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ABSTRACT
Session types enable the static verification of message-passing pro-

grams. A session type specifies a channel’s protocol as sequences of
messages. Prior work established aminimality result: every process
typable with standard session types can be compiled down to a

process typable using minimal session types: session types without

the sequencing construct. This result justifies session types in terms

of themselves; it holds for a higher-order session π -calculus, where
values are abstractions (functions from names to processes).

This paper establishes a new minimality result but now for the

session π -calculus, the language in which values are names and for

which session types have been more widely studied. Remarkably,

this new minimality result can be obtained by composing known

results. We develop optimizations of our new minimality result,

and establish its static and dynamic correctness.
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1 INTRODUCTION
Session types are a type-based approach to statically ensure correct

message-passing programs [6, 7]. A session type stipulates the

sequence and payload of the messages exchanged along a channel.

In this paper, we investigate a minimal formulation of session types

for the π -calculus, the paradigmatic calculus of concurrency. This

elementary formulation is called minimal session types (MSTs).

The gap between standard and minimal session types concerns

sequentiality in types. Sequentiality, denoted by the action prefix ‘ ; ’,

is arguably the most distinguishing construct of session types. For

instance, in the session type S =?(Int); ?(Int); !⟨Bool⟩; end, this con-
struct conveniently specifies a channel protocol that first receives (?)
two integers, then sends (!) a Boolean, and finally ends.
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Because sequentiality is so useful for protocol specification and

verification, a natural question is whether it could be recovered

by other means. To this end, Arslanagić et al. [2] defined MSTs

as the sub-class of session types without the ‘ ; ’ construct. They

established a minimality result: every well-typed session process

can be decomposed into a process typable with MSTs. Their result is

inspired by Parrow’s work on trios processes for the π -calculus [12].
The minimality result justifies session types in terms of themselves,

and shows that sequentiality in types is useful but not indispensable,

because it can be precisely mimicked by the process decomposition.

The minimality result in [2] holds for a higher-order process

calculus calledHO, in which values are only abstractions (functions

from names to processes). HO does not include name passing nor

process recursion, but it can encode them precisely [9, 11]. An

important question left open in [2] is whether the minimality result

holds for the session π -calculus (dubbed π ), the language in which

values are names and for which session types have been more

widely studied from foundational and practical perspectives.

In this paper, we positively answer this question. Our approach

is simple, perhaps even deceptively so. In order to establish the

minimality result for π , we compose the decomposition in [2] with

the mutual encodings between HO and π given in [9, 11].

π µπ

HO µHO
D(·)

J · K1

д J · K2

F ( · )

Figure 1: Decomposi-
tion by composition.

Let µπ and µHO denote the pro-

cess languages π and HO with

MSTs (rather than with standard

session types). Also, letD(·) denote

the decomposition function from

HO to µHO defined in [2]. Kouza-

pas et al. [9, 11] gave typed encod-

ings from π to HO (denoted J · K1

д )

and from HO to π (denoted J · K2
).

Therefore, given D(·), J · K1

д , and

J · K2
, to define a decomposition function F ( · ) : π → µπ , it suffices

to follow Figure 1. This is sound for our purposes, because J · K1

д
and J · K2

preserve sequentiality in processes and their types.

The first contribution of this paper is the decomposition function

F ( · ), whose correctness follows from that of its constituent func-

tions. F ( · ) is significant, as it provides an elegant, positive answer

to the question of whether the minimality result in [2] holds for

π . Indeed, it proves that the values exchanged do not influence

sequentiality in session types: the minimality result of [2] is not

specific to the abstraction-passing language HO.
However, F ( · ) is not entirely satisfactory. A side effect of com-

posing D(·), J · K1

д , and J · K2
is that the resulting decomposition of

π into µπ is inefficient, as it includes redundant synchronizations.

These shortcomings are particularly noticeable in the treatment

of recursive processes. The second contribution of this paper is an

optimized variant of F ( · ), dubbed F ∗( · ), in which we remove

redundant synchronizations and target recursive processes and
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n ::= a,b | s, s

u,w ::= n | x ,y, z

V ,W ::= u | λx . P | x ,y, z

P ,Q ::= u!⟨V ⟩.P | u?(x).P

| V u | P | Q | (ν n)P | 0 | X | µX .P

Figure 2: Syntax of HOπ . The sub-language HO lacks
shaded constructs, while π lacks boxed constructs.

variables directly, exploiting the fact that π supports recursion

natively.

Contributions. The main contributions of this paper are:

(1) A minimality result for π , based on the function F ( · ).

(2) F ∗( · ), an optimized variant of F ( · ), without redundant

communications and with native support for recursion.

(3) Examples for F ( · ) and F ∗( · ).

Due to space limits, omittedmaterial (definitions, correctness proofs

for F ( · ) and F ∗( · ), additional examples) can be found in [1].

Throughout the paper, we use red and blue colors to distinguish

elements of the first and second decompositions, respectively.

2 PRELIMINARIES
HO and π are actually sub-languages of HOπ [10, 11], for which

we recall its syntax, semantics, and session type system. We also

recall the mutual encodings between HO and π [9, 11]. Finally, we

briefly discuss MSTs for HO, and the minimality result in [2].

2.1 HOπ (and its Sub-languages HO and π )
Fig. 2 gives the syntax of processes P ,Q, . . . , valuesV ,W , . . ., and
conventions for names. Identifiers a,b, c, . . . denote shared names,
while s, s, . . . are used for session names. Duality is defined only on

session names, thus s = s , but a = a. Names (shared or sessions)

are denoted bym,n . . . , and x ,y, z, . . . range over variables. We

write x̃ to denote a tuple (x1, . . . ,xn ), and use ϵ to denote the empty

tuple.

An abstraction λx . P binds x to its body P . In processes, sequenc-

ing is specified via prefixes. The output prefix, u!

〈
V
〉
.P , sends value

V on nameu, then continues as P . Its dual is the input prefix,u?(x).P ,
in which variable x is bound. Parallel composition, P | Q , reflects
the combined behaviour of two processes running simultaneously.

Restriction (ν n)P binds the endpoints n,n in process P . Process 0
denotes inaction. Recursive variables and recursive processes are

denoted X and µX .P , respectively. Replication is denoted by the

shorthand notation ∗ P , which stands for µX .(P | X ).

The sets of free variables, sessions, and names of a process are

denoted fv(P), fs(P), and fn(P). A process P is closed if fv(P) = ∅.

We write u!

〈〉
.P and u?().P when the communication objects are

not relevant. Also, we omit trailing occurrences of 0.
As Fig. 2 details, the sub-languages π and HO of HOπ differ

as follows: application Vu is only present in HO; constructs for
recursion µX .P are present in π but not in HO.

(λx . P)u −→ P{u/x } [App]

n!⟨V ⟩.P | n?(x).Q −→ P | Q{V/x } [Pass]

P −→ P ′ ⇒ (ν n)P −→ (ν n)P ′ [Res]

P −→ P ′ ⇒ P | Q −→ P ′ | Q [Par]

P ≡ Q −→ Q ′ ≡ P ′ ⇒ P −→ P ′ [Cong]

P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

P | 0 ≡ P P | (ν n)Q ≡ (ν n)(P | Q) (n < fn(P))

(ν n)0 ≡ 0 µX .P ≡ P{µX .P/X } P ≡ Q if P ≡α Q

Figure 3: Operational Semantics of HOπ .

U ::= C | L C ::= S | ⟨S⟩ | ⟨L⟩

L ::= U →⋄ | U ⊸⋄ S ::= !⟨U ⟩; S | ?(U ); S

| µt.S | t | end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U ::= C̃→⋄ | C̃⊸⋄ C ::= M | ⟨U ⟩

γ ::= end | t M ::= γ | !⟨Ũ ⟩;γ | ?(Ũ );γ | µt.M

Figure 4: STs for HOπ (top) and MSTs for HO (bottom).

The operational semantics of HOπ , enclosed in Figure 3, is

expressed through a reduction relation, denoted −→. Reduction is

closed under structural congruence, ≡, which identifies equivalent

processes from a structural perspective. We write P{V/x } to denote
the capture-avoiding substitution of variablex with valueV in P .We

write ‘{}’ to denote the empty substitution. In Figure 3, Rule [App]

denotes application, which only concerns names. Rule [Pass] de-

fines a shared or session interaction on channel n’s endpoints. The
remaining rules are standard.

2.2 Session Types for HOπ
Fig. 4 (top) gives the syntax of types. Value types U include the

first-order types C and the higher-order types L. Session types are

denoted with S and shared types with ⟨S⟩ and ⟨L⟩. We write ⋄

to denote the process type. The functional types U →⋄ and U ⊸
⋄ denote shared and linear higher-order types, respectively. The
output type !⟨U ⟩; S is assigned to a name that first sends a value of

type U and then follows the type described by S . Dually, ?(U ); S
denotes an input type. Type end is the termination type. We assume

the recursive type µt.S is guarded, i.e., the type variable t only
appears under prefixes. This way, e.g., the type µt.t is not allowed.
The sets of free/bound variables of a type S are defined as usual;

the sole binder is µt.S . Closed session types do not have free type

variables.

Session types for HO exclude C from value types U ; session

types for π exclude L from value typesU and ⟨L⟩ from C .
We write S1 dual S2 if S1 is the dual of S2. Intuitively, duality

converts ! into ? (and vice-versa). This intuitive definition is enough

for our purposes; the formal definition is co-inductive, see [10, 11].
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Typing environments are defined below:

Γ ::= ∅ | Γ,x : U →⋄ | Γ,u : ⟨S⟩ | Γ,u : ⟨L⟩ | Γ,X : ∆

Λ ::= ∅ | Λ,x :U ⊸⋄ ∆ ::= ∅ | ∆,u :S

Γ, Λ, and ∆ satisfy different structural principles. Γ maps variables

and shared names to value types, and recursive variables to session

environments; it admits weakening, contraction, and exchange

principles. While Λ maps variables to linear higher-order types, ∆
maps session names to session types. Both Λ and ∆ are only subject

to exchange. The domains of Γ, Λ and ∆ (denoted dom(Γ), dom(Λ),
and dom(∆)) are assumed pairwise distinct.

Given Γ, we write Γ\x to denote the environment obtained from

Γ by removing the assignment x : U →⋄, for someU . This notation

applies similarly to ∆ and Λ; we write ∆\∆′
(and Λ\Λ′

) with the

expected meaning. Notation ∆1 · ∆2 means the disjoint union of ∆1

and ∆2. We define typing judgements for values V and processes P :

Γ;Λ;∆ ⊢ V ▷U Γ;Λ;∆ ⊢ P ▷ ⋄

The judgement on the left says that under environments Γ, Λ, and
∆ value V has type U ; the judgement on the right says that under

environments Γ, Λ, and ∆ process P has the process type ⋄. The

typing rules are presented in [1].

Type soundness for HOπ relies on two auxiliary notions:

Definition 2.1 (Session Environments: Balanced/Reduction). Let ∆
be a session environment.

• ∆ is balanced if whenever s : S1, s : S2 ∈ ∆ then S1 dual S2.

• We define reduction −→ on session environments as:

∆, s :!⟨U ⟩; S1, s :?(U ); S2 −→ ∆, s : S1, s : S2

Theorem 2.2 (Type Soundness [10]). Suppose Γ; ∅;∆ ⊢ P ▷ ⋄
with ∆ balanced. Then P −→ P ′ implies Γ; ∅;∆′ ⊢ P ′ ▷ ⋄ and ∆ = ∆′

or ∆ −→ ∆′ with ∆′ balanced.

2.3 Mutual Encodings between π and HO
The encodings J · K1

д : π → HO and J · K2
: HO → π are typed:

each consists of a translation on processes and a translation on

types. This way, (⟨ · ⟩)1 translates types for first-order processes into

types for higher-order processes, while (⟨ · ⟩)2 operates in the oppo-

site direction—see Figures 5 and 6, respectively. Remarkably, these

translations on processes and types do not alter their sequentiality.

From π to HO. To mimic the sending of namew , the encoding

J · K1

д enclosesw within the body of an input-guarded abstraction.

The corresponding input process receives this higher-order value,

applies it on a restricted session, and sends the encoded continua-

tion through the session’s dual.

Several auxiliary notions are used to encode recursive processes;

we describe them intuitively (see [11] for full details). The key idea

is to encode recursive processes in π using a “duplicator” process in

HO, circumventing linearity by replacing free names with variables.

The parameter д is a map from process variables to sequences of

name variables. Also, ||·|| maps sequences of session names into

sequences of variables, and

⌊⌊
·
⌋⌋
∅
maps processes with free names

to processes without free names (but with free variables instead).

The encoding (⟨ · ⟩)1 depends on the auxiliary function

⌊
·
⌋

1

,

defined on value types. Following the encoding on processes, this

mapping on values takes a first-order value type and encodes it

Terms:

Ju!⟨w⟩.PK1

д
def
= u!⟨λz. z?(x).(x w)⟩.JPK1

д

Ju?(x :C).QK1

д
def
= u?(y).(ν s)(y s | s!⟨λx . JQK1

д⟩.0)

JP | QK1

д
def
= JPK1

д | JQK1

д

J(ν n)PK1

д
def
= (ν n)JPK1

д

J0K1

д
def
= 0

JµX .PK1

д
def
= (ν s)(s!

〈
V
〉
.0 | s?(zX ).JPK1

д, {X→ñ })

where (ñ = fn(P))

V = λ(||ñ ||,y). y?(zX ).
⌊⌊
JPK1

д, {X→ñ }
⌋⌋
∅

JX K1

д
def
= (ν s)(zX (ñ, s) | s!⟨zX ⟩.0) (ñ = д(X ))

Types:⌊
S
⌋

1 def
= (?((⟨S⟩)1⊸⋄); end)⊸⋄⌊

⟨S⟩
⌋

1 def
= (?(⟨(⟨S⟩)1⟩→⋄); end)⊸⋄

(⟨!⟨U ⟩; S⟩)1
def
= !⟨

⌊
U
⌋

1

⟩; (⟨S⟩)1

(⟨?(U ); S⟩)1
def
= ?(

⌊
U
⌋

1

); (⟨S⟩)1

(⟨⟨S⟩⟩)1
def
= ⟨(⟨S⟩)1⟩ (⟨µt.S⟩)1

def
= µt.(⟨S⟩)1

(⟨end⟩)1
def
= end (⟨t⟩)1

def
= t

Figure 5: Typed encoding of π into HO, selection from [11].
Above, fn(P) is a lexicographically ordered sequence of free
names in P . Maps || · || and

⌊⌊
·
⌋⌋
σ can be found in [1].

into a linear higher-order value type, which encloses an input

type that expects to receive another higher-order type. Notice how

the innermost higher-order value type is either shared or linear,

following the nature of the given type.

FromHO to π . The encoding J·K2
simulates higher-order commu-

nication using first-order constructs, following Sangiorgi [13]. The

idea is to use trigger names, which point towards copies of input-

guarded server processes that should be activated. The encoding of

abstraction sending distinguishes two cases: if the abstraction body

does not contain any free session names (which are linear), then the

server can be replicated. Otherwise, if the value contains session

names then its corresponding server name must be used exactly

once. The encoding of abstraction receiving proceeds inductively,

noticing that the variable is now a placeholder for a first-order

name. The encoding of application is also in two cases; both of

them depend on the creation of a fresh session, which is used to

pass around the applied name.

2.4 Minimal Session Types for HO
The syntax of MSTs for HO is in Fig. 4 (bottom). We write µHO to

denote HO with MSTs. The decomposition D(·) in [2] relies cru-

cially on the ability of communicating tuples of values. Hence, value

types are of the form C̃→⋄ and C̃⊸⋄. Similarly, minimal session
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Terms:

Ju!⟨λx .Q⟩.PK2 def
={

(ν a)(u!⟨a⟩.(JPK2 | ∗ a?(y).y?(x).JQK2)) if fs(Q) = ∅

(ν a)(u!⟨a⟩.(JPK2 | a?(y).y?(x).JQK2)) otherwise

Ju?(x).PK2 def
= u?(x).JPK2

Jx uK2 def
= (ν s)(x !⟨s⟩.s!⟨u⟩.0)

J(λx . P)uK2 def
= (ν s)(s?(x).JPK2 | s!⟨u⟩.0)

Types:

(⟨!⟨S⊸⋄⟩; S1⟩)
2 def
= !

〈
⟨?((⟨S⟩)2); end⟩

〉
; (⟨S1⟩)

2

(⟨?(S⊸⋄); S1⟩)
2 def
= ?

(
⟨?((⟨S⟩)2); end⟩

)
; (⟨S1⟩)

2

Figure 6: Typed encoding of HO into π [11].

types for output and input are of the form !⟨Ũ ⟩; end and ?(Ũ ); end:
they communicate tuples of values but lack a continuation.

Following Parrow [12], D(·) is defined in terms of a breakdown
function Bk

x̃ (·), which translates a process into a composition of

trios processes (or simply trios). A trio is a process with exactly three

nested prefixes. If P is a sequential process with k nested actions,

thenD(P)will contain k trios running in parallel: each trio inD(P)
will enact exactly one prefix from P ; the breakdown function must

be carefully designed to ensure that trios trigger each other in such

a way that D(P) preserves the prefix sequencing in P . While trios

decompositions elegantly induce processes typable with MSTs, they

are not goal in themselves; rather, they offer one possible path to

better understand sequentiality in session types.

We use some useful terminology for trios [12]. The context of a
trio is a tuple of variables x̃ , possibly empty, which makes variable

bindings explicit. We use a reserved set of propagator names (or
simply propagators), denoted by ck , ck+1

, . . ., to carry contexts and

trigger the subsequent trio. Propagators with recursive types are

denoted by crk , c
r
k+1
, . . .. We say that a leading trio is the one that

receives a context, performs an action, and triggers the next trio; a

control trio only activates other trios.

The breakdown function works on both processes and values.

The breakdown of process P is denoted by Bk
x̃ (P), where k is the

index for the propagators ck , and x̃ is the context to be received by

the previous trio. Similarly, the breakdown of a value V is denoted

by Vk
x̃ (V ). Table 1 gives the breakdown function defined in [2] for

the sub-language of HO without recursion—this is the so-called

core fragment. In the figure, we include side conditions that use

the one-line conditional x = (c) ? s1: s2 to express that x = s1 if

condition c is true, and x = s2 otherwise. Notice that for session

types we have either C = S or C = ⟨S⟩.

To formally defineD(·) in terms ofBk
x̃ (·), we need some notation.

Let ũ = (a,b, s, s ′, . . .) be a finite tuple of names. We shall write

init(ũ) to denote the tuple (a1,b1, s1, s
′
1
, . . .). We say that a process

has been initialized if all of its names have some index.

Definition 2.3 (Decomposing Processes [2]). Let P be a closed HO
process such that ũ = fn(P). The decomposition of P , denotedD(P),

G(!⟨U ⟩; S) =

{
!⟨G(U )⟩; end if S = end

!⟨G(U )⟩; end ,G(S) otherwise

G(?(U ); S) =

{
?(G(U )); end if S = end

?(G(U )); end ,G(S) otherwise

G(C⊸⋄) = G(C)⊸⋄ G(end) = end

G(C→⋄) = G(C)→⋄ G(⟨U ⟩) = ⟨G(U )⟩

G(S1, . . . , Sn ) = G(S1), . . . ,G(Sn )

Figure 7: Decomposition of types (cf. Def. 2.4)

is defined as:

D(P) = (ν c̃)(ck !⟨⟩.0 | Bk
ϵ (Pσ ))

where: k > 0; c̃ = (ck , . . . , ck+ |P |−1
); σ = {init(ũ)/ũ}; and the

breakdown function Bk
x̃ (·), is as defined in Table 1.

Definition 2.4 (Decomposing Session Types). The decomposition
function on the types of Fig. 4, denoted G(·), is defined in Fig. 7.

As already mentioned, the minimality result in [2] is that if P is

a well-typed HO process then D(P) is a well-typed µHO process.

It attests that the sequentiality in the session types for P is appro-

priately accommodated by the decomposition D(P). Its proof relies

on an auxiliary result establishing the typability of Bk
x̃ (P).

Theorem 2.5 (Minimality Result [2]). Let P be a closed HO
process with ũ = fn(P) and σ = {init(ũ)/ũ}. If Γ; ∅;∆ ⊢ P ▷ ⋄ then

G(Γσ ); ∅; G(∆σ ) ⊢ D(P) ▷ ⋄

Having summarized the results on which our developments

stand, we now move on to establish the minimality result but for π .

3 DECOMPOSE BY COMPOSITION
We define a decomposition function F ( · ) : π → µπ , given in terms

of a breakdown function denoted Ak
x̃ ( · )д (cf. Tab. 2). Following

Figure 1, this breakdown function will result from the composition

of J · K1

д , B
k
x̃ (·), and J · K2

, i.e., Ak
x̃ ( · )д = JBk

x̃ (J · K
1

д)K2
. Using F ( · ),

we obtain a minimality result for π , given by Theorem 3.11.

3.1 Key Idea
Conceptually, F ( · ) can be obtained in two steps: first, the compo-

sition Bk
x̃ (J · K

1

д), which returns a process in µHO; second, a step
that transforms that µHO process into a µπ process using J · K2

. We

illustrate these two steps for output and input processes.

Output Let us write A ′k
x̃ ( · )д to denote the (partial) composition

involved in the first step. Given P = ui !⟨w j ⟩.Q , we first obtain:

A ′k
x̃ (ui !⟨w j ⟩.Q)д = ck ?(x̃).ui !

〈
W

〉
.ck+3

!⟨x̃⟩ | A ′k+3

x̃ (Qσ )д

where σ = (ui : S) ? {ui+1/ui }: {} and

W = λz1. (ck+1
!⟨⟩ | ck+1

?().z1?(x).ck+2
!⟨x⟩ | ck+2

?(x).(x w̃))
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P Bk
x̃ (P)

ui !⟨V ⟩.Q ck ?(x̃).ui !
〈
V̂
〉
.ck+l+1

!⟨̃z⟩ | Bk+l+1

z̃ (Qσ )

V̂ = Vk+1

ỹ (Vσ )

ỹ = fv(V ) z̃ = fv(Q)
l = |V | σ = next(ui )

ui ?(y).Q ck ?(x̃).ui ?(y).ck+1
!⟨x̃ ′⟩ | Bk+1

x̃ ′ (Qσ )
x̃ ′ = fv(Q)
σ = next(ui )

V ui ck ?(x̃).Vk+1

x̃ (V )m̃
ui : C m̃ = (ui , . . . ,ui+ |G(C) |−1

)

x̃ = fv(V )

(ν s : C)P ′ (ν s̃ : G(C)) Bk
x̃ (P

′σ )
s̃ = (s1, . . . , s |G(C) |)

σ = (C = S) ? {s1s1/ss}: {s1/s} x̃ = fv(P ′)

Q | R ck ?(x̃).ck+1
!⟨ỹ⟩.ck+l+1

!⟨̃z⟩ | Bk+1

ỹ (Q) | Bk+l+1

z̃ (R) ỹ = fv(Q) z̃ = fv(R) l = |Q |

0 ck ?().0

V Vk
x̃ (V )

y y

λu : C{ . P λỹ. (ν c̃)(ck !⟨x̃⟩ | Bk
x̃ (P{y1/y}))

x̃ = fv(V )

ỹ = (y1, . . . ,y |G(C) |)

c̃ = ({=→) ? (ck , . . . , ck+ |P |−1
): ϵ

Table 1: The breakdown function for HO processes and values (core fragment from [2]).

We have that A ′k
x̃ (ui !⟨w j ⟩.Q)д is a process in µHO. The second

step uses J · K2
to convert it into the following µπ process:

ck ?(x̃).(ν a)(ui !⟨a⟩.(ck+3
!⟨x̃⟩ | Ak+3

x̃ (Qσ )д |

a?(y).y?(z1).ck+1
!⟨z1⟩ | ck+1

?(z1).z1?(x).ck+2
!⟨x⟩ |

ck+2
?(x).(ν s)(x !⟨s⟩.s!⟨w̃⟩)))

The subprocess mimicking the output action on ui is guarded
by an input on ck . Then, the output ofw on ui action is delegated

to a different channel through several redirections: first a private

name a is sent, then along a name for z1 is received and so on; until,

finally, the breakdown of w is sent on name s1. These names are

propagated through local trios. We can see that upon action on ui
unmodified context x̃ is sent to breakdown of continuation Q .

We say names typed with tail-recursive type are recursive names.
Another form of output is when both ui andw j are recursive. This

case is similar to the one just discussed, and omitted from Tab. 2.

Input The breakdown of ui ?(w).Q as follows:

ck ?(x̃).ui ?(y).ck+1
!⟨x̃ ,y⟩ |

(ν s1)(ck+1
?(x̃ ,y).ck+2

!⟨y⟩.ck+3
!⟨x̃⟩ |

ck+2
?(y).(ν s)(y!⟨s⟩.s!⟨s1⟩) |

ck+3
?(x̃).(ν a)(s1!⟨a⟩.(ck+l+4

!⟨⟩ | ck+l+4
?().0 |

a?(y′).y′?(w̃).(ck+4
!⟨x̃⟩ | Ak+4

x̃ (Q{w1/w}σ )д))))

The activation on ck enables the input on ui . After several redirec-
tions, the actual input of variables w̃ is on a name received for y′,
which binds them in the decomposition ofQ . Hence, context x̃ does

not get extended for an inductive call: it only gets extended locally

(propagated by ck+1
). Indeed, in the core fragment, the context is

always empty and propagators only enable subsequent actions. The

C ::= M | ⟨M⟩

γ ::= end | t

M ::= γ | !⟨C̃⟩;γ | ?(C̃);γ | µt.M

Figure 8: Minimal Session Types for π (cf. Definition 3.1)

context does play a role in breaking down recursion: variables zX
(generated to encode recursion) get propagated as context.

3.2 Formal Definition
Definition 3.1 (Minimal Session Types, MSTs). Minimal session

types for π are defined in Figure 8.

The breakdown function Ak
x̃ ( · )д for all constructs of π is given

in Table 2, using the following definitions.

Definition 3.2 (Degree of a Process). The degree of a π process P ,
denoted ⌊P⌉, is defined as:

⌊ui !⟨w j ⟩.Q⌉ = ⌊Q⌉ + 3 ⌊(ν s : S)Q⌉ = ⌊Q⌉ ⌊0⌉ = 1

⌊ui ?(x : C).Q⌉ = ⌊Q⌉ + 5 ⌊Q | R⌉ = ⌊Q⌉ + ⌊R⌉ + 1

⌊X ⌉ = 4 ⌊µX .Q⌉ = ⌊Q⌉ + 4

Definition 3.3 (Predicates on Types and Names). LetC be a session

type. We write tr(C) to indicate that C is a tail-recursive session

type. Also, given u : C , we write lin(u) if C = S and ¬tr(S).

Definition 3.4 (Subsequent index substitution). Let ni be an in-

dexed name. We define next(ni ) = (lin(ni )) ? {ni+1/ni }: {}.

We define how to obtain MSTs for π from standard session types:

Definition 3.5 (Decomposing First-Order Types). The decompo-

sition function H( · ) on finite types, obtained by combining the
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P Ak
x̃ (P)д

ui !⟨w j ⟩.Q
ck ?(x̃).(ν a)

(
ui !⟨a⟩.

(
ck+3

!⟨x̃⟩ | Ak+3

x̃ (Qσ )д |

a?(y).y?(z1).ck+1
!⟨z1⟩ | ck+1

?(z1).z1?(x).ck+2
!⟨x⟩ |

ck+2
?(x).(ν s)

(
x !⟨s⟩.s!⟨w̃⟩

) ) ) w j : C
w̃ = (w j , . . . ,w j+ |H(C) |−1

)

σ = next(ui )

ui ?(w).Q

ck ?(x̃).ui ?(y).ck+1
!⟨x̃ ,y⟩ |

(ν s1)
(
ck+1

?(x̃ ,y).ck+2
!⟨y⟩.ck+3

!⟨x̃⟩ |
ck+2

?(y).(ν s)
(
y!⟨s⟩.s!⟨s1⟩) |

ck+3
?(x̃).(ν a)

(
s1!⟨a⟩.

(
ck+l+4

!⟨⟩ | ck+l+4
?().0 | Q̂x̃

) ) )
where:

Q̂x̃ = a?(y′).y′?(w̃).
(
ck+4

!⟨x̃⟩ | Ak+4

x̃ (Q{w1/w}σ )д
)

w : C
w̃ = (w1, . . . ,w |H(C) |)

l = ⌊Q⌉

σ = next(ui )

ri !⟨w j ⟩.P

ck ?(x̃).(ν a1)c
r
!⟨a1⟩.

(
Ak+3

x̃ (P)д | a1?(y1).y1?(̃z).W
)

where:

W = (ν a2)
(
zf (S )!⟨a2⟩.

(
ck+3

!⟨x̃⟩.cr ?(b).(ν s)
(
b!⟨s⟩.s!⟨̃z⟩

)
|

a2?(y2).y2?(z′
1
).
(
ck+1

!⟨⟩ |

ck+1
?().z′

1
?(x).ck+2

!⟨x⟩ | ck+2
?(x).(ν s ′)

(
x !⟨s ′⟩.s ′!⟨w̃⟩

) ) ) )
r : S ∧ tr(S)
z̃ = (z1, . . . , z |R′⋆(S ) |)

c̃ = (ck+1
, ck+2

)

w : C ∧ w̃ = (w j , . . . ,w j+ |H(C) |−1
)

ri ?(w).P

ck ?(x̃).(ν a1)
(
cr !⟨a1⟩.

(
(ν s1)

(
ck+1

?(y).ck+2
!⟨y⟩.ck+3

!⟨⟩ |

ck+2
?(y).(ν s)

(
y!⟨s⟩.s!⟨s1⟩) |

ck+3
?().(ν a2)

(
s1!⟨a2⟩.

(
ck+l+4

!⟨⟩ | ck+l+4
?().0 |

a2?(y2).y2?(w̃).
(
ck+4

!⟨x̃⟩ | Ak+4

x̃ (P{w1/w})д
) ) )

|

a1?(y1).y1?(̃z).zf (S )?(y).

ck+1
!⟨y⟩.cr ?(b).(ν s ′)

(
b!⟨s ′⟩.s ′!⟨̃z⟩

) ) ) )
r : S ∧ tr(S)
z̃ = (z1, . . . , z |R′⋆(S ) |)

l = ⌊P⌉
w : C ∧ w̃ = (w1, . . . ,w |H(C) |)

(ν s : C)P ′ (ν s̃ : H(C)) Ak
x̃ (P

′σ )д s̃ = (s1, . . . , s |H(C) |) σ = {s1s1/ss}

(ν r : µt.S)P ′ (ν r̃ : R ′(S)) cr ?(b).(ν s ′)
(
b!⟨s ′⟩.s ′!⟨̃r ⟩

)
| cr ?(b).(ν s ′)

(
b!⟨s ′⟩.s ′!⟨̃r ⟩

)
| Ak

x̃ (P
′σ )д

tr(µt.S) σ = {r1r1/r r }
r̃ = (r1, . . . , r |R′(S ) |)

r̃ = (r1, . . . , r |R′(S ) |)

Q1 | Q2
ck ?(x̃).ck+1

!⟨ỹ⟩.ck+l+1
!⟨z̃⟩ | Ak+1

ỹ (Q1)д | Ak+l+1

z̃ (Q2)д ỹ = fv(Q1) z̃ = fv(Q2) l = ⌊Q⌉

0 ck ?().0

µX .P

(ν s1)
(
ck ?(x̃).ck+1

!⟨x̃⟩.ck+3
!⟨x̃⟩ |

ck+1
?(x̃).(ν a1)

(
s1!⟨a1⟩.

(
ck+2

!⟨⟩ | ck+2
?().0 |

ck+3
?(x̃).s1?(zx ).ck+4

!⟨x̃ , zx ⟩ |

Ak+4

x̃,zx
(P)д, {X→ñ } |

∗a1?(y′
1
).y′

1
?(||ñ1 ||, . . . , ||ñm ||,y1).P̂

) ) )
where:

P̂ = (ν c̃)
( ∏

0<i≤m cni ?(b).(ν s ′)
(
b!⟨s ′⟩.s ′!⟨||ñi ||⟩

)
| ck+2

!⟨x̃⟩

ck+2
?(x̃).y1?(zx ).ck+3

!⟨x̃ , zx ⟩ |
⌊⌊
Ak+3

x̃,zx
(P)д, {X→ñ }

⌋⌋
c̃, c̃r

)

ñ = fn(P)
m = |ñ |
||ñ || = (||n1 ||, . . . , ||nm ||)

i ∈ {1, . . . ,m}.

||ni || : Si
||ñi || = (||ni

1
||, . . . , ||ni

|H(Si ) |
||)

c̃ = (ck+2
, . . . , ck+ ⌊ ||P ||1д, {X→ñ} ⌉+1

)

c̃r =
⋃
v ∈ñ c

v

X

(ν s1)
(
ck ?(zx ).ck+1

!⟨zx ⟩.ck+2
!⟨zx ⟩ | ck+2

?(zx ).s1!⟨zx ⟩.ck+3
!⟨⟩ | ck+3

?().0
ck+1

?(zx ).(ν a1)
(
cn1

!⟨a1⟩.
(
a1?(y1).y1?(̃z1). . . . (ν aj )Q

) ) )
where:

Q =
(
cnj !⟨aj ⟩.

(
aj?(yj ).yj?(̃zj ).(ν s

′)
(
zx !⟨s ′⟩.s ′!⟨̃z1, . . . , z̃j , s1⟩

) ) )
ñ = д(X )

|ñ | = j
i ∈ {1, . . . , j}
ni : S ∧ tr(Si )
z̃i = (zi

1
, . . . , zi

|R′⋆(Si ) |
)

Table 2: Decompose by composition: Breakdown function Ak
x̃ ( · )д for π processes (cf. Definition 3.6).

mappings (⟨ · ⟩)1,G(·), and (⟨ · ⟩)2, is defined in Fig. 9 (top, where omit-

ted cases are defined homomorphically). It is extended to account

for recursive session types in Fig. 9 (center).

The auxiliary function R ′⋆( · ), given in Fig. 9 (bottom), is used

in Tab. 2 to decompose guarded tail-recursive types: it skips session

prefixes until a type of form µt.S is encountered; when that occurs,

the recursive type is decomposed using R ′( · ).

We are finally ready to define the decomposition function F ( · ),

the analog of Definition 2.3 but for processes in π :

Definition 3.6 (Process Decomposition). Let P be a closed π process

with ũ = fn(P) and ṽ = rn(P). Given the breakdown function

Ak
x̃ ( · )д in Table 2, the decomposition F (P) is defined as:

F (P) = (ν c̃)(ν c̃r )(
∏
r ∈ṽ

Pr | ck !⟨⟩.0 | Ak
ϵ (Pσ )д)
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H(⟨S⟩) = ⟨H(S)⟩

H(!⟨S⟩; S ′) =

{
M if S ′ = end

M,H(S ′) otherwise

whereM =!

〈
⟨?(?(⟨?(H(S)); end⟩); end); end⟩

〉
; end

H(?(S); S ′) =

{
M if S ′ = end

M,H(S ′) otherwise

whereM =?(⟨?(?(⟨?(H(S)); end⟩); end); end⟩); end

H(end) = end

H(S1, . . . , Sn ) = H(S1), . . . ,H(Sn )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H(µt.S) =

{
R ′(S) if µt.S is tail-recursive

µt.H(S) otherwise

R ′(!⟨S⟩; S ′) = µt.!
〈
⟨?(?(⟨?(H(S)); end⟩); end); end⟩

〉
; t,R ′(S ′)

R ′(?(S); S ′) = µt.?
(
⟨?(?(⟨?(H(S)); end⟩); end); end⟩

)
; t,R ′(S ′)

H(t) = t R ′(t) = ϵ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R ′⋆(?(S); S ′) = R ′⋆(S ′) R ′⋆(!⟨S⟩; S ′) = R ′⋆(S ′)

R ′⋆(µt.S) = R ′⋆(S)

Figure 9: Decomposition of types H( · ) (cf. Def. 3.5)

where:k > 0, c̃ = (ck , . . . , ck+ ⌊P ⌉−1
); c̃r =

⋃
r ∈ṽ cr ;σ = {init(ũ)/ũ};

Pr = cr ?(b).(ν s)(b!⟨s⟩.s!⟨̃r ⟩) with r : S and r̃ = r1, . . . , r |G(S ) | .

3.3 Examples
Example 3.7 (A Process with Delegation). Consider a process P

that implements channelsw (with typeT =?(Int); !⟨Bool⟩; end) and
u (with type S =!⟨T ⟩; end):

P = (ν u : S)(u!⟨w⟩.w?(t).w!⟨odd(t)⟩.0︸                           ︷︷                           ︸
A

| u?(x).x !⟨5⟩.x?(b).0︸                  ︷︷                  ︸
B

)

By Def. 3.2, ⌊P⌉ = 25. Then, the decomposition of P into a collection

of first-order processes typed with minimal session types is:

F (P) = (ν c1, . . . , c25)(c1!⟨⟩.0 | (ν u1)A
1

ϵ ((A | B)σ ′)),

where σ = init(fn(P)) and σ ′ = σ · {u1u1/uu}. We omit parameter

д as it is empty. We have:

A1

ϵ ((A | B)σ ′) = c1?().c2!⟨⟩.c13!⟨⟩ | A2

ϵ (Aσ
′) | A13

ϵ (Bσ ′)

We use the following abbreviations for subprocesses of A and B:
A′ = w1?(t).A′′

, A′′ = w1!⟨odd(t)⟩.0, and B′ = x1!⟨5⟩.x1?(b).0.
The breakdown of A is in Fig. 10; the breakdown of B follows:

A13

ϵ (B) = c13?().u1?(y4).c14!⟨y4⟩ | (ν s1)(c14?(y).c15!⟨y⟩.c16!⟨⟩ |

c15?(y4).(ν s
′′)(y4!⟨s ′′⟩.s ′′!⟨s1⟩.0) | c16?().(ν a3)(s1!⟨a3⟩.

(c21!⟨⟩ | c21?().0 | a3?(y5).y5?(x1,x2).(c17!⟨⟩ | A17

ϵ (B′)))))

A2

ϵ (A) = c2?().(ν a1)(u1!⟨a1⟩.(c5!⟨⟩ | A5

ϵ (A
′) |

a1?(y1).y1?(z1).c3!⟨z1⟩ | c3?(z1).z1?(x).c4!⟨x⟩ |

c4?(x).(ν s)(x !⟨s⟩.s!⟨w1,w2⟩)))

A5

ϵ (A
′) = c5?().w1?(y2).c6!⟨y2⟩ | (ν s1)(c6?(y2).c7!⟨y2⟩.c8!

〈〉
|

c7?(y2).(ν s
′)(y2!⟨s ′⟩.s ′!⟨s1⟩.0)) |

c8?().(ν a2)(s1!⟨a2⟩.(c10!⟨⟩ | c10?().0 |

a2?(y3).y3?(t1).(c9!⟨⟩ | A9

ϵ (A
′′))))

A9

ϵ (A
′′) = c9?().(ν a)(w2!⟨a⟩.(c12!⟨⟩ | c12?().0 |

a?(y).y?(z1).c11!⟨z1⟩ | c10?(z1).z1?(x).c11!⟨x⟩ |

c11?(x).(ν s)(x !⟨s⟩.s!⟨odd(t)⟩)))

Figure 10: Breakdown for process A in Exam. 3.7.

The breakdown of B′
is similar. Type S is broken down into MSTs

M1 andM2, as follows:

M1 =?

(
⟨?(?(⟨?(Int); end⟩); end); end⟩

)
; end

M2 =!

〈
⟨?(?(⟨?(Bool); end⟩); end); end⟩

〉
; end

Names w1 and w2 are typed with M1 and M2, respectively. Then,

name u1 is typed withM , given by:

M =!

〈
⟨?(?(⟨?(M1,M2); end⟩); end); end⟩

〉
; end

Consider the reductions of F (P) that mimic the exchange of w
along u in P . We first have three synchronizations on c1, c2, c13:

F (P) −→3 (ν c̃)( (ν a1)( u1!⟨a1⟩. (c5!⟨⟩ | A5

ϵ (A
′) |

a1?(y1).y1?(z1).c3!⟨z1⟩ | c3?(z1).z1?(x).c4!⟨x⟩ |

c4?(x).(ν s)(x !⟨s⟩.s!⟨w1,w2⟩))) | u1?(y4). c14!⟨y4⟩ |

(ν s1)(c14?(y).c15!⟨y⟩.c16!⟨⟩ |

c15?(y4).(ν s
′′)(y4!⟨s ′′⟩.s ′′!⟨s1⟩.0) |

c16?().(ν a3)(s1!⟨a3⟩.(c21!⟨⟩ |

c21?().0 | a3?(y5).y5?(x1,x2).(c17!⟨⟩ | A17

ϵ (B′)))))

where c̃ = (c3, . . . , c12, c14, . . . , c25). Then, a synchronization on u1

sends name a1 (highlighted above). Name a1 is further propagated

along c14 and c15. Another synchronization occurs on c16.

F (P) −→7 (ν c̃∗)(ν a1)( c5!⟨⟩ | A5

ϵ (A
′) | a1?(y1). y1?(z1).c3!⟨z1⟩ |

c3?(z1).z1?(x).c4!⟨x⟩ | c4?(x).(ν s)(x !⟨s⟩.s!⟨w1,w2⟩) |

(ν s1)((ν s
′′)( a1!⟨s ′′⟩. s ′′!⟨s1⟩.0) | (ν a3)(s1!⟨a3⟩.(c21!⟨⟩ |

c21?().0 | a3?(y5).y5?(x1,x2).(c17!⟨⟩ | A17

ϵ (B′))))))

where c̃∗ = (c3, . . . , c12, c17, . . . , c25)
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The next reduction communicates session name s ′′ along a1:

F (P) −→8 (ν c̃∗)(ν s
′′)( c5!⟨⟩ | A5

ϵ (A
′) |

s ′′?(z1). c3!⟨z1⟩ | c3?(z1).z1?(x).c4!⟨x⟩ |

c4?(x).(ν s)(x !⟨s⟩.s!⟨w1,w2⟩) |

(ν s1)( s ′′!⟨s1⟩. 0 | (ν a3)(s1!⟨a3⟩.(c21!⟨⟩ | c21?().0 |

a3?(y5).y5?(x1,x2).( c17!⟨⟩ | A17

ϵ (B′))))))

After the synchronization on channel s ′′, name z1 is further sent

to the next parallel process through the propagator c3:

F (P) −→10 (ν c̃∗∗)(ν s1)( c5!⟨⟩ | A5

ϵ (A
′) |

s1?(x). c4!⟨x⟩ | c4?(x).(ν s)(x !⟨s⟩.s!⟨w1,w2⟩) |

(ν a3)( s1!⟨a3⟩. (c21!⟨⟩ | c21?().0 |

a3?(y5).y5?(x1,x2).(c17!⟨⟩ | A17

ϵ (B′)))))

where c̃∗∗ = (c4, . . . , c12, c17, . . . , c25)

Communication on s1 leads to variable x being substituted by name

a3, which is then passed on c4 to the next process. In addition,

inaction is simulated by a synchronization on c21.

F (P) −→13

(ν c̃•)(ν a3)( c5!⟨⟩ | A5

ϵ (A
′) | (ν s)( a3!⟨s⟩. s!⟨w1,w2⟩) |

a3?(y5). y5?(x1,x2).(c17!⟨⟩ | A17

ϵ (B′)))

where c̃• = (c5, . . . , c12, c17, . . . , c25)

Now, the passing of the decomposition ofw is finally simulated by

two reductions: first, a synchronization on a3 sends the endpoint

of session s , which replaces variable y5; then, the dual endpoint is

used to sendw1,w2, substituting variables x1,x2 in A17

ϵ (B′).

F (P) −→14 (ν c̃••)(ν s)( c5!⟨⟩ | A5

ϵ (A
′) |

s!⟨w1,w2⟩ | s?(x1,x2). (c17!⟨⟩ | A17

ϵ (B′)))

F (P) −→15 (ν c̃••)( c5!⟨⟩ | A5

ϵ (A
′) |

c17!⟨⟩ | A17

ϵ (B′){w1w2/x1x2}) = Q

Above, c̃•• = (c5, . . . , c12, c17, . . . , c25). This is how F (P) simulates

the first action of P . Notice that inQ namesw1,w2 substitute x1, x2

and the first synchronization onw can be simulated on namew1.

Example 3.8 (A Recursive Process). Let P = µX .P ′ be a process
implementing a channel r with the tail-recursive session type S =
µt.?(Int); !⟨Int⟩; t, with P ′ = r?(w).r !⟨−w⟩.X . We decompose r
using S and obtain two channels typed with MSTs as in Fig. 9:

r1 : µt.?
(
⟨?(?(⟨?(Int); end⟩); end); end⟩

)
; t

r2 : µt.!
〈
⟨?(?(⟨?(Int); end⟩); end); end⟩

〉
; t

Then, process F (P) is

(ν c̃)(ν cr )(cr ?(b).(ν s)(b!⟨s⟩.s!⟨r1, r2⟩) | c1!⟨⟩ | A1

ϵ (P{r1/r })∅)

where c̃ = (c1, . . . , c ⌊P ⌉ ) and A1

ϵ (P{r1/r })∅ is in Fig. 11.

In Fig. 11,A1

ϵ (P{r1/r }) simulates recursion in P using replication.

Given some index k , process Rk mimics actions of the recursive

body. It first gets a decomposition of r by interacting with the

A1

ϵ (P{r1/r })∅ = (ν s1)(c1?().c2!⟨⟩.c4!⟨⟩ |

c2?().(ν a1)(s1!⟨a1⟩.(c3!⟨⟩ | c3?().0 |

c4?().s1?(zx ).c5!⟨zx ⟩ |

R5 | ∗ a1?(y′
1
).y′

1
?(xr1
,xr2
,y1).P̂ )

)
)

where:

P̂ = (ν c̃)(cr ?(b).(ν s ′)(b!⟨s ′⟩.s ′!⟨xr1
,xr2

⟩) | c1!⟨⟩ |

c1?().y1?(zx ).c2!⟨zx ⟩ | R
2{xr1

, xr2
/r1, r2})

Rk = ck ?(zx ).

(ν a1)(c
r
!⟨a1⟩.((ν s1)(ck+1

?(y).ck+2
!⟨y⟩.ck+3

!⟨⟩ |

ck+2
?(y).(ν s)(y!⟨s⟩.s!⟨s1⟩) |

ck+3
?().(ν a2)(s1!⟨a2⟩.(ck+l+4

!⟨⟩ |

ck+l+4
?().0 | a2?(y2). y2?(w1).

(ν c̃)(ck+4
!⟨zx ⟩ | A

k+4

zx (r2!⟨−w1⟩.X )д))) |

a1?(y1).y1?(z1, z2). z1?(y).

ck+1
!⟨y⟩.cr ?(b).(ν s ′)(b!⟨s ′⟩.s ′!⟨z1, z2⟩))))

Ak+4

zx (r2!⟨−w1⟩.X )д = ck ?(zx ).(ν a1)c
r
!⟨a1⟩.

(Ak+7

zx (X )д | a1?(y1).y1?(̃z).W )

W = (ν a2)( z2!⟨a2⟩. (ck+7
!⟨zx ⟩.c

r
?(b).(ν s)(b!⟨s⟩.s!⟨̃z⟩) |

a2?(y2).y2?(z′
1
).(ν c̃)(ck+5

!⟨⟩ |

ck+5
?().z′

1
?(x).ck+6

!⟨x⟩ |

ck+6
?(x).(ν s ′)(x !⟨s ′⟩. s ′!⟨−w1⟩ ))))

Ak+7

zx (X )д = (ν s1)(ck+7
?(zx ).ck+8

!⟨zx ⟩.ck+9
!⟨zx ⟩ |

ck+8
?(zx ).(ν a1)(c

r
!⟨a1⟩.(ck+9

?(zx ).s1!⟨zx ⟩. |

ck+10
!⟨⟩ck+10

?().0 |

a1?(y1).y1?(r1, r2).

(ν s ′)(zx !⟨s ′⟩.s ′!⟨r1, r2, s1⟩))))))

with д = {X 7→ r1, r2}

Figure 11: Breakdown of recursive process (Exam. 3.8)

process providing recursive names on cr (for the first instance,

this is a top-level process in F (P)). Then, it mimics the first input

action on the channel received for z1 (that is, r1): the input of actual

names forw1 is delegated through channel redirections to name y2

(both prefixes are highlighted in Fig. 11). Once the recursive name

is used, the decomposition of recursive name is made available

for the breakdown of the continuation by a communication on cr .
Similarly, in the continuation, the second action on r , output, is
mimicked by r2 (received for z2), with the output of actual name

w1 delegated to s ′ (both prefixes are highlighted in Fig. 11).

SubprocessR5
is a breakdown of the first instance of the recursive

body. The replication guarded by a1 produces a next instance, i.e.,

process R2{xr1
, xr2

/r1, r2} in P̂ . By communication on a1 and a few

reductions on propagators, it gets activated: along a1 it first receives

a name for y′
1
along which it also receives: (i) recursive names
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r1, r2 for variables xr1
,xr2

, and (ii) a name for y1 along which it will

receive a1 again, for future instances, as it can be seen inAk+7

zx (X )д .

3.4 Results
We establish the minimality result for π using the typability of F (·).

We need some auxiliary definitions to characterize the propagators

required to decompose recursive processes.

Theorems 3.10 and 3.27 in [2] state typability results by introduc-

ing two typing environments, denotedΘ and Φ. While environment

Θ is used to type linear propagators (e.g., ck , ck+1
, . . .) generated

by the breakdown function B−
− (·), environment Φ types shared

propagators used in trios that propagate breakdown of recursive

names (e.g., cr , cv , . . . where r and v are recursive names).

Definition 3.9 (Session environment for propagators). Let Θ be the

session environment and Φ be the recursive propagator environ-

ment defined in Theorem 3.10 and Theorem 3.27 [2], respectively.

Then, by applying the encoding (⟨·⟩)2, we defineΘ′
andΦ′

as follows:

Θ′ = (⟨Θ⟩)2,Φ′ = (⟨Φ⟩)2.

We can use Θ′ = (⟨Θ⟩)2 in the following statement, where we

state the typability result for the breakdown function.

Theorem 3.10 (Typability of Breakdown). Let P be an initial-
ized π process. If Γ;∆,∆µ ⊢ P ▷ ⋄, then

H(Γ′),Φ′
;H(∆),Θ′ ⊢ Ak

ϵ (P)д ▷ ⋄

where k > 0; r̃ = dom(∆µ ); Φ′ =
∏

r ∈r̃ c
r

: ⟨⟨?(R ′⋆(∆µ (r ))); end⟩⟩;
and balanced(Θ′) with

dom(Θ′) = {ck , ck+1
, . . . , ck+ ⌊P ⌉−1

} ∪ {ck+1
, . . . , ck+ ⌊P ⌉−1

}

such that Θ′(ck ) =?(·); end.

Proof. Directly by using Theorem 5.1 [11], Theorem 3.27 [2],

and Theorem 5.2 [11]. See [1] for details. □

We now consider typability for the decomposition function, us-

ing Φ′ = (⟨Φ⟩)2 as in Def. 3.9. The proof follows from Thm. 3.10;

see [1].

Theorem 3.11 (Minimality Result for π ). Let P be a closed
π process, with ũ = fn(P) and ṽ = rn(P). If Γ;∆,∆µ ⊢ P ▷⋄, where∆µ
only involves recursive session types, then
H(Γσ );H(∆σ ),H(∆µσ ) ⊢ F (P) ▷ ⋄, where σ = {init(ũ)/ũ}.

4 OPTIMIZATIONS
Although conceptually simple, the composition approach to decom-

position induces redundancies. Here we propose F ∗(·), an optimiza-

tion of the decomposition F (· ), and establish its static and dynamic

correctness, in terms of the minimality result (cf. Thm. 4.14) but

also operational correspondence (cf. Thm. 4.20), respectively.

4.1 Motivation
To motivate our insights, consider the process Ak

x̃ (ui?(w).Q)д as

presented in § 3.1 and Tab. 2. We identify some suboptimal fea-

tures of this decomposition: (i) channel redirections; (ii) redundant

synchronizations on propagators; (iii) the structure of trios is lost.

While an original process P receives a name for variablew along

ui , its breakdown does not input a breakdown of w directly, but

through a series of channel redirections: ui receives a name along

which it sends restricted name s , along which it sends the restricted

name s1 and so on. Finally, the name received for y′ receives w̃ ,

the breakdown ofw . This redundancy is perhaps more evident in

Def. 3.5, which gives the translation of types by composition: the

mimicked input action is five-level nested for the original name.

This is due to the composition of J · K1

д and J · K2
.

Also, Ak
x̃ (ui?(w).Q)д features redundant communications on

propagators. For example, the bound name y is locally propagated

by ck+1
and ck+2

. This is the result of breaking down sequential

prefixes induced by J · K1

д (not present in the original process). Last

but not least, the trio structure is lost as subprocess Q̂x̃ is guarded

and nested, and it inductively invokes the function on continuation

Q . This results in an arbitrary level of process nesting, which is

induced by the final application of encoding J·K2
in the composition.

The non-optimality of Ak
x̃ ( · )д is more prominent in the treat-

ment of recursive processes and recursive names. As HO does not

feature recursion constructs, J · K1

д encodes recursive behaviors

by relying on abstraction passing and shared abstractions. Then,

going back to π via J · K2

д , this is translated to a process involving a

replicated subprocess. But going through this path, the encoding

of recursive process becomes convoluted. On top of that, all non-

optimal features of the core fragment (as discussed for the case of

input) are also present in the decomposition of recursion.

Here we develop an optimized decomposition function, denoted

F ∗( · ) (Def. 4.8), that avoids the redundancies described above. The

optimized decomposition produces a composition of trios processes,
with a fixed maximum number of nested prefixes. The decomposed

process does not redirect channels and only introduces propagators

that codify the sequentiality of the original process.

4.2 Preliminaries
We decompose a session type into a list of minimal session types:

Definition 4.1 (Decomposing Types). Let S andC be a session and

a channel type, resp. (cf. Fig. 4). The type decomposition function
H∗( · ) is defined in Figure 12.

Example 4.2 (Decomposing a Recursive Type). Let S = µt.S ′ be a
recursive session type, with S ′ =?(Int); ?(Bool); !⟨Bool⟩; t. By Fig. 12,
since S is tail-recursive, H∗(S) = R(S ′). Further,

R(S ′) = µt.?(H∗(Int)); t,R(?(Bool); !⟨Bool⟩; t)

By definition of R( · ), we obtain

H∗(S) = µt.?(Int); t, µt.?(Bool); t, µt.!⟨Bool⟩; t,R(t)

(using H∗(Int) = Int and H∗(Bool) = Bool). Since R(t) = ϵ , we
have

H∗(S) = µt.?(Int); t, µt.?(Bool); t, µt.!⟨Bool⟩; t

Example 4.3 (Decomposing an Unfolded Recursive Type). Let T =
?(Bool); !⟨Bool⟩; S be a derived unfolding of S from Exam. 4.2. Then,

by Fig. 12, R⋆(T ) is the list of minimal recursive types obtained

as follows: first, R⋆(T ) = R⋆(!⟨Bool⟩; µt.S ′) and after one more

step, R⋆(!⟨Bool⟩; µt.S ′) = R⋆(µt.S ′). Finally, we have R⋆(µt.S ′) =
R(S ′). We get the same list of minimal types as in Exam. 4.2:

R⋆(T ) = µt.?(Int); t, µt.?(Bool); t, µt.!⟨Bool⟩; t
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H∗(end) = end

H∗(⟨S⟩) = ⟨H∗(S)⟩

H∗(S1, . . . , Sn ) = H∗(S1), . . . ,H
∗(Sn )

H∗(!⟨C⟩; S) =

{
!⟨H∗(C)⟩; end if S = end

!⟨H∗(C)⟩; end ,H∗(S) otherwise

H∗(?(C); S) =

{
?(H∗(C)); end if S = end

?(H∗(C)); end ,H∗(S) otherwise

H∗(µt.S ′) = R(S ′)

H∗(S) = R⋆(S) where S , µt.S ′

R(t) = ϵ

R(!⟨C⟩; S) = µt.!⟨H∗(C)⟩; t,R(S)

R(?(C); S) = µt.?(H∗(C)); t,R(S)

R⋆(?(C); S) = R⋆(!⟨C⟩; S) = R⋆(S)

R⋆(µt.S) = R(S)

Figure 12: Decomposition of typesH∗( · ) (cf. Def. 4.1)

Definition 4.4 (Decomposing Environments). Given environments

Γ and ∆, we define H∗(Γ) and H∗(∆) inductively as H∗(∅) = ∅

and

H∗(∆,ui : S) = H∗(∆), (ui , . . . ,ui+ |H∗(S ) |−1
) : H∗(S)

H∗(Γ,ui : ⟨S⟩) = H∗(Γ),ui : H∗(⟨S⟩)

Definition 4.5 (Degree of a Process). The optimized degree of a
process P , denoted ⌊P⌉∗, is inductively defined as follows:

⌊Q⌉∗ + 1 if P = ui !⟨y⟩.Q or P = ui ?(y).Q

⌊Q⌉∗ if P = (ν s : S)Q

⌊Q⌉∗ + 1 if P = (ν r : S)Q and tr(S)

⌊Q⌉∗ + ⌊R⌉∗ + 1 if P = Q | R

1 if P = 0 or P = X

⌊Q⌉∗ + 1 if P = µX .Q

As before, given a finite tuple of names ũ = (a,b, s, s ′, . . .), we
write init(ũ) to denote the tuple (a1,b1, s1, s

′
1
, . . .); also, we say that

a process is initialized if all of its names have some index.

Given a tuple of initialized names ũ and a tuple of indexed names

x̃ , it is useful to collect those names in x̃ that appear in ũ.

Definition 4.6 (Free indexed names). Let ũ and x̃ be two tuples of

names. We define the set fnb(ũ, x̃) as {zk : zi ∈ ũ ∧ zk ∈ x̃}.

As usual, we treat sets of names as tuples (and vice-versa). By

abusing notation, given a process P , we shall write fnb(P , ỹ) to
stand for fnb(fn(P), ỹ). Then, we have that fnb(P , x̃) ⊆ x̃ . In the

definition of the breakdown function, this notion allows us to con-

veniently determine a context for a subsequent trio.

Remark 1. Whenever ck ?(ỹ) (resp. ck !⟨ỹ⟩) with ỹ = ϵ , we shall
write ck ?() (resp. ck !⟨⟩) to stand for ck ?(y) (resp. ck !⟨y⟩) such that
ck :?(⟨end⟩); end (resp. ck :!⟨⟨end⟩⟩; end).

Definition 4.7 (Index function). Let S be an (unfolded) recursive

session type. The function f (S) is defined as follows:

f (S) =

{
f ′
0
(S ′{S/t}) if S = µt.S ′

f ′
0
(S) otherwise

where: f ′l (!⟨U ⟩; S) = f ′l+1
(S), f ′l (?(U ); S) = f ′l+1

(S), and

f ′l (µt.S) = |R(S)| − l + 1.

Given a process P , we write frv(P) to denote that P has a free

recursive variable.

4.3 The Optimized Decomposition
We define the optimized decomposition F ∗( · ) by relying on the

revised breakdown function Akx̃ ( · ) (cf. § 4.3.1). Given a context x̃

and a k > 0, Akx̃ ( · ) is defined on initialized processes. Table 3 gives

the definition: we use an auxiliary function for recursive processes,

denoted Ak
rec x̃ ( · )д (cf. § 4.3.2), where parameter д is a mapping

from recursive variables to a list of name variables.

In the following, to keep presentation simple, we assume pro-

cesses µX .P in which P does not contain a subprocess of shape

µY .P ′. The generalization of our decomposition without this as-

sumption is not difficult, but is notationally heavy.

4.3.1 The Breakdown Function. We describe entries 1-7 in Table 3.

1. Input ProcessAkx̃ (ui ?(y).Q) consists of a leading trio thatmimics

the input and runs in parallel with the breakdown of Q . In the trio,

a context x̃ is expected along ck . Then, an input on ul mimics the

input action: it expects the decomposition of name y, denoted ỹ. To
decompose y we use its type: if y : S then ỹ = (y1, . . . ,y |H∗(S ) |).

The index of ul depends on the type of ui . Intuitively, if ui is tail-
recursive then l = f (S) (Def. 4.7) as index and we do not increment

it, as the same decomposition of ui should be used to mimic a new

instance in the continuation. Otherwise, if ui is linear then we

use the substitution σ = {ui+1/ui } to increment it in Q . Next, the
context z̃ = fnb(Q, x̃ỹ \ w̃) is propagated, where w̃ = (ui ) or w̃ = ϵ .

2. Output Process Akx̃ (ui !⟨yj ⟩.Q) sends the decomposition of y on

ul , with l as in the input case. We decompose name yj based on its

type S : ỹ = (yj , . . . ,yj+ |H∗(S ) |−1
). The context to be propagated is

z̃ = fnb(P , x̃ \ w̃), where w̃ and σ are as in the input case.

3. Restriction (Non-recursive name) The breakdown of process

(ν s : C)Q is (ν s̃ : H∗(C)) Bk
x̃ (Qσ ), where s is decomposed using

C: s̃ = (s1, . . . , s |H∗(C) |). Since (ν s) binds s and its dual s (or only
s if C is a shared type) the substitution σ is simply {s1s1/ss} and
initializes indexes in Q .

4. Restriction (Recursive name) As in the previous case, in the

breakdown of (ν s : µt.S)Q the name s is decomposed into s̃ by
relying on µt.S . Here the breakdown consists of the breakdown of

Q running in parallel with a control trio, which appends restricted

(recursive) names s̃ and s̃ to the context, i.e., z̃ = x̃ , s̃, s̃ .

5. Composition The breakdown of process Q1 | Q2 uses a control

trio to trigger the breakdowns of Q1 and Q2, similarly as before.

6. Inaction The breakdown of 0 is simply an input prefix that

receives an empty context (i.e., x̃ = ϵ).

7. Recursion The breakdown of µX .P is as follows:

(ν crX )(ck ?(x̃).crk+1
!⟨̃z⟩.µX .crX ?(ỹ).crk+1

!⟨ỹ⟩.X | Ak+1

rec z̃ (P)д)
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P Akx̃ (P)

1 ui ?(y).Q ck ?(x̃).ul ?(ỹ).ck+1
!⟨̃z⟩ | Ak+1

z̃ (Qσ )

yj : S ∧ ỹ = (y1, . . . ,y |S |)
w̃ = (lin(ui )) ? {ui }: ϵ
z̃ = fnb(Q, x̃ỹ \ w̃)

l = (tr(ui )) ? f (S): i
σ = next(ui ) · {y1/y}

2 ui !⟨yj ⟩.Q ck ?(x̃).ul !
〈
ỹ
〉
.ck+1

!⟨̃z⟩ | Ak+1

z̃ (Qσ )

yj : S ∧ ỹ = (yj , . . . ,yj+ |H∗(S ) |−1
)

w̃ = (lin(ui )) ? {ui }: ϵ
z̃ = fnb(Q, x̃ \ w̃)

l = (tr(ui )) ? f (S): i
σ = next(ui )

3 (ν s : C)Q (ν s̃ : H∗(C))Akx̃ (Qσ )
s̃ = (s1, . . . , s |H∗(C) |)

σ = {s1s1/ss}

4 (ν s : µt.S)Q (ν s̃ : R(S))
(
ck ?(x̃).ck+1

!⟨̃z⟩.0 | Ak+1

z̃ (Q)
) tr(µt.S) s̃ = (s1, . . . , s |R(S ) |)

z̃ = x̃ , s̃, s̃ s̃ = (s1, . . . , s |R(S ) |)

5 Q1 | Q2
ck ?(x̃).ck+1

!⟨ỹ⟩.ck+l+1
!⟨̃z⟩ | Ak+1

ỹ (Q1) | A
k+l+1

z̃ (Q2)
ỹ = fnb(Q1, x̃) z̃ = fnb(Q2, x̃)
l = |Q1 |

6 0 ck ?().0

7 µX .P (ν crX )(ck ?(x̃).crk+1
!⟨̃z⟩.µX .crX ?(ỹ).crk+1

!⟨ỹ⟩.X | Ak+1

rec z̃ (P)д)
ñ = fs(P) ñ : C̃ ∧ z̃ = bn(ñ : C̃)
|z̃ | = |ỹ | д = {X 7→ z̃}

P Ak
rec x̃ (P)д

8 ui !⟨yj ⟩.Q
µX .crk ?(x̃).ul !⟨ỹ⟩.c

r
k+1

!⟨̃z⟩.X | Ak+1

rec z̃ (Qσ )д (if д , ∅)

µX .crk ?(x̃).
(
ul !⟨ỹ⟩.c

r
k+1

!⟨̃z⟩ | X
)
| Ak+1

rec z̃ (Qσ )д (if д = ∅)

y : T ∧(yj , . . . ,yj+ |H∗(T ) |−1
)

w̃ = (lin(ui )) ? {ui }: ϵ
z̃ = д(X ) ∪ fnb(Q, x̃ \ w̃)

l = (tr(ui )) ? f (S): i
σ = next(ui )

9 ui ?(y).Q
µX .crk ?(x̃).ul ?(ỹ).c

r
k+1

!⟨̃z⟩.X | Ak+1

rec z̃ (Qσ )д (if д , ∅)

µX .crk ?(x̃).
(
ul ?(ỹ).c

r
k+1

!⟨̃z⟩ | X
)
| Ak+1

rec z̃ (Qσ )д (if д = ∅)

w̃ = (lin(ui )) ? {ui }: ϵ
z̃ = д(X ) ∪ fnb(Q, x̃ỹ \ w̃)

l = (tr(ui )) ? f (S): i
σ = next(ui ) · {y1/y}

10 Q1 | Q2

µX .crk ?(x̃).
(
crk+1

!⟨ỹ1⟩.X | crk+l+1
!⟨ỹ2⟩

)
| (if д , ∅)

Ak+1

rec ỹ1

(Q1)д | Ak+l+1

rec ỹ2

(Q2)∅

µX .crk ?(x̃).
(
crk+1

!⟨ỹ1⟩ | c
r
k+l+1

!⟨ỹ2⟩ | X
)
|

Ak+1

rec ỹ1

(Q1)∅ | Ak+l+1

rec ỹ2

(Q2)∅ (if д = ∅)

frv(Q1)

ỹ1 = д(X ) ∪ fnb(Q1, x̃)
ỹ2 = fnb(Q2, x̃)
l = |Q1 |

11 (ν s : C)Q
µX .(ν s̃ : H∗(C))crk ?(x̃).crk+1

!⟨̃z⟩.X | Ak+1

rec z̃ (Qσ )д (if д , ∅)

µX .(ν s̃ : H∗(C))crk ?(x̃).
(
crk+1

!⟨̃z⟩ | X
)
| Ak+1

rec z̃ (Qσ )д (if д = ∅)

s̃ = (s1, . . . , s |H∗(S ) |)

s̃ = (lin(S)) ? (s1, . . . , s |H∗(S ) |): ϵ

z̃ = x̃ , s̃, s̃ σ = {s1s1/ss}

12 X
µX .crk ?(x̃).crX !⟨x̃⟩X (if д , ∅)

µX .crk ?().
(
crX !⟨⟩ | X

)
(if д = ∅)

13 0 crk ?().0

Table 3: Optimized breakdown function Akx̃ ( · ) for processes, and auxiliary function for recursive processes Ak
rec x̃ ( · )д .

We have a control trio and the breakdown of P , obtained using

Ak
rec x̃ ( · )д (§ 4.3.2). The trio receives the context x̃ on ck and

propagates it further. To ensure typability, we bind all session free

names of P using the context z̃, which contains the decomposition

of those free names. This context is needed to break down P , and so

we record it as д = {X 7→ z̃} in the definition of Ak+1

rec x̃ (P)д . This

way, z̃ will be propagated all the way until reaching X .

Next, the recursive trio is enabled, and receives ỹ along crX , with

|z̃ | = |ỹ | and l = |P |. The tuple ỹ is propagated to the first trio

of Ak+1

rec x̃ (P)д . By definition of Ak+1

rec x̃ (P)д , its propagator c
r
X will
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send the same context as received by the first trio. Hence, the

recursive part of the control trio keeps sending this context to the

next instances of recursive trios of Ak+1

rec x̃ (P)д .
Notice that the leading trio actually has four prefixes. This sim-

plifies our presentation: this trio can be broken down into two trios

by introducing an extra propagator ck+1
to send over crk+2

.

4.3.2 Handling P in µX .P . As already mentioned, we use the aux-

iliary function Ak
rec x̃ ( · )д to generate recursive trios.

We discuss entries 8-11 in Tab. 3 (other entries are similar as

before). A key observation is that parameter д can be empty. To see

this, consider a process like P = µX .(Q1 | Q2) where X occurs free

in Q1 but not in Q2. If X occurs free in Q1 then its decomposition

will have a non-empty д, whereas the д forQ2 will be empty. In the

recursive trios of Tab. 3, the difference between д , ∅ and д = ∅ is

subtle: in the former case, X appears guarded by a propagator; in

the latter case, it appears unguarded in a parallel composition. This

way, trios in the breakdown of Q2 replicate themselves on a trigger

from the breakdown of Q1.

Given this difference, we only describe the cases when д , ∅:

8 / 9. Output and Input The breakdown of ui !⟨yj ⟩.Q consists

of the breakdown of Q in parallel with a leading trio, a recursive

process whose body is defined as in B(·). As names д(X ) may not

appear free in Q , we must ensure that a context z̃ for the recursive
body is propagated. The breakdown of r?(y).Q is defined similarly.

10. Parallel Composition We discuss the breakdown of Q1 | Q2

assuming frv(Q1). We take ỹ1 = д(X ) ∪ fnb(Q1, x̃) to ensure that

д(X ) is propagated to the breakdown of X . The role of crk+l+1
is to

enact a new instance of the breakdown of Q2; it has a shared type

to enable replication. In a running process, the number of these

triggers in parallel denotes the number of available instances of Q2.

11. Recursive Variable In this case, the breakdown is a control

trio that receives the context x̃ from a preceding trio and propagates

it again to the first control trio of the breakdown of a recursive

process along crX . Notice that by construction we have x̃ = д(X ).

We may now define the optimized process decomposition:

Definition 4.8 (Decomposing Processes, Optimized). Let P be a

π process with ũ = fn(P) and ṽ = rn(P). Given the breakdown

functionAkx̃ ( ·) in Table 3, the optimized decomposition of P , denoted
F ∗(P), is defined as

F ∗(P) = (ν c̃)(ck !⟨̃r ⟩.0 | Akr̃ (Pσ ))

where: k > 0; c̃ = (ck , . . . , ck+ ⌊P ⌉∗−1
); r̃ such that for v ∈ ṽ and

v : S (v1, . . . ,v |R(S ) |) ⊆ r̃ ; and σ = {init(ũ)/ũ}.

4.4 Examples
We now illustrate F ∗( · ), Akx̃ ( · ), A

k
rec x̃ ( · )д , andH∗( · ).

Example 4.9 (Exam. 3.7, Revisited). Consider again the process

P = (ν u)(A | B) as in Exam. 3.7. Recall that P implements session

types S =!⟨T ⟩; end and T =?(Int); !⟨Bool⟩; end.
By Def. 4.5, ⌊P⌉∗ = 9. The optimized decomposition of P is:

F ∗(P) = (ν c̃)(c1!⟨⟩ | (ν u1)A
1

ϵ ((A | B)σ ′))

where σ ′ = init(fn(P)) · {u1u1/uu} and c̃ = (c1, . . . , c9). We have:

A1

ϵ ((A | B)σ ′)) = c1?().c2!⟨⟩.c6!⟨⟩ | A2

ϵ (Aσ
′) | A6

ϵ (Bσ
′)

The breakdowns of sub-processes A and B are as follows:

A2

ϵ (Aσ
′) = c2?().u1!⟨w1,w2⟩.c3!⟨⟩ | c3?().w1?(t).c4!⟨⟩ |

c4?().w2!⟨odd(t)⟩.c5!⟨⟩ | c5?().0

A6

ϵ (Bσ
′) = c6?().u1?(x1,x2).c7!⟨x1,x2⟩ |c7?(x1,x2).x1!⟨5⟩.c8!⟨x2⟩ |

c8?(x2).x2?(b1).c9!⟨⟩ | c9?().0

Namew is decomposed as indexed namesw1,w2; by using H∗( · )

(Def. 4.1) onT , theirMSTs areM1 =!⟨Int⟩; end andM2 =?(Bool); end,
respectively. Nameu1 is the decomposition of nameu and it is typed

with !⟨M1,M2⟩; end. After a few administrative reductions on c1,

c2, and c6 , F ∗(P) mimics the first source communication:

F ∗(P) −→3 (ν c̃∗)( u1!⟨w1,w2⟩. c3!⟨⟩ | A3

ϵ (w?(t).w!⟨odd(t)⟩.0) |

u1?(x1,x2). c7!⟨x1,x2⟩ | A
7

x1,x2

(x !⟨5⟩.x?(b).0))

−→ (ν c̃∗)(c3!⟨⟩ | A2

ϵ (w?(t).w!⟨odd(t)⟩.0) | c7!⟨w1,w2⟩ |

A7

x1,x2

(x !⟨5⟩.x?(b).0))

Above, c̃∗ = (c3, c4, c5, c7, c8, c9). After reductions on c3 and c7,

name w1 substitutes x1 and the communication along w1 can be

mimicked:

F ∗(P) −→6 (ν c̃∗∗) w1?(t). c4!⟨⟩ | c4?().w2!⟨odd(t)⟩.c5!⟨⟩ |

c5?().0 | w1!⟨5⟩. c8!⟨w2⟩ |

c8?(x2).x2?(b1).c9!⟨⟩ | c9?().0

−→ (ν c̃∗∗)(c4!⟨5⟩ | c4?(t).w2!⟨odd(t)⟩.c5!⟨⟩ | c5?().0 |

c8!⟨w2⟩ | c8?(x2).x2?(b1).c9!⟨⟩ | c9?().0)

Above, c̃∗∗ = (c4, c5, c8, c9). Further reductions follow similarly.

Example 4.10 (Example 3.8, Revisited). Consider again the tail-

recursive session type S = µt.?(Int); !⟨Int⟩; t. Also, let R be a

process implementing a channel r with type with S as follows:

R = µX .R′ R′ = r?(z).r !⟨−z⟩.X

We decompose name r using S and obtain two channels typed with

MSTs as in Fig. 12. We have: r1 : µt.?(Int); t and r2 : µt.!⟨Int⟩; t.
The trios produced by Akϵ (R) satisfy two properties: they (1)

mimic the recursive behavior of R and (2) use the same decomposi-

tion of channel r (i.e., r1,r2) in every instance.

To accomplish (1), each trio of the breakdown of the recursion

body is a recursive trio. For (2), we need two things. First, we expect

to receive all recursive names in the context x̃ when entering the

decomposition of the recursion body; further, each trio should use

one recursive name from the names received and propagate all of
them to subsequent trio. Second, we need an extra control trio when

breaking down prefix µX : this trio (i) receives recursive names from

the last trio in the breakdown of the recursion body and (ii) activates

another instance with these recursive names.

Using these ideas, we have the decomposed process A1

r1,r2

(R):

c1?(r1, r2).c
r
2
!⟨r1, r2⟩.µX .c

r
X ?(y1,y2).c

r
2
!⟨y1,y2⟩.X | A2

rec r1,r2

(R′)
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where A2

rec r1,r2

(R′) is the composition of three recursive trios:

µX .cr
2
?(y1,y2).r1?(z1).c

r
3
!⟨y1,y2, z1⟩.X |

µX .cr
3
?(y1,y2, z1).r2?(−z1).c

r
4
!⟨y1,y2⟩.X |

µX .cr
4
?(y1,y2).c

r
X !⟨y1,y2⟩.X

cr
2
will first activate the recursive trios with context (r1, r2). Next,

each trio uses one of r1, r2 and propagate them both mimicking the

recursion body. The last recursive trio sends r1, r2 to the top-level

control trio, so it can enact another instance of the decomposition

of the recursion body by activating the first recursive trio.

4.5 Measuring the Optimization
Here we measure the improvements of F ∗( · ) over F ( · ). A key

metric for comparison is the number of prefixes/sychronizations

induced by each decomposition. This includes (1) the number of

prefixes involved in channel redirections and (2) the number of prop-
agators; both can be counted by already defined notions:

(1) Channel redirections can be counted by the levels of nesting

in the decompositions of types (cf. Fig. 9 and Fig. 12)

(2) The number of propagators is determined by the degree of a

process (cf. Def. 3.2 and Def. 4.5)

These two metrics are related; let us discuss them in detail.

Channel redirections. The decompositions of types for F ( · ) and

F ∗( · ) abstractly describe the respective channel redirections. The

type decomposition for F ( · ) (Fig. 9) defines 5 levels of nesting for

the translation of input/output types. Then, at the level of (decom-

posed) processes, channels with these types implement redirections:

the nesting levels correspond to 5 additional prefixes in the decom-

posed process that mimic a source input/output action. In contrast,

the type decomposition for F ∗( · ) (Fig. 12) induces no nesting, and

so at the level of processes there are no additional prefixes.

Number of propagators. We define auxiliary functions to count

the number of propagators induced by F ( · ) and F ∗( · ). These

functions, denoted #( · ) and #
∗( · ), respectively, are defined using

the degree functions (⌊ · ⌉ and ⌊ · ⌉∗) given by Def. 3.2 and Def. 4.5.

Remarkably, ⌊ · ⌉ and #( · ) are not equal. The difference lies in

the number of tail-recursive names in a process. In F ( · ) there

are propagators ck but also cr , used for recursive names. Def. 3.2,

however, only counts propagators of form ck . For any P , the number

of propagators cr in F (P) is the number of free and bound tail-

recursive names in P . We remark that, by definition, there may be

more than one occurrence of a propagator cr in F (P): there is at
least one prefix with subject cr ; further occurrences depend on the

sequencing structure of the (recursive) type assigned to r . On the

other hand, in F ∗(P) there are propagators ck and propagators crX ,

whose number corresponds to the number of recursive variables in

the process. To define #( · ) and #
∗( · ), we write brn(P) to denote

bound occurrences of recursive names and #X (P) to denote the

number of occurrences of recursive variables.

Definition 4.11 (Propagators in F (P) and F ∗(P)). Given a process

P , the number of propagators in each decomposition is given by

#(P) = ⌊P⌉ + 2 · |brn(P)| + |rn(P)| #
∗(P) = ⌊P⌉∗ + #X (P)

Notice that #
∗(P) gives the exact number of actions induced by

propagators in F ∗(P); in contrast, due to propagators cr , #(P) gives
the least number of such actions in F (P).

In general, we have #(P) ≥ #
∗(P), but we can be more precise

for a broad class of processes. We say that a π process P . 0 is

in normal form if P = (ν ñ)(Q1 | . . . | Qn ), where each Qi (with

i ∈ {1, . . . ,n}) is not 0 and does not contain restriction nor parallel

composition at top-level. We have the following result; see [1] for

details.

Proposition 1. If P is in normal form then #(P) ≥ 5

3
· #

∗(P).

This result implies that the number of (extra) synchronizations

induced by propagators in F (P) is larger than in F ∗(P).

4.6 Results
4.6.1 Static Correctness. We first state Thm. 4.13, which ensures

the typability of Akx̃ ( · ) under MSTs. We rely on an auxiliary predi-

cate:

Definition 4.12 (Indexed Names). Suppose some typing environ-

ments Γ,∆. Let x̃ , ỹ be two tuples of indexed names. We write

indexedΓ,∆(ỹ, x̃) for the predicate

∀zi .(zi ∈ x̃ ⇔ ((zi , . . . , zi+m−1) ⊆ ỹ) ∧m = |H∗((Γ,∆)(zi ))|))

Theorem 4.13 (Typability of Breakdown). Let P be an initial-
ized process. If Γ;∆ ⊢ P ▷ ⋄ then

H∗(Γ \ x̃);H∗(∆ \ x̃),Θ ⊢ Akỹ (P) ▷ ⋄ (k > 0)

where x̃ ⊆ fn(P) and ỹ such that indexedΓ,∆(ỹ, x̃). Also, balanced(Θ)
with

dom(Θ) = {ck , ck+1
, . . . , ck+ |P |−1

} ∪ {ck+1
, . . . , ck+ |P |−1

}

and Θ(ck ) =?(M̃); end, where M̃ = (H∗(Γ),H∗(∆))(ỹ).

Proof. By induction of the structure of P ; see [1] for details. □

We now (re)state the minimality result, now based on the de-

composition F ∗( · ). The proof follows from Thm. 4.13; see [1].

Theorem 4.14 (Minimality Result for π , Optimized). Let P be
a π process with ũ = fn(P). If Γ;∆ ⊢ P ▷ ⋄ then H∗(Γσ );H∗(∆σ ) ⊢
F ∗(P) ▷ ⋄, where σ = {init(ũ)/ũ}.

4.6.2 Dynamic Correctness. As a complement to the minimality

result, we have established that P and F ∗(P) are behaviorally equiv-
alent (Thm. 4.20). We overview this result and its required notions.

Thm. 4.20 relies on MST-bisimilarity (cf. Def. 4.19, ≈M
), a variant

of the characteristic bisimilarity in [10]. We discuss key differences

between the two notions. First, we let an action along name n to be

mimicked by an action on a possibly indexed name ni , for some i .

Definition 4.15 (Indexed name). Given a name n, we write n̆ to

either denote n or any indexed name ni , with i > 0.

Suppose we wish to relate P andQ using ≈M
, and that P performs

an output action involving name v . In our setting, Q should send a

tuple of names: the decomposition of v . The second difference is

that output objects should be related by the relation ▷◁c:
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Definition 4.16 (Relating names). Let ϵ denote the empty list. We

define ▷◁c as the relation on names defined as

ϵ ▷◁c ϵ

Γ;∆ ⊢ ni ▷C

ni ▷◁c (ni , . . . ,ni+ |H∗(C) |−1
)

ñ ▷◁c m̃1 ni ▷◁c m̃2

ñ,ni ▷◁c m̃1,m̃2

Characteristic bisimilarity equates typed processes by relying on

characteristic processes and trigger processes. These notions, which
we recall below, need to be adjusted for them to work with MSTs.

Definition 4.17 (Characteristic trigger process [10]). The charac-
teristic trigger process for type C is

t ⇐C v :C
def
= t?(x).(ν s)(s?(y).[(C)]y | s!⟨v⟩.0)

where [(C)]y is the characteristic process for C on name y [10].

Our variant of trigger processes is defined as follows:

Definition 4.18 (Minimal characteristic trigger process). Given a

type C , the trigger process is

t ⇐m vi :C
def
= t1?(x).(ν s1)(s1?(ỹ).⟨C⟩

y
i | s1!⟨ṽ⟩.0)

where vi ▷◁c ṽ , yi ▷◁c ỹ, and ⟨C⟩
y
i is a minimal characteristic

process for type C on name y (see [1] for a definition).

We are now ready to define MST-bisimilarity:

Definition 4.19 (MST-Bisimilarity). A typed relationℜ is an MST
bisimulation if for all Γ1;∆1 ⊢ P1 ℜ Γ2;∆2 ⊢ Q1,

(1) Whenever Γ1;∆1 ⊢ P1

(ν m̃1)n!⟨v :C1 ⟩
−→ ∆′

1
;Λ′

1
⊢ P2 then there

exist Q2, ∆
′
2
, and σv such that Γ2;∆2 ⊢ Q1

(ν m̃2)n̆!⟨ṽ :H∗(C)⟩
=⇒

∆′
2
⊢ Q2 where vσv ▷◁c ṽ and, for a fresh t ,

Γ;∆′′
1
⊢ (ν m̃1)(P2 | t ⇐C v :C1)ℜ

∆′′
2
⊢ (ν m̃2)(Q2 | t ⇐m vσ :C1)

(2) Whenever Γ1;∆1 ⊢ P1

n?(v)
−→ ∆′

1
⊢ P2 then there exist Q2, ∆

′
2
,

and σv such that Γ2;∆2 ⊢ Q1

n̆?(ṽ)
=⇒ ∆′

2
⊢ Q2 where vσv ▷◁c ṽ

and Γ1;∆′
1
⊢ P2 ℜ Γ2;∆′

2
⊢ Q2,

(3) Whenever Γ1;∆1 ⊢ P1

ℓ
−→ ∆′

1
⊢ P2, with ℓ not an output or

input, then there exist Q2 and ∆′
2
such that Γ2;∆2 ⊢ Q1

ˆℓ
=⇒

∆′
2
⊢ Q2 and Γ1;∆′

1
⊢ P2 ℜ Γ2;∆′

2
⊢ Q2 and sub(ℓ) = n

implies sub( ˆℓ) = n̆.
(4) The symmetric cases of 1, 2, and 3.

The largest such bisimulation is called MST bisimilarity (≈M
).

We can now state our dynamic correctness result:

Theorem 4.20 (Operational Correspondence). Let P be a π
process such that Γ1;∆1 ⊢ P1. We have

Γ;∆ ⊢ P ≈M H∗(Γ);H∗(∆) ⊢ F ∗(P)

Proof. By coinduction: we exhibit a binary relation S that

contains (P ,F ∗(P)) and prove that it is anMST bisimulation. See [1]

for the full account. □

5 CONCLUDING REMARKS
Concluding Remarks. We showed a minimality result for π , a

session-typed π -calculus. This result says that sequentiality in ses-

sion types is a convenient but not indispensable feature. Follow-

ing [2], we introduced minimal session types (MSTs) for π and

defined two decompositions, which transform processes typable

with standard session types into processes typable with MSTs. The

first decomposition composes existing encodability results and the

minimality result for HO; the second decomposition optimizes the

first one by (i) removing redundant synchronizations and (ii) using

the native support of recursion in π . For this optimized decompo-

sition, we proved also an operational correspondence result. This

way, our work shows that the minimality result is independent

from the kind of communicated objects (names or abstractions).

Sequentiality is the key distinguishing feature in the specification

of message-passing programs using session types. We remark that

by our minimality results do not mean that sequentiality in session

types is redundant in modeling and specifying processes; rather,

we claim that it is not an indispensable notion to type-checking
them. Because we can type-check session typed processes using

type systems that do not directly support sequencing in types, our

decomposition defines a technique for implementing session types

into languages whose type systems do not support sequentiality.

For the sake of space, we have not considered choice constructs

(selection and branching). There is no fundamental obstacle in

treating them, apart from a very minor caveat: the decomposition

in [2] assumes typed processes in which every selection construct

comes with a corresponding branching (see [1] for an example).

All in all, besides settling a question left open in [2], our work

deepens our understanding about session-based concurrency and

the connection between the first-order and higher-order paradigms.

Related Work. We use the trios decomposition by Parrow [12],

which he studied for an untyped π -calculus with replication; in

contrast, π processes feature recursion. We stress that our goal

is to clarify the role of sequentiality in session types by using

processes with MSTs, which lack sequentiality. While Parrow’s

approach elegantly induces processes typable with MSTs, defining

trios decompositions for π is just one path towards our goal.

Our work differs significantly with respect to [2]. The source

language in [2] is HO, based on abstraction-passing, whereas here

we focus on the name-passing calculus π . While in HO propaga-

tors carry abstractions, in our case propagators are binding and

carry names. Also, names must be decomposed and propagating

them requires care. Further novelties appear when decomposing

processes with recursion, which require a dedicated collection of

recursive trios (not supported in HO).
Prior works have related session types with different type sys-

tems [3–5]. Loosely related is the work by Dardha et al. [3]. They

compile a session π -calculus down into a π -calculus with the linear

type system of [8] extended with variant types. They represent

sequentiality using a continuation-passing style: a session type is

interpreted as a linear type carrying a pair consisting of the original

payload type and a new linear channel type, to be used for ensuing

interactions. The differences are also technical: the approach in [3]

thus involves translations connecting two different π -calculi and
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two different type systems. In contrast, our approach based onMSTs

justifies sequentiality using a single typed process framework.
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