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ABSTRACT

We investigated here the influence of the lateral and normal Casimir force on the actuation dynamics between sinusoidal corrugated surfaces
undergoing both normal and lateral displacements. The calculations were performed for topological insulators and phase change materials
that are of high interest for device applications. The results show that the lateral Casimir force becomes stronger by increasing the material
conductivity and the corrugations toward similar sizes producing wider normal separation changes during lateral motion. In a conservative
system, bifurcation and Poincaré portrait analysis shows that larger but similar in size corrugations and/or higher material conductivity favor
stable motion along the lateral direction. However, in the normal direction, the system shows higher sensitivity on the optical properties for
similar in size corrugations leading to reduced stable operation for higher material conductivity. Furthermore, in non-conservative systems,
the Melnikov function with the Poincaré portrait analysis was combined to probe the possible occurrence of chaotic motion. During lateral
actuation, systems with more conductive materials and/or the same but high corrugations exhibit lower possibility for chaotic motion. By
contrast, during normal motion, chaotic behavior leading to stiction of the moving components is more likely to occur for systems with more
conductive materials and similar in magnitude corrugations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065033

Due to widespread attention on micro/nanoelectromechanical
systems (MEMS/NEMS) from the scientific and technology point
of views, Casimir forces, as an omnipresent effect, become
inevitably important during device actuation. Beyond the nor-
mal Casimir force, the lateral Casimir force between corrugated
surfaces provides a possibility for friction-less motion without
any physical contact between components, where this coupling
between the two surfaces is mediated by quantum vacuum. Our
findings reveal that the change of the normal Casimir force by
making lateral displacement between components with corru-
gated surfaces will affect the dynamical actuation of devices so
that the occurrence of chaotic motion could eventually lead into
permanent adhesion, a phenomenon known as stiction. However,
actuation under the influence of the Casimir force along the lat-
eral direction, the larger but similar in size corrugations and/or
higher material conductivity is a better choice to ensure stable
operation against a chaotic motion and improve the long-term

performance of devices. On the other hand, if normal motion
occurs, the system reveals higher sensitivity on the optical proper-
ties for similar in size corrugations, which is amplified by increas-
ing the value of the corrugations. In this case, chaotic behavior
leading to stiction of the moving components is more likely to
occur for systems with more conductive materials and similar in
magnitude corrugations.

I. INTRODUCTION

Nowadays, the advancement in fabrication techniques leads
to the advent of miniaturized mechanical devices such as
micro/nanoelectromechanical systems (MEMS/NEMS). Moreover,
the enormous possibilities for the application of these modern
systems make them increasingly important in both science and
technology.1–7 By scaling down devices, due to the large enough
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surface areas and small enough separation gaps, the omnipresent
Casimir force plays inevitably a significant role in the actuation
dynamics of devices, and its effect could be comparable to the
electrostatic forces. Although Casimir force and electrostatic force
are two typical forces to actuate micro- or nanodevices, there are
several challenges at small length scales associated with friction
and adhesion phenomena that require specific strategies to resolve
them.8–12

The Casimir force as a quantum effect originates from the
perturbation of quantum fluctuations of the electromagnetic field
(EM) field,3 as it was described in 1948 by Casimir assuming two
perfectly conducting parallel plates.5 Soon after in the 1950s, Lif-
shitz and co-workers7 considered the general case of real dielectric
plates by exploiting the fluctuation–dissipation theorem, which is
related to the dissipative properties of matter (via optical absorption
by many microscopic dipoles) and the resulting EM fluctuations.
This theory describes the attractive interaction due to quantum
fluctuations for all separations covering both the Casimir (long-
range) and van der Waals (short-range) regimes.1–7,13 The Casimir
force is strongly dependent on the geometry and optical properties
of the system,14–24 thermal effects,25–28 and the presence of corru-
gated boundaries between interacting bodies.3,19,29,30 The latter point
enables the feasibility to tailor the direction and strength of the
Casimir force and consequently drive the actuation dynamic of
NEMS/MEMS.

In micro/nanodevices, it is possible to produce Casimir forces
both in the normal and lateral directions. The normal Casimir force
is perpendicular to the surface of the interacting components, while
the lateral Casimir force can be generated by moving asymmetri-
cally the interacting bodies and its direction is tangential to the
surfaces.30,31 The lateral Casimir force between corrugated surfaces
provides a possibility for friction-less motion without any physical
contact between components, where this coupling between the two
surfaces is mediated by quantum vacuum fluctuations. Besides all
advantages of the lateral Casimir force, under certain conditions,
the components of MEMS/NEMS can come into permanent adhe-
sion, a phenomenon known as stiction. In fact, reducing the size of
these devices could lead to chaotic motion that causes an abrupt
change in the dynamical behavior of the system leading to stiction
between actuating components.21,22,24,32 The threshold condition for
this phenomenon and its sensitivity on material optical properties
are different for both the normal and lateral directions of motion.21,29

So far, several studies have been performed to investigate the
normal Casimir force for normal displacements and the lateral
Casimir force by creating tangential displacement in devices.5–7,21,22,24

The dependence of both the normal and lateral components of the
Casimir force on optical properties and thermal effects and con-
sequently their influence on the dynamical behavior of actuating
devices can be diverse.21,29 However, there is limited knowledge on
how changes of the normal Casimir force by making lateral displace-
ment in devices with corrugated surfaces will affect the dynamical
actuation of devices and the occurrence of any associated chaotic
motion. Under certain conditions, the magnitude of the Casimir
force can be strong enough to destroy a friction-less movement set
by the lateral force leading eventually to chaotic motion and sub-
sequently stiction. This motivated our attempt to explore here the
sensitivity of the normal Casimir force on the optical properties of

interacting with poor conductors, but important for future appli-
cations, during lateral movements taking also into account the
corrugation amplitude of the interacting surfaces.

II. MATERIAL SYSTEMS AND DEVICE ACTUATION

Prior to modeling of the microdevice and its actuation
dynamics, the starting point is the calculation of Casimir force
via the Lifshitz theory (see the Appendix) with essential input
of the measured imaginary part ε′′(ω) of the frequency depen-
dent dielectric function ε(ω). The optical properties of all sam-
ples here, including the system Bi2Se3/Al2O3 and the phase
change material (PCM, both in crystalline and amorphous phases)
AIST (Ag5In5Sb60Te30), were commercially characterized with
ellipsometry.16,17,23 The measurements were carried out in J.A. Wool-
lam Co. Inc. (http://www.jawoollam.com) using the VUV-VASE
(0.5–9.34 eV) and IR-VASE (0.03–0.5 eV) ellipsometers.16,17,23 The
phase change material (PCM) has an amorphous (A) semicon-
ducting phase (with a bandgap Eg = 0.63 eV), and a conductive
crystalline (C) phase (with a bandgap Eg = 0.18 eV), which yields
the conductivity ratio ωp

2/ωτ|AIST(C)10.1 eV.17 PCMs are renowned
for their use in optical data storage (Blue-Rays, DVDs, etc.), where
they switch reversibly between the amorphous and crystalline phases
without composition changes.17 On the other hand, Bi2Se3 (on

FIG. 1. (a) Dielectric functions at imaginary frequencies ε(iξ) for all materials
considered in this study. (b) Concept schematic of the MEMS in this study.
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FIG. 2. (a) Lateral Casimir force vs λLat (= x/Λ) with different magnitude of the
sinusoidal roughness. (b) Lateral Casimir force for the PCM(A)-TI and PCM(C)-TI
material systems with A1 = A2 = 49.5 nm.

Al2O3 substrates) is a well-known 3D topological insulator (TI).
These materials introduce a new quantum state of matter, which are
promising to make a substantial advance in future technology appli-
cations. The TIs show, in principle, an insulating gap in the bulk and
gapless surface states that are protected topologically.33–35 Figure 1(a)
shows the dielectric function at imaginary frequencies ε(iζ), which is
calculated by the Kramers–Kronig relation (see the Appendix) from
the measured imaginary part ε′′(ω), and it is a crucial input for the
subsequent calculations of the Casimir forces via the Lifshitz theory
(see the Appendix). Notably, the choice of TIs and PCMs was done
mainly to illustrate the involved physics of potentially interesting
materials, but the results will hold also for other materials.

Furthermore, our goal is to implement the influence of the opti-
cal properties and the corrugation amplitudes on Casimir force for
the sphere–plate (S–P) geometry configuration in both the lateral

FIG. 3. Bifurcation diagram δ′ lat
Cas vsλLat (= x/Λ) for (a) different sets of corruga-

tion amplitudes (A1 = 42.5 and A2 = 7 nm; A1 = 85 and A2 = 14 nm; A1 = 49.5
and A2 = 49.5 nm) and (b) PCM(C)-TI system with A1 = A2 = 49.5 nm.

and normal directions, and consequently investigate the associated
actuation dynamics actuation when lateral displacements take place
[Fig. 1(b)]. Here, the system is composed of a fixed plate and mov-
able sphere, where both components are assumed to be coated by TIs
and PCMs, respectively, assuming operating at room temperature of
300 K. The average vertical separation in this system is considered to
be d = 200 nm, the radius of the sphere is 100 µm, and the surface
of both components is assumed to be sinusoidal corrugated.30 In this
study, we considered for comparison purposes three different sets
for the corrugation amplitudes: A1 = 42.5 and A2 = 7 nm, A1 = 85
and A2 = 14 nm, and A1 = 49.5 and A2 = 49.5 nm for the plate and
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FIG. 4. Contour plot of the transient time to instability for conservative systems and initial conditions in the λLat − dλLat/dT phase plane for (a) PCM(A)-TI, δ′ lat
Cas = 2, and

the magnitude of corrugations as indicated on the plots and (b) for PCM(A)-TI and PCM(C)-TI systems, δ′ lat
Cas = 7 and corrugation amplitudes A1 = A2 = 49.5 nm. For the

calculations, we used 150× 150 initial conditions (λLat − dλLat/dT). The red elliptical region contains initial conditions that lead to stable oscillations. The heteroclinic orbit
separates sharply stable and unstable solutions reflecting the absence of chaotic behavior.

the sphere, respectively. Also, the average period of the corrugation
was assumed to be Λ = 570 nm.30

The equation of motion in the lateral direction is given by

M
d21x

dt2
+ ε

(

Mω0

Q

)

d1x

dt
= −Flat

res + Flat
Cas + γF0cos(ωt), (1)

where M is the mass of the moving sphere, 1x is the lateral
displacement between the components, and (Mω0/Q)(d1x/dt) is
the intrinsic energy dissipation in the actuating system associ-
ated with a quality factor Q. The frequency ω0 is assumed to
be that of dynamic mode atomic force microscope (AFM) can-
tilevers or MEMS (typically ω = 300 kHz).30,32 The parameter γ was
introduced to distinguish between the conservative (friction-less)

autonomous operation of the actuating system (γ = 0) and the
non-conservative driven system by an external force (γ = 1) in
the presence of dissipation (friction) having a finite quality fac-
tor Q. In practice, for a conservative system, we consider MEMS
with a high quality factor Q > 104, so that we can neglect any
dissipation effects. In Eq. (1), the lateral Casimir force Flat

Cas was
calculated by means of the Lifshitz formula using the PFA (prox-
imity force approximation, see the Appendix).30 Furthermore, the
lateral Casimir force is opposed by the lateral elastic restoring force
Flat

res = −Klat 1x, where Klat is the spring constant in the lateral
direction.

By making lateral displacement, the normal separation between
the surfaces changes leading to changes in the normal Casimir force
between the interacting components. The equation of motion in the
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normal direction can be written as

M
d21zrms

dt2
+ ε

(

Mω0

Q

)

d1zrms

dt
= −FNor

res + FNor
Cas + γF0cos(ωt),

(2)

where FNor
Cas presents the normal amplitude of Casimir force, and FNor

res

(≈KNor 1zrms) is the normal restoring force that resists any bending
along the normal to the surfaces. 1zrms describes the rms roughness
amplitude as in Refs. 36 and 37,

1zrms =

√

√

√

√

√

1

3

3
∫

0

(

d + A1 sin

(

2πx

3
+

2π1x

3

)

− A2 sin

(

2πx

3

))2

dx.

(3)

III. LATERAL ACTUATION DYNAMICS

(a) Conservative system (γ = 0): Figure 2 demonstrates the influ-
ence of the corrugation amplitude and optical properties on the
lateral Casimir force during a lateral movement by one period
of the sphere–plate system. Clearly, the corrugation amplitude
has strong influence on the lateral Casimir force, which becomes
more significant for high but similar in size amplitudes of the
interacting surfaces. Moreover, the lateral force increases by
increasing the conductivity of the interacting materials, as it is
the case of the crystalline PCM state that has higher conductiv-
ity with respect to the amorphous state. In order to discuss the
effect of the optical properties and the corrugation amplitude
on the actuation of the microsystem, we introduce the bifur-

cation parameter δlat
Cas = Flat(M)

res /Flat(m)

Cas that represents the ratio
of the maximum lateral restoring force (Flat

res(M) = −Klat bΛ) to
the minimum lateral Casimir force. In terms of δlat

Cas, Eq. (1) can
be written in the more convenient form as

d2
λlat

dT2
= −λlat +

1

δ′lat
Cas

Flat
Cas

Flat(m)

Cas

, (4)

where λlat =1x/3, T = ω0t, and δ′lat
Cas = bδlat

Cas . The equilib-
rium points for the conservative motion can be found by set-
ting the right part of Eq. (1) equal to zero and obtain δ′lat

Cas

= (1/λlat)(F
lat
Cas/F

lat(m)

Cas ).
The bifurcation diagrams in Fig. 3 illustrate how the corruga-
tion amplitude and the optical properties affect in a complex
manner the stable (below the curves) regions over one period
for a system due to the lateral Casimir force. The strongest
effect in Fig. 3(a) corresponds to the curve with the same cor-
rugation amplitudes, while in Fig. 3(b), the more conductive
system corresponds to the upper curve indicating higher sta-
bility. The counterbalance between the lateral Casimir force
and the restoring force can lead the system to perform sta-
ble motion. By increasing the lateral displacement and con-
sequently increasing the restoring force, the system requires
a stronger lateral Casimir force to preserve stable motion for
larger displacements. Therefore, the loss of stability takes place
faster in the system with a weaker lateral Casimir force that cor-
responds to materials with lower conductivity [e.g., PCM (A)-TI

system] and/or systems with smaller corrugation and signifi-
cant difference between the corrugation amplitudes. Besides the
bifurcation diagrams, the sensitive dependence of the actuation
dynamics on the corrugation amplitude and optical properties is
reflected by the Poincaré portraits in Fig. 4. For the conservative
system, the heteroclinic orbit separates unstable motion, where
stiction occurs within one period, from the periodic closed
orbits around the stable center point. As it emerges from the
calculations, it is clear that the system with significant but simi-
lar corrugation and/or higher conductivity possesses larger area
for the heteroclinic orbit that encloses initial conditions leading
to stable operation.

(b) Non-conservative driven lateral system (γ = 1): The aim here
is to investigate the existence of chaotic behavior of periodically
driven system by an external applied force Fo cos(ωt).38 This
phenomenon happens if the heteroclinic orbit (separatrix) splits
and transversal intersections between stable and unstable orbits
take place. As a starting point for the investigation, we use the
Melnikov method.37–39 If we define by ϕC

het(T) the heteroclinic
solution of the conservative system, the Melnikov function is
given by38–40

Mhet(T0) =
1

Q

∫ +∞

−∞

(

dϕ
C
het(T)

dT

)2

dT +
F0

Fnor (MAX)
res

×

∫ +∞

−∞

dϕC
het(T)

dT
cos

[

ω

ω0

(T − T0)

]

dT. (5)

The splitting of the separatrix takes place if the Melnikov

FIG. 5. Threshold curve αlat (= γω0d/F0) vs driving frequency ω/ωo (with ωo

being the natural frequency of the system). The area below the curve defines
the condition that can possibly lead to chaotic motion. PCM(A)-TI system with
different sets of corrugation amplitudes where only the A1 is indicated (A1 = 42.5
and A2 = 7 nm; A1 = 85 and A2 = 14 nm; A1 = 49.5 and A2 = 49.5 nm); the
values of δ′ lat

Cas is 0.9. Inset: PCM(A)-TI and PCM(C)-TI systems with corrugation

amplitude A1 = A2 = 49.5 nm and δ′lat
Cas = 7.
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FIG. 6. Contour plot of the transient time to instability for non-conservative systems and initial conditions in the λLat − dλLat/dT phase plane (a) PCM(A)-TI with αlat = 0.5,
ω/ωo = 0.25, and δ′ lat

Cas = 2 and (b) for PCM(C)-TI and PCM(A)-TI systems with αlat = 1, ω/ωo = 0.25, and δ′ lat
Cas = 7. The materials and magnitude of corrugations are

indicated. For the calculations, we used 150× 150 initial conditions (λLat − dλLat/dT).

function has simple zeros, i.e., Mhet(T0) = 0 and (Mhet)
′
(T0)

6= 0. The conditions of no simple zeros, where Mhet(T0) = 0

and (Mhet)
′
(T0) = 0, provide the threshold condition for possible

chaotic motion.39,40 If we define

µc
het =

∫ +∞

−∞

(

dϕ
C
het(T)

dT

)2

dT, and

(6)

βhet(ω) =

∣

∣

∣

∣

∣

H

[

Re

(

F

{

dϕ
C
het(T)

dT

})]∣

∣

∣

∣

∣

,

with α = (1/Q)(F0 /Fnor(MAX)
res )

−1
= 0ω0 d/F0, 0 = Mωo/Q, and

H[. . .] denoting the Hilbert transform, then the threshold condition

for chaotic motion becomes

αlat = βhet(ω)/µc
het. (7)

Figure 5 shows the threshold curves αlat vs the driving fre-
quency ratio ω/ωo. The area above the curve corresponds to large
values of αlat, where the dissipation dominates the driving term lead-
ing to periodic motion close to the stable equilibrium point of the
conservative system. However, for parameter values below the curve,
the transversal intersections of stable and unstable orbits could lead
to possible chaotic motion. Figure 6 shows that the area below
the threshold curve becomes smaller by increasing the corruga-
tion amplitude and becoming comparable to each other (A1 ≈ A2).
Moreover, according to the inset of Fig. 5, during lateral actuation,
the system with reduced conductivity shows higher possibility for
the occurrence of chaotic motion. Finally, Fig. 6 shows plots of the
transient times to stiction for PCM(A)-TI systems with different sets
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of corrugation amplitudes. Under the presence of chaotic motion,
and in contrast to the conservative motion as in Fig. 4, there is a
region of initial conditions where it is impossible to predict the long-
term actuation state of a system. Therefore, according to Fig. 6, the
system with similar but high corrugation amplitudes and materi-
als of higher conductivity experiences stronger lateral Casimir force
reducing the risk from chaotic behavior.

IV. NORMAL ACTUATION DYNAMICS

(a) Conservative normal system (γ = 0): Figure 7 illustrates the
influence of the corrugation amplitude on the normal Casimir
force for both the PCM(A)-TI and PCM(C)-TI sphere–plate
systems during lateral movement. It is clear that the minimum
difference in the corrugation amplitude between the moving

FIG. 7. Normal Casimir force vsλrms
Nor(= ∆zrms/d) and vs1x/3 (lateral displace-

ment) for both PCM(A)-TI and PCM(C)-TI systems during one period of lateral
displacement with (a) A1 = 42.5 nm and A2 = 7, (b) A1 = 85 and A2 = 14 nm,
and (c) A1 = 49.5 and A2 = 49.5 nm.

components can provide a wider change in the normal sep-
aration during lateral movements, and this situation can be
amplified by increasing the value of the corrugation. Hence,
according to Fig. 7, the strongest value of the Casimir force
and the widest region of change in the normal displacement
belong to the system with A1 = A2 = 49.5 nm. While a medium
strength of the normal Casimir force occurs for the system with
A1 = 42.5 and A2 = 7 nm, the system that has the largest dif-
ference in corrugations (A1 = 85 and A2 = 14 nm) shows the
smallest magnitude of the maximum normal force during lateral
displacements.

In order to study the influence of the optical properties and the
corrugation amplitude on the normal actuation of the microsystem,

FIG. 8. Bifurcation diagrams δNorCas vs λrms
Nor for different set of corrugations:

(a) A1 = 42.5 and A2 = 7 nm; (b) A1 = A2 = 49.5 nm. All points on the left and
right sides represent the stable and unstable points, respectively.
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FIG. 9. Contour plot of the transient time to instability for conservative systems and initial conditions in the λrms
Nor − dλrms

Nor/dT phase plane for the PCM(A)-TI and PCM(C)-TI

systems. (a) The corrugations are A1 = 42.5 and A2 = 7 nm, and δNorCas = 0.0038. (b) The corrugations are A1 = 49.5 and A2 = 49.5 nm and δNorCas = 0.06. The value of δNorCas

is indicated. For the calculations, we used 150× 150 initial conditions (λrms
Nor − dλrms

Nor /dT). The red elliptical region contains initial conditions that lead to stable oscillations.
The homoclinic orbit separates sharply stable and unstable solutions reflecting the absence of chaotic behavior.

we introduce again the bifurcation parameter δNor
Cas = FNor(M)

Cas /FNor(M)
res

that represents the ratio of the maximum normal Casimir force
to the maximum normal restoring force (FNor(M)

res = −k Nord). The
equation of motion along the normal direction can be written in the
form

d2
λrms

Nor

dT2
+

(

1

Q

)

dλrms
Nor

dT
= −λrms

Nor + δNor
Cas

FNor
Cas

FNor(M)

Cas

, (8)

with λrms
Nor = 1zrms/d and T = ω0t. According to Fig. 8, the bifurca-

tion analysis confirms the information obtained from Fig. 7. Due to
the generation of wider normal displacement, Fig. 8(b) reveals more
sensitivity to the optical properties, and the stable center points that
can be created during lateral movement are separately located in the
curves of both PCM(A)-TI and PCM(C)-TI systems. Figure 8(a),
due the limited normal separation, reveals only a slight sensitivity
to the optical properties since the stable center points in both PCM
(A)-TI and PCM (C)-TI systems are located close to each other. Nev-
ertheless, these differences lead to significant difference in the stable
performance of the device as it is clearly illustrated by the Poincaré
portraits in Fig. 9(a). In both systems with corrugations A1 = 42.5

and A2 = 7 nm, as well as A1 = A2 = 49.5 nm, the sensitivity to opti-
cal properties along the normal direction is distinct. However, as
Fig. 9(b) shows, for higher value of the bifurcation parameter δNor

Cas ,
significant shrinkage of the area enclosed by the homoclinic orbit
takes place indicating higher sensitivity on the optical properties for
the same level of surface corrugations.

(b) Non-conservative normal system (γ = 1): Similar to Sec. III, by
applying the periodic external force to MEMS [(Fo cos(ω t))]
and using the Melnikov method, we studied the occurrence of
chaotic motion along the normal actuation. If ϕC

hom(T) describes
the homoclinic solution of the conservative system performing
normal motion, the Melnikov function Mhom(T0) is given by

Mhom(T0) =
1

Q

∫ +∞

−∞

(

dϕ
C
hom(T)

dT

)2

dT +
F0

FNor(M)
res

×

∫ +∞

−∞

dϕ
C
hom(T)

dT
cos

[

ω

ω0

(T + T0)

]

dT. (9)
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The conditions of no simple zeros [Mhom(T0) = 0 and

(Mhom)
′
(T0) = 0] provides the threshold condition for possible

chaotic motion. Using these definitions, we obtain

µc
hom =

∫ +∞

−∞

(

dϕC
hom(T)

dT

)2

dT, and

(10)

βhom(ω) =

∣

∣

∣

∣

H

[

Re

(

F

{

dϕC
hom(T)

dT

})]
∣

∣

∣

∣

.

Similar to Eq. (7), the threshold condition for chaotic motion
becomes

αNor = βhom(ω)/µc
hom. (11)

Figure 10 shows the threshold curves αNor vs the driving fre-
quency ratio ω/ωo. It is obvious that by increasing the material
conductivity, the area below the threshold curve becomes larger,
which is also more prominent for corrugations of similar in size
amplitude. Therefore, actuating systems with significant and simi-
lar in size amplitude of corrugations and/or with high conductivity
materials can experience higher possibility toward chaotic motion
leading eventually to stiction. Figure 11 further confirms this behav-
ior, where the Poincaré portraits show that the sensitivity to the
optical properties becomes more significant in a system with the
same high corrugation amplitude if normal actuation takes place
during lateral motion.

V. CONCLUSIONS

In summary, we have investigated the influence of the lat-
eral and normal Casimir force on the actuation dynamics between
sinusoidal corrugated surfaces undergoing both normal and lat-
eral displacements. The sensitivity of the actuation dynamics on
the corrugation amplitudes and optical properties was explored for
topological insulators and phase change materials, which are of
high interest materials for device applications. The results show
that the lateral Casimir force becomes stronger not only by increas-
ing the material conductivity but also by increasing the corrugation
amplitudes of both surfaces, especially toward similar in magnitude
surface undulations. The latter geometry configuration produces
wider normal separations during lateral motion. In a conservative
system, using the bifurcation and Poincaré portrait analysis, it is
shown that by increasing the corrugation amplitudes toward simi-
lar sizes and/or increasing the material conductivity, stable motion
is favored along the lateral direction. However, in the normal direc-
tion, higher sensitivity on optical properties takes place for similar
size corrugation amplitudes leading to reduced stable operation by
increasing material conductivity. For non-conservative systems, the
Melnikov function in combination with the Poincaré portrait anal-
ysis was used to probe the possible occurrence of chaotic motion.
During lateral actuation, systems with more conductive materials
and/or the same but high corrugation amplitudes exhibit lower
possibility for the occurrence of chaotic motion. By contrast, in
the normal direction, chaotic motion is more likely to occur to
systems with more conductive materials and similar in magnitude

FIG. 10. Threshold curve αNor (= γω0d/F0) vs driving frequency ω/ωo (with
ωo being the natural frequency of the system). The area below the curve defines
the condition that can possibly lead to chaotic motion. The values of δNorCas and

the corrugation amplitudes are (a) δNorCas = 0.0038, A1 = 42.5 , and A2 = 7 nm;

(b) δNorCas = 0.061, A1 = 49.5, and A2 = 49.5 nm.

corrugation amplitudes. Therefore, our results show that if during
lateral actuation normal motion takes place, then the possibility of
chaotic behavior toward stiction can be increased due to the nor-
mal movements. Hence, proper care must be devoted to increase
the stiffness of the actuating components to prevent these additional
instabilities due to cross interaction between normal and lateral dis-
placements. Although the choice of PCMs and TIs16,17,23 was done
mainly to illustrate the involved physics of potentially interesting
materials, the results will hold qualitatively also for other materials.
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FIG. 11. Contour plot of the transient time to instability for non-conservative systems and initial conditions in the λrms
Nor − dλrms

Nor /dT phase plane for PCM(A)-TI and PCM(C)-TI

(a) with αNor = 1,ω/ωo = 1, and δNorCas = 0.0038 (the corrugations are A1 = 42.5 and A2 = 7 nm) and (b) with αNor = 1,ω/ωo = 0.8, and δNorCas = 0.06. The corrugations
are A1 = A2 = 49.5 nm. For the calculations, we used 150× 150 initial conditions (λrms

Nor − dλrms
Nor /dT).
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APPENDIX: BRIEF THEORY OF THE CASIMIR FORCE

FOR LATERAL AND NORMAL DIRECTIONS AND

DIELECTRIC FUNCTION OF MATERIALS WITH

EXTRAPOLATIONS

The lateral and normal Casimir forces Flat
Cas(z, ϕ) and Fnor

Cas(z, ϕ),
respectively, in Eqs. (1) and (2) for the plate–sphere system with
sinusoidal corrugated surfaces are given (using the proximity force
approximation)30 by

Fnor
Cas(z, ϕ) = ν

∑∞

n=1

1

n

∑∞

l=0

′
∫ ∞

ζl

dyy [r2n
TM(iζl, y) + r2n

TE(iζl, y)]

× exp(−ny) I0(nβy), (A1)

Flat
Cas(z, ϕ) = α

sin ϕ

β

∑∞

n=1

1

n

∑∞

l=0

′
∫ ∞

ς1

dyy[r2n
TM(iςl, y) + r2n

TE(iςl, y)]

× exp(−ny) I1(nβy), (A2)

where

ν =
−kBT R

4 d2
, α =

πkBT R A1A2

2 d3
Λ

and

(A3)

β =

√

A2
1 + A2

2 − 2A1 A2 cos(ϕ)

z
.

We have considered z = d + 1zrms, and in addition F′
Nor and

F′
lat are described by Fnor

Cas(z, ϕ)/ν and Flat
Cas(z, ϕ)/α, respectively;

ϕ = 2π 1x/3. The prime in the first summation of Eqs. (A1)
and (A2) indicate that the term corresponding to l = 0 should
be multiplied with a factor of 1/2. Also, we have y = 2dql with

ql =

√

k2
⊥ + ξ 2

l /c2 and ξl is the imaginary frequency. The Fresnel

reflection coefficients are given by r(i)
TE = (k0 − ki)/(k0 + ki) and

r(i)
TM = (εi k0 − ε0 ki)/(εi k0 + ε0 ki) for the transverse electric (TE)
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and magnetic (TM) field polarizations, respectively. ςl = 2 d ξl/c

and ki =

√

εi (iξl) + k2
⊥ (i = 0, 1, 2) represents the out-off plane

wave vector in the gap between the interacting plates (k0) and in each
of the interacting plates (ki=(1,2)). k⊥ is the in-plane wave vector.

Furthermore, ε(iξ) is the dielectric function evaluated at imag-
inary frequencies, which is the essential input for calculating the
Casimir force between real materials using the Lifshitz theory. Thus,
ε(iξ) can be written as11

ε(iξ) = 1 +
2

π

∫ ∞

0

ω ε′′(ω)

ω2 + ξ2
dω. (A4)

For the calculation of the integral in Eqs. (A1) and (A2), one
must use the measured data for the imaginary part ε′′(ω) of the fre-
quency dependent dielectric function ε(ω). The experimental data
for the imaginary part of the dielectric function cover only a lim-
ited range of frequencies ω1 (= 0.03 ev) < ω < ω2 (= 8.9 ev). For
the case of Bi2Se3 and Al2O3 and PCM(A), there is no extrapola-
tion because they do not have any measurable Drude tail indicating
absorption for the imaginary part at low frequencies. However, in
the case of PCM(C), for the low optical frequencies (ω < ω1 ), we
extrapolated using the Drude model,

ε′′
L(ω) =

ω2
p ωτ

ω(ω2 + ω2
τ)

, (A5)

where ωp is the plasma frequency and ωτ is the relaxation fre-
quency. Furthermore, for the high optical frequencies (ω > ω2), we
extrapolated using

ε′′
H(ω) =

A

ω3
. (A6)

Finally, using Eqs. (A4)–(A6), the function ε(iξ) for all studied
materials can be written as

ε(iξ)PCM(C) = 1 +
2

π

∫ ω2

ω1

ωε′′
exp(ω)

ω2 + ξ2
dω + ∆Lε(iξ) + ∆Hε(iξ),

(A7)

ε(iξ)PCM(A), Bi2Se3 , Al2O3 = 1 +
2

π

∫ ω2

ω1

ωε′′
exp(ω)

ω2 + ξ2
dω + ∆Hε(iξ),

(A8)
with

∆Lε(iξ) =
2

π

∫ ω1

0

ωε′′
L(ω)

ω2 + ξ2
dω and ∆Hε(iξ) =

2

π

∫ ∞

ω2

ωε′′
H(ω)

ω2 + ξ2
dω.

(A9)
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