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Document binarization is a key step in most document analysis tasks. However, historical-document im-
ages usually suffer from various degradations, making this a very challenging processing stage. The per-
formance of document image binarization has improved dramatically in recent years by the use of Con-
volutional Neural Networks (CNNs). In this paper, a dual-task, T-shaped neural network is proposed that
has the main task of binarization and an auxiliary task of image enhancement. The neural network for

Keywords: enhancement learns the degradations in document images and the specific CNN-kernel features can be
Cascade T-Net adapted towards the binarization task in the training process. In addition, the enhancement image can be
Binarization considered as an improved version of the input image, which can be fed into the network for fine-tuning,
g?gggcemem making it possible to design a chained-cascade network (CT-Net). Experimental results on document bi-

narization competition datasets (DIBCO datasets) and MCS dataset show that our proposed method out-

Convolutional neural networks performs competing state-of-the-art methods in most cases.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Document binarization, which is a common pre-processing
step, aims to classify each pixel in a degraded image into either
text or background. Document binarization is a fundamental re-
search topic for document processing approaches including layout
analysis [1,2], historical document analysis [3-5] and word spot-
ting [6,7]. The quality of document images and their binarization
maps affect the performance of high-level processing tasks, es-
pecially for methods which extract features based on binarized
images [3]. Therefore, a high-quality and accurate binarization of
a degraded image can boost the performance of the final task
in the workflow. The problem of binarization attracts interest in
the field, leading to nine document image binarization contests
(DIBCO) from the year 2009 and several document images with
ground-truth are released every year (except 2015).

Document binarization is a challenging problem because most
documents suffer from various degradations such as pitch-black
or pure-white margins; feeble contrast between ink and parch-
ment; smear; stain; uneven illumination and pen strokes; arti-
facts and bleed-through [8,9]. Examples are shown in Fig. 1. These
degradations affect the results of edge detection, intensity distribu-
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Schomaker).

https://doi.org/10.1016/j.patcog.2021.108010
0031-3203/© 2021 Elsevier Ltd. All rights reserved.

tion computation and stroke-width estimation, which are the ba-
sic steps of traditional binarization methods [10-13]. Therefore, the
performance of these traditional binarization methods is limited
and none of them can deal with all types of degradations.

Recently, the performance of document binarization has been
greatly improved by using the convolutional neural network [8,14],
which has a large information capacity and it can correct various
degradations learned from the training set. Document binarization
is similar to the semantic segmentation problem [15] and the neu-
ral networks used for semantic segmentation can also be used for
binarization, such as the fully convolutional network [16], hierar-
chical deep-supervised network [14] inspired by holistic edge de-
tection (HED) [17] and U-Net [18,19].

1.1. Motivation

There are two types of tasks related to document binarization:
(1) Binarization task. Most methods consider the document im-
age binarization as a single task and train the neural network to
directly classify each pixel into either text or background [8,14,20].
(2) Enhancement task. The aim of an enhancement task is to train
a model to improve the quality of the input image and output an
enhanced version which is locally uniform [21,22]. A neural net-
work for enhancement should learn the degradations which are
present in the original image, yielding a clear and enhanced im-
age [19]. In this paper, we train a neural network to jointly learn
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Fig. 1. Examples of typical image degradations from DIBCO datasets (a) black margin (b) feeble contrast between ink and parchment (c) smear (d) textural background (e)

smudging of text (f) uneven distribution (g) bleed-through (h) uneven pen strokes.

Fig. 2. The proposed framework for document binarization and enhancement. x is
the input image, e is the enhanced image and b is the binarized image. N. and
N, are networks for enhancement and binarization, respectively. f, is the adaption
function which transfers the deep features from N, to Nj.

the binarization and enhancement task and transfer the learned
degradations from the enhancement task to the binarization task
to improve the performance. Training the neural network jointly
for enhancement and binarization is expected to improve the per-
formance of binarization because the learned features are shared
between two tasks and the risk of over-fitting for binarization is
reduced. In addition, features learned for enhancement contain the
degradation information and adapting these features inspired by
the deep-adaptive learning approach [23] to binarization can fur-
ther improve the performance.

The proposed framework shown in Fig. 2 implicitly decomposes
the binarization into two steps, corresponding to two neural net-
works: Ne is the residual network to learn the enhanced image e
and Nj, is the network to learn the binarized image b, given the in-
put image x. The enhanced image e can be denoted by: e = Ne + X,
thus the network N learns the degradations (the differences be-
tween the degraded and clear images) in the image N, =€ —X.
We transfer the deep features learned from the network N to the
binarized network N, by the add operation, making the network
Ny, indirectly learning from x + N, = x + e — x = e which is the en-
hanced image. The network N learns the degradations which are
transferred to the binarization network N, to correct the deep fea-
tures of the Nj. Thus, unlike the traditional neural network learn-
ing the binarization directly from the input image [14,20], our net-
work N, yields good performance by learning the binarization from
the corrected or enhanced (degradation-free) deep features learned
by the Ne.

1.2. Method

Although there are different ways to implement the framework
shown in Fig. 2, in this paper, we propose a T-shape network
(T-Net) which performs these two tasks within one neural net-
work, similar to the multi-task learning problem [24] which aims
to model related tasks jointly. The T-Net receives the degraded
image as input and outputs two maps: one is the binarization
map and another one is the enhancement map. The difference be-

tween document enhancement and binarization is that document
enhancement aims to improve the perceptual quality by removing
or correcting various degradations [19] and the output image of
enhancement is an improved version of the input image, which it
is not guaranteed to be binarized.

Since the enhanced image can be considered as an improved
version of the input image, it can also be used as the input for fine-
tuning, making it possible to design a cascade neural network to
deal with various types of degradations iteratively. The cascade ap-
proach presents a powerful architecture for boosting performance
iteratively and has been widely used in various tasks [25-27]. Cas-
cade neural networks usually have multiple stages and the earlier
stages can correct the easy degradations whereas the later stages
can pay more attention to the hard degradations in the document
images [28].

Inspired by the multiple-task and cascade-learning methods, we
propose a Cascade T-shape neural network (CT-Net) for document
binarization. The CT-Net consists of several T-Nets and each T-Net
has three branches, one branch is the encoder which converts the
input images into features maps in different levels and the other
two branches are two decoders corresponding to the binarization
task and the enhancement task. The encoder is shared between
two tasks and two different decoders learn specific features for
each task. In addition, as inspired by the deep adaptive learning
method [23], we also transfer the features learned for enhance-
ment to the features for binarization, named CT,,-Net. As dis-
cussed above, the learned features in the decoder for enhancement
contain the degradation information of the input image, which
makes the decoder of binarization to learn indirectly from the en-
hanced features and thus improve the performance.

The remainder of this paper is organized as follows.
Section 2 covers a background overview of document bina-
rization. In Section 3, we describe our proposed methods in detail.
Experimental results are given in Section 4 and conclusions are
presented in Section 5.

2. Related work

There are two groups of binarization methods proposed in the
literature: traditional methods which are based on image pro-
cessing techniques, usually at the single pixel-intensity level, and
deep learning methods which apply convolutional neural networks
to learn an end-to-end model for binarization while exploiting
detailed regional image information. Traditional methods usually
compute a threshold on each pixel while the trained deep models
predict the label of each pixel in a document image.

2.1. Traditional threshold-based methods

The classical threshold-based method for binarization is the
Otsu method [29], which computes a global intensity threshold
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to minimize the intra-class variance on the whole document im-
ages and it provides a good performance if the histogram of
the intensity of document images has bimodal distribution. The
global threshold method does not work well on document images
with high degradations and uneven distributions. Therefore, local
threshold methods have been proposed, such as Niblack [30] and
Sauvola [10], which compute the threshold on each pixel, based on
statistical information in a local patch.

In [31], a local adaptive threshold method is proposed which re-
lies on a background surface estimation for computing the thresh-
old on each pixel. AdOtsu [12] introduces an estimated background
map to determine whether to use the Otsu’s threshold or not on
a local patch because using Otsu directly on small patches is im-
possible due to the fact that it always separates pixels into two
classes, which makes large errors on background patches without
any text. T-transition pixels, which is a generalization of edge pix-
els, are defined and used for binarization in [32] since texts in doc-
ument images usually have strong edges. The binarization meth-
ods proposed in [11,33,34| use the detected edge, combined with
an adaptive contrast map computed by using local maximum and
minimum [35] and ensemble strategy [36] which is tolerant to
background and text variation caused by variant degradations, to
determine the threshold on each pixel. The method proposed by
Jia et al. [13] uses the structural symmetric pixels to compute the
local threshold determined by the voting result of multiple thresh-
olds on each pixel.

Howe [37] defines the binarization problem as an optimiza-
tion problem based on a global-energy function whose data-
fidelity term relies on the Laplacian of the image intensity and
the smoothness term is related to edge discontinuities. Later,
Howe [38] proposes a automatic parameter tuning method for bi-
narization. Nafchi et al. [39] use phrase congruency-based features
maps and Otsu’s threshold for binarization. Recently, a game the-
ory inspired binarization is proposed in [40], which uses a two-
player, non-zero-sum, non-cooperative game to extract the local
information, followed by a K-means method for text classification.

2.2. Deep learning-based methods

With the development of deep learning, convolutional neural
networks have also been used for binarization, exploiting regional
texture. A fully convolutional network, which is originally proposed
for semantic segmentation in natural images [15], is adapted for
the binarization task in [16] with a pseudo F-measure loss. Inspired
by HED [17], a hierarchical deep-supervised network (DSN) archi-
tecture [14] is proposed to learn the labels of each pixel at differ-
ent feature levels. A primal-dual network (PDNet) [8] which com-
bines an energy minimization function and convolutional network
learned features for binarization. In [18], a selectional auto-encoder
network is used to predict a selection of values for each pixel’s
confidence value to determine whether the pixel belongs to text
or background. Zhao et al. [20] formulate the binarization as an
image-to-image translation task and use the conditional generative
adversial networks (cGANs) to combine the multi-scale information
for document image binarization.

Unlike the previous works which use a deep neural network to
predict the label of each pixel directly, the DeepOtsu [19] method
trains a network to output an enhanced image, which corrects the
degradations in the input image in a gradual manner. The final bi-
narization map can then be obtained from the enhancement map
by applying the global Otsu method.

The proposed method in the current paper is also a deep
learning-based method, based on a vanilla version of U-Net. How-
ever, the algorithm is modified to address the dual tasks of bi-
narization and enhancement simultaneously, instead of requiring
a separate final Otsu stage as in [19]. In addition, the proposed
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method here decomposes the binarization into two steps: en-
hancement and binarization. The enhancement step learns the
degradations which is transferred to the binarization step, making
the binarization based on the degradation-free deep features.

3. The proposed method

This section describes the proposed CT-Net and CT,4,-Net neu-
ral networks for document binarization and enhancement in a
multi-task learning scenario.

3.1. Problem formulation

We used x to denote the input degraded image, b to denote the
output binarized map and e to denote the enhancement version of
x. Both the binarization and enhancement tasks can be regarded
as an image-to-image translation problem, which can be solved by
the typical U-Net [20,41].

In this paper, a T-shape neural network is proposed for both
enhancement and binarization tasks (shown in Fig. 3), named as
T-Net, which is defined as:

c,m = E(x)
e = De(c, 1) +x (1)
b = Dy(c, i)

where E is the encoder which contains five convolutional layers
and coverts the input image into feature maps ri and c, c is the
context and contains the semantic information of the input im-
age and 1 = my, --- , ms are the intermediate spatial feature maps
from the encoder with different resolutions, D, and D, are the de-
coders for binarization and enhancement, respectively. More de-
tails can be found in Fig. 3. Our proposed T-Net can be considered
as the generalized U-Net in the multi-task scenario.

Compared to the vanilla U-Net [41], our proposed T-Net has an-
other branch D, for enhancement, which also uses the context in-
formation ¢ and feature maps ri from the encoder branch. In other
words, the two tasks share the same encoder E which learns the
shared representation but use different decoders D, and D, which
learn the task specific representation. Note that we added the orig-
inal input x on the enhancement decoder D, so it can be rewritten
as De(c,mi) = —(x —e), which means that the decoder D, learns
the negative degradations d = —(x —e) which are the differences
between the clear and enhanced image (e) and degraded image (x),
similar to DeepOtsu [19]. As discussed in [23,42], sharing parame-
ters among multi-tasks can greatly reduce the risk of overfitting on
a specific task.

In T-Net, the decoders D;, and D, learn specific features for each
task without any interaction. However, the information learned by
D for enhancement should be also helpful for binarization since
the task of enhancement is to remove the degradations and ob-
tain a clear and uniform image. In order to allow the network to
learn the relationship between these two tasks, we also applied
the shortcuts from the decoder D, to the decoder D, to improve
the information flow, inspired by the multi-task learning [23,24].
The T-Net with the task adaption, named T,4,-Net, can be denoted
as:

c,m = E(x)
e, = De(c, 1) +x (2)
b = Dy(c, M + i)

where i represents the spatial feature maps generated by the de-
coder D, during recovering the enhancement image e. We added
the intermediate spatial feature maps ri and @ in the decoder D,
since T is from the decoder D, which contains the negative degra-
dation information (De(c, ) = —(x —e)). Thus, i + I can remove
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Fig. 4. The overall architecture of the proposed T,,-Net. The structure of the en-
coder E is same to the one in Fig. 3. The dashed lines denote the short cuts from
the decoder D, to D,.

the learned degradations from the input feature map i, improv-
ing the performance of binarization. Fig. 4 shows the structure of
Tuda-Net.

As mentioned in [19], the enhancement image e is the latent
uniform and clear version of the input image and recovering it al-
lows the network to learn the degradations and binarization iter-
atively. More precisely, the enhancement map e may still contain
some slight degradations and it can be fed into the network for
further processing, which makes it possible to design a success-
ful architecture for binarization in a cascade way. In this paper, we
extended the T-Net into cascade T-Net, named CT-Net, which is de-
fined as:

ei+1’ bi+1 — Ti(ei) eO —x (3)

where T;(x) can be either T-Net (CT-Net) or Tq,-Net (CT,4,-Net), e
is the i-th enhancement map of T-Net-i and e = x is the original
input image. Fig. 5 shows the framework of the proposed CT-Net.

3.2. Network configuration

Inspired by the U-Net structure [41], the encoder of the
CT-Net contains five convolutional layers with channel size
[32,64,128,256,512], followed by batch normalization, ReLU, and
max-pooling (2x2, stride:2) layers. For decoders, the deconvolu-
tional layers are used for upsampling feature maps which is con-
catenated with the corresponding spatial feature maps in i from
the encoder branch, followed by a convolutional layer for feature

Pattern Recognition 118 (2021) 108010

Table 1
The number of documents on each DIBCO dataset.

Data set Handwritten  Printed  Total
DIBCO’09 [43] 5 5 10
H-DIBCO'10 [44] 10 - 10
DIBCO’11 [45] 8 8 16
H-DIBCO'12 [46] 14 - 14
DIBCO'13 [47] 8 8 16
H-DIBCO'14 [48] 10 - 10
H-DIBCO'16 [49] 10 - 10
DIBCO’17 [50] 20 - 20
H-DIBCO’18 [51] 10 - 10
Total 95 21 116

combination. The size of all kernels used in convolutional and de-
convolutional layers is 3 x 3, except the last layer which uses 1 x 1
kernel to compute the output map. The input color image size is
set to h x w x 3, where h and w are height and width. The output
layer of the enhancement has the same size as input. For binariza-
tion output, the size is h x w x 1, in which the value on each pixel
denotes the probability computed by a sigmoid function.
The loss of the enhancement is defined as:

Le= =Y lec el 0

where e; is the ground-truth of the enhancement image, e is the
output of the network and n is the total number of pixels in the
image. The loss of the binarization is the typical cross-entropy loss,
given by:

1
Ly=-+ > b -log(p) + (1 —by) - log(1 - p) (5)
where b; is the ground-truth of the binarization map and p is the
probability from the neural network. In fact, each T-Net network
in CT-Net can be trained separately or jointly. In this paper, we
trained the network jointly and the final training loss is given by:

N=3
Ltruin = Z (Liz + L}g) (6)

i=1

where L} and L, are the enhancement and binarization losses in
the i-th T-Net and N = 3 is the total number of the T-Net.

4. Experimental results
4.1. Datasets and evaluation metrics

We evaluated the proposed method on nine DIBCO benchmark
datasets from the document binarization competitions, including
DIBCO'09 [43], H-DIBCO’'10 [44], DIBCO'11 [45], H-DIBCO'12 [46],
DIBCO’13 [47], H-DIBCO’14 [48], H-DIBCO’16 [49], DIBCO’17 [50], H-
DIBCO’18 [51]. The number of documents on each dataset is shown
in Table 1. We used the leave-one-dataset-out strategy inspired
by [8,20] for evaluation. More precisely, when evaluating on a par-
ticular DIBCO dataset, all rest of datasets are used for training. The
training set also includes images from the Bickly-diary dataset [52],
Persian Heritage Image Binarization dataset (PHIDB) [53] and Syn-
chromedia Multispectral dataset [54]|, which were also used for
training the networks [14,19].

Four metrics which were widely used in the contests [49-
51] were used to assess the performance and quantitatively com-
pared with state-of-the-art methods, including the F-measure
(FM), pseudo F-measure (Fps), peak signal-to-noise ratio (PSNR)
and distance reciprocal distortion metric (DRD). For fair compari-
son, we used the evaluation tool provided by the DIBCO competi-
tions to compute these metric scores in this paper.
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4.2. Implementation details

Ideally, the entire image instead of patches can be processed by
the proposed CT-Net. However, due to the limitation of GPU mem-
ory it is very hard to work with arbitrary-sized inputs. The most
popular way is to crop small patches and resize them to a fixed
width and height [18,20]. The most common size is 256 x 256,
which is also adopted in the proposed CT-Net. For each image on
DIBCO datasets, we cropped image patches with 256 x 256 with
10% overlap horizontally and vertically. For scale augmentation, we
also sampled patches with the scale factor {0.75,1.25.1.5} based
on the input size of the network. In addition, the global patches
whose sizes are equal to the minimum of the entire image width
and height are cropped and resized to 256 x 256 for training and
testing, inspired by Vo et al. [14]. The network is initialized by the
Xavier method [55] and is trained by the Adam optimizer [56] with
an initial learning rate 0.0001, which is decreased to half at ev-
ery 50,000 iterations. The number of training iterations is 200,000
with the batch size 10 due to the limitation of the memory.

The ground-truth of the binarization is provided in DIBCO
datasets while the ground-truth of the enhancement is built by
using the same method in [19]. The value of each pixel on the en-
hancement ground-truth image is computed as the average pixel
value with the same label within the patch. The label of each pixel
can be obtained from the ground-truth of the binarization. Fig. 6
shows several training samples used in this paper for training the
neural networks.

During testing, the patches are cropped from the test images
with the same method used to crop patches for training. The pre-
dicted binarized maps from the trained networks are stitched to
the original document size by averaging values over the overlap-

ping patches. Therefore, the value of each pixel on the predicted
maps is the probability in [0,1]. The final binarization map is com-
puted with a global threshold T based on the predicted probabil-
ity map. Unlike the work in [14] which uses a fix T learned from
a separated training set for all documents, we used Otsu [29] to
compute the threshold T for each document. It is very efficient to
compute the Otsu threshold and each image has its own threshold
depending on the quality of predicted probability maps from the
network.

4.3. Performance evaluation

In this paper, we stacked three T-Nets due to the trade-off be-
tween performance and model complexity. It has been shown in
DeepOtsu [19] that the performance can be improved by cascad-
ing at least three basic components (T-Net) in the network. We
evaluated the performance of binarization results from each T-Net
and Ty4,-Net in the cascaded CT-Net and CT,4,-Net. Fig. 7 shows
the average scores of F-measure and DRD overall 116 binarization
maps with different n of CT-Net-n and CT,4,-Net-n. From the fig-
ure we can see that the performance in terms of F-measure and
DRD increases as stacking more T-Net in the CT-Net. Practically,
we also found the similar trends in terms of Fps and PNSR. Thus,
we can conclude that cascading different T-Nets can iteratively im-
prove the performance. In addition, the CT,4,-Net provides better
performance than CT-Net, which demonstrates the powerful of the
adaptive shortcuts from the enhancement task to the binarization
task.

We roughly divided all documents in DIBCO datasets into eight
groups, according to main degradations contained in document im-
ages as shown in Fig. 1. The average F-Measure scores of the pro-
posed CT-Net-3 and CT,4,-Net-3 is shown in Fig. 8, from which we
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can see that the performance of CT,4,-Net-3 outperforms CT-Net-3
in documents with most degradations except textural background
and smear. Note that the CT,4,-Net-3 provides much better results
than CT-Net-3 on documents with the degradation of black mar-
gins.

4.4. Comparison with winner methods submitted to DIBCO datasets

In this section, we compared the best score per metric for any
submission on each year and the proposed CT-Net-3 or CTg4,-
Net-3 methods. Table 2 shows the comparison between the pro-
posed method and the winner among competition submissions on
each DIBCO dataset. From the table we can see that our proposed
methods outperform the winner methods for all of nine data sets
in terms of all the evaluation metrics. The average scores of F-
measure over all nine datasets are 91.33 and 94.28 for the winner
and proposed CT-Net respectively. The results show that our pro-
posed CT-Net achieved, on average, a 3.2% improvement over the
winner results of DIBCO datasets.

4.5. Comparison with state-of-the-art methods

In this section, the proposed methods are qualitatively evalu-
ated on the nine DIBCO datasets and compared with traditional bi-
narization methods including Otsu [29], Sauvola [10], Su et al. [11],
Howe [38], Lelore et al. [57], Jia et al. [13], Mitianoudis et al. [58],
GiB [40] and deep learning-based methods including Hierarchical

Table 2
Comparison of the proposed methods with (H)DIBCO competition winners.
Database Method FM Fps PSNR DRD
DIBCO’09  Best Competition System  91.24 - 18.66 -
Best of CT-Net 9418 9580 20.50 2.56
Performance gains 2.94 - 1.84 -
H- Best Competition System  91.50 - 19.78 -
DIBCO’'10  Best of CT-Net 93.93 97.20 21.21 1.55
Performance gains 243 - 1.34 -
DIBCO’11  Best Competition System  88.74 - 17.97 5.36
Best of CT-Net 9527 9724 2150 137
Performance gains 6.53 - 3.53 3.99
H- Best Competition System  92.85 - 21.80 2.66
DIBCO’'12  Best of CT-Net 9582 96.67 2292 1.32
Performance gains 2.97 - 1.12 1.34
DIBCO’13  Best Competition System 92.70 94.19 21.29 3.10
Best of CT-Net 95.66 97.79 2298 132
Performance gains 2.96 3.60 1.69 1.78
H- Best Competition System  96.88 97.65 2266 0.90
DIBCO'14  Best of CT-Net 97.70  98.74 2392 0.65
Performance gains 0.82 1.09 1.26 0.25
H- Best Competition System  88.72 91.84 1845 3.86
DIBCO’'16  Best of CT-Net 91.07 9434 1922 3.29
Performance gains 2.35 2.50 0.77 0.57
DIBCO’17  Best Competition System 91.04 92.86 18.28 3.40
Best of CT-Net 92.72 9473 1917 265
Performance gains 1.68 1.87 0.89 0.75
H- Best Competition System 8834 90.24 19.11 4.92
DIBCO'18  Best of CT-Net 9223 9497 2013 270
Performance gains 3.89 473 1.02 2.22

DSN [14], PDNet [8], cGANs [20]. Tables 3, 4, 5 show the per-
formance of the proposed method and the compared algorithms.
Figs. 9-11 display several visual quality of binary results, highlight-
ing the advantages and disadvantages of the proposed methods.

4.5.1. DIBCO’09 dataset

The dataset contains ten documents with various degradations
such as bleed-through, smear or nonuniform background. From
Table 3 we can see that our proposed CT,4,-Net-3 provides the
best scores of F-measure, Fp; and PSNR. The cGANs [20] method
which uses the cascaded conditional generative adversarial net-
works to generate the binarization image gives lowest visual dis-
tortion (best DRD score). Fig. 9 shows several examples of the pro-
posed binary maps, revealing that our proposed methods can han-
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Performance comparison of different binarization methods on each DIBCO data set (best values are highlighted in bold and second best are

highlighted in italic).

Method DIBCO'09 H-DIBCO'10 DIBCO'11

FM Fps PSNR DRD FM Fps PSNR DRD FM Fps PSNR  DRD
otsu [29] 7860 8053 1531 2257 8543 9064 1752 405 8210 8596 1572 895
*Sauvola [10] 8537 89.08 1637 7.08 7518 8408 1594 722 8214 8770 1565 8.0
*Su et al. [11] 93.02 9461 1941 264 9136 9318 1978 242 8783 9024 1771 466
Howe [38] 9404 9506 2043 210 9359 9481 2108 172 9079 9228 1901 446
*Lelore et al. [57] 9393 9510 2021 217 9382 9427 2109 179 9248 9411 1937 297
Nafchi et al. [39] 9336 - 1955 - 91.78 9508 1980 - 9257 - 1929 228
Mitianoudis et al. [58] 9027 9269 18.08 371 8897 91.16 1832 338 89.13 9379 1790 347
Jia et al. [13] 9305 9460 1929 240 8946 9394 1886 293 9192 9509 1898 264
GiB [40] 9250 - 1829 299

& DeepOtsu [19] - -
o Hierarchical DSN [14] - -

19.26 241 90.00 - 19.14 275 90.33

93.4 95.8 19.9 1.9
933 96.4 20.1 2.0

& “PDNet [8] 9150 - 19.25  3.06 92.91 - 2040 185 9187 - 19.07 257

o cGANs [20] 94.10 95.26 2030 1.82 94.03 9539 21.12 1.58  93.81 95.70  20.26 1.81
& Proposed CT-Net-3 92.08 9431 19.77  3.58 9349 97.20 20.98 1.68 9527 9724 2150 1.37

& Proposed CT,4,-Net-3 94.18 9580 20.50 2.56 93.93 96.74 21.21 1.55 94.17 96.92 20.76 1.69

Note: * results are from Jia et al. [13] if possible. # deep learning method. #* the best score per metric in [8].

Table 4

Performance comparison of different binarization methods on each DIBCO data set (best values are highlighted in bold and second best are

highlighted in italic).

Method H-DIBCO'12 DIBCO'13 H-DIBCO'14

FM Fps PSNR DRD FM Fps PSNR DRD FM Fps PSNR  DRD
Otsu [29] 7507 7814 1503 2646 80.04 8343 1663 1098 9162 9569 1872 265
Sauvola [10] 8156 8735 1688 646 8271 8774 17.02 764 8470 87.88 17.81 477
Suetal [11] 89.76 89.61 1955 4.19  87.70 88.15 1959 421 9438 9594 2031 1.95
Howe [38] 93.73 9424 2185 210 9134 9179 2129 3.18 9649 9738 2224 1.08
Lelore et al. [57] 9405 9442 2143 211 9078 9147 2054 359 9614 9673 21.88 1.25
Jia et al. [13] 9299 9510 2037 234 9342 9605 2078 203 9498 97.18 2056 1.50
Mitianoudis et al. [58] 8971 9224 1873 388 9141 9547 1954 278 8757 - 1843 -
GiB [40] 90.99 - 1934 309 9114 - 1958 277 9400 - 1993 179
& DeepOtsu [19] - - - - - - - - 959 972 221 09
o Hierarchical DSN [14] - - - - 944 960 214 18 96.66 9759 2323 079
o “PDNet [8] 93.04 - 2050 292 9397 - 2130 183  89.99 - 2052 7.42
& cGANs [20] 9496 9615 2191 155 9528 9647 2223 139 9641 9755 2212 1.07
& Proposed CT-Net-3 9538 96.67 2239 152 9566 97.79 2298 132 9770 9874 2392 0.65

@ Proposed CTy,-Net-3 95.82 96.58 2292 132 95.34

97.53 2241 1.57 96.91 97.93 2262 088

Note: * results are from Jia et al. [13] if possible. & deep learning method. #* the best score per metric in [8].

Table 5

Performance comparison of different binarization methods on each DIBCO data set (best values are highlighted in italic bold and second best

are highlighted in italic).

Method H-DIBCO’16 DIBCO’17 H-DIBCO’18

FM Fps PSNR DRD FM Fps PSNR DRD FM Fps PSNR DRD
Otsu [29] 86,59 8992 17.79 558 77.73 77.89 1385 1554 5145 53.05 9.74 59.07
Sauvola [10] 84.64 8839 17.09 627 77.11 84.10 1425 885 67.81 74.08  13.78 17.69
Suetal [11] 84.75 8894 1764 564 - - - - - - - -
Howe [38] 8747  92.28 18.05 535 90.10 90.95 18.52 5.12 80.84 82.85 16.67 11.96
Lelore et al. [57] 87.21 88.48 1736 527 - - - - - - - -
Jia et al. [13] 90.48 9327 1930 397 8559 8638 1639 7.99 76.52 7990 17.00 8.11
Mitianoudis et al. [58] 86.89 - 17.60 - - - - - - - - -
GiB [40] 91.15 - 1918 320 - - - - - - - -
@& DeepOtsu [19] 91.4 94.3 19.6 2.9 - - - - - - - -
o Hierarchical DSN [14] 90.10 93.57 19.01 3.58 - - - - - - - -
& “PDNet [8] 90.18 - 1899 3.61 - - - - - - - -
o cGANs [20] 91.66 9458 19.64 282 90.73 92,58 17.83 3.58 87.73  90.60 1837 458
@ Proposed CT-Net-3 89.62 91.60 18.63 4.70 92.72 9431 1917 2.79 8890  91.45 18.84 5.58

& Proposed CTygo-Net-3  91.07 9434 1922 329 9265

94.73 1917 2.65 9223 9497 2013 2.70

Note: * results are from Jia et al. [13] if possible. & deep learning method. #* the best score per metric in [8].

dle the various degradations such as bleed-through and feeble con-
trast between ink and parchment. However, Fig. 9 also shows a
problematic sample involving large character sizes with fat strokes
in a deviant ink color. The main reason is that there was no similar
training material in the training dataset.

4.5.2. H-DIBCO’10 dataset

Document images in this dataset are from historical collections
and ambiguity exists in the text boundary locations. It is hard, even
for humans, to label pixels near the boundary [9]. Therefore, most
errors indeed are from pixels near text boundaries and weak ink
traces. The best scores on this data set, for different metrics, are
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from different methods. The highest F-measure score is given by
sGANs [20] while the proposed CT-Net-3 results in the best Fps,
which has a better correlation with OCR [9]. The best performance
in terms of PSNR and DRD is given by CT,4,-Net-3 which indicates
that our proposed CT,4,-Net-3 method gives the lowest visual dis-
tortion.

4.5.3. DIBCO’11 and H-DIBCO’12 datasets

Both of our proposed CT-Net-3 and CT,;,-Net-3 provide the bet-
ter results than other state-of-the-art methods on all four metric
scores on these two data sets. Fig. 10 shows two images which
contain variation of contrast. The binarization maps of our pro-

posed methods have a clear background but lose some strokes on
the very noisy regions.

Most document images in DIBCO'11 dataset have a strong tex-
tural background. Thus, as discussed above, the CT-Net-3 provides
better results than CT,4,-Net-3. However, document images in the
H-DIBCO’12 dataset suffer from uneven distribution and weak ink
traces, which can be solved efficiently by CT,4,-Net-3.

4.5.4. DIBCO’13 and H-DIBCO’14 datasets

Document images in DIBCO’13 contains large smear or show-
through degradations. Although our proposed methods provide the
best results over other methods, some strokes inside the smear are
missed and noisy patterns from smear are retained in the final bi-
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narization map. In these two datasets, the CT-Net-3 provides bet-
ter performance than CT,4,-Net-3 since the document images suf-
fer from the degradations of smear or weak ink traces which are
hard to be corrected in the enhancement images, thus noises are
introduced through the adaptive shortcuts in CT,4,-Net.

4.5.5. H-DIBCO’16 and DIBCO’17 datasets

Our proposed method provides the second best performance
in terms of Fys on the H-DIBCO'16 data set, which is lower than
sGANs [20]. H-DIBCO’16 is a challenging dataset for binarization,
compared to other DIBCO datasets which contains handwritten
documents with various degradations such as bleed-through, un-
even pen strokes and background.

On the DIBCO’'17 dataset, our proposed methods provide the
best results than other methods. Document images in this dataset
have a large image size and most of them suffer from the bleed-
through degradations.

4.5.6. H-DIBCO’18 dataset

The special degradation on H-DIBCO’18 is dark margins near the
page boundaries. The proposed CT,4,-Net-3 provides best results
than traditional methods, such as Jia’s [13], Howe’s [38] and the
deep learning-based cGANs [20]. Fig. 11 shows several examples,
indicating that our proposed CT,4,-Net-3 can deal with the dark
margin and uneven distribution of text pixels in document images.

4.5.7. Summary over nine DIBCO datasets

Table 6 presents the mean values of the four evaluation metrics
over nine DIBCO datasets. We compared our methods with five tra-
ditional methods and two deep learning-based methods. From the
table we can see that the proposed CT,4,-Net-3 provides the best
scores of four metrics. The CT-Net-3 without adaption achieves
second best results in terms of F-measure and PSNR. Fig. 12 shows
the visual results of one document on the H-DIBCO'16 dataset from
different methods. From the figure we can see that our proposed
methods provide good results on weak ink traces.

4.6. Generalization to The MCS dataset

In this section, we evaluated the generalization of the proposed
methods on the Monk Cuper Set (MCS) dataset, which was firstly

Table 6

Comparison of the mean values for different methods over all nine
DIBCO data sets. The best performance is shown in bold and the
second-best is shown in italic.

Method FM Fps PSNR DRD
1st rank of contest 89.83 - 19.79 -
*Otsu [29] 82.60 86.17 16.62 11.35
Sauvola [10] 82.33 87.46 16.68 6.85
Jia et al. [13] 92.68 9515 19.87 2.44
Howe [38] 92.53 93.98 20.06 2.86
Mitianoudis [58] 89.14 - 16.90 -

o Tensmeyer [16] 92.20 95.71 20.16 2.74
o cGANs [20] 93.19 94.92 20.42 2.24
& Proposed CT-Net-3 93.47 95.47 20.90 2.57

@& Proposed CTy4,-Net-3  94.03 96.17 2099  2.00

Note: * results are from Zhao et al. [20]. & deep learning method.

introduced in our previous work [19] and images in this dataset
were taken using iPhone. It contains 25 pages sampled from a his-
torical collection with heavy bleed-through degradations and tex-
tural background. This data set is public available on the author’s
website!.

Table 7 shows the average results overall 25 document images
from nine models trained using the DIBCO data sets. Our proposed
CT-Net achieves better results than other methods, which demon-
strates that the proposed methods generalize very well on other
degraded historical documents.

4.7. Computing time analysis

The number of parameters of the proposed T-Net is the 1.5
times that of the standard U-Net [41] since our T-Net shares the
same encoder and has different decoders for different tasks. The
networks were trained using a single GPU card (16 GB memory),
taking about 24 h. For testing, the time of inference of each patch
is less one second and patches from different images can be pro-
cessing in parallel with multiple GPUs.

! https://www.ai.rug.nl/~sheng/
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Fig. 12. Visual example with the F-measure (Fm) and PNSR metric values of the binarization results of one document applied to H-DIBCO’16 and produced by different

methods: (a) original image, (b) ground truth, (c) Su et al. [11], (d) Howe [38],

(e) Jia et al. [13], (

f) cGANs [20], (g) CT-Net-3, (h) CT,q.-Net-3. (Red pixel means text pixel

recognized to background while blue pixel means background pixel recognized to text). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Table 7
Comparison of the mean values for different methods on
the MCS data set. The best performance is highlighed in

bold.
Method FM Fps PSNR DRD
Otsu [29] 69.3 705 11.8 34.0
Sauvola [10] 758 769 131 21.5
Suetal [11] 828 874 152 16.8
Jiaetal. [13] 854 887 158 7.1
Howe [38] 85.6  89.1 15.8 6.4
Deep-Sauvola [19] 87.0 89.9 16.2 6.1
CT-Net-1 883 922 167 4.8
CT-Net-2 88.7 928 169 44
CT-Net-3 88.7 927 169 4.4
CT,4q-Net-1 888 929 169 4.4
CT,44q-Net-2 889 930 169 43
CT,gq-Net-3 89.1 932 170 42

Note: * results are from He and Schomaker [19].

5. Conclusion

In this paper we have proposed a cascade T-shape network ar-
chitecture for document binarization, which ha two versions: CT-
Net and CT,4,-Net. The T-Net has two outputs corresponding to a
binarization map and an enhancement image, constituting a multi-
task learning framework. The CT-Net model is a network with
three cascade T-Nets, and CT,4,-Net adapts the features learned for
enhancement to the binarization task, which can improve the per-
formance of binarization.

We have evaluated the proposed methods over nine widely-
used competition DIBCO datasets and our proposed methods out-
perform all winner methods submitted to the competitions. In ad-
dition, our methods are superior to traditional and deep learning
methods for binarization reported in the literature. An external his-
torical document dataset is used to evaluate the generalization and
the results show that our proposed methods generalize very well
on these document images.

Future works include exploiting more complex structure of net-
work and training different networks on documents with different
degradations. Image enhancement, including traditional image op-
erations and the trainable generative adversarial network, appears
to be very important for boosting the performance of document
binarization. It would be interesting to evaluate the effect of im-
age enhancement on text recognition, in comparison to plain doc-
ument binarization.
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