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ORIGINAL ARTICLE

Single-center versus multi-center 
biparametric MRI radiomics approach 
for clinically significant peripheral zone prostate 
cancer
Jeroen Bleker1,2* , Derya Yakar1, Bram van Noort1, Dennis Rouw3, Igle Jan de Jong4, Rudi A. J. O. Dierckx1, 
Thomas C. Kwee1 and Henkjan Huisman5 

Abstract 

Objectives: To investigate a previously developed radiomics-based biparametric magnetic resonance imaging 
(bpMRI) approach for discrimination of clinically significant peripheral zone prostate cancer (PZ csPCa) using multi-
center, multi-vendor (McMv) and single-center, single-vendor (ScSv) datasets.

Methods: This study’s starting point was a previously developed ScSv algorithm for PZ csPCa whose performance 
was demonstrated in a single-center dataset. A McMv dataset was collected, and 262 PZ PCa lesions (9 centers, 2 
vendors) were selected to identically develop a multi-center algorithm. The single-center algorithm was then applied 
to the multi-center dataset (single–multi-validation), and the McMv algorithm was applied to both the multi-center 
dataset (multi–multi-validation) and the previously used single-center dataset (multi–single-validation). The areas 
under the curve (AUCs) of the validations were compared using bootstrapping.

Results: Previously the single–single validation achieved an AUC of 0.82 (95% CI 0.71–0.92), a significant performance 
reduction of 27.2% compared to the single–multi-validation AUC of 0.59 (95% CI 0.51–0.68). The new multi-center 
model achieved a multi–multi-validation AUC of 0.75 (95% CI 0.64–0.84). Compared to the multi–single-validation 
AUC of 0.66 (95% CI 0.56–0.75), the performance did not decrease significantly (p value: 0.114). Bootstrapped compari-
son showed similar single-center performances and a significantly different multi-center performance (p values: 0.03, 
0.012).

Conclusions: A single-center trained radiomics-based bpMRI model does not generalize to multi-center data. Multi-
center trained radiomics-based bpMRI models do generalize, have equal single-center performance and perform 
better on multi-center data.
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Key points

• Multi-center radiomics-based bpMRI models gener-
alize to new multi-center and single-center data.

• A single-center, single-vendor radiomics-based 
bpMRI model lacks multi-center generalization.

• Multi-center developed models match the single-
center validation of a single-center model.
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• Multi-center developed models outperform single-
center models in a multi-center validation.

Introduction
In 2020, prostate cancer (PCa) is expected to be the most 
common cancer with the second highest mortality rate 
among western males [1]. Multiparametric magnetic res-
onance imaging (mpMRI) has led to an increase in diag-
nostic performance for clinically significant (CS) PCa [2]. 
However, diagnostic performance remains suboptimal [3] 
and extensive radiologic experience is required to achieve 
passable csPCa accuracy [4].

Many recent efforts to improve diagnostic perfor-
mance for csPCa have used some form of artificial intel-
ligence (AI) [5]. Among these studies, however, there is a 
lack of proper external validation [6]. The vast majority 
developed their models on single-center, single-vendor 
(ScSv) datasets making them potentially prone to both 
center and MRI dependencies. For most AI approaches, 
for example, feature-based techniques (e.g., radiomics 
[7]), differences in center, vendor or protocol might affect 
MRI voxel intensity ranges and in turn influence general-
ization [8]. Although steps have been taken to standard-
ize features [9], no studies have investigated what occurs 
during an external multi-center, multi-vendor (McMv) 
validation of a ScSv model.

In a previous study, it was shown that a radiomics-
based biparametric MRI (bpMRI) approach has diagnos-
tic potential in discriminating csPCa from non-CS PCa 
in the peripheral zone (PZ) [10]. In that previous study, 
a selection of the publicly available ScSv challenge data-
set, (n = 262, only PZ lesions from ProstateX) [11] was 
used for training and testing. This approach was in line 
with other published radiomics studies at that time, all 
of them based on ScSv datasets [6]. With radiomics, the 
user tries to quantify tumor imaging data by extracting 
a diverse range of statistical and texture-based features. 
After extraction, the goal is to look for relevant relations 
between these features and the lesion labels (CS PCa vs. 
non-CS PCA), i.e., supervised learning. The relevant fea-
tures are then supplied to a model with the aim of quan-
tifying tumor phenotype, ideally in such a way that CS 
PCa predictions on new never seen before MRI PCa data 
should become possible. However, in practice good gen-
eralization is one of the biggest challenges of radiomics 
[12, 13]. The extent of center and machine dependen-
cies of popular single-center developed models and thus 
their behavior on new external data remains unclear. We 
hypothesize that single-center model performance will 
degrade when used on McMv data even when trained on 
multi-center data.

In this study, we investigate the diagnostic performance 
of a previously developed csPCa radiomics approach 
trained and validated with a mix of a ScSv or McMv 
datasets.

Materials and methods
Patient data
Data collection was approved by the institutional review 
board of each of the main contributing medical centers 
approached for retrospective collection University Medi-
cal Center Groningen (UMCG, Groningen, The Nether-
lands) and Martini Hospital Groningen (Groningen, The 
Netherlands)). Informed consent was waived due to the 
retrospective nature of the study. Because of clinical sus-
picion of PCa, a group of 930 patients, which consisted 
almost exclusively of white European males, was inves-
tigated between 2014 and 2020 using a combination of 
MRI (9 hospitals, 2 vendors, 8 types; Additional file  1) 
and systematic or targeted biopsy techniques (after MRI, 
maximum period 1 year). MRI studies followed protocol 
recommendations found in the prostate imaging-report-
ing and data system guidelines [14]; therefore, protocol 
settings (such as b-values and corresponding ADC maps) 
did not differ largely (Protocol settings: Additional file 1).

Among these 930 patients, a total of 1151 lesions were 
assigned a PI-RADS score (1–5) by two experienced uro-
radiologists (D.Y. 8 years, D.R. 10 years). Approximately 
half of the 1151 lesions were graded independently by 
one uroradiologist, and the remaining half was graded 
independently by the other uroradiologist. Prostate MRI 
was read according to the PIRADS v2 guidelines [15], and 
each radiologist was blinded for pathological results and 
clinical follow-up. DWI and TW2 images were analyzed 
for the detection of suspicious lesions. For PZ, DWI is the 
primary determining sequence. However, findings were 
always correlated with the T2W images. Due to inde-
pendent grading and no overlap between lesion groups, 
no consensus decisions had to be made.

A total of 641 lesions were biopsy naïve, 304 lesions 
had previously been negative on transrectal ultrasound 
biopsy (TRUS) biopsies, and 206 had previously been 
positive on TRUS biopsy. PI-RADS 3–5 lesions were sub-
sequently managed by either non-targeted TRUS biopsy, 
targeted MRI-TRUS fusion, targeted cognitive TRUS 
fusion, prostatectomy or in-bore MR guided. All biopsies 
after MRI occurred in the two main contributing centers 
University Medical Center Groningen (UMCG, Gronin-
gen, The Netherlands) and Martini Hospital Groningen 
(Groningen, The Netherlands), distribution see Table 1). 
Following biopsy, pathology assigned international soci-
ety of urological pathology (ISUP) grades [16] were used 
as reference standard. ISUP grade ≥ 2 was regarded as 
CS lesions, while lesions with a ISUP grade of 1 were 
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considered nonsignificant (non-CS) entities. Overview 
of scanner type and manufacturer can be found in Addi-
tional file 1.

Radiomics‑based bpMRI approach
The previously developed radiomics-based bpMRI PZ 
csPCa approach [10] was based on T2-weighted and dif-
fusion-weighted imaging (DWI, b-values: 800 and 1400 s/
mm2) and the apparent diffusion coefficient map (ADC 
map). Inclusion of dynamic contrast enhanced imaging 
features did not significantly increase performance and 
was omitted to save time and reduce costs [10]. Devel-
opment occurred on the publicly available single-center, 
single-vendor ProstateX challenge dataset consisting of 
prospectively graded PI-RADS 3–5 lesions [11]. Prosta-
teX dataset patients were scanned at the Radboud Uni-
versity Medical Center (Nijmegen, The Netherlands) in 
2012 on a 3T MRI scanner (Siemens Healthcare). Prosta-
teX patients had a median age of 66 (range 48–83 years) 
with a median PSA level of 13 ng/ml (range 1–56 ng/ml). 
Two hundred and six patients with 262 lesions were used 
for approach development, split in a training dataset of 
171 lesions and a test dataset of 91 lesions. A total of 564 
features were extracted for each lesion using an auto-
fixed volume of interest (VOI). The features belonged to 
the categories: first-order statistics, gray-level co-occur-
rence matrix, gray-level run length matrix, gray-level size 
zone matrix, neighboring gray tone difference matrix or 
gray-level dependence matrix. Addition of extra image 
filters was omitted since the filters did not lead to an 
improvement for the previously developed approach [10]. 
The auto-fixed VOI is a semi-automatic segmentation 
technique where an operator defined the most aggressive 
place in a lesion, i.e., the lesion voxel with lowest ADC 
value. Around this voxel, a 12-mm spherical VOI was 
constructed and used for VOI-based radiomics feature 
extraction. A bpMRI example of this technique can be 
found in Additional file 1. ProstateX lesions coordinates 
were previously checked by an expert radiologist (D.Y. 
8 years, blinded for pathological results and clinical fol-
low-up) and where needed adjusted to ensure an appro-
priate location in the tumor [17]. After feature extraction 
with PyRadiomics, features were discretized [9] and the 
most relevant features were selected using joint mutual 

information maximization multivariate feature selection 
[18]. Relevant features were supplied to an extreme gra-
dient boosting algorithm [19], and model hyperparam-
eters were optimized. The best performing ScSv model 
in the previous study achieved a single-center validation 
(single–single validation) area under the curve (AUC) of 
0.816 (95% CI 0.710–0.920). Figure 1 gives an overview of 
the datasets used for development and validation.

Data selection
To allow single–multi-validation (i.e., McMv validation 
of the ScSv model that resulted from the radiomics-based 
bpMRI PZ csPCa approach), multiple data selection steps 
were required to emulate the structure and parameters 
of the ProstateX dataset (Fig. 2). Lesions with PI-RADS 
scores lower than 3 were excluded since these are not 
biopsied in clinical practice and the original develop-
ment dataset (ProstateX) also consisted of prospectively 
graded PI-RADS 3–5 lesions. The set of features used 
by the model required MRI examinations to include 
T2-weighted and DWI (b-values 800, 1400  s/mm2) 
sequences, and an ADC map. Finally, the lesions had to 
be located in the PZ of the prostate and ISUP grade had 
to be based on a spatially matched pathology specimen 
(i.e., MRI-TRUS fusion, targeted cognitive TRUS fusion, 
prostatectomy or in-bore MR guided biopsy) taken 
within 6 months of the MRI study.

Multi‑center, multi‑vendor validation of a single‑center, 
single‑vendor model
Following data selection steps described in Fig. 2 a group 
of McMv lesions remained that met model use conditions 
for comparability. To ensure proper unbiased compari-
son between the validations of the single-center and the 
new multi-center model, a selection of 262 lesions was 
taken at random while preserving the dataset distribu-
tion. To adhere to the radiomics-based bpMRI PZ csPCa 
approach and ensure validation comparison (i.e., create 
the same training and test distribution as the ProstateX 
dataset), this group was further divided into a training 
dataset with 171 lesions and a validation set of 91 lesions. 
Besides the role as a training dataset, these 171 lesions 
were used in single–multi-validation and directly fed 
to the previously trained ScSv model and performance 

Table 1 Targeted biopsy distribution for the final selection of 335 multi-center lesions

Only hospitals A and B are represented in the biopsy distribution since the 7 other centers are referring institutions which do not perform biopsies. Instead, patients 
receive MRI scans in one of these 7 centers and are then referred to hospitals A or B for MRI-TRUS fusion if needed

Biopsy technique MRI‑TRUS fusion Cognitive fusion Prostatectomy In bore MR Guided

Occurrence 296 24 11 4

Location Hospital A: 177
Hospital B: 119

Hospital B Hospital B Hospital B
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metrics (sensitivity, specificity, receiver operating char-
acteristic (ROC) analysis and corresponding AUCs) were 
calculated. Detailed overview can be found in Fig. 1.

Development and validation of a multi‑center, 
multi‑vendor model
The previously developed radiomics-based bpMRI PZ 
csPCa approach [10] was used for the development of 
a McMv-based model. As mentioned previously, the 
development dataset of 262 McMv lesions was already 
created and split (n = 262, training n = 171, valida-
tion = 91) [10]. A total of 564 multi-center radiomics 
features (feature categories mentioned in radiomics-
based bpMRI approach paragraph) were extracted 
using the same semi-automatic “auto-fixed” 12  mm 
VOI strategy previously developed as part of the 
bpMRI PZ csPCa approach [10]. A single experienced 
uroradiologist (D.Y. 8  years) retrospectively indicated 
the lesion area in which the voxel with the lowest ADC 
value was selected (i.e., lesion pinpoint). The radiologist 
was blinded to all clinical information including pathol-
ogy results. The training dataset was used for the devel-
opment of the new McMv model precisely following 
the bpMRI PZ csPCa approach. Instead of the previ-
ous randomized feature selection and hyperparameter 

optimization, Bayesian optimization was preferred for 
feature selection and hyperparameter optimization due 
to its computing speed and reproducible and unbiased 
nature [20]. The method for feature selection remained 
the filter-based Joint mutual information maximization 
which was found to be the most successful during the 
development of the bpMRI PZ csPCa approach [10, 18]. 
Bayesian optimization was implemented as a sequential 
model-based optimization through Optuna [21] and 
can be easily reproduced due to being an automated 
hyperparameter optimization framework. By creating 
a nested cross-validation for JMIM inside the Optuna 
model optimization and selecting features that occur 
in each randomized fold, the feature selection should 
be reproducible and robust to different compositions 
of multi-center data. Multi–multi-validation was per-
formed by validating the resulting McMv model on the 
separate 91 multi-center lesions. Subsequently, multi–
single-validation was performed by validating the new 
model on 171 single-center lesions that were used for 
initial ScSv radiomics-based bpMRI model develop-
ment (ProstateX, training dataset [10]). This provided 
an equal number of lesions for the total development 
and validation datasets (n = 171 and n = 91) for both 
models, allowing for unbiased validation comparisons.

Fig. 1 Validation overview with the development datasets and each of the validations described. Single–single validation = single-center, 
single-vendor model validated on single-center, single-vendor data. Multi–multi-validation = multi-center, multi-vendor model validated on 
multi-center, multi-vendor data. In the multi–single and single–multi-combinations, the first word refers to the model, while the second refers to 
the dataset
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Statistical analysis
95% confidence intervals for all performance metrics 
were created using 5000 times bootstrapping the model 
test results. Sensitivity, specificity, AUC values and 
ROC curves were acquired for all validations. Youden’s 
index was used to find the best cut-off value for sensi-
tivity and specificity. The ROC curves for all validations 
were compared creating a total of four comparisons. 
Due to multiple comparisons, Bonferroni correction 
was applied creating a new p value limit of 0.0125. Both 
comparisons were calculated using 5000 times ROC 
bootstrapping. All analyses were performed using R 
(Version 4.0.3 Copyright (C) 2020 The R Foundation for 
Statistical Computing) with the pROC package [22].

Results
Multi‑center dataset characteristics
From the total dataset of 1151 McMv lesions, 335 
lesions remained that met data selection criteria 
(Fig.  2). A total of 236 lesions were scanned in either 
Hospital A or Hospital B, while the remaining 99 
lesions were scanned in seven smaller regional medical 
centers. The biopsy technique distribution for the 335 
eligible lesions is given in Table 1. The final set included 
79 PI-RADS 3 lesions, 219 PI-RADS 4 lesions and 30 
PI-RADS 5 lesions. Of the final dataset 94 lesions had 
a negative targeted biopsy after MRI, 89 lesions were 
ISUP 1, another 98 were ISUP 2, 31 were ISUP 3, 11 
ISUP 4 and 12 ISUP 5. 

Fig. 2 STARD flowchart
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From the 335 eligible McMv lesions, 262 McMv lesions 
were randomly selected while preserving dataset distri-
bution. The group of 262 PZ PCa lesions consisted of 113 
CS lesions and 149 non-CS entities. Patient age ranged 
from 60 to 87  years with a median of 69  years, while 
PSA levels ranged from 0.79 to 34  µg/L with a median 
of 7.9 µg/L. To match previous development, the lesions 
were split in a training set of 171 lesions and a test set of 
91 lesions.

Single–multi‑validation
Validation of the ScSv model on the McMv lesions led to 
a sensitivity of 0.30 (95% CI 0.20–0.40) with a specific-
ity of 0.88 (95% CI 0.82–0.95) and an AUC of 0.59 (95% 
CI 0.51–0.68) for the ability to discriminate CS PCa 
from non-CS PCa in the PZ using an optimized thresh-
old (Fig.  1, single–multi-validation). Confusion matrix 
for the single–multi-validation can be found in Table  2. 
Bootstrapped comparison of the single–multi-validation 
and previously acquired single–single validation showed 
a significant performance reduction (p value: 0.002). For 
a better understanding of the single–multi-validation, 
an overview of the top 25 most important features of a 
total of 76 model features, for the ScSv model, is given in 
Fig. 4.

Multi–multi‑validation
The newly developed McMv model achieved a multi–
center-validation sensitivity of 0.50 (95% CI 0.35– 0.65), 
a specificity of 0.88 (95% CI 0.79–0.98) and an AUC of 
0.75 (95% CI 0.64–0.84) (Fig. 1, multi–multi-validation). 
Multi–multi-validation confusion matrix can be found in 
Table 3.

Multi–single validation
The ScSv validation of the McMv model achieved a sen-
sitivity of 0.37 (95% CI 0.23–0.54), a specificity of 0.90 
(95% CI 0.85–0.95) and an AUC of 0.66 (95% CI 0.56–
0.75) (Fig.  1, multi–single validation). Confusion matrix 
for the multi–single validation is shown in Table 4. Boot-
strapped comparison of the multi–multi-validation and 
the multi–single validation did not show a significant 

difference (p value: 0.114). To better understand the dif-
ferences between a single-center and multi-center radi-
omics model, another detailed overview of the top 8 
McMv model features, of a total of 56 model features, is 
given in Fig. 5.

Bootstrapped comparison of the ROCs for both single-
center and multi-center validation results shows that 
both models have similar single-center performances (p 
value = 0.03). Further ROC bootstrapped comparison 
showed that the multi-center model had a significantly 
better multi-center performance (p value: 0.012). All 
validation ROCs (including the previous single–single 
validation [10]) can be found in Fig. 3 with corresponding 
AUCs in Table 5.

Discussion
The ScSv radiomics-based bpMRI PCa model suffered 
from significant performance reduction when used in a 
McMv setting (− 28.1%, compared to single-center vali-
dation AUC: 0.594 vs. 0.816, p value: 0.002). The use of 
a McMv model does not suffer from a significant perfor-
mance reduction between multi-center and single-center 
validation (− 12%, AUC: 0.750 vs. 0.660, p value: 0.114) 
and even performs better on multi-center data than 
the single-center model (AUC 0.750 vs. 0.594, p value: 
0.012). The nonsignificant reduction between the multi-
center and single-center validation of the multi-center 
model seems to suggest that the use of a McMv dataset 
improves generalization.

Table 2 Confusion matrix for the single–multi-validation

PCa prostate cancer, TN true negative, FP false positive, FN false negative, TP true 
positive

Single–multi‑validation 
(n = 171)

Predicted 
significant 
PCa

Predicted 
nonsignificant 
entity

Label significant PCa TN = 71 FP = 21 92

Label nonsignificant entity FN = 49 TP = 30 79

120 51

Table 3 Confusion matrix for the multi–multi-validation

PCa prostate cancer, TN true negative, FP false positive, FN false negative, TP true 
positive

Multi–multi‑validation (n = 91) Predicted 
significant 
PCa

Predicted 
nonsignificant 
entity

Label significant PCa TN = 33 FP = 15 48

Label nonsignificant entity FN = 16 TP = 27 43

49 42

Table 4 Confusion matrix for the multi–single validation

PCa prostate cancer, TN true negative, FP false positive, FN false negative, TP true 
positive

Multi–single validation 
(n = 171)

Predicted 
significant 
PCa

Predicted 
nonsignificant 
entity

Label significant PCa TN = 120 FP = 16 136

Label nonsignificant entity FN = 22 TP = 13 35

142 29
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Interestingly, even though the multi–multi-validation 
score does not seem all that great the multi-center model 
has better generalization, suffers from less dependencies, 
and performs significantly better in a multi-center set-
ting than a single-center development approach. While 
numerically the single–single validation seems noticeably 

higher, this is not a significant difference when corrected 
for multiple comparisons. Though it seems easier to 
achieve higher scores for the single-center model, this 
might be explained by the lower complexity of the sin-
gle-center dataset. Because of the lack of issues such as 
diverse protocols, larger radiomics feature ranges and 

Fig. 3 Receiver operating characteristic curves for all training and validation combinations

Table 5 AUCs for the test results and external validation of the single-center, single-vendor model and the multi-center, multi-vendor 
model

Percentage change refers to the change in performance for the development validation and external validation. For the single-center model, this means the change 
from single-center validation to multi-center validation, and for the multi-center model this mean the change from multi-center validation to single-center validation

Single‑center, single‑vendor model Multi‑center, multi‑vendor model p value

Single-center validation (AUC) 0.82 (95% CI 0.71–0.92) 0.66 (95% CI 0.56–0.75) 0.03

Multi-center validation (AUC) 0.59 (95% CI 0.51–0.68) 0.75 (95% CI 0.64–0.84) 0.012

Percentage change − 27.2% − 12% x

p value 0.002 0.114
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different center, vendor and machine dependencies the 
feature selection can focus on features that heavily corre-
late with the labels (CS PCa vs. non-CS) and thus increase 
performance. This is also visible in the large number of 
features that are found to be important for the final pre-
diction (Fig. 4). Only the top 25 features are given, but all 
of the 76 model features appear to play a part in the final 
prediction. Due to the overall homogeneity of the data-
set, the features that were selected during cross-validated 
optimization were not specifically selected for different 
distributions of the same data. While this does appear 
to be the case for the multi-center model (Fig. 5) as only 
8 out of 56 features appear to affect the final prediction. 

The other features are not redundant but rather more 
specified and will not have a large presence in the final 
gradient boosted trees. A group of 22 features appear 
in both the McMv and ScSv models, 11 features are 
extracted from DWI at a b-value 1400 s/mm2, 8 features 
originate from the ADC map, and the final 2 features are 
based on T2-weighted imaging. Interestingly, almost all 
of these 22 features are either first-order or gray-level co-
occurrence features which might suggest that these fea-
ture types are slightly more robust to changes in dataset 
distributions. Of the 22 features, only 2 features affect 
the final prediction of both the McMv and ScSv mod-
els; first-order root mean squared of the ADC map and 

Fig. 4 “Gain” values for the top 25 most important features of the single-center model trained on a dataset containing 171 single-center PCa 
lesions. Higher gain means a higher positive effect on the end performance

Fig. 5 “Gain” values for the top 8 most important features of the multi-center model trained on a dataset containing 171 multi-center PCa lesions. 
Higher gain means a higher positive effect on the end performance
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gray-level co-occurrence cluster tendency of DWI at a 
b-value 1400  s/mm2. Root mean squared is the square 
root of the mean of all squared image intensity values 
and is a measure of the magnitude of image values, while 
cluster tendency is a measure for the grouping of voxels 
with similar intensity values. The increased complexity 
of the multi-center dataset might be another explanation 
for its seemingly lower performance. Patient studies were 
created on different machines from different vendors 
which used a diverse range of MRI settings (Additional 
file 1). Especially voxel spacing or other protocol settings 
influencing voxel intensity ranges are expected to affect 
radiomic feature ranges [23]. Dataset processing, which 
might solve for multi-center complexity issues [9], was 
omitted due to the previously developed radiomics-based 
bpMRI approach homogeneity and a missing standard 
for bpMRI PCa radiomics. With proper inclusion of these 
steps, it is expected that both the single-center and multi-
center validation performance of the new multi-center 
model will improve [9, 24]. However, proper implemen-
tation requires extensive optimization experiments since 
just selecting a plausible set of post-processing settings 
does not necessarily lead to an improvement [25]. Addi-
tionally, when looking at the current generalization of the 
multi-center model it can be speculated that even when 
omitting these pre-processing steps the multi-center 
training is able to learn information about the diverse 
data. Observation of the feature importance scores given 
in Figs. 4 and 5 might suggest that T2-weighted and ADC 
features are less sensitive to dependencies than features 
taken from DWI with a calculated b-value although the 
discrepancy between the total number of model features 
and the features found important for the multi-center 
model interferes with drawing any true conclusions.

The number of studies that developed machine learn-
ing approaches on single-center datasets for PCa using 
radiomics is extensive [6]. However, there is a lack of 
studies that subsequently investigated the performance 
of their approach or model on McMv data [6]. Only one 
recent study by Castillo et  al. [25] investigated the gen-
eralizability of a radiomics model for classifying PCa. 
Although this study differed from the current one and 
used a suboptimal post-processing approach, they also 
found a lacking generalizability for single-center mod-
els [25]. The test AUC for their single-center models was 
lower than ours (0.816 vs. 0.75) and the multi-center 
model did not manage to improve on this even with pre-
processing. Furthermore, no comparisons between the 
models were performed. A recent study by Bournonne 
et al. [26] of an MRI-derived radiomics model to predict 
biochemical recurrence after surgery for high-risk pros-
tate cancer also focused on validation. Although the goal, 
sequences and development of Bournonne et al.’s model 

were different than ours, it still used ADC derived radi-
omic features that even with model re-training failed to 
achieve a good score on an external validation set. Appli-
cation of ComBat compensation, a technique, especially 
developed to compensate feature differences that occur 
due to different centers, vendors and scanners, did not 
lead to significant differences. Unfortunately, their model 
only used one radiomic feature, so true exclusion of 
ComBat compensation for future preprocessing optimi-
zation might be ill-advised, especially when also account-
ing for the positive effects of ComBat compensation on 
multi-center MR radiomics features found by Orlhac 
et al. [27]

Our current study suffers from three main limitations. 
First, all investigations were performed on PCa lesions in 
the PZ. While the expectation is that recommendations 
for multi-center development hold up for all prostate 
zones, it cannot be excluded that transition zone (TZ) 
lesions have a different susceptibility to center, vendor or 
protocol dependencies. Fortunately, the large majority of 
PCa lesions are located in the PZ; only around 20% can 
be found in the other zones [28]. However, TZ lesions 
remain important for future clinical implementation. 
Future research, which will no longer be limited by pre-
vious approach validations and data availability, should 
include TZ lesions. Second, the inclusion of extra pre-
processing besides the current normalization and gray 
value discretization might have an effect on the gener-
alization for both the ScSv and McMv models. Recently, 
Ligero et  al. have found a significant reduction of com-
puted tomography radiomics feature variability by imple-
menting both interpolation and intensity harmonization 
(ComBat compensation) [29]. Additionally, Delli Pizzi 
et  al. [30] successfully created an MRI radiomics model 
that predicted tumor treatment response based on three 
resampled datasets. However, proper implementation 
of interpolation and intensity harmonization requires 
extensive optimization experiments since there is no evi-
dence-based standard for MRI PCa radiomics. Even with 
extensive experimentation, the effects of various preproc-
essing on improving model generalization remain topic 
of research. For example, Castillo et al. [25] implemented 
pre-processing for their radiomics MRI PCa model that 
did not lead to better performance (AUC single center 
model 0.75 vs. AUC multi-center model 0.75). All these 
techniques aim to improve generalization on multicenter 
data. Our study focuses on another aspect, namely the 
limitations of poor generalization with single-center data. 
Extending to multi-center data we show is better, but 
optimizing in multi-center data requires further radiom-
ics technology research. Third, due to the use of different 
biopsy techniques there was a non-uniform gold stand-
ard employed as labels. Due to extensive multi-center 
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data collection and wanting to include as much data as 
possible, this is almost unavoidable for bigger sets, but 
should be acknowledged as a limitation, nonetheless.

In conclusion, a ScSv trained radiomics-based bpMRI 
model does not generalize to McMv data. McMv trained 
radiomics-based bpMRI models do generalize, have 
equal single-center performance and perform better on 
multi-center data.
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