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Chapter 1

Locomotion is a fundamental skill for all living organisms, excluding plants, to 
move from one place to another. In vertebrates, this is achieved by organized 
contractions of muscles that are attached to the bones, resulting in movement 
of the joints that is eventually expressed in various forms of locomotion, such as 
walking, swimming, running and hopping. Locomotion of quadrupeds obviously 
requires coordination between movements of the four limbs: while opposite limbs 
move in antiphase, the front limbs also move in anti-phase with ipsilateral hind 
limbs. Interestingly, human bipedal gait similarly exhibits a comparable four-
limb pattern, with anti-phase arm swing in the same frequency as the lower limb 
oscillations (illustrated in Fig. 1.1). Although the role of these arm movements in 
human bipedal gait is not as obvious as in quadrupedal gait, they are proposed 
to bring certain advantages. Gait related arm swing has been suggested to 
contribute to stabilization1,2, energetic efficiency2–4, and recruitment of neuronal 
support for maintaining the cyclic motor pattern5. The latter has been inferred from 
previous studies reporting that adding upper limb movements during rhythmic 
lower limb tasks improved lower limb muscle recruitment6–13, suggesting a neural 
coupling between upper and lower limb muscles. The main aim of this thesis is 
to explore this supporting role of arm swing in gait control in healthy participants 
and patients with Parkinson’s Disease (PD), a neurodegenerative disease that 
affects both lower-limb gait and gait related arm swing. We will use a multi-level 
approach including electroencephalography (EEG), electromyography (EMG) and 
gait analyses to explore how this is organized within and between brain, muscle 
and movement level, respectively.

Figure 1.1: Phases of the human gait cycle
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Multi-level approach for exploring gait control
Although one perceives walking as a simple self-evident task, it is a complex task 
for the central nervous system as it must somehow perform numerous complicated 
tasks simultaneously. During gait several muscles from the legs, arms and trunk 
need to collaborate and contract at exact predetermined periods of the gait 
cycle, which requires tight synchronization between these muscles. In addition, 
to continuously adapt the gait movements when e.g. obstacles are encountered, 
the system should also be able to select the most optimal context-specific sensory 
information and incorporate this information into the executed movements. All 
this must be performed within milliseconds and in conjunction with coordinating 
multiple other bodily functions and movements. To accomplish all these challenging 
tasks simultaneously, gait control depends on a tight communication within and 
between brain, muscle and movement level. In this thesis, we will use a multi-
level approach to explore the role of arm swing in gait control on these three 
levels with all measurements performed in an ambulant manner that allows 
participants to walk freely in space. Cortical and muscle activity will be examined 
using ambulant EEG and EMG measurements that are synchronized. In addition, 
tri-axial accelerometers on both legs and trunk together with synchronized video 
recordings enable gait analysis and subsequent demarcation of gait events in 
this EEG and EMG data. This experimental set-up allows to answer specific gait-
related and in our case also arm swing-related questions that were previously 
difficult to answer in humans with other (static) neuroimaging techniques, such as 
functional magnetic resonance imaging.

Brain level: neural control of gait
Nonetheless, these previous static or animal related research techniques have 
provided fundamental insight in how the different levels of the central nervous 
system contribute to gait control. At spinal level, central pattern generators 
generate tightly-coupled patterns of neural activity that drive stereotyped motor 
behaviours including gait14. Propriospinal pathways interconnect these central 
pattern generators from cervical and lumbar levels that control the individual limbs, 
providing an important contribution in generating these synchronized interlimb 
movements15–18. These spinal pathways modify their activity in cooperation with 
descending signals from higher order regulation at subcortical and cortical level19–

23. Important players at a subcortical level include (i) the reticulospinal pathway, 
which produces repetitive locomotor commands24,25, and (ii) the basal ganglia 
and cerebellum, which affect both automatic and cognitive processes involved 
in posture-gait control26. These subcortical pathways are in turn controlled or 
influenced by cortical sources, which enables higher order gait control with 
dynamic involvement of multiple sensory domains. The primary motor cortex is 
one of the most important cortical areas involved in general motor control and 
has also been found to directly drive muscles used in steady-state walking27–29. 
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However, the supplementary motor area (SMA) that lies directly in front of the 
primary motor cortex has also been proposed to play a pivotal role in gait 
control, which can be inferred from SMA lesions resulting in gait abnormalities 
and disequilibrium30–33. The SMA has strong and widespread connections with 
the motor field of its contralateral cortex, explaining its contribution in opposite-
limb coordination including the four limb gait pattern34,35. Aside from its role in 
multi-limb co-ordination, the SMA plays a crucial role in voluntary movement 
initiation including gait initiation36–38. This involvement of the SMA in both multi-
limb movement coordination and movement initiation suggests that this area has 
a central role in pacing the cyclic gait pattern. To further enable higher order 
organization and somatosensory guidance during gait, premotor and parietal 
regions have also been proposed to be involved in this distributed network 
upstream of the primary motor cortex39–41.

Although these previous studies using (static) neuroimaging techniques have 
enlarged our knowledge about the involvement of certain brain areas in these 
different aspects of gait control, these techniques require the participants to lay 
still during the experiment and are therefore not able to measure brain activity 
during actual gait. The emergence of ambulant EEG devices makes is possible to 
examine cortical activity while the participant walks freely in space. EEG measures 
oscillatory activity that represent synchronous activity of many thousands of 
anatomically aligned neurons. These oscillations in the EEG can be analysed using 
event related spectral perturbations (ERSP), which enables the assessment of 
average dynamic changes in power across the broad band frequency spectrum 
as a function of time relative to (gait-related) events42. Such power modulations 
of frequency specific EEG oscillations are proposed to represent the transmission 
of neural information between brain areas and each frequency band supposedly 
serves a different purpose. Alpha (8-12Hz) and beta-oscillatory (12-30 Hz) activity 
have been found to play a predominant role in the initiation and modulation of 
motor activity, with a power decrease (event related desynchronization (ERD)) 
prior to and during movement followed by post-movement rebound (i.e. event 
related synchronization (ERS))43–45. During gait, previous studies found a within-
step ERD-ERS alternation in these alpha and beta frequency bands over the 
sensorimotor cortex46–49, which has been proposed to be crucial for efficient gait 
control. Such cyclic pattern of ERD-ERS alternation was also observed in the 
low-gamma frequency band (30-60 Hz) and has been related to especially the 
organization of active walking48,50. These frequency specific power modulations 
are thought to reflect communication within the central nervous system, which 
is required for coordinating and producing gait. The assessment of these power 
modulations in EEG during various arm swing conditions in both healthy and PD 
gait provides new insights in the role of arm swing in gait control on a brain level 
and allows to explore which cortical areas are involved in this.
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Muscle level
Closely related to communication within the central nervous system, the brain 
communicates with the muscles in order to command the orchestration of muscle 
contractions that will eventually lead to effective limb movements. This is achieved 
by sending electrical potentials along the chain of cerebral and spinal motor 
neurons that subsequently activate the muscle cells. Such muscle activity is typically 
studied using EMG recordings that detect these electrical potentials produced by 
muscle cells when these are neurologically activated by a spinal motor neuron, 
together constituting a motor-unit. These motor-units need to synchronize their 
firing pattern to smoothly contract the entire muscle, which requires a common 
drive to these motoneurons. The shape, size and frequency of the resulting 
electrical muscle signals can be assessed. The increased strength of a muscle 
contraction results from an increased number of active motor units, producing 
electrical potentials that result in an increase of EMG activity. Measuring such EMG 
activity simultaneously with EEG allows us to explore whether altered EEG activity is 
accompanied by increased or reduced EMG activity. Besides examining such ‘basic’ 
activity patterns in the EMG one can also detect frequency specific oscillatory EMG 
activity, which is proposed to be a reflective of oscillations from the central nervous 
system that are send via the corticospinal pathways to the muscles28,51,52. By means 
of the neuronal activation patterns that give rise to these oscillations, the central 
nervous system is able to communicate specific motor commands to the muscles 
to orchestrate and synchronize muscle contractions, which is necessary to achieve 
multiple muscles to collaborate and contract at exact predetermined periods of 
the gait cycle to produce an efficient gait pattern. Such synchronization or coupling 
between two muscles can be examined using intermuscular coherence analysis, 
which provides a measure of the linear correlation between two EMG signals in the 
frequency domain and provides information about the organization of this neural 
connectivity between muscles53–55. Intermuscular coherence in the alpha band 
was found to be primarily a reflective of coupling via subcortical pathways56–58, 
whereas coherence in the beta/gamma frequency bands is proposedly a result of 
cortical coupling56,59,60. During gait, such intermuscular coherence has indeed been 
found between leg muscles in alpha and beta/gamma frequencies, supporting 
the presence of a common subcortical and cortical driver that coordinates and 
synchronizes these leg muscles61,62. As the gait pattern consists of a precise 
coordination between upper and lower limbs, it is hypothesized that a similar 
synchronization also occurs between upper and lower limb muscles but this has 
not yet been reported. Unfortunately, regular coherence analysis cannot distinguish 
directed connections between two muscles. E.g., one cannot distinguish whether 
one muscle drives the other or whether two muscles receive input from a third area 
in the central nervous system. It can therefore not be used to test the hypothesis that 
arm muscles can drive leg muscles, as was suggested by previous studies reporting 
that adding upper limb movements improved lower limb muscle recruitment6–10. 
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Directed connectivity analysis, however, enables making this distinction as it can 
establish directionality or causal effects between two signals63. This type of analysis 
will be used in this thesis to explore whether upper limb muscles can indeed drive 
lower limb muscles during gait and vice versa.

Movement level
In addition to examining what happens on the inside (i.e. brain and muscle level), 
we also examine what happens on the outside of the individual (i.e. the movement 
level). Human movement implies that neuronal information codes are transformed 
in kinetic patterns, for which the previously described interaction between the brain 
and muscles is crucial. In this thesis, these movements are quantitatively examined 
using accelerometers and video recordings that are synchronized with EEG and 
EMG data, which allows us to relate brain and muscle outcomes with behavioural 
consequences. We are primarily interested in robust movement outcomes of gait 
that are also clinically relevant: How fast do participants walk? How large are their 
steps? How stable or variable is their gait pattern? How long does it take to make 
the first step after the starting cue? Besides extracting these spatial and temporal 
features, this synchronized accelerometer and video data also allows demarcation 
of gait events in the EEG and EMG data.

Outline of the thesis
This multi-level experimental set-up allows to explore the supporting role of arm 
swing in human gait control on brain, muscle and movement level, simultaneously, 
and thus provides a condition to answer questions about the relationship between 
these functional levels. The following section describes which questions will be 
answered in each chapter of this thesis while Fig. 1.2 provides an overview of which 
techniques and analyses are used in each chapter.

Part I: Arm swing in human gait
In the first part of this thesis we focus on the role of arm swing in healthy human 
gait and explore the neural circuitries involved in the production of this typical 
four-limb gait pattern. As previously described, gait-related arm swing is proposed 
to recruit neuronal support for maintaining the cyclic gait pattern. In Chapter 
2 we explore cortical mechanisms involved in this apparent supporting role of 
gait-related arm swing by examining EEG activity in healthy participants during 
walking with and without arm swing, with a special focus on activity recorded 
from the putative SMA (mediofrontal EEG electrode Fz). This supporting role of 
gait-related arm swing is inferred from previous studies reporting that adding 
upper limb movements during rhythmic lower limb tasks improved lower limb 
muscle recruitment6–12, which indeed suggest a neural link between upper and 
lower limb movements. However, these experiments remain circumstantial and 
no direct coupling between upper and lower limb muscles has been reported yet. 
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Figure 1.2: A general overview of the methods used in the separate chapters to 
explore the role of arm swing in healthy and Parkinsonian gait on brain, muscle and 
behavioural level.

In Chapter 3 we aim to demonstrate such direct evidence of a coupling between 
upper and lower limb muscles during gait and explore whether upper limb muscles 
can indeed drive lower limb muscles or vice versa using directional intermuscular 
coherence analysis. Finally, to gain more insight in the dynamic qualities of cerebral 
activity associated with multi-limb coordination in human gait, in Chapter 4 the 
cortical circuitry is challenged by introducing the experimental condition of amble 
gait while measuring EEG activity. In this condition, antiphase movements were 
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re-ordered in such a way that the antiphase mode of opposite limb movements 
remained the same while ipsilateral limb movements were performed in an in-
phase pattern. This gait pattern is less overlearned and therefore considered 
more challenging, demanding recruitment of wider distributed networks. Such 
additional circuitry might potentially serve compensation in conditions of impaired 
gait control.

Part II: Arm swing in Parkinsonian gait
A disease which affects both upper and lower limb movements during gait is 
PD. PD is a chronic, progressive neurodegenerative condition characterized by 
a wide spectrum of motor and non-motor features. With a prevalence of 1% in 
people over the age of 60, PD is the most common motor neurodegenerative 
disease in the world64. Typical disease manifestation resulting from disruption of 
neuronal motor circuitry is marked by four cardinal physical symptoms: resting 
tremor, bradykinesia, rigidity and postural instability. One of the most invalidating 
symptoms for PD patients is their impaired walking ability, which is associated with 
a reduced quality of life and frequent falls. These walking impairments typically 
manifest as reduced walking speed and step length, increased asymmetry and 
reduced automaticity65,66. Besides alterations in lower limb functioning, upper limb 
movements are also affected, resulting in a reduction of amplitude as well as 
symmetry in the early or even prodromal stages of PD67–69.

In the second part of this thesis, we try to gain more insight in the causes and 
consequences of this altered arm swing in PD gait and explore whether arm 
swing instructions can improve PD gait and could thus be potentially useful for 
PD gait rehabilitation. Moreover, disease-related changes may also add to 
insight in cerebral activity involved in normal gait control. To examine whether 
these upper and lower limb alterations in PD patients co-occur or may occur 
independent from each other, Chapter 5 examines whether this reduced arm 
swing amplitude and symmetry is correlated with walking speed and step length 
in PD patients using video-based gait analysis. While significant asymmetries in 
limb control typically arise from a unilateral neurologic insult such as occurring 
in stroke, spinal cord injury or traumatic brain injury, the neural mechanisms 
underlying the asymmetries in upper and lower limb functioning in people with 
PD remain poorly understood, but likely imply functional changes at the level of 
distinct functional systems. In this respect, PD especially affects the dopaminergic 
neurons in substantia nigra pars compacta leading to dopaminergic denervation 
of the striatum, which subsequently influences the cortical-subcortical loops. On a 
cortical level, especially the reduction in SMA activity observed in PD patients has 
been found to be associated with their gait deficits of both upper (reduced arm 
swing) and lower limbs (reduced step length and walking speed)70–72. Interestingly, 
instructing PD patients to enhance their arm swing has been found to improve their 
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gait on a behavioural level73, which is in line with the previously described studies 
in healthy participants and other neurologically impaired patients that also found 
a facilitating effect of arm movements on leg muscle activity and movements6–11,13. 
In Chapter 6, we aim to reveal a facilitating effect of arm swing in PD gait with 
specific changes in regional EEG activity, thus exploring cortical pathways involved. 
To that end, four conditions were compared: (i) baseline walking of PD patients, 
with reduced arm swing, (ii) PD walking with enhanced arm swing, (iii) normal 
gait of healthy participants (i.e. with arm swing) and (iv) healthy participants 
walking without arm swing. A facilitating effect of arm swing on PD gait and 
the co-occurrence of upper and lower limb alterations in PD would suggest that 
the neural interlimb coupling during gait remains, to a certain level, preserved 
in PD. Previous studies did report reduced interlimb coordination in PD gait 65,74, 
but the magnitude of disturbed coupling between upper and lower limb muscles 
remains uncertain. In Chapter 7 we explore to what extent and in which directions 
this neuronal interlimb coupling is either preserved or affected in PD patients 
using directional intermuscular coherence analysis. Improved understanding 
of this interlimb coupling during gait in PD patients may provide input for novel 
rehabilitation strategies concerning their impaired walking ability.

Part III: Support of arm swing in Parkinsonian gait initiation
Besides impaired steady state gait, difficulty of initiating gait is also often observed 
in PD patients, with freezing of gait being the most extreme form. Such freezing 
implies that PD patients are suddenly unable to initiate or continue gait. When 
a patient attempts to lift a foot to step forward, the foot is ‘stuck’ to the ground. 
Several compensation strategies have been described in the literature to overcome 
such freezing (for a review see Nonnekes et al., (2019)75). These compensation 
strategies include cueing that invigorates and facilitates motor sequences, 
which can be either external (i.e. meaningful auditory, proprioceptive or visual 
stimuli) or internal (i.e. orientation or focusing of attention toward gait by using 
specific self-prompting instructions). These compensation strategies have been 
proposed to employ instructions that focus their deliberate attention to specific 
elements of ‘normal’ walking that may bypass basal ganglia circuitry and activate 
prefrontal and premotor areas to prepare the motor cortex for locomotion76,77. 
We hypothesize that arm swing instructions by a short verbal command can 
also serve as such a compensation strategy, in such a way that cerebral circuitry 
underlying (enhanced) upper limb antiphase movements, co-activates the lower 
limb movement pattern. Based on this concept, the third part of this thesis tests 
whether arm swing instructions can indeed facilitate the initiation of gait.

In Chapter 8, we describe an experiment on a movement level, testing whether 
forward arm extension can indeed serve as such a cue to facilitate gait initiation 
in PD patients using video analysis. This experimental line is further elaborated in 
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Chapter 9 describing the performance of an experiment in which PD patients are 
instructed to start with an enhanced arm swing while EEG and EMG measures are 
employed, which allows us to explore the involved neural pathways. Interestingly, 
previous studies and chapters of this thesis all mainly focused on producing or 
enhancing forward arm swing (i.e. anteflexion of the shoulder), whereas the 
deltoideus posterior (i.e. responsible for retroflexion of the shoulder) also exhibits 
active muscle activity during gait and gait initiation20,78,79. This suggests that 
backward arm swing also serves a certain purpose in gait. Therefore, Chapter 
10 examines whether both forward and backward arm swing could drive lower 
limb muscles during gait initiation using time dependent directional intermuscular 
coherence analysis.

In the final Chapter 11 the findings of this thesis will be integrated and treated in 
a wider perspective and future perspectives for this multi-level approach as well 
as the use of arm swing in gait rehabilitation will be covered.
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