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Abstract: Automating cardiac function assessment on cardiac magnetic resonance short-axis cines
is faster and more reproducible than manual contour-tracing; however, accurately tracing basal
contours remains challenging. Three automated post-processing software packages (Level 1) were
compared to manual assessment. Subsequently, automated basal tracings were manually adjusted
using a standardized protocol combined with software package-specific relative-to-manual standard
error correction (Level 2). All post-processing was performed in 65 healthy subjects. Manual contour-
tracing was performed separately from Level 1 and 2 automated analysis. Automated measurements
were considered accurate when the difference was equal or less than the maximum manual inter-
observer disagreement percentage. Level 1 (2.1 ± 1.0 min) and Level 2 automated (5.2 ± 1.3 min)
were faster and more reproducible than manual (21.1 ± 2.9 min) post-processing, the maximum
inter-observer disagreement was 6%. Compared to manual, Level 1 automation had wide limits
of agreement. The most reliable software package obtained more accurate measurements in Level
2 compared to Level 1 automation: left ventricular end-diastolic volume, 98% and 53%; ejection
fraction, 98% and 60%; mass, 70% and 3%; right ventricular end-diastolic volume, 98% and 28%;
ejection fraction, 80% and 40%, respectively. Level 1 automated cardiac function post-processing is
fast and highly reproducible with varying accuracy. Level 2 automation balances speed and accuracy.

Keywords: cardiac magnetic resonance; cardiac function; reproducibility; automation; standardization;
tracing protocol
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1. Introduction

Cardiovascular magnetic resonance (CMR) imaging is the reference standard for non-
invasive assessment of ventricular volumes, function, and left ventricular (LV) mass [1].
Conventional post-processing by manually contour-tracing a stack of short-axis slices in
end-diastolic and end-systolic phase is time-consuming [2,3]. As an alternative, commer-
cially available artificial intelligence software has the ability to reduce post-processing time
while increasing reproducibility [4], and several studies already showed promising results
for Level 1 automated assessment [5–10]. The major challenge in measurement accuracy is
basal tracing; dealing with cardiac through-plane motion combined with the complexity of
basal anatomy which also varies between individuals [3,11]. These introduce disagreement
with manual reference tracings, leading to different standards being used between sites, es-
pecially for the right ventricle (RV) [5,8,12]. Furthermore, Level 1 automated measurements
can contain significant vendor-specific relative standard error in all slices [6,8,13].

To address these measurement inaccuracies in commercially available Level 1 auto-
mated post-processing solutions, the first phase of the Level 2 automated approach includes
standardized manual adjustments of the Level 1 automated basal tracings. In the second
phase of Level 2 automation, these results are corrected using the software package-specific
relative-to-manual standard errors. Standardization of manual adjustments improves
generalizability and reproducibility [14–16]. The Society for Cardiovascular Magnetic Res-
onance (SCMR) published general recommendations for standardized image interpretation
of short-axis cines, including statements for identification of the basal slice and inclusion of
specific anatomical structures [2]. Detailed operating procedures on handling basal slices
with partially visualized LV or RV are nevertheless not available yet.

The first aim was to compare Level 1 automated post-processing of three commercially
available software packages to manual contour-tracing on analysis time, reproducibility,
and accuracy. The second aim was to assess the added value of the two phases of Level
2 automation; phase 1, manual adjustment of Level 1 generated basal tracings using a
standardized contour-tracing protocol incorporating SCMR recommendations, and phase
2, correction of software package-specific relative-to-manual standard errors.

2. Materials and Methods
2.1. Study Population

This prospective single-center study was conducted in accordance with the Declaration
of Helsinki, and the study protocol was approved by the Medical Ethical Committee of the
University Medical Center Groningen (no. 2016/476; 19 December 2016). Sixty-five healthy
volunteers (mean age, 30 ± 6 years; male sex, 57%) were recruited and signed informed
consent prior to inclusion. The included subjects were divided among a training dataset
(n = 15), validation dataset (n = 10) and segmentation dataset (n = 40) (study design in
Figure 1).

2.2. CMR Imaging

All subjects underwent CMR on a 3.0 T scanner (MAGNETOM Prisma, Siemens
Healthineers, Erlangen, Germany—software version VE11C) equipped with a 60-element
phased-array coil. Electrocardiographically gated balanced steady-state free precession
sequences were used to acquire long- and short-axis cines of 25 phases during breath-
holds [17]. Long-axis cines were visualized in 4-chamber (4Ch), 2-chamber left ventricle
(2ChLV), 2-chamber right ventricle (2ChRV) and outflow tract views. Short-axis cines
were acquired from the atria to the ventricular apex with 6 mm slice thickness and 4 mm
interslice gap [17]. All images were anonymized and exported directly from the scanner
for offline analysis.
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2.3. Contour-Tracing Protocol

Two observers (a PhD student and a radiology resident, designated first and second),
independently evaluated the previously published 1.5 T short-axis contour-tracing protocol
using the training dataset (Figure 1) [18]. Manual contour-tracing was performed on a
clinical workstation with contour-tracing software cvi42 (v.5.10.1, Circle Cardiovascular
Imaging Inc., Calgary, AB, Canada), further referred to as vendor 1, enabling simultaneous
comparison of long- and short-axis images. After both observers analyzed the training
dataset once, the tracing protocol was adjusted to improve reproducibility in a consensus
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meeting with an experienced cardiovascular radiologist. Adjustments included adaptation
of rules how to in- or exclude the basal tracings, control mechanisms between LV and
RV stroke volume and between end-diastolic and end-systolic LV mass, and CMR scan
parameters, most importantly slice and interslice gap thickness, and number of phases [18].
After 3 weeks, both observers repeated the manual analysis of the training dataset using
the adapted tracing protocol, after which consensus was reached on the final protocol
between the above mentioned three observers.

The contour-tracing protocol with detailed textual and visual instructions is provided
in Supplementary Material File S1. In brief, the cardiac phases with largest and smallest
blood pool in the midventricular short-axis slice were defined as end-diastolic and end-
systolic phase, respectively. In these two cardiac phases in all short-axis slices, endocardial
contours were traced surrounding the LV and RV blood pool to assess volumes, and
additionally epicardial contours surrounding the LV wall for LV mass calculation. Papillary
muscles and trabecular tissue were included in the blood pool.

The two observers independently manually validated the contour-tracing protocol
using the blinded validation dataset (Figure 1). After one month, both observers retraced
the validation dataset to measure reproducibility.

2.4. Post-Processing Methods

The segmentation dataset was used to compare Level 1 and phase 1 of Level 2 au-
tomated results with gold standard manual contour-tracing results (Figure 1). Analysis
time of all measurements was noted. Manual contour-tracing was performed by the first
observer with vendor 1, the second observer checked all manual contours for adherence to
the final tracing protocol.

Level 1 automated post-processing started one month after finishing manual contour-
tracing. The first observer assessed three commonly used commercially available software
packages; vendor 1, vendor 2 (Qmass MR, v.8.1, Medis Medical Imaging Systems, Leiden,
The Netherlands) and vendor 3 (syngo.via, v.VB30A, Siemens Healthineers, Erlangen,
Germany). The hardware specifications met the criteria as recommended by the vendors.
All Level 1 automated contour-tracing was performed on short-axis cines exactly adhering
to the instructions as provided in their respective user manuals. In all three software
packages, the LV range was manually defined by selecting the mitral valve plane and
apex on the 4Ch view. As vendor 1 allowed the use of multiple long-axis cines to define
ventricular ranges, the LV range was also defined on the 2ChLV, and the RV range was
defined on the 4Ch and 2ChRV. In vendor 2 it was not possible to define the RV range, and
vendor 3 did not provide automated RV segmentation and was therefore excluded for RV
evaluation.

Level 1 automated post-processing was performed with at least two weeks between
vendors, and all subjects were post-processed in random order. None of the vendors
used machine learning adapting to operator input, and therefore Level 1 automated
contour-tracings were not affected by learning from user input. The first five datasets
were automatically post-processed again for reproducibility assessment, and since this
reproducibility proved to be nearly perfect, the number of datasets was not enlarged.

Phase 1 of Level 2 automated post-processing was performed directly after Level
1 automated assessment was completed. The analysis included manually adjusting the
Level 1 automated contours of the most basal slice containing both LV and RV, and the
even more basal slice, if only LV or RV remained visible, using the final tracing protocol.
Subsequently, adherence to this protocol was checked by the second observer. Phase 1
of Level 2 automated procedure was repeated in the first five datasets, and this number
proved to be sufficient to reliably assess post-processing reproducibility.

2.5. Statistical Analysis

The statistical analysis was performed using SPSS (v.24, Statistical Package for the
Social Sciences, International Business Machines, Armonk, NY, USA). A p-value < 0.05 was
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considered significant. Analysis time was noted as mean ± standard deviation (SD) and
analyzed using the analysis of variances with post-hoc tests. Reproducibility was analyzed
using the intraclass correlation coefficient (ICC) and Bland-Altman statistics, noted as mean
difference (±1.96 SD) (95% limits of agreement) [19,20].

Agreement between methods was analyzed using Bland-Altman statistics and linear
regression to investigate which part of the variation was removed by adjusting Level 1
automated basal tracings. Furthermore, the ratio between phase 1 of Level 2 automation
and manual tracing results was calculated for each cardiac parameter. The median of
this ratio was defined as the software package-specific relative-to-manual standard error
used for phase 2 of Level 2 automation. Measurements differing equally or less than the
maximum inter-observer disagreement percentage of manual tracings were considered
accurate.

Based on Koo et al. [20], ICC ≥ 0.75 was used to define good reliability. The ICC
between Level 1 automated and manual tracing results was calculated for volumes and
mass per vendor. If Level 1 automated results were unreliable, correcting basal slices alone
was not expected to gain sufficiently accurate results. The statistical analysis of Level 2
automation was focused on vendors in which all parameters had an ICC ≥ 0.75.

3. Results
3.1. Analysis Time

The analysis time of manual segmentation (21.1 ± 2.9 min) was significantly longer
than Level 1 (2.1 ± 1.0 min) and Level 2 automated (5.2 ± 1.3 min) post-processing
(Figure 2).
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3.2. Reproducibility

The reproducibility of the manually contour-traced validation dataset is shown in
Table S1. The intra- and inter-observer agreement were excellent for all parameters
(ICC ≥ 0.925).

The intra-observer variability of the LVEF was −0.5% (±1.6%) and the inter-observer
variability was −0.4% (±1.5%); for the RVEF, these were −0.2% (±1.2%) and −0.1% (±2.3%),
respectively. The maximum inter-observer disagreement was 6%.

The reproducibility of the repeated Level 1 and phase 1 of Level 2 automated mea-
surements is shown in Table S2. The reproducibility of all parameters was close to perfect
in both Level 1 (ICC = 0.974–1.000) and phase 1 of Level 2 automated post-processing
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(ICC = 0.949–1.000), higher than manual tracing. As expected, Level 1 post-processing
showed higher reproducibility than phase 1 of Level 2 post-processing.

3.3. Accuracy
3.3.1. Level 1 Automation

LV parameters differed significantly from the gold standard manual measurements,
and this variation was software package-specific (Figure 3, Table S3). Of the three software
packages, vendor 1 performed best; the difference in LV end-diastolic volume (EDV)
was −11 mL (±21 mL), in LV ejection fraction (EF) 4% (±8%), and in LV mass 26 g
(±20 g). RV parameters showed larger differences than LV parameters compared to manual
measurements. This variability in vendor 1 led to a small number of Level 1 measurements
considered accurate (Figure 4, Table S4).

1 
 

 

Figure 3. Agreement between Level 1 automation and gold standard manual contour-tracing. The
three lines represent mean difference with limits of agreement. Vendor 3 does not support automated
right ventricular post-processing.
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Despite the differences between vendor 1 and the manual ground truth, the reliabil-
ity was good for all cardiac parameters (lowest ICC was 0.771, highest ICC was 0.949)
(Table S5). In vendor 2 and vendor 3, however, the reliability was moderate for all pa-
rameters (ICC ≤ 0.749), except for the LVEDV. Therefore, further evaluation of Level 2
automation focused on vendor 1.

3.3.2. Level 2 Automation

The acquired Level 1 automated basal tracings in vendor 1 were manually adjusted
using the standardized protocol (phase 1 of Level 2 automation), removing a large part of
the variation between automated and manual measurements, especially for RV parameters
(Table S3). The R2 improved for the LVEDV from 0.91 to 0.98, LVEF from 0.53 to 0.72, LV
mass from 0.86 to 0.93, RVEDV from 0.62 to 0.97, and RVEF from 0.17 to 0.63. Corresponding
limits of agreement between phase 1 of Level 2 automated and manual results were smaller
than those in Level 1 automation (Figure 5). Nevertheless, only a small number of phase 1
of Level 2 automated measurements was considered accurate (Table S4), as the software
package-specific relative-to-manual standard error was still present.

The standard error in phase 1 of Level 2 automated measurements is provided in
Table S6. The standard error for LVEDV was −7% (interquartile range (IQR); −8%, −6%)
and for RVEDV this was −8% (IQR; −11%, −7%), suggesting that volumes were underes-
timated compared to manual contour-tracing. For the LV mass, this was the opposite as
the standard error was positive (21% (IQR; 18%, 29%)). After correcting for these standard
errors, most measurements in phase 2 of Level 2 automation were considered accurate:
98% of the LVEDV, 98% of the LVEF, 70% of the LV mass, 98% of the RVEDV, and 80% of
the RVEF (Figure 4). Differences between phase 2 of Level 2 automated and manual results
are shown in Figure 5.

Level 2 automated results of vendor 2 and vendor 3 are reported in Tables S3–S7. The
differences with manual results were larger in vendor 2 and vendor 3 than in vendor 1. After
correcting for the relative-to-manual standard errors, the number of accurate measurements
in vendor 2 and vendor 3 remained low.
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4. Discussion

In this study we compared the speed and accuracy of Level 1 automated post-
processing to manual contour-tracing. We additionally assessed the benefit of manually
adjusting Level 1 automated basal tracings using a standardized protocol (phase 1 of
Level 2 automation), combined with correction of the relative-to-manual standard error
(phase 2 of Level 2 automation). Level 1 automated post-processing was ten times faster
with higher reproducibility compared to manual contour-tracing, however, big differences
resulted in few measurements that were considered accurate with large variation between
software packages. Vendor 1 demonstrated the most reliable Level 1 automated results,
and Level 2 automation showed high accuracy while preserving speed.

Level 1 automated post-processing in all three software packages was quick and highly
reproducible, and this could improve clinical workflow as previously reported [8]. How-
ever, a large percentage of automated post-processing results was considered inaccurate,
as the difference with manual results was higher than 6% (the maximum inter-observer
disagreement). Therefore, automated post-processing seems inadequate for implemen-
tation in clinical workflow when contours remain unchecked. This supports the SCMR
recommendation that the observer must check automated tracings for appropriateness [2].

Literature confirms that basal tracings introduce substantial variation between auto-
mated and manual post-processing [3,5,8,10,12], further validating manual adjustments.
These adjustments should be standardized into easy to follow tracing instructions which
incorporate SCMR recommendations (Supplementary Material File S1) [2,18]. Manual
validation of these instructions showed higher intra- and inter-observer reproducibility
than previous studies [6,16,21–25], proving it suitable for standardized manual correction
of Level 1 automated basal tracings. The lower reproducibility in other studies could be
caused by lacking standardization of unambiguous tracing instructions. In the image anal-
ysis section some studies referred to the SCMR guidelines [6,22], mentioned the definition
of the most basal LV slice [21–25], or described structures that needed to be included in
the RV [6,16,21,23,24]. Only Petersen et al. [23] showed similar reproducibility, possibly
related to their control mechanisms which included checking equality of end-diastolic and
end-systolic LV mass, and LV and RV stroke volumes in absence of significant valvular
insufficiency, minimizing discrepancies. The time involved in manual contour-tracing both
LV and RV using the standardized instructions (21 min) was representative for clinical
routine [3,5], and comparable to previous studies that needed 13 to 14 min for only LV
segmentation [26,27].

Vendor 1 demonstrated the most reliable automated post-processing with small vari-
ation compared to manual results after phase 1 of Level 2 automation, confirming dif-
ferences in basal tracings are still the most challenging in automation. The other two
vendors showed less reliable Level 1 automated post-processing, and substantial variation
remained after adjusting the basal tracings, caused by inaccurate tracings in other slices.
Consequently, phase 1 of Level 2 automation is only advantageous in software packages
with relatively reliable Level 1 automation.

In all vendors, Level 1 automated contours are consistently traced too narrow or
too wide resulting in relative-to-manual standard errors which, if known, can be used to
improve accuracy. This correction step was performed during phase 2 of Level 2 automation.
In the most reliable package (vendor 1), Level 1 automated volumes were systematically
underestimated, and mass overestimated, caused by the endocardial contour being traced
comparatively too close to the blood pool in all slices. After correction for this software
package-specific relative-to-manual standard error, most measurements were considered
accurate. In the other two packages, the calculated relative-to-manual standard errors were
imprecise, evidenced by large IQRs, and this was caused by erroneous contour-tracing. In
these cases, this final correction step is not beneficial.

In the best performing software package, completed Level 2 automation was still
four times faster with higher reproducibility compared to manual, while the variability of
volumes and mass remained comparable to literature [6,21–24]. Interestingly, the variability
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of LVEF and especially RVEF in vendor 1 was lower than previously reported [6,21,22,24].
This demonstrates that the Level 2 automation approach can be an effective trade-off in
software packages with reasonably well Level 1 automated post-processing.

There were several limitations in this study. First, we investigated three mainstream
commercially available clinical software packages to perform automated post-processing
where more software packages are available. However, we feel that the included software
packages are representative of the field, as they are widely used in clinical assessment.
Second, we performed gold standard manual contour-tracing on vendor 1 only. Nev-
ertheless, this should not bias the results, as the included software packages ought to
provide similar results as demonstrated previously [28]. Third, the segmentation dataset
was post-processed multiple times which could induce some memory bias; however, this
effect was minimized because of the time between measurements. For Level 1 automation,
this bias was also irrelevant as user input was only required to define the ventricular range
on long-axis cines, a step not applicable for manual contour-tracing. Fourth, we exclusively
imaged healthy subjects in a relatively small group. Reproducibility of presented find-
ings therefore need to be confirmed in a larger patient population with altered chamber
geometry.

5. Conclusions

In the three studied vendors, Level 1 automated post-processing of cardiac volumes,
function, and LV mass showed high reproducibility and speed 10-times faster than manual
contour-tracing, however, when left unchecked differing degrees of variation made them
inadequate for clinical use. Level 2 automation combines protocolized manual adjustments
of Level 1 automated basal tracings with software package-specific relative-to-manual
standard error correction while still four-times faster than manual assessment. In a reliable
software package, Level 2 automation could be an effective approach to balance speed and
accuracy in clinical workflow.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11101758/s1, File S1: contour-tracing protocol. Table S1: Manual reproducibility,
Table S2: Automated reproducibility, Table S3: Comparison between methods, Table S4: Accuracy
of automated post-processing, Table S5: Intraclass correlation coefficient between automated and
manual, Table S6: Software package-specific relative-to-manual standard error, Table S7: Differences
between phase 2 of Level 2 automation and manual.
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