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Abstract: Resistance to therapy is a frequently observed phenomenon in the treatment of cancer,
and as with other cancer therapeutics, therapies based on oncolytic viruses also face the challenges
of resistance, such as humoral and cellular antiviral responses, and tumor-associated interferon-
mediated resistance. In order to identify additional mechanisms of resistance that may contribute to
therapeutic failure, we developed a systematic search strategy for studies published in PubMed. We
analyzed 6143 articles on oncolytic virotherapy and found that approximately 8% of these articles
use resistance terms in the abstract and/or title. Of these 439 articles, 87 were original research. Most
of the findings reported pertain to resistance mediated by tumor-cell-dependent interferon signaling.
Yet, mechanisms such as epigenetic modifications, hypoxia-mediated inhibition, APOBEC-mediated
resistance, virus entry barriers, and spatiotemporal restriction to viral spread, although not frequently
assessed, were demonstrated to play a major role in resistance. Similarly, our results suggest that
the stromal compartment consisting of, but not limited to, myeloid cells, fibroblasts, and epithelial
cells requires more study in relation to therapy resistance using oncolytic viruses. Thus, our findings
emphasize the need to assess the stromal compartment and to identify novel mechanisms that play
an important role in conferring resistance to oncolytic virotherapy.

Keywords: oncolytic virotherapy; therapeutic resistance; stromal cells; cancer cells; resistance mechanisms

1. Introduction

Therapeutic resistance has been studied as a mechanism that allows the target to
escape and evolve against the treatment, for example in the context of antibiotic resistance
by pathogenic bacteria and resistance by tumors towards radiotherapy, chemotherapy,
or immunotherapy. In the early phase of research assessing cancer resistance, most of
the resistance mechanisms were attributed to be innate to tumors [1]. However, recent
findings have revealed that therapeutic resistance may also arise via evolutionary mech-
anisms. A detailed understanding of such mechanisms is therefore required to improve
therapeutic outcomes.

Recently, oncolytic virotherapy has been considered a promising biotherapy, where
native or genetically engineered viruses are utilized to infect and kill cancer cells [2,3].
Moreover, it has been demonstrated that such oncolytic viruses, in addition to tumor killing,
can also promote local and systemic antitumor immune responses and thus contribute
to improved therapeutic outcomes [4]. Nevertheless, oncolytic virotherapy is not equally
effective in all patients and cancer types, thus suggesting the possibility of therapeutic
resistance. Although cellular and humoral antiviral immune responses have been well
documented in the context of infectious virology, there have been fewer studies that explore
resistance mechanisms in terms of cancer and virotherapy. To this end, we conducted a
systematic review with the aim to provide a comprehensive overview of the resistance
mechanisms associated with cancer and stromal cells and viruses employed for oncolytic
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virotherapy. We considered that resistance would not only be a result of an antiviral
immune response, but also be a response mediated by tumor cells and stromal cells present
in the tumor microenvironment. Therefore, through this systematic review, we hope to
shed light on some of the overlooked players and mechanisms of resistance that undermine
the therapeutic efficacy of oncolytic viruses.

2. Materials and Methods

Protocol: We used the Preferred Reporting Items for Systematic Review and Meta-
Analysis Protocol (PRISMA-P) statement as a guide to formulate the research question and
process articles for analysis.

Eligibility criteria: We included all studies published to date that had the terms
“oncolytic” and “resistance” in their abstract and/or title. The search strategy was thus
defined as “resistance”[tiab] AND “oncolytic”[tiab] for exploring articles on PubMed. Only
original research, in the form of full-text English publications, was included for analysis.
Abstracts, letters, reviews, and commentaries were excluded (indicated in Figure 1).

Records identified through
database searching via PUBMED
(n =6143)

Records after duplicates removed
(n=0

l

Records screened Records excluded
{n=439) {n =5704)

|

Full-text articles assessed Full-text articles excluded,
for eligibility with reasons
(n=87) (n=352)

Studies included in
qualitative synthesis
(n=87)

{ INCLUDED }[ ELIGIBILITY } [ SCREENING } {IDENTIF\CATION]

Figure 1. PRISMA flow diagram indicating the steps of article screening for a systematic analysis.

Search strategy and article screening: A systematic search strategy was developed for
PubMed. Titles that met our eligibility criteria were identified and processed for study
selection. Title and abstract screenings were performed. Subsequently, a detailed analysis
of the selected 87 articles was performed. Any conflicts were resolved through discussion.
All data and results are provided in Supplementary Table S1 and are intended to serve as
a resource and inspiration for future studies in the field of oncolytic virotherapy. Figures
were made using the Orange Data Mining software [5] and the RawGraphs platform [6].
The graphical abstract was made using Biorender.

3. Results

A systematic search on PubMed performed on articles retrieved on 31 January 2021
found that 6143 articles contained “oncolytic”-related terms in the abstract and/or title,
while only 439 of these articles (7.2%) contained both the terms “resistance” and “oncolytic”
in the abstract or title.

A detailed screening of the 439 articles revealed 87 original research articles (1.5%)
that studied resistance to virotherapy in the context of cancer. Regarding these 87 articles,
Figure 2A shows that from the year 2000 to 2020, there has been an increase in the number
of original research articles pertaining to resistance in oncolytic virotherapy. The most
frequent terms used in the article title (Figure 2B) MeSH heading terms (Figure 2C) and
terms from the abstract (Figure 2D) are an indication of the diversity of the concepts that
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relate to this subject. Of note, “interferon” (marked in red in Figure 2B-D) was found to be
one of the most frequently retrieved terms from titles, abstracts, and MeSH headings, thus
indicating that it might be a well-studied resistance mechanism in the literature.
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Figure 2. Literature review in the context of resistance to oncolytic viruses. (A) Number of original
research articles (a total of 87) that studied resistance to virotherapy in the context of cancer from
2000 to 2020. (B) Frequently used terms in article titles, (C) MESH heading terms, and (D) abstracts.

These 87 articles were published in more than 40 journals by various authors. Sev-
enteen viral vector types (natural or genetically modified) were studied in relation to
resistance developed in twenty-two cancer types represented by hundreds of cell lines
and preclinical animal models. This analysis also indicated an increasing interest in under-
standing the role of therapeutic resistance towards oncolytic viruses since the last decade
(since 2010). Resistance mechanisms could be classified based on molecular features along
with cellular mechanisms and cell-type-specific mechanisms (indicated in Figure 3A,B).
Through this approach, we found that there has been a selective focus on assessing in-
terferon (IFN)-mediated resistance by tumor cells (twenty-seven studies), with only two
studies reporting on the role of fibroblast-mediated resistance [7,8] and three other studies
assessing the role of epithelial cells and endothelial cells as physical barriers in regulating
the spatiotemporal spread of the virus in tumors [9-11] (Figure 3B). Interestingly, two
studies assessed the role of tumor-associated myeloid cells (TAMs) in conferring resistance
to oncolytic virotherapy; however, only one of them elaborated on macrophage-mediated
interferon signaling as a mechanism of resistance [12].

Resistance to virotherapy has been studied in different cancer types. Pancreatic
cancer (10 studies), melanoma (9 studies), prostate cancer (6 studies), breast cancer, and
glioblastoma have been the most studied individual cancer types in the context of resistance,
where tumor-cell-mediated resistance mechanisms are frequently explored (72 studies)
(Figure 4A). Yet, resistance mechanism studies also often include cancer cell lines belonging
to different cancer types (Figure 4A) in a single study (22 studies), thus enabling high-
throughput screening of various pathways associated with resistance [8,10,12-31].

A wide range of virus types have been described to exhibit decreased therapeutic
efficacy due to resistance mechanisms (Figure 4B). The most frequently described viral
vectors in this context were vesicular stomatitis virus (VSV, 29 studies), which is an en-
veloped RNA virus, herpes simplex virus (HSV, 15 studies,) an enveloped DNA virus, and
adenovirus (AdV, 12 studies), a nonenveloped DNA virus (Figure 4B). Interestingly, more
research with VSV, HSV, and AdV has led researchers to uncover a wide range of resistance
mechanisms that stem from tumor cell heterogeneity (10 studies), epigenetic modifications
(5 studies), hypoxia (1 study), blocking viral entry (3 study), and association of novel cell
survival genes (25 studies) in the process of either preventing productive infection and/or
subsequent oncolysis (Figure 4B).
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Figure 3. Resistance mechanisms undermining the efficacy of oncolytic viruses. (A) Types of resistance
mechanisms and responsible molecular factors studied in reference to oncolytic viruses. The reference
number of articles corresponding to the respective resistance mechanisms is provided in brackets.
(B) Frequency of studies focusing on a particular resistance source and corresponding mechanism.
Each link indicates an article. The number of articles studying a particular resistance source and
resistance mechanism is indicated next to the label in grey.
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Figure 4. Resistance to oncolytic virotherapy exhibited by different sources or cell types present
in the tumor microenvironment. Resistance source assessed in research articles in the context of
(A) different cancers and (B) different virotherapy platforms. Each link indicates an article. The
number of articles studying a particular resistance source, cancer type, and virus type is indicated
next to the label in grey.

A common mechanism explored in various cancer types is the activation of interferon-
mediated antiviral signals (29 studies) and the activation of cell-survival molecular mech-
anisms that protect tumor cells against viral infection and infection-induced oncolysis
(25 studies) (Figure 5A). It is moreover important to note that resistance mechanisms asso-
ciated with tumor growth factors (2 studies), physical barriers (2 studies), and preventing
viral spread in tumor tissue (5 studies) and mechanisms that involve systemic responses of
a multidimensional nature are frequently associated with the tumor microenvironment and
not a particular cell type (Figures 5A and 3B). Once more, interferon-mediated resistance
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and cell survival mechanisms have been studied more often across a wide range of virus
types (Figure 5B). It is important to note here that other resistance mechanisms may or may
not play a role in reducing the efficacy of different oncolytic viruses; however, the absence
of such a study prevents one from reaching such a conclusion.
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Figure 5. Assessing resistance towards oncolytic viruses in various cancers. Resistance to oncolytic vi-
rotherapy exhibited by different mechanisms studied in various articles in the context of (A) different
cancer types and (B) towards different virotherapy platforms. Each link indicates an article. The num-
ber of articles studying a particular cancer type, virus type, and resistance mechanism is indicated
next to the label in grey.

4. Discussion

This systematic analysis was based on 87 articles retrieved from published literature
describing current practices in assessing resistance to oncolytic virotherapy. The aim of
many of these articles was to explore which cellular pathways are associated with resistance
and, if possible, to regulate these pathways and overcome resistance for better therapeutic
outcomes. Of note, the most frequently studied resistance mechanisms, irrespective of
virotherapy type, were based on cellular signaling post-virus infection, often focusing on in-
terferon responses (29 studies) mediated by tumor (27 studies) and stromal cells (2 studies).
Tumor-cell-mediated resistance mechanisms were explored more (72 studies) in compar-
ison to stromal-cell-based mechanisms (8 studies), where pancreatic cancer (10 studies),
melanoma (9 studies), prostate cancer (6 studies), breast cancer (6 studies), and glioblas-
toma (6 studies) were the cancer types most explored. The present results indicate the
complexity of resistance phenomena and the challenge in targeting such mechanisms while
designing virotherapy. Thus, for a comprehensive understanding of these mechanisms
retrieved from the systematic analysis, we discuss in detail below how molecular processes
regulated by various cell types present in the tumor microenvironment can impact the
efficacy of virotherapy. Accordingly, we classify the resistance mechanisms studied in
these articles as: tumor-cell-mediated responses, stromal cell responses, antiviral immune
responses, and systemic responses.

Tumor cell-mediated responses: Tumor cells are the primary targets of oncolytic
virotherapy. Therefore, resistance developed by, or innate in, tumor cells against viral
activity dictates the clinical outcome of the therapy. This might explain why most of
the studies (72 studies) retrieved from the systematic analysis had a focus on tumor-cell-
mediated resistance. Resistance to viral infection and replication by tumor cells can be
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achieved at four distinct stages of (1) virus binding and entry, (2) viral transcription—
translation, (3) cell survival, and (4) cell signaling. Here, it is important to note that a
decrease in the oncolytic potential of a virus could be a result of resistance mechanisms
that directly prevent virus replication and the translation of viral proteins or be due to
virus inactivation in the extracellular space and disposal due to systemic processes. To
assess various mechanisms associated with resistance to viral gene therapy, a study by
Song et al. analyzed and identified changes in tumor gene expression post-virus infection.
They found that these differentially expressed genes were involved in regulating the above-
mentioned four stages by altering cell morphology, the expression of cell surface proteins
affecting virus binding and entry, and altering cell development, movement, growth, and
proliferation and cell-to-cell signaling and interaction [16].

Virus binding and entry: Virus entry depends on multiple factors, including the
presence of host cell receptors for virus binding and the presence of neutralizing antibodies
that block uptake, but also the presence of proteases in the extracellular matrix, which
can either promote or prevent virus binding. Few studies (<5 studies) retrieved from the
systematic analysis, were designed to study virus entry as a mechanism of resistance of
oncolytic virotherapy.

For pleural mesothelioma, downregulation of heparanase enzymes in the tumor
microenvironment has been described to result in the formation of a dense extracellular
matrix, preventing deep tumor infiltration of viruses and attachment to target cells [32].
Pancreatic ductal adenocarcinoma cell lines have been described to have a low expression
of the low-density lipoprotein receptor, the receptor for vesicular stomatitis virus, thus
conferring a resistant phenotype to the tumor cells [33]. Moreover, epidermal growth
factor receptor-targeted HSV has shown to be sensitivity to key neutralizing antibodies
that pre-dominantly target glycoprotein D as a viral attachment protein [34].

Additionally, protein kinase B (AKT) activity and virus-induced activation of the
pathway regulated by the mammalian target of rapamycin (AKT/mTOR axis) is linked
to resistance in various cancers. Choi et al. described how the endogenous activity of
AKT and related mutations promoted virus entry of Orthopoxvirus in triple-negative
breast cancer (cells) [35]. Tong and colleagues showed that the AKT/mTOR axis can
be regulated by blocking phosphoinositide 3-kinase (PI3K) activation, thus sensitizing
multiple cancer cell lines in vitro for viral infection [36]. Rapamycin was observed to reverse
mTOR-mediated tumor cell resistance against herpes simplex virotherapy, indicating that
molecular mechanisms lay at the center of this phenotypic resistance to therapy [14].

Lucas et al. observed that modification of the capsid protein hexon of adenovirus
increased the transduction and cytotoxicity of pancreatic tumors [37]. These findings
indicate a close association among cell survival mechanisms that regulate virus binding
and entry to tumor cells, and thus, these can be exploited to improve therapeutic efficacy.

Viral transcription—translation: After successful entry in the host cell, the next chal-
lenge of the virus is productive transcription and translation of its genome, the production
of viral progeny, and oncolysis. Therefore, the regulation of host transcription and trans-
lational machinery is another crucial step. However, tumor cells can regulate molecular
processes and shut down virus transcription via epigenetic modification of either the
host genome or the viral genome and by the expression of antiviral proteins such as the
apolipoprotein B mRNA-editing enzyme (APOBEC).

For example, Shulak and colleagues demonstrated the role of tumor cell epigenetic
modifications in the promotion of resistance against virotherapy. They observed that treat-
ment with histone deacetylase inhibitors promoted VSV-mediated tumor cell death in a
nuclear factor kappa-B (NF-kB) autophagy-dependent manner [38]. This study was in accor-
dance with an earlier observation made by Bieler et al., showing that adenovirus oncolytic
activity was promoted against glioblastoma cell lines [39]. Another confirmation came
when it was observed that NF-«B inhibition could reverse the resistance phenotype, pro-
moting the oncolytic potential of virotherapy [26]. Alternatively, epigenetic modifications
in viruses can play a role as they can aid in circumventing the resistance developed by tu-
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mor cells. For example, it was observed that Zika virus with a higher frequency of genomic
CpG dinucleotides exhibited a better oncolytic activity in glioblastoma cell lines [40]. Huff
et al. demonstrated that APOBEC3 upregulation in an IFN-f3 dependent manner by tumor
cells is an innate mechanism of resistance to RNA viral infection and worsens treatment
outcome [41,42]. This suggests that APOBEC enzymes, via their mRNA editing nature,
can have an important role in dictating the outcome of any nucleic-acid-based therapeutic
or viral therapy. Similar mechanisms that are sensitive to nonself RNA molecules were
observed against alphaviruses. Here, the activation of double-stranded-RNA-sensitive
protein kinases in tumor cells led to restricted translation and increased sensitivity to
interferon responses [43]. This limited viral replication in tumor cells exhibits a decreased
interferon response.

Cell survival: Several survival proteins and their respective pathways play an impor-
tant role in protecting tumor cells against viral infections and virus-induced cell death. Most
of the studies (25 studies) retrieved from the systematic analysis found various molecular
factors that play an important role in resistance towards oncolytic virotherapy by regulating
cell survival. In addition to epigenetic modifications, promoting cell survival, regulation of
autophagy, and apoptosis in tumor cells were found to promote resistance to virotherapy.
For example, a study by Lv and colleagues demonstrated that vaccinia virus expressing
IL-24 resulted in caspase-dependent apoptosis and decreased expression of the signal trans-
ducer and activator of transcription-3 (STAT3). In vivo, the modified virus also promoted
apoptosis in lung cancer that was otherwise resistant to virus-induced cell death [44]. A sim-
ilar study by Li et al. showed an increased oncolytic activity of virotherapy where tumor cell
apoptosis was promoted by Beclin-1 activity expressed by adenoviruses [45]. A study by
Colunga et al. indicated that loss of the autophagy protein sequestosome-1 (p62/SQSTM1)
via calpain-dependent mechanisms can promote oncolytic activity in melanoma [46]. A
role of autophagy in regulating oncolysis was supported by the observation that pharma-
cological regulation of autophagy improved Newcastle disease virus-mediated oncolysis
in drug-resistant lung cancer cell lines [47]. Furthermore, several studies demonstrated
that master regulators such as tumor protein p53 (TP53) and its activation abrogate viral
infectivity and replication in tumors; however, this is limited to nonmalignant cells [48]
and tumor cells that do not harbor TP53 mutations [48,49]. Various other cell survival
regulators such as the inhibitor of nuclear factor kappa-B kinase subunit-beta (IKK) [50],
inositol polyphosphate 5-phosphatase (Inpp5e) [51], mitogen-activated protein kinase
(MAPK) [52], multidrug-resistance protein-1 (MDR1) [22], mitogen-activated protein ki-
nase kinase (MEK) [53], second mitochondria-derived activator of caspases (SMAC) [54,55],
Sirtuin 1 (SIRT1) [56], and N-myc proto-oncogene protein (MYCN) [57] have also been
found associated with resistance to viral infection and replication in tumor cells.

Cell signaling: Intercellular communication between tumor cells has been well studied
in the context of tumor progression and resistance to various immunotherapies, where
tumor cells have been found to communicate and influence neighboring tumor cells via
secreting cytokines, growth factors, metabolites, and extracellular vesicles to promote a
protumoral environment [58]. Soluble signals released by infected cells can protect sur-
rounding cells from viral infection, e.g., interferon responses [28,29,59-67]. Secretion of
interferons by tumor cells infected with oncolytic viruses and the subsequent activation of
the interferon-receptor (IFNR)-based Janus-kinase (JAK-STAT) pathway in surrounding
tumor cells has been demonstrated; thus, also in this context, this pathway is an important
mode of antiviral resistance [68]. Activation of interferon signaling has been observed
to induce the expression of various antiviral proteins such as interferon-induced trans-
membrane protein 1 (IFITM1), interferon-induced protein with tetratricopeptide repeats
(IFIT3), IFN-« inducible gene 6 (IFI6), 2'-5'-oligoadenylate synthetase 2 (OAS2), adenosine
deaminases acting on RNA (ADAR), interferon-f3 (IFNf), and tripartite motif containing
25 (TRIM25), which play a role in attenuating viral replication and the oncolysis of tumor
cells [69]. These studies are supported by the observation that inhibitors of interferon
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signaling such as ruxolitinib can enhance the oncolytic potential of virotherapy in both
in vitro and in vivo models [15,20,70,71].

Alternatively, the expression of the estrogen receptor on palbociclib-resistant breast cancer
cells has been described to sensitize them towards adenoviral replication and oncolysis due
to their low antiviral IFN response and increased cyclin-dependent kinase-2 activation [72].

Stromal cell responses: Although stromal cells make up an essential part of the tu-
mor microenvironment, only eight studies explored them in relation to resistance against
oncolytic virotherapy. For example, cancer-associated fibroblasts are often abundantly
present in solid tumors. Unlike tumor cells, these cells do not have a compromised in-
terferon signaling pathway and are not as permissive to viral infection [2]. Therefore,
antiviral resistance demonstrated by these cells may affect the therapeutic efficiency of
oncolytic virotherapy. Furthermore, Arwert et al. demonstrated that cancer-associated
fibroblasts, via stimulator of interferon genes (STING) and interferon regulatory transcrip-
tion factor 3 (IRF3), can influence neighboring cells and enable sensing of genomic stress in
cancer cells to prevent infection [7]. Alternatively, in a secretome analysis study, fibroblasts
were found to secrete protumoral growth factors during virotherapy that impeded viral
replication in cancer cells [8]. Similarly, tumor-associated macrophages have been reported
to induce a protective antiviral state via secretion of IFN-f in ovarian and breast tumors,
rendering them resistant to oncolytic virotherapy [12]. This suggests that the regulatory
role of such stromal cells requires more frequent and detailed observation in the context of
preventing effective virotherapy.

Antiviral immune responses: Antiviral immune responses are generated during on-
colytic virotherapy. For example, oncolytic virotherapy has been found to induce local
immune responses and convert an immunologically “cold” tumor into a “hot”, immune-
cell-infiltrated, tumor via the release of inflammatory signals post-viral oncolysis [73].
Here, interferon-based signaling is a major component of such inflammatory signals and
plays an important role in the transformation of “cold-to-hot” tumors [73]. Although
studies have demonstrated that blocking interferon responses improves viral infectivity in
tumor cells, this may also limit the induction of interferon-dependent antitumor immune
responses [33,68]. For example, Melero et al. demonstrated that intratumoral injections
of Semliki forest virus (WT or replicon particles) depends on virus-induced interferon
responses that enhance CD8+ T-cell-mediated antitumor activity, while furthermore, in-
creased interferon signaling leads to a better survival [74]. In noncancer settings as well,
interferon responses have been found to influence T-cell maturation and clonal develop-
ment, where suppressing interferon signaling post-viral infection impedes antigen-specific
T-cell development and activity [75]. Apart from interferon-based cellular immunity to
viral infection, adaptive humoral and cellular responses mediated via lymphocytes also
interfere with viral infection in the tumor.

Antibody responses can neutralize therapeutic viruses posing a challenge for multiple-
dose regimens. Studies suggest that the use of a higher virus dosage for booster injections
could overcome this limitation [4]. Alternatively, Biswas et al., using Newcastle disease
virus, showed that complement-mediated opsonization was evaded when regulators of
complement activating factors were incorporated in the viral envelope [76]. Zemp et al.
reported that resistance to oncolytic myxoma virus in a glioma models involves a multi-
faceted cellular immune response that can be reversed with cyclophosphamide-mediated
lymphoablation [77]. Similarly, cytolysis of virus-infected tumor cells by T-cells or NK
cells has been observed to prevent the multiplication of viruses in the tumor microen-
vironment, decreasing the infection of surrounding tumor cells [78]. Tumor-associated
macrophages may also prevent the infection of tumor cells by engulfing a large proportion
of virus particles.

Systemic responses: Certain mechanisms that impede virotherapy occur at complex
levels and exist due to the multidimensional interaction of various cells present in the
microenvironment. For example, epithelial cells have been observed to act as a physical
barrier and regulate the spatiotemporal spread of viruses in the tumor and periphery to
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target and lyse cancer cells [9,10]. Furthermore, angiogenesis and the vascular leakiness
at local tumor sites have been proven to be a regulatory factor in viral spread and infec-
tion [11,79]. Limited viral replication in hypoxic zones of tumors is also responsible for
resistance against virotherapy and requires engineering of a hypoxia-inducible expression
system to restore oncolytic activity [80]. Alternatively, the presence of a dense extracellular
matrix seems a limiting factor for spreading of viruses in tumors as well [32] and indicates
the possibility of the inhibition of viral replication at a stage beyond viral entry [19,81].
Other than physical constraints, soluble signals such as prostaglandin [24] and vascular
endothelial growth factor (VEGF) [11] have been observed to promote the accumulation of
granulocytic myeloid suppressor cells correlating with resistance in the tumor microenvi-
ronment. Finally, healthy erythrocytes were recently discovered to play a role in decreasing
viral spread in the body [82], indicating that certain mechanisms could be overlooked due
to the choice of the model or by limiting our focus on disease pathology and not on the
healthy state.

Thus, to successfully infect cancer cells, viruses need to cross a multitude of obsta-
cles that arise at a systemic level. Challenges in the design of novel viral-vector-based
therapeutics are therefore related to inefficient bio-distribution, suboptimal infection due
to tumor hypoxia, overcoming vascular barriers, escaping antiviral immune responses,
and intracellular antiviral molecular mechanisms. Moreover, it should be noted that such
mechanisms when considered together might confer a certain degree of resistance to viral
infection and subsequent oncolysis. However, due to the limited number of studies, the
importance of the contribution of the different resistance mechanisms remains difficult
to estimate.

Alternatively, multiple mechanisms in the tumor microenvironment have also been
observed to promote virotherapy, which can be exploited to improve therapeutic efficacy.
For example, an anti-inflammatory crosstalk between tumor cells and tumor-associated
fibroblasts mediated by transforming growth factor- (TGF-f3) and fibroblast growth
factor 2 (FGF2), respectively, has been found to sensitize both tumor cells and fibroblasts
for viral infection [83]. Moreover, reovirus internalized by tumor-associated dendritic cells
has been reported to promote virotherapy, providing protection against antibody-mediated
neutralization [84,85]. Similarly, myeloid-derived suppressor cells have been found to
act as a vehicle for tumor-specific delivery and targeting of oncolytic viruses [86]. Apart
from viral delivery and protection, the role of myeloid cells has been studied extensively
in the context of tumor antigen presentation [87] and antitumor immune responses post-
virotherapy [88]. Therefore, exploiting mechanisms that allow us to sensitize tumor cells
for viral infection and utilize stromal cells for viral delivery and tumor-associated myeloid
cells for antitumor immunity could be some of the primary objectives for future research in
the field of cancer virotherapy.

5. Conclusions

Through a systematic analysis of published literature, we identified key resistance
mechanisms and cell types that are involved in undermining the therapeutic efficacy of
oncolytic viruses. Importantly, our analysis demonstrated that resistance mechanisms
can be classified as tumor-cell-mediated responses, stromal cell responses, antiviral im-
mune responses, and systemic responses, which are involved in conferring resistance to
various virus types in different cancers. Our results indicate the need to further explore
known mechanisms such as interferon-mediated resistance and find novel factors such
as epigenetic modifications, tumor heterogeneity, hypoxia, secreted factors, etc., that are
responsible for promoting resistance to virotherapy. Of note, the analysis revealed the need
to extensively assess the role of stromal cells such as fibroblasts, epithelial cells, endothelial
cells, and tumor-associated myeloid cells, as to how they protect cancer cells from viral
infection and oncolysis.

An extensive knowledge of such resistance mechanisms will aid researchers and
clinicians in the rational design of virotherapy and for the implementation of appropriate
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therapeutic strategies. Research to date has shown the importance of acknowledging cancer
as an evolving disease and the need to consider strategic therapeutics to combat resistance.
Cell-based vector delivery to escape neutralizing antibodies, synthetic transgene expression
circuits for efficient viral replication, suppression of antiviral interferon signaling, and
directed evolution of viral vectors are a few of the existing techniques that can allow us to
engineer and screen for viral vectors that can overcome their previous limitations. Thus,
through our analysis and results, we encourage studies that explore resistance towards
oncolytic viruses and hope to inspire the rational design of oncolytic viruses that can
overcome therapeutic resistance.
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