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a b s t r a c t 

Document binarization is a key step in most document analysis tasks. However, historical-document im- 

ages usually suffer from various degradations, making this a very challenging processing stage. The per- 

formance of document image binarization has improved dramatically in recent years by the use of Con- 

volutional Neural Networks (CNNs). In this paper, a dual-task, T-shaped neural network is proposed that 

has the main task of binarization and an auxiliary task of image enhancement. The neural network for 

enhancement learns the degradations in document images and the specific CNN-kernel features can be 

adapted towards the binarization task in the training process. In addition, the enhancement image can be 

considered as an improved version of the input image, which can be fed into the network for fine-tuning, 

making it possible to design a chained-cascade network (CT-Net). Experimental results on document bi- 

narization competition datasets (DIBCO datasets) and MCS dataset show that our proposed method out- 

performs competing state-of-the-art methods in most cases. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Document binarization, which is a common pre-processing 

tep, aims to classify each pixel in a degraded image into either 

ext or background. Document binarization is a fundamental re- 

earch topic for document processing approaches including layout 

nalysis [1,2] , historical document analysis [3–5] and word spot- 

ing [6,7] . The quality of document images and their binarization 

aps affect the performance of high-level processing tasks, es- 

ecially for methods which extract features based on binarized 

mages [3] . Therefore, a high-quality and accurate binarization of 

 degraded image can boost the performance of the final task 

n the workflow. The problem of binarization attracts interest in 

he field, leading to nine document image binarization contests 

DIBCO) from the year 2009 and several document images with 

round-truth are released every year (except 2015). 

Document binarization is a challenging problem because most 

ocuments suffer from various degradations such as pitch-black 

r pure-white margins; feeble contrast between ink and parch- 

ent; smear; stain; uneven illumination and pen strokes; arti- 

acts and bleed-through [8,9] . Examples are shown in Fig. 1 . These 

egradations affect the results of edge detection, intensity distribu- 
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ion computation and stroke-width estimation, which are the ba- 

ic steps of traditional binarization methods [10–13] . Therefore, the 

erformance of these traditional binarization methods is limited 

nd none of them can deal with all types of degradations. 

Recently, the performance of document binarization has been 

reatly improved by using the convolutional neural network [8,14] , 

hich has a large information capacity and it can correct various 

egradations learned from the training set. Document binarization 

s similar to the semantic segmentation problem [15] and the neu- 

al networks used for semantic segmentation can also be used for 

inarization, such as the fully convolutional network [16] , hierar- 

hical deep-supervised network [14] inspired by holistic edge de- 

ection (HED) [17] and U-Net [18,19] . 

.1. Motivation 

There are two types of tasks related to document binarization: 

1) Binarization task . Most methods consider the document im- 

ge binarization as a single task and train the neural network to 

irectly classify each pixel into either text or background [8,14,20] . 

2) Enhancement task . The aim of an enhancement task is to train 

 model to improve the quality of the input image and output an 

nhanced version which is locally uniform [21,22] . A neural net- 

ork for enhancement should learn the degradations which are 

resent in the original image, yielding a clear and enhanced im- 

ge [19] . In this paper, we train a neural network to jointly learn 

https://doi.org/10.1016/j.patcog.2021.108010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108010&domain=pdf
mailto:heshengxgd@gmail.com
mailto:L.Schomaker@ai.rug.nl
https://doi.org/10.1016/j.patcog.2021.108010
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Fig. 1. Examples of typical image degradations from DIBCO datasets (a) black margin (b) feeble contrast between ink and parchment (c) smear (d) textural background (e) 

smudging of text (f) uneven distribution (g) bleed-through (h) uneven pen strokes. 

Fig. 2. The proposed framework for document binarization and enhancement. x is 

the input image, e is the enhanced image and b is the binarized image. N e and 

N b are networks for enhancement and binarization, respectively. f a is the adaption 

function which transfers the deep features from N e to N b . 
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O

he binarization and enhancement task and transfer the learned 

egradations from the enhancement task to the binarization task 

o improve the performance. Training the neural network jointly 

or enhancement and binarization is expected to improve the per- 

ormance of binarization because the learned features are shared 

etween two tasks and the risk of over-fitting for binarization is 

educed. In addition, features learned for enhancement contain the 

egradation information and adapting these features inspired by 

he deep-adaptive learning approach [23] to binarization can fur- 

her improve the performance. 

The proposed framework shown in Fig. 2 implicitly decomposes 

he binarization into two steps, corresponding to two neural net- 

orks: N e is the residual network to learn the enhanced image e 

nd N b is the network to learn the binarized image b, given the in-

ut image x . The enhanced image e can be denoted by: e = N e + x ,

hus the network N e learns the degradations (the differences be- 

ween the degraded and clear images) in the image N e = e − x .

e transfer the deep features learned from the network N e to the 

inarized network N b by the add operation, making the network 

 b indirectly learning from x + N e = x + e − x = e which is the en-

anced image. The network N e learns the degradations which are 

ransferred to the binarization network N b to correct the deep fea- 

ures of the N b . Thus, unlike the traditional neural network learn- 

ng the binarization directly from the input image [14,20] , our net- 

ork N b yields good performance by learning the binarization from 

he corrected or enhanced (degradation-free) deep features learned 

y the N e . 

.2. Method 

Although there are different ways to implement the framework 

hown in Fig. 2 , in this paper, we propose a T-shape network 

T-Net) which performs these two tasks within one neural net- 

ork, similar to the multi-task learning problem [24] which aims 

o model related tasks jointly. The T-Net receives the degraded 

mage as input and outputs two maps: one is the binarization 

ap and another one is the enhancement map. The difference be- 
2 
ween document enhancement and binarization is that document 

nhancement aims to improve the perceptual quality by removing 

r correcting various degradations [19] and the output image of 

nhancement is an improved version of the input image, which it 

s not guaranteed to be binarized. 

Since the enhanced image can be considered as an improved 

ersion of the input image, it can also be used as the input for fine-

uning, making it possible to design a cascade neural network to 

eal with various types of degradations iteratively. The cascade ap- 

roach presents a powerful architecture for boosting performance 

teratively and has been widely used in various tasks [25–27] . Cas- 

ade neural networks usually have multiple stages and the earlier 

tages can correct the easy degradations whereas the later stages 

an pay more attention to the hard degradations in the document 

mages [28] . 

Inspired by the multiple-task and cascade-learning methods, we 

ropose a Cascade T-shape neural network (CT-Net) for document 

inarization. The CT-Net consists of several T-Nets and each T-Net 

as three branches, one branch is the encoder which converts the 

nput images into features maps in different levels and the other 

wo branches are two decoders corresponding to the binarization 

ask and the enhancement task. The encoder is shared between 

wo tasks and two different decoders learn specific features for 

ach task. In addition, as inspired by the deep adaptive learning 

ethod [23] , we also transfer the features learned for enhance- 

ent to the features for binarization, named CT ada -Net. As dis- 

ussed above, the learned features in the decoder for enhancement 

ontain the degradation information of the input image, which 

akes the decoder of binarization to learn indirectly from the en- 

anced features and thus improve the performance. 

The remainder of this paper is organized as follows. 

ection 2 covers a background overview of document bina- 

ization. In Section 3 , we describe our proposed methods in detail. 

xperimental results are given in Section 4 and conclusions are 

resented in Section 5 . 

. Related work 

There are two groups of binarization methods proposed in the 

iterature: traditional methods which are based on image pro- 

essing techniques, usually at the single pixel-intensity level, and 

eep learning methods which apply convolutional neural networks 

o learn an end-to-end model for binarization while exploiting 

etailed regional image information. Traditional methods usually 

ompute a threshold on each pixel while the trained deep models 

redict the label of each pixel in a document image. 

.1. Traditional threshold-based methods 

The classical threshold-based method for binarization is the 

tsu method [29] , which computes a global intensity threshold 
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o minimize the intra-class variance on the whole document im- 

ges and it provides a good performance if the histogram of 

he intensity of document images has bimodal distribution. The 

lobal threshold method does not work well on document images 

ith high degradations and uneven distributions. Therefore, local 

hreshold methods have been proposed, such as Niblack [30] and 

auvola [10] , which compute the threshold on each pixel, based on 

tatistical information in a local patch. 

In [31] , a local adaptive threshold method is proposed which re- 

ies on a background surface estimation for computing the thresh- 

ld on each pixel. AdOtsu [12] introduces an estimated background 

ap to determine whether to use the Otsu’s threshold or not on 

 local patch because using Otsu directly on small patches is im- 

ossible due to the fact that it always separates pixels into two 

lasses, which makes large errors on background patches without 

ny text. T-transition pixels, which is a generalization of edge pix- 

ls, are defined and used for binarization in [32] since texts in doc- 

ment images usually have strong edges. The binarization meth- 

ds proposed in [11,33,34] use the detected edge, combined with 

n adaptive contrast map computed by using local maximum and 

inimum [35] and ensemble strategy [36] which is tolerant to 

ackground and text variation caused by variant degradations, to 

etermine the threshold on each pixel. The method proposed by 

ia et al. [13] uses the structural symmetric pixels to compute the 

ocal threshold determined by the voting result of multiple thresh- 

lds on each pixel. 

Howe [37] defines the binarization problem as an optimiza- 

ion problem based on a global-energy function whose data- 

delity term relies on the Laplacian of the image intensity and 

he smoothness term is related to edge discontinuities. Later, 

owe [38] proposes a automatic parameter tuning method for bi- 

arization. Nafchi et al. [39] use phrase congruency-based features 

aps and Otsu’s threshold for binarization. Recently, a game the- 

ry inspired binarization is proposed in [40] , which uses a two- 

layer, non-zero-sum, non-cooperative game to extract the local 

nformation, followed by a K-means method for text classification. 

.2. Deep learning-based methods 

With the development of deep learning, convolutional neural 

etworks have also been used for binarization, exploiting regional 

exture. A fully convolutional network, which is originally proposed 

or semantic segmentation in natural images [15] , is adapted for 

he binarization task in [16] with a pseudo F-measure loss. Inspired 

y HED [17] , a hierarchical deep-supervised network (DSN) archi- 

ecture [14] is proposed to learn the labels of each pixel at differ- 

nt feature levels. A primal-dual network (PDNet) [8] which com- 

ines an energy minimization function and convolutional network 

earned features for binarization. In [18] , a selectional auto-encoder 

etwork is used to predict a selection of values for each pixel’s 

onfidence value to determine whether the pixel belongs to text 

r background. Zhao et al. [20] formulate the binarization as an 

mage-to-image translation task and use the conditional generative 

dversial networks (cGANs) to combine the multi-scale information 

or document image binarization. 

Unlike the previous works which use a deep neural network to 

redict the label of each pixel directly, the DeepOtsu [19] method 

rains a network to output an enhanced image, which corrects the 

egradations in the input image in a gradual manner. The final bi- 

arization map can then be obtained from the enhancement map 

y applying the global Otsu method. 

The proposed method in the current paper is also a deep 

earning-based method, based on a vanilla version of U-Net. How- 

ver, the algorithm is modified to address the dual tasks of bi- 

arization and enhancement simultaneously, instead of requiring 

 separate final Otsu stage as in [19] . In addition, the proposed 
3 
ethod here decomposes the binarization into two steps: en- 

ancement and binarization. The enhancement step learns the 

egradations which is transferred to the binarization step, making 

he binarization based on the degradation-free deep features. 

. The proposed method 

This section describes the proposed CT-Net and CT ada -Net neu- 

al networks for document binarization and enhancement in a 

ulti-task learning scenario. 

.1. Problem formulation 

We used x to denote the input degraded image, b to denote the 

utput binarized map and e to denote the enhancement version of 

 . Both the binarization and enhancement tasks can be regarded 

s an image-to-image translation problem, which can be solved by 

he typical U-Net [20,41] . 

In this paper, a T-shape neural network is proposed for both 

nhancement and binarization tasks (shown in Fig. 3 ), named as 

-Net, which is defined as: 

, � m = E(x ) 
e = D e (c, � m ) + x 
b = D b (c, � m ) 

(1) 

here E is the encoder which contains five convolutional layers 

nd coverts the input image into feature maps � m and c, c is the 

ontext and contains the semantic information of the input im- 

ge and 

�
 m = m 1 , · · · , m 5 are the intermediate spatial feature maps 

rom the encoder with different resolutions, D b and D e are the de- 

oders for binarization and enhancement, respectively. More de- 

ails can be found in Fig. 3 . Our proposed T-Net can be considered

s the generalized U-Net in the multi-task scenario. 

Compared to the vanilla U-Net [41] , our proposed T-Net has an- 

ther branch D e for enhancement, which also uses the context in- 

ormation c and feature maps � m from the encoder branch. In other 

ords, the two tasks share the same encoder E which learns the 

hared representation but use different decoders D e and D b which 

earn the task specific representation. Note that we added the orig- 

nal input x on the enhancement decoder D e so it can be rewritten 

s D e (c, � m ) = −(x − e ) , which means that the decoder D e learns

he negative degradations d = −(x − e ) which are the differences 

etween the clear and enhanced image ( e ) and degraded image ( x ),

imilar to DeepOtsu [19] . As discussed in [23,42] , sharing parame- 

ers among multi-tasks can greatly reduce the risk of overfitting on 

 specific task. 

In T-Net, the decoders D b and D e learn specific features for each 

ask without any interaction. However, the information learned by 

 e for enhancement should be also helpful for binarization since 

he task of enhancement is to remove the degradations and ob- 

ain a clear and uniform image. In order to allow the network to 

earn the relationship between these two tasks, we also applied 

he shortcuts from the decoder D e to the decoder D b to improve 

he information flow, inspired by the multi-task learning [23,24] . 

he T-Net with the task adaption, named T ada -Net, can be denoted 

s: 

, � m = E(x ) 
e, � n = D e (c, � m ) + x 

b = D b (c, � m + 

�
 n ) 

(2) 

here � n represents the spatial feature maps generated by the de- 

oder D e during recovering the enhancement image e . We added 

he intermediate spatial feature maps � m and 

�
 n in the decoder D b 

ince � n is from the decoder D e which contains the negative degra- 

ation information ( D e (c, � m ) = −(x − e ) ). Thus, � m + 

�
 n can remove
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Fig. 3. The overall architecture of the proposed T-Net. It has three branches, en- 

coder E and decoder D e for enhancement task and D b for binarization task. Short 

cuts are applied between encoder and decoders. In the encoder, we use max- 

pooling for downsampling and in decoder we use deconvolutional operations for 

upsampling. 

Fig. 4. The overall architecture of the proposed T ada -Net. The structure of the en- 

coder E is same to the one in Fig. 3 . The dashed lines denote the short cuts from 

the decoder D e to D b . 
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Table 1 

The number of documents on each DIBCO dataset. 

Data set Handwritten Printed Total 

DIBCO’09 [43] 5 5 10 

H-DIBCO’10 [44] 10 - 10 

DIBCO’11 [45] 8 8 16 

H-DIBCO’12 [46] 14 - 14 

DIBCO’13 [47] 8 8 16 

H-DIBCO’14 [48] 10 - 10 

H-DIBCO’16 [49] 10 - 10 

DIBCO’17 [50] 20 - 20 

H-DIBCO’18 [51] 10 - 10 

Total 95 21 116 
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p
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t

he learned degradations from the input feature map 

�
 m , improv- 

ng the performance of binarization. Fig. 4 shows the structure of 

 ada -Net. 

As mentioned in [19] , the enhancement image e is the latent 

niform and clear version of the input image and recovering it al- 

ows the network to learn the degradations and binarization iter- 

tively. More precisely, the enhancement map e may still contain 

ome slight degradations and it can be fed into the network for 

urther processing, which makes it possible to design a success- 

ul architecture for binarization in a cascade way. In this paper, we 

xtended the T-Net into cascade T-Net, named CT-Net, which is de- 

ned as: 

 

i +1 , b i +1 = T i (e i ) e 0 = x (3) 

here T i (x ) can be either T-Net (CT-Net) or T ada -Net (CT ada -Net), e i 

s the i -th enhancement map of T-Net- i and e 0 = x is the original

nput image. Fig. 5 shows the framework of the proposed CT-Net. 

.2. Network configuration 

Inspired by the U-Net structure [41] , the encoder of the 

T-Net contains five convolutional layers with channel size 

32,64,128,256,512], followed by batch normalization, ReLU, and 

ax-pooling (2 ×2, stride:2) layers. For decoders, the deconvolu- 

ional layers are used for upsampling feature maps which is con- 

atenated with the corresponding spatial feature maps in 

�
 m from 

he encoder branch, followed by a convolutional layer for feature 
4 
ombination. The size of all kernels used in convolutional and de- 

onvolutional layers is 3 × 3 , except the last layer which uses 1 × 1 

ernel to compute the output map. The input color image size is 

et to h × w × 3 , where h and w are height and width. The output

ayer of the enhancement has the same size as input. For binariza- 

ion output, the size is h × w × 1 , in which the value on each pixel

enotes the probability computed by a sigmoid function. 

The loss of the enhancement is defined as: 

 e = 

1 

n 

∑ | e t − e | (4) 

here e t is the ground-truth of the enhancement image, e is the 

utput of the network and n is the total number of pixels in the 

mage. The loss of the binarization is the typical cross-entropy loss, 

iven by: 

 b = −1 

n 

∑ 

b t · log(p) + (1 − b t ) · log(1 − p) (5) 

here b t is the ground-truth of the binarization map and p is the 

robability from the neural network. In fact, each T-Net network 

n CT-Net can be trained separately or jointly. In this paper, we 

rained the network jointly and the final training loss is given by: 

 train = 

N=3 ∑ 

i =1 

(
L i e + L i b 

)
(6) 

here L i e and L i 
b 

are the enhancement and binarization losses in 

he i -th T-Net and N = 3 is the total number of the T-Net. 

. Experimental results 

.1. Datasets and evaluation metrics 

We evaluated the proposed method on nine DIBCO benchmark 

atasets from the document binarization competitions, including 

IBCO’09 [43] , H-DIBCO’10 [44] , DIBCO’11 [45] , H-DIBCO’12 [46] , 

IBCO’13 [47] , H-DIBCO’14 [48] , H-DIBCO’16 [49] , DIBCO’17 [50] , H- 

IBCO’18 [51] . The number of documents on each dataset is shown 

n Table 1 . We used the leave-one-dataset-out strategy inspired 

y [8,20] for evaluation. More precisely, when evaluating on a par- 

icular DIBCO dataset, all rest of datasets are used for training. The 

raining set also includes images from the Bickly-diary dataset [52] , 

ersian Heritage Image Binarization dataset (PHIDB) [53] and Syn- 

hromedia Multispectral dataset [54] , which were also used for 

raining the networks [14,19] . 

Four metrics which were widely used in the contests [49–

1] were used to assess the performance and quantitatively com- 

ared with state-of-the-art methods, including the F-measure 

FM), pseudo F-measure (F ps ), peak signal-to-noise ratio (PSNR) 

nd distance reciprocal distortion metric (DRD). For fair compari- 

on, we used the evaluation tool provided by the DIBCO competi- 

ions to compute these metric scores in this paper. 
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Fig. 5. The overall architecture of the proposed CT-Net with three T-Nets. The output of the enhancement map on T-Net-1 can be considered as the improved version of the 

original image which can be fed into T-Net-2 for fine-tune. This is the same for T-Net-3. T-Net- n are identical T-Nets with different parameters. 

Fig. 6. Training samples (red box left column) with their corresponding enhancement ground-truth (middle column) and binarization ground-truth (right column). All 

patches have the same spatial size of 256 × 256 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.2. Implementation details 

Ideally, the entire image instead of patches can be processed by 

he proposed CT-Net. However, due to the limitation of GPU mem- 

ry it is very hard to work with arbitrary-sized inputs. The most 

opular way is to crop small patches and resize them to a fixed 

idth and height [18,20] . The most common size is 256 × 256 , 

hich is also adopted in the proposed CT-Net. For each image on 

IBCO datasets, we cropped image patches with 256 × 256 with 

0% overlap horizontally and vertically. For scale augmentation, we 

lso sampled patches with the scale factor { 0 . 75 , 1 . 25 . 1 . 5 } based

n the input size of the network. In addition, the global patches 

hose sizes are equal to the minimum of the entire image width 

nd height are cropped and resized to 256 × 256 for training and 

esting, inspired by Vo et al. [14] . The network is initialized by the

avier method [55] and is trained by the Adam optimizer [56] with 

n initial learning rate 0.0 0 01, which is decreased to half at ev- 

ry 50,0 0 0 iterations. The number of training iterations is 20 0,0 0 0

ith the batch size 10 due to the limitation of the memory. 

The ground-truth of the binarization is provided in DIBCO 

atasets while the ground-truth of the enhancement is built by 

sing the same method in [19] . The value of each pixel on the en-

ancement ground-truth image is computed as the average pixel 

alue with the same label within the patch. The label of each pixel 

an be obtained from the ground-truth of the binarization. Fig. 6 

hows several training samples used in this paper for training the 

eural networks. 

During testing, the patches are cropped from the test images 

ith the same method used to crop patches for training. The pre- 

icted binarized maps from the trained networks are stitched to 

he original document size by averaging values over the overlap- 

p

5 
ing patches. Therefore, the value of each pixel on the predicted 

aps is the probability in [0,1]. The final binarization map is com- 

uted with a global threshold T based on the predicted probabil- 

ty map. Unlike the work in [14] which uses a fix T learned from 

 separated training set for all documents, we used Otsu [29] to 

ompute the threshold T for each document. It is very efficient to 

ompute the Otsu threshold and each image has its own threshold 

epending on the quality of predicted probability maps from the 

etwork. 

.3. Performance evaluation 

In this paper, we stacked three T-Nets due to the trade-off be- 

ween performance and model complexity. It has been shown in 

eepOtsu [19] that the performance can be improved by cascad- 

ng at least three basic components (T-Net) in the network. We 

valuated the performance of binarization results from each T-Net 

nd T ada -Net in the cascaded CT-Net and CT ada -Net. Fig. 7 shows 

he average scores of F-measure and DRD overall 116 binarization 

aps with different n of CT-Net- n and CT ada -Net- n . From the fig-

re we can see that the performance in terms of F-measure and 

RD increases as stacking more T-Net in the CT-Net. Practically, 

e also found the similar trends in terms of F ps and PNSR. Thus, 

e can conclude that cascading different T-Nets can iteratively im- 

rove the performance. In addition, the CT ada -Net provides better 

erformance than CT-Net, which demonstrates the powerful of the 

daptive shortcuts from the enhancement task to the binarization 

ask. 

We roughly divided all documents in DIBCO datasets into eight 

roups, according to main degradations contained in document im- 

ges as shown in Fig. 1 . The average F-Measure scores of the pro-

osed CT-Net-3 and CT -Net-3 is shown in Fig. 8 , from which we 
ada 
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Fig. 7. The performance of the n -th T-Net and T ada -Net in the cascaded network CT-Net and CT ada -Net, respectively. The left figure shows the average F-measure (high values 

means good performance) and the right figure shows the average DRD scores (low values means good performance). 

Fig. 8. The performance of the CT-Net-3 and CT ada -Net-3 on images with different 

degradations. 
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Table 2 

Comparison of the proposed methods with (H)DIBCO competition winners. 

Database Method FM F ps PSNR DRD 

DIBCO’09 Best Competition System 91.24 - 18.66 - 

Best of CT-Net 94.18 95.80 20.50 2.56 

Performance gains 2.94 - 1.84 - 

H- 

DIBCO’10 

Best Competition System 91.50 - 19.78 - 

Best of CT-Net 93.93 97.20 21.21 1.55 

Performance gains 2.43 - 1.34 - 

DIBCO’11 Best Competition System 88.74 - 17.97 5.36 

Best of CT-Net 95.27 97.24 21.50 1.37 

Performance gains 6.53 - 3.53 3.99 

H- 

DIBCO’12 

Best Competition System 92.85 - 21.80 2.66 

Best of CT-Net 95.82 96.67 22.92 1.32 

Performance gains 2.97 - 1.12 1.34 

DIBCO’13 Best Competition System 92.70 94.19 21.29 3.10 

Best of CT-Net 95.66 97.79 22.98 1.32 

Performance gains 2.96 3.60 1.69 1.78 

H- 

DIBCO’14 

Best Competition System 96.88 97.65 22.66 0.90 

Best of CT-Net 97.70 98.74 23.92 0.65 

Performance gains 0.82 1.09 1.26 0.25 

H- 

DIBCO’16 

Best Competition System 88.72 91.84 18.45 3.86 

Best of CT-Net 91.07 94.34 19.22 3.29 

Performance gains 2.35 2.50 0.77 0.57 

DIBCO’17 Best Competition System 91.04 92.86 18.28 3.40 

Best of CT-Net 92.72 94.73 19.17 2.65 

Performance gains 1.68 1.87 0.89 0.75 

H- 

DIBCO’18 

Best Competition System 88.34 90.24 19.11 4.92 

Best of CT-Net 92.23 94.97 20.13 2.70 

Performance gains 3.89 4.73 1.02 2.22 

D  

f

F

i

4

s

T

b

w

w
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an see that the performance of CT ada -Net-3 outperforms CT-Net-3 

n documents with most degradations except textural background 

nd smear. Note that the CT ada -Net-3 provides much better results 

han CT-Net-3 on documents with the degradation of black mar- 

ins. 

.4. Comparison with winner methods submitted to DIBCO datasets 

In this section, we compared the best score per metric for any 

ubmission on each year and the proposed CT-Net-3 or CT ada - 

et-3 methods. Table 2 shows the comparison between the pro- 

osed method and the winner among competition submissions on 

ach DIBCO dataset. From the table we can see that our proposed 

ethods outperform the winner methods for all of nine data sets 

n terms of all the evaluation metrics. The average scores of F- 

easure over all nine datasets are 91.33 and 94.28 for the winner 

nd proposed CT-Net respectively. The results show that our pro- 

osed CT-Net achieved, on average, a 3.2% improvement over the 

inner results of DIBCO datasets. 

.5. Comparison with state-of-the-art methods 

In this section, the proposed methods are qualitatively evalu- 

ted on the nine DIBCO datasets and compared with traditional bi- 

arization methods including Otsu [29] , Sauvola [10] , Su et al. [11] ,

owe [38] , Lelore et al. [57] , Jia et al. [13] , Mitianoudis et al. [58] ,

iB [40] and deep learning-based methods including Hierarchical 
6 
SN [14] , PDNet [8] , cGANs [20] . Tables 3 , 4 , 5 show the per-

ormance of the proposed method and the compared algorithms. 

igs. 9 - 11 display several visual quality of binary results, highlight- 

ng the advantages and disadvantages of the proposed methods. 

.5.1. DIBCO’09 dataset 

The dataset contains ten documents with various degradations 

uch as bleed-through, smear or nonuniform background. From 

able 3 we can see that our proposed CT ada -Net-3 provides the 

est scores of F-measure, F ps and PSNR. The cGANs [20] method 

hich uses the cascaded conditional generative adversarial net- 

orks to generate the binarization image gives lowest visual dis- 

ortion (best DRD score). Fig. 9 shows several examples of the pro- 

osed binary maps, revealing that our proposed methods can han- 
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Table 3 

Performance comparison of different binarization methods on each DIBCO data set (best values are highlighted in bold and second best are 

highlighted in italic ). 

Method DIBCO’09 H-DIBCO’10 DIBCO’11 

FM F ps PSNR DRD FM F ps PSNR DRD FM F ps PSNR DRD 

Otsu [29] 78.60 80.53 15.31 22.57 85.43 90.64 17.52 4.05 82.10 85.96 15.72 8.95 
∗Sauvola [10] 85.37 89.08 16.37 7.08 75.18 84.08 15.94 7.22 82.14 87.70 15.65 8.50 
∗Su et al. [11] 93.02 94.61 19.41 2.64 91.36 93.18 19.78 2.42 87.83 90.24 17.71 4.66 

Howe [38] 94.04 95.06 20.43 2.10 93.59 94.81 21.08 1.72 90.79 92.28 19.01 4.46 
∗Lelore et al. [57] 93.93 95.10 20.21 2.17 93.82 94.27 21.09 1.79 92.48 94.11 19.37 2.97 

Nafchi et al. [39] 93.36 - 19.55 - 91.78 95.08 19.80 - 92.57 - 19.29 2.28 

Mitianoudis et al. [58] 90.27 92.69 18.08 3.71 88.97 91.16 18.32 3.38 89.13 93.79 17.90 3.47 

Jia et al. [13] 93.05 94.60 19.29 2.40 89.46 93.94 18.86 2.93 91.92 95.09 18.98 2.64 

GiB [40] 92.50 - 19.26 2.41 90.00 - 19.14 2.75 90.33 - 18.29 2.99 

♠ DeepOtsu [19] - - - - - - - - 93.4 95.8 19.9 1.9 

♠ Hierarchical DSN [14] - - - - - - - - 93.3 96.4 20.1 2.0 

♠ ∗PDNet [8] 91.50 - 19.25 3.06 92.91 - 20.40 1.85 91.87 - 19.07 2.57 

♠ cGANs [20] 94.10 95.26 20.30 1.82 94.03 95.39 21.12 1.58 93.81 95.70 20.26 1.81 

♠ Proposed CT-Net-3 92.08 94.31 19.77 3.58 93.49 97.20 20.98 1.68 95.27 97.24 21.50 1.37 

♠ Proposed CT ada -Net-3 94.18 95.80 20.50 2.56 93.93 96.74 21.21 1.55 94.17 96.92 20.76 1.69 

Note: ∗ results are from Jia et al. [13] if possible. ♠ deep learning method. ♠∗ the best score per metric in [8] . 

Table 4 

Performance comparison of different binarization methods on each DIBCO data set (best values are highlighted in bold and second best are 

highlighted in italic ). 

Method H-DIBCO’12 DIBCO’13 H-DIBCO’14 

FM F ps PSNR DRD FM F ps PSNR DRD FM F ps PSNR DRD 

Otsu [29] 75.07 78.14 15.03 26.46 80.04 83.43 16.63 10.98 91.62 95.69 18.72 2.65 

Sauvola [10] 81.56 87.35 16.88 6.46 82.71 87.74 17.02 7.64 84.70 87.88 17.81 4.77 

Su et al. [11] 89.76 89.61 19.55 4.19 87.70 88.15 19.59 4.21 94.38 95.94 20.31 1.95 

Howe [38] 93.73 94.24 21.85 2.10 91.34 91.79 21.29 3.18 96.49 97.38 22.24 1.08 

Lelore et al. [57] 94.05 94.42 21.43 2.11 90.78 91.47 20.54 3.59 96.14 96.73 21.88 1.25 

Jia et al. [13] 92.99 95.10 20.37 2.34 93.42 96.05 20.78 2.03 94.98 97.18 20.56 1.50 

Mitianoudis et al. [58] 89.71 92.24 18.73 3.88 91.41 95.47 19.54 2.78 87.57 - 18.43 - 

GiB [40] 90.99 - 19.34 3.09 91.14 - 19.58 2.77 94.00 - 19.93 1.79 

♠ DeepOtsu [19] - - - - - - - - 95.9 97.2 22.1 0.9 

♠ Hierarchical DSN [14] - - - - 94.4 96.0 21.4 1.8 96.66 97.59 23.23 0.79 

♠ ∗PDNet [8] 93.04 - 20.50 2.92 93.97 - 21.30 1.83 89.99 - 20.52 7.42 

♠ cGANs [20] 94.96 96.15 21.91 1.55 95.28 96.47 22.23 1.39 96.41 97.55 22.12 1.07 

♠ Proposed CT-Net-3 95.38 96.67 22.39 1.52 95.66 97.79 22.98 1.32 97.70 98.74 23.92 0.65 

♠ Proposed CT ada -Net-3 95.82 96.58 22.92 1.32 95.34 97.53 22.41 1.57 96.91 97.93 22.62 0.88 

Note: ∗ results are from Jia et al. [13] if possible. ♠ deep learning method. ♠∗ the best score per metric in [8] . 

Table 5 

Performance comparison of different binarization methods on each DIBCO data set (best values are highlighted in italic bold and second best 

are highlighted in italic ). 

Method H-DIBCO’16 DIBCO’17 H-DIBCO’18 

FM F ps PSNR DRD FM F ps PSNR DRD FM F ps PSNR DRD 

Otsu [29] 86.59 89.92 17.79 5.58 77.73 77.89 13.85 15.54 51.45 53.05 9.74 59.07 

Sauvola [10] 84.64 88.39 17.09 6.27 77.11 84.10 14.25 8.85 67.81 74.08 13.78 17.69 

Su et al. [11] 84.75 88.94 17.64 5.64 - - - - - - - - 

Howe [38] 87.47 92.28 18.05 5.35 90.10 90.95 18.52 5.12 80.84 82.85 16.67 11.96 

Lelore et al. [57] 87.21 88.48 17.36 5.27 - - - - - - - - 

Jia et al. [13] 90.48 93.27 19.30 3.97 85.59 86.38 16.39 7.99 76.52 79.90 17.00 8.11 

Mitianoudis et al. [58] 86.89 - 17.60 - - - - - - - - - 

GiB [40] 91.15 - 19.18 3.20 - - - - - - - - 

♠ DeepOtsu [19] 91.4 94.3 19.6 2.9 - - - - - - - - 

♠ Hierarchical DSN [14] 90.10 93.57 19.01 3.58 - - - - - - - - 

♠ ∗PDNet [8] 90.18 - 18.99 3.61 - - - - - - - - 

♠ cGANs [20] 91.66 94.58 19.64 2.82 90.73 92.58 17.83 3.58 87.73 90.60 18.37 4.58 

♠ Proposed CT-Net-3 89.62 91.60 18.63 4.70 92.72 94.31 19.17 2.79 88.90 91.45 18.84 5.58 

♠ Proposed CT ada -Net-3 91.07 94.34 19.22 3.29 92.65 94.73 19.17 2.65 92.23 94.97 20.13 2.70 

Note: ∗ results are from Jia et al. [13] if possible. ♠ deep learning method. ♠∗ the best score per metric in [8] . 
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le the various degradations such as bleed-through and feeble con- 

rast between ink and parchment. However, Fig. 9 also shows a 

roblematic sample involving large character sizes with fat strokes 

n a deviant ink color. The main reason is that there was no similar

raining material in the training dataset. 
t

7 
.5.2. H-DIBCO’10 dataset 

Document images in this dataset are from historical collections 

nd ambiguity exists in the text boundary locations. It is hard, even 

or humans, to label pixels near the boundary [9] . Therefore, most 

rrors indeed are from pixels near text boundaries and weak ink 

races. The best scores on this data set, for different metrics, are 
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Fig. 9. Binarization results on DIBCO’09. Left column shows the original images, the middle column shows the results of CT-Net-3 and the right column shows the results 

of CT ada -Net-3. Black pixels are correctly classified text pixels and white pixels are correctly recognized background. Text pixels classified as background are marked in red 

while background pixels classified as text are show in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 10. Binarization results on DIBCO’11 and H-DIBCO’12. Left column shows the original images, the middle column shows the results of CT-Net-3 and the right column 

shows the results of CT ada -Net-3. Black pixels are correctly classified text pixels and white pixels are correctly recognized background. Text pixels classified as background 

are marked in red while background pixels classified as text are show in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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rom different methods. The highest F-measure score is given by 

GANs [20] while the proposed CT-Net-3 results in the best F ps , 

hich has a better correlation with OCR [9] . The best performance 

n terms of PSNR and DRD is given by CT ada -Net-3 which indicates 

hat our proposed CT ada -Net-3 method gives the lowest visual dis- 

ortion. 

.5.3. DIBCO’11 and H-DIBCO’12 datasets 

Both of our proposed CT-Net-3 and CT ada -Net-3 provide the bet- 

er results than other state-of-the-art methods on all four metric 

cores on these two data sets. Fig. 10 shows two images which 

ontain variation of contrast. The binarization maps of our pro- 
8 
osed methods have a clear background but lose some strokes on 

he very noisy regions. 

Most document images in DIBCO’11 dataset have a strong tex- 

ural background. Thus, as discussed above, the CT-Net-3 provides 

etter results than CT ada -Net-3. However, document images in the 

-DIBCO’12 dataset suffer from uneven distribution and weak ink 

races, which can be solved efficiently by CT ada -Net-3. 

.5.4. DIBCO’13 and H-DIBCO’14 datasets 

Document images in DIBCO’13 contains large smear or show- 

hrough degradations. Although our proposed methods provide the 

est results over other methods, some strokes inside the smear are 

issed and noisy patterns from smear are retained in the final bi- 



S. He and L. Schomaker Pattern Recognition 118 (2021) 108010 

Fig. 11. Binarization results on H-DIBCO’18. Left column shows the original images, the middle column shows the results of CT-Net-3 and the right column shows the results 

of CT ada -Net-3. Black pixels are correctly classified text pixels and white pixels are correctly recognized background. Text pixels classified as background are marked in red 

while background pixels classified as text are show in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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Table 6 

Comparison of the mean values for different methods over all nine 

DIBCO data sets. The best performance is shown in bold and the 

second-best is shown in italic . 

Method FM F ps PSNR DRD 

1st rank of contest 89.83 - 19.79 - 
∗Otsu [29] 82.60 86.17 16.62 11.35 

Sauvola [10] 82.33 87.46 16.68 6.85 

Jia et al. [13] 92.68 95.15 19.87 2.44 

Howe [38] 92.53 93.98 20.06 2.86 

Mitianoudis [58] 89.14 - 16.90 - 

♠ Tensmeyer [16] 92.20 95.71 20.16 2.74 

♠ cGANs [20] 93.19 94.92 20.42 2.24 

♠ Proposed CT-Net-3 93.47 95.47 20.90 2.57 

♠ Proposed CT ada -Net-3 94.03 96.17 20.99 2.00 

Note: ∗ results are from Zhao et al. [20] . ♠ deep learning method. 

i

w

t

t

w

f

C

s

d

4

t

s

n

t

i

c

1 https://www.ai.rug.nl/~sheng/ 
arization map. In these two datasets, the CT-Net-3 provides bet- 

er performance than CT ada -Net-3 since the document images suf- 

er from the degradations of smear or weak ink traces which are 

ard to be corrected in the enhancement images, thus noises are 

ntroduced through the adaptive shortcuts in CT ada -Net. 

.5.5. H-DIBCO’16 and DIBCO’17 datasets 

Our proposed method provides the second best performance 

n terms of F ps on the H-DIBCO’16 data set, which is lower than 

GANs [20] . H-DIBCO’16 is a challenging dataset for binarization, 

ompared to other DIBCO datasets which contains handwritten 

ocuments with various degradations such as bleed-through, un- 

ven pen strokes and background. 

On the DIBCO’17 dataset, our proposed methods provide the 

est results than other methods. Document images in this dataset 

ave a large image size and most of them suffer from the bleed- 

hrough degradations. 

.5.6. H-DIBCO’18 dataset 

The special degradation on H-DIBCO’18 is dark margins near the 

age boundaries. The proposed CT ada -Net-3 provides best results 

han traditional methods, such as Jia’s [13] , Howe’s [38] and the 

eep learning-based cGANs [20] . Fig. 11 shows several examples, 

ndicating that our proposed CT ada -Net-3 can deal with the dark 

argin and uneven distribution of text pixels in document images. 

.5.7. Summary over nine DIBCO datasets 

Table 6 presents the mean values of the four evaluation metrics 

ver nine DIBCO datasets. We compared our methods with five tra- 

itional methods and two deep learning-based methods. From the 

able we can see that the proposed CT ada -Net-3 provides the best 

cores of four metrics. The CT-Net-3 without adaption achieves 

econd best results in terms of F-measure and PSNR. Fig. 12 shows 

he visual results of one document on the H-DIBCO’16 dataset from 

ifferent methods. From the figure we can see that our proposed 

ethods provide good results on weak ink traces. 

.6. Generalization to The MCS dataset 

In this section, we evaluated the generalization of the proposed 

ethods on the Monk Cuper Set (MCS) dataset, which was firstly 
9 
ntroduced in our previous work [19] and images in this dataset 

ere taken using iPhone. It contains 25 pages sampled from a his- 

orical collection with heavy bleed-through degradations and tex- 

ural background. This data set is public available on the author’s 

ebsite 1 . 

Table 7 shows the average results overall 25 document images 

rom nine models trained using the DIBCO data sets. Our proposed 

T-Net achieves better results than other methods, which demon- 

trates that the proposed methods generalize very well on other 

egraded historical documents. 

.7. Computing time analysis 

The number of parameters of the proposed T-Net is the 1.5 

imes that of the standard U-Net [41] since our T-Net shares the 

ame encoder and has different decoders for different tasks. The 

etworks were trained using a single GPU card (16 GB memory), 

aking about 24 h. For testing, the time of inference of each patch 

s less one second and patches from different images can be pro- 

essing in parallel with multiple GPUs. 
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Fig. 12. Visual example with the F-measure ( Fm ) and PNSR metric values of the binarization results of one document applied to H-DIBCO’16 and produced by different 

methods: (a) original image, (b) ground truth, (c) Su et al. [11] , (d) Howe [38] , (e) Jia et al. [13] , (f) cGANs [20] , (g) CT-Net-3, (h) CT ada -Net-3. (Red pixel means text pixel 

recognized to background while blue pixel means background pixel recognized to text). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Table 7 

Comparison of the mean values for different methods on 

the MCS data set. The best performance is highlighed in 

bold . 

Method FM F ps PSNR DRD 

Otsu [29] 69.3 70.5 11.8 34.0 

Sauvola [10] 75.8 76.9 13.1 21.5 

Su et al. [11] 82.8 87.4 15.2 16.8 

Jia et al. [13] 85.4 88.7 15.8 7.1 

Howe [38] 85.6 89.1 15.8 6.4 

Deep-Sauvola [19] 87.0 89.9 16.2 6.1 

CT-Net-1 88.3 92.2 16.7 4.8 

CT-Net-2 88.7 92.8 16.9 4.4 

CT-Net-3 88.7 92.7 16.9 4.4 

CT ada -Net-1 88.8 92.9 16.9 4.4 

CT ada -Net-2 88.9 93.0 16.9 4.3 

CT ada -Net-3 89.1 93.2 17.0 4.2 

Note: ∗ results are from He and Schomaker [19] . 

5

c

N

b

t

t

e

f

u

p

d

m

t

t

o

w

d

e

t

b

a

u

D

c

i

A

t

d

R

 

 

 

 

 

 

 

 

 

. Conclusion 

In this paper we have proposed a cascade T-shape network ar- 

hitecture for document binarization, which ha two versions: CT- 

et and CT ada -Net. The T-Net has two outputs corresponding to a 

inarization map and an enhancement image, constituting a multi- 

ask learning framework. The CT-Net model is a network with 

hree cascade T-Nets, and CT ada -Net adapts the features learned for 

nhancement to the binarization task, which can improve the per- 

ormance of binarization. 

We have evaluated the proposed methods over nine widely- 

sed competition DIBCO datasets and our proposed methods out- 

erform all winner methods submitted to the competitions. In ad- 

ition, our methods are superior to traditional and deep learning 

ethods for binarization reported in the literature. An external his- 

orical document dataset is used to evaluate the generalization and 

he results show that our proposed methods generalize very well 

n these document images. 

Future works include exploiting more complex structure of net- 

ork and training different networks on documents with different 

egradations. Image enhancement, including traditional image op- 

rations and the trainable generative adversarial network, appears 

o be very important for boosting the performance of document 

inarization. It would be interesting to evaluate the effect of im- 

ge enhancement on text recognition, in comparison to plain doc- 

ment binarization. 
10 
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