by selecting it and using hotkeys
to either double or halve the resolution. When resolution is dou-
bled, the colour data is bilinearly interpolated between to make the
required new data. This results in no loss of quality when using bi-
linear interpolation for rendering, as the lower resolution patch is
perfectly reproduced in the higher resolution. Doubling the resolu-
tion whilst using bicubic interpolation will not exactly reproduce
the lower resolution.

In order to access the texture data of a particular patch, the index
of the patch’s corresponding texture array is needed, which can be
derived from its resolution as well as the index of the patch within
the texture array. The mesh colour data can then be accessed using
3D texture coordinates (u,v, i), where i is the index of the texture
within the texture array. The bottom left mesh colour can be ob-
tained through integer coordinates p = (i, j) that are derived from
a zero-based index in the R+1 by R+1 colour data as

p = t(u,v) = b(R+1) · (u,v)c.

S(u,v)

S(0,0)(u,v)
S(1,0)(u,v)

S(0,1)(u,v)
S(1,1)(u,v)

S(0.6,0.4) = S(1,0)(0.2,0.8)

Figure 4: An example of a mesh colours patch of resolution R = 2,
with subpatches shown and labeled. The point S(1,0)(0.2,0.8) =

S
(

1+0.2
2 , 0+0.8

2

)
= S(0.6,0.4) is shown (position not accurate).

3.3. Colour Interpolation

As mentioned before, our base gradient mesh implementation
uses bicubic interpolation (Section 2.1). To generalise it for mesh
colours for a patch with resolution R, we can consider a patch
S(u,v) as consisting of R2 sub-patches S(i, j)(u,v) with i, j ∈
{0,1, . . . ,R−1}, u,v ∈ [0,1] and

S(i, j)(u,v) = S
(

i+u
R

,
j+ v

R

)
.

The spatial portion of S is determined in the same way as before,
but the colours are interpolated within each sub-patch. Let us de-
note the colour portion of S(u,v) as C(u,v) and of S(i, j)(u,v) as
C(i, j)(u,v). The colours at the corners of each of these S(i, j) are
exactly the mesh colours assigned to the patch: For u,v ∈ {0,1},
C(i, j)(u,v) = tex(t((i+ u, j+ v))), where tex is a function retriev-
ing colour data from the patch’s texture given (u,v) coordinates.
This is illustrated in Figure 4.

For bicubic interpolation, a similar method can be used to the
one used originally in the initial gradient mesh implementation: we
take C(i, j)(u,v) = HT (u)QH(v) where H(t) are the cubic Hermite
functions and

Q =


C(i, j)(0,0) C(i, j)(0,1) 0 0
C(i, j)(1,0) C(i, j)(1,1) 0 0

0 0 0 0
0 0 0 0


contains the colour values at each corner of the sub-patch. For bi-
linear interpolation, we simply bilinearly interpolate the four corner
values.

3.4. Edge Smoothing

When working with mesh colour patches with different resolutions,
it is often desired for the edges of the patches to blend smoothly
with each other, without colour discontinuities at the edge. Whereas
the original mesh colours implementation did this implicitly for ev-
ery edge in the patch [Yuk17], we offer it an option to be toggled
on and off for each edge, to allow for sharp colour discontinuities
if desired.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



S. D. Baksteen, G. J. Hettinga, J. Echevarria & J. Kosinka / Mesh Colours for Gradient Meshes

Figure 5: A basic mesh colours patch of R = 2 rendered with bilin-
ear interpolation (left) and bicubic interpolation (right).

The program keeps track of the edges which are linked by storing
the indices of the linked patches in question and the index (start-
ing from the half-edge linked directly to the patch) of the half-
edges that are linked. Then, if both patches have the same reso-
lution, the mesh colours are copied from one of the patches to the
other whenever they are modified. If one patch has a lower resolu-
tion than the other, the colours are strictly copied from the lower-
resolution patch to the higher-resolution patch, linearly interpolat-
ing the colour points on the higher-resolution patch that do not exist
on the lower-resolution patch from the existing colours. This means
that the edge looks perfectly smooth when bilinear colour interpola-
tion is used, but not necessarily for bicubic colour interpolation, as
the colours on the higher-resolution patch do not exactly match the
displayed colours on the lower-resolution patch at the same points.

In Figure 6, this edge smoothing approach is illustrated. The
patch on the bottom has a lower resolution than the patch above
it, as does the patch on the right. When applying edge smoothing,
the colours are copied from those patches to the central patch. This
results in a smooth continuous transition between the patches. At
the same time, this may result into a loss of detail; which is also
why we keep this smoothing as an optional feature.

Figure 6: A three-patch mesh using mesh colours. On the left, the
mesh is seen with sharp colour discontinuities at the edges of the
patches. On the right, the same mesh is shown after application of
edge smoothing, eliminating discontinuities.

Figure 7: The results of using the brush tool to draw with red on a
completely black patch, moving the mouse along similar curves for
patches of resolution R = 2,8,16,32 (from left to right).

3.5. Painting Tools

To allow for direct manipulation of mesh colours by the user, a
pencil and brush tool have been implemented. These tools allows
the user paint over the gradient mesh (Figure 7). In [YKH08] While
dragging the mouse, the closest mesh colour sample point on the
screen is replaced with the selected colour. This is done by iterating
through each patch and then through each sample point in the patch.
For each point, its local coordinates on the patch are transformed
to global coordinates using the parametric description of the patch,
then the distance is calculated to the mouse position. The closest
point overall is then chosen to be replaced with the new colour.

3.6. Automatic Image Colour Sampling

To allow users to more easily convert raster images to gradient
meshes with mesh colours, we automatically sample colours from a
raster image (Figures 1 and 8). Our method iterates over each patch
and each mesh colour sample point within them. For each point, its
coordinates are transformed to local coordinates inside the raster
image. The mesh colour is then assigned the bilinearly sampled
colour of the image.

4. Results

Figure 8 shows a comparison between an image created using a tra-
ditional gradient mesh with local refinement and a recreation using
mesh colours. Using only three patches instead of many, and high-
resolution mesh colours, a decent approximation was created of the
original using our primitive. There are more colour sample points
in the mesh colours recreation than in the original version, which is
needed to make up for the mesh colours not being at the same loca-
tion as the vertices in the refined vertex colours mesh, also taking
up more memory space overall. But the geometry of our mesh is
very simple compared to the complex gradient mesh of [BLHK18].

Figure 1 shows the results of fitting a much more textured image
of an apple. Notice the effects of increasing mesh colour resolution.
Another result is shown in Figure 9, this time using a banana image.

5. Discussion

As shown in the previous section, the mesh colours implementa-
tion can produce high complexity gradients using low mesh density,
compared to traditional gradient meshes which need higher density
meshes to capture the same. A mesh using mesh colours will also
use less data than an exactly equivalent traditional mesh, because if
the mesh colours match up exactly with the vertex control points on

c© 2021 The Author(s)
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Figure 8: Top: An image of a plum created using a previous
gradient mesh implementation [BLHK18]. On the left, the mesh
boundaries are shown with vertex colours visible, while on the
right the interpolated result is shown. Image and mesh adopted
from [BLHK18]. Bottom: The same image of a plum recreated with
mesh colours, using a combination of image fitting and manual ad-
justments with the pencil tool in order to avoid capturing the over-
lapping leaf. Each patch in the mesh has a mesh colours resolution
R = 16 for a total of 867 mesh colour samples. In the middle, the
mesh boundaries are shown, and on the right is the interpolated
result (bilinear interpolation).

the traditional mesh, the traditional mesh will have additional data
in tangents and vertices associated with these points, which is not
needed in the mesh colours mesh.

However, in practice, when adapting a traditional gradient mesh
with mesh colours using significantly reduced mesh complexity,
the new mesh will likely need more mesh colours than there are
vertices in the original, to make up for the fact that the simpler
geometry sacrifices some flexibility where colour control points are
located, as seen in Figure 8, where the adapted mesh using mesh
colours contains significantly more colour points than the original.
In this case, the new mesh may use more storage space.

Compared to traditional gradient mesh implementations, the
mesh colours version can capture significantly more detail for each
patch, and therefore capture the same image using significantly less
complex mesh geometry. However, this also sacrifices flexibility, in
that mesh colours are distributed evenly across the surface of each
patch, and cannot be individually moved, whereas users can exactly
specify the position of each vertex in a traditional mesh. The prop-
erties of the gradient are also specified entirely by the larger, less
dense patches, creating less opportunity for fine-tuning the specifics
of the gradient than an approach using dense mesh geometry.

Figure 9: Far left: The original image of a bunch of bananas. Left:
One banana manually traced, with mesh overlaid. Right: The ba-
nana rendered using image fitting with resolution R = 1 for all
patches, totalling 84 mesh colour samples. Far right: The banana
rendered using bilinear interpolation with mesh colour resolutions
ranging from R = 4 for most patches to R = 16 for the brown tip of
the banana, totalling 1357 mesh colour samples.

These restrictions, however, enable an intuitive implementation
of edge smoothing, as all possible patch resolutions are multiples
of each other, and edge smoothing using patch resolutions that are
not multiples of each other would need an entirely different im-
plementation to properly remove discontinuities. In addition, the
limit on the number of possible resolutions serves a purpose in in-
creasing (texture) storage efficiency of the implementation. Previ-
ous implementations of mesh colours [Yuk17] use packing algo-
rithms to fit texture data of arbitrary resolutions in the same tex-
ture, which causes some wasted storage space, as this packing is
not fully efficient, creating up to 16% storage overhead for large
meshes [Yuk17]. Our implementation has no storage overhead, at
the cost of restricting the space of possible patch resolutions.

6. Conclusion and Future Work

Our main goal was to add mesh colours to the gradient mesh prim-
itive, in the hopes of reducing the amount of complexity needed in
the mesh geometry to represent complicated colour gradients and
textures. A memory-efficient implementation of mesh colours has
been created for gradient meshes, as well as basic tools for the ma-
nipulation and creation of such meshes.

The results have shown that this method can create geometri-
cally simple meshes with a great level of colour detail, as well as
the possibility of vectorisation of raster images using image fitting
and manually created meshes with simple geometry, yielding good
results. Basic direct manipulation of mesh colours is also provided
through a brush tool. More elaborate brush tools would be interest-
ing future work.

Other interesting avenues for future research improved colour
fitting beyond single pixel colours or bilinear colour sampling and
automatic patch resolution selection by comparing the result of im-
age fitting on a patch to the input raster image.
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JŘÍ. “Efficient Image Vectorisation Using Mesh Colours”. STAG: Smart
Tools and Applications in Graphics. Ed. by FROSINI, P., GIORGI, D.,
MELZI, S., and RODOLÀ, E. The Eurographics Association, 2021 2.

[HvK19] HETTINGA, GERBEN J., VAN BECKHOVEN, ROWAN, and
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chical Refinement for Subdivision Gradient Meshes”. Computer Graph-
ics Forum 37.7 (2018), 373–383 1.

[YKH08] YUKSEL, CEM, KEYSER, JOHN, and HOUSE, DONALD H.
Mesh Colors. Tech. rep. Department of Computer Science, Texas A&M
University, 2008 1, 2, 4.

[YKH10] YUKSEL, CEM, KEYSER, JOHN, and HOUSE, DONALD H.
“Mesh colors”. ACM Transactions on Graphics 29.2 (2010), 15:1–15:11.
ISSN: 0730-0301 1, 2.

[Yuk17] YUKSEL, CEM. “Mesh Color Textures”. High-Performance
Graphics (HPG 2017). Los Angeles, CA: ACM, 2017. ISBN: 978-1-
4503-5101-0/17/07 2, 3, 5.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdf_reference_archive/pdf_reference_1-7.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdf_reference_archive/pdf_reference_1-7.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdf_reference_archive/pdf_reference_1-7.pdf
https://doi.org/10.1109/TVCG.2020.3039777
https://doi.org/10.1145/1276377.1276391
https://doi.org/10.1145/1276377.1276391
https://doi.org/10.1145/1276377.1276391

