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Although the contact theory between rough surfaces is designed for adhesion energies �100 mJ/m2, microsys-
tems are controlled by much weaker adhesion �100 μJ/m2, which is critical for their operation. The weakest
adhesion is related to the omnipresent fluctuation-induced dispersion forces. We develop a theory for such a
weak adhesion emphasizing that the adhesion energy as a function of the average distance separating the bodies
is almost entirely defined by the dispersion interaction. This dependence can be evaluated using the Lifshitz
theory, but the effects of contact interaction or plastic deformations give only small contribution to the adhesion.
Such a behavior is explained by a specific roughness of the deposited thin films used in microtechnologies. The
films deposited on cold substrates have a much larger number of high asperities than is predicted by the Gaussian
distribution and the contact occurs over a few asperities with heights much larger than the root-mean-square
roughness. Finally, we discuss application of the effect for more precise determination of the distance upon
contact, which is crucial for precise measurements of the dispersion forces especially at short separations in the
range 5 < h < 50 nm.

DOI: 10.1103/PhysRevB.104.L121404

In contrast with many other forces (electrostatic, capil-
lary, chemical), the dispersion forces (DFs) are omnipresent
and cannot be switched off by choosing materials, surface
preparation, or external conditions. The DFs originate from
quantum fluctuations of the electromagnetic field generated
by any material and dissipated via the field absorption chan-
nels in accordance with the fluctuation-dissipation theorem.
It was recognized first by London [1], who explained the
van der Waals (vdW) attraction between gas molecules, then
by Casimir [2], who demonstrated that the field fluctuations
result in the force between metals (Casimir force), and, finally,
the general macroscopic theory of the DFs between arbitrary
solids was developed by Lifshitz [3] and co-workers [4].

At very short separations (h � 1 nm) a number of addi-
tional effects are involved in the interaction, which are named
in general as surface forces [5]. These effects are important for
wetting phenomena and colloid science but at larger distances
survives only the electrostatic and DFs. At the distances h ∼
100 nm the DFs (Casimir forces) have been measured with a
precision of 1% in a series of experiments [6–8] (for reviews
see [9,10]). The precision of these experiments is essentially
determined by our ability to measure the absolute distance h,
which can be presented as h = �h + h0. The relative change
of the separation �h can be reliably controlled instrumentally,
but the hardest task is the determination of the minimum

*Corresponding author: v.svetovoy@phyche.ac.ru

distance between the bodies h0 (called also the distance upon
contact or average separation between the bodies in contact),
which is restricted by an experimental variance of δh0 ∼
1 nm. There are two main problems to measure the forces
at shorter distances 5 � h � 50 nm [11]. First, assuming a
typical power-law behavior ∼h−α of the force with distance
the relative uncertainty in the force increases as αδh/h when
h decreases, where δh ≈ δh0 and for the sphere-plate config-
uration α ≈ 2.5. Second, the pull-in instability makes often
impossible measurements at short separations.

The latter effect plays a significant role in modern
micro/nanoelectromechanical systems (MEMS/NEMS) be-
cause the elements of these systems are separated by rather
small distances and have a sufficiently large area for the forces
to influence the operation of moving components. Without an
application of external load the pull-in instability can lead to
unwanted permanent stiction of the elements during fabrica-
tion or operation [12–14] and for this reason the DFs have to
be carefully controlled. To investigate the effect of stiction, a
model system has been proposed [13], which is an adhered
cantilever shown schematically in Fig. 1. It is an elastic beam
for which one end is firmly fixed at some height and the other
end is adhered to the substrate. The adhesion energy per unit
area � is related to the unadhered length of the cantilever
s by a simple relation � = 3Et3H2/4s4 [15,16], where E is
the Young modulus of the cantilever and other parameters
are defined in Fig. 1. This relation gives a direct method for
the experimental determination of � [17,18]. The unadhered
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FIG. 1. Adhered rectangular cantilever. The left end is fixed at a
height H with respect to the adhered end. The right end is adhered
at the distance h0 from the average plane of the rough substrate. The
total and unadhered lengths are denoted as L and s, respectively, and
thickness of the cantilever is t .

length s can be determined interferometrically with a relative
precision of ∼1%.

The standard technology of MEMS/NEMS fabrication
uses thin film deposition of different materials, which is of-
ten realized by magnetron sputtering, thermal deposition, or
related methods. At nanoscale the deposited films are rough
with the root-mean-square (rms) roughness depending on the
deposition parameters. However, it was noticed [19] that the
height distribution of thermally evaporated Au films is not
well described by the Gaussian distribution demonstrating
a significant number of asperities, which are much higher
than the rms value. A recent analysis [20] of magnetron
sputtered films of different materials revealed even a more
pronounced effect. The excessive number of high asperities
has been related to nonequilibrium deposition conditions with
the following relaxation of local stresses.

The surface roughness can strongly influence both the DF
and adhesion energy when the bodies are separated by the
distances comparable with the highest asperities. These asper-
ities are also responsible for the distance upon contact h0. For
the adhesion energy the role of roughness was confirmed ex-
perimentally using the adhered cantilevers [21]. On the other
hand, the forces measured at the smallest possible separations
[22] strongly deviate from those predicted by the Lifshitz
theory. The latter was explained [23,24] by the influence of
high asperities approaching very close to the opposite surface.

To measure the DFs at a relatively short distances one
has to overcome the problem of the pull-in instability. The
adhered cantilever has been proposed as a possible solution
[25]. Such a cantilever does not suffer from the instability
problem in contrast with the elastic suspension systems used
for the measurements. The shape of the cantilever is sensitive
to the DFs [26] acting between the beam and substrate near
the adhered end at h → h0 and the change of the shape is in
the measurable range. One has to note that the information
on the dispersion interaction is also contained in the adhesion
energy �. This energy is easier to measure than the shape of
the cantilever, but as an additional contribution it includes the
interaction from the area of direct contact between the bodies.
The contact contribution is defined by the surface forces and
contact mechanics and depends on the parameters, which are
not well known.

z/w
-6 -4 -2 0 2 4 6 8 10 12 14

f(
z)

 (
nm

-1
)

10-6

10-5

10-4

10-3

10-2

10-1

100

Cu 500 nm
w=1.7 nm

FIG. 2. The density distribution function for Cu (circles) ex-
tracted from an AFM image of 20 × 20 μm2 with 4096 pixels per
line. The height z is counted from the average plane (z = 0). The
green dashed curve is the Gaussian distribution for the same rms
roughness w.

In this letter we demonstrate that the adhesion energy �

between rough surfaces is nearly completely determined by
the dispersion interaction at the average separation between
the surfaces in contact h0. This statement is true for the rough
surfaces with an excessive number of high asperities as it is
observed for the films deposited on cold substrates. Using
this relation one can determine h0 via the measured � with
a precision better than δh0 = 1 nm.

Consider two rough plates that approach contact. From
the mechanical point of view the problem is equivalent to a
flat hard plate that is getting into contact with a deformable
plate described by a combined roughness (sum of the two
rough topographies) [27]. The elastic modulus of the rough
plate is given by an effective Young modulus, but plastic
properties are defined by the properties of the softest mate-
rial. The nanoscopic surface roughness is characterized by an
atomic force microscope (AFM). This instrument presents the
topography of a surface as a set of pixels on the surface with
a specific height hi j for each of them. Here the indices i, j
enumerate square pixels with a size � in the range of a few
nanometers. The height of a pixel hi j is determined with a
resolution of 0.1 nm. The nominal surface of the rough plate
is counted from the average position hav = ∑

i, j hi j/N , where
N is the number of the pixels in the image. Thus any AFM
image can be presented as a matrix zi j = hi j − hav with the
zero average value.

The height density distribution function f (z), which will
be used in the following, is defined as the number of pixels
with heights in the interval (z, z + �z) with respect to the total
number of pixels N and to interval �z. As an example Fig. 2
shows the function f (z) for a 500 nm thick Cu film deposited
by magnetron sputtering [20]. One can see that the probability
to find pixels with heights above 4w is much larger than that
predicted by the normal distribution (dashed green curve).

The contact between a stiff flat and deformable rough
plates occurs via the highest asperities as shown in Fig. 3
for a realistic rough profile. Let us stress a significant differ-
ence in the vertical and horizontal scales. Local pressure on
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FIG. 3. Contact of a stiff flat and deformable rough plates. The
red dashed line shows the zero level of the rough plate (average
position). The actual rough profile of Cu film is shown. The highest
asperity is deformed plastically.

high asperities can easily overcome the flow stress Pf of the
material so that these asperities will be deformed plastically.
The deformation of high asperities will stop only when the
total repulsive contact force and total attractive force between
the plates are equal. This is the equilibrium state which we
are looking for. In this state the average distance between the
plates is equal to h0.

Let the force per unit area between flat parallel surfaces
separated by the distance h be P(h). It is well known that
the DFs are not additive [4] and in general the force be-
tween rough plates cannot be calculated via P(h). However,
for slowly varying topography one can use Derjaguin’s [28]
(proximity force) approximation. This approximation can be
applied if the lateral size of asperities 2ξ (ξ is the correlation
length) is large in comparison with the average distance be-
tween the bodies, 4ξ 2/h2

0 � 1. Since we consider relatively
short distances the condition holds true, but even if the ratio
4ξ 2/h2

0 is not very large, one can find a correction to the force
perturbatively [29–31]. In the frame of Derjaguin’s approx-
imation the rough surface is approximated by flat patches,
which can be identified with AFM pixels, and the force is
calculated as the sum over all patches using the function P(h).

When the plates are in contact in the equilibrium state at
h = h0 the total force has to be zero due to balance between
the attractive and repulsive forces. If the plates are separated
by the distance h > h0, the total force can be written with the
use of the distribution function f (z) as follows:

Ptot(h) =
∫ h0p

−∞
dz f (z)P(h − z) + P(h − h0p)R(h0). (1)

It consists of two contributions. The first term describes the
noncontact contribution where h − z is the local distance be-
tween the flat and rough surfaces. The lower integration limit
is changed by −∞ since both functions f (z) and P(h − z)
decrease fast for deep pits. The upper limit is chosen to take
into account all asperities that never have been in contact

with the flat plate. The maximum height of such asperities is
h0p = h0 − h0c, where h0c is the distance that separates two
flat surfaces in direct contact. This distance is as small as
2–3 Å [32] but not zero and corresponds to the balance of
repulsion and attraction between flat plates at a fixed load
(Derjaguin’s self-consistence approach [33,34]). The second
term in Eq. (1) is the “contact” contribution to the force. In the
equilibrium state at h = h0 the pressure P(h − h0p) = P(h0c)
is the contact pressure. In the equilibrium this pressure is
such that further plastic deformations are not possible and,
therefore, the contact pressure must be on the border separat-
ing plastic and elastic deformations so that P(h0c) = Pf . This
pressure is quite large for nanocrystals Pf ∼ 1 GPa, but be-
cause the plates contact only over high asperities, the relative
area of direct contact R(h0) is small.

The adhesion energy � is the work that has to be done
against the total force to separate plates from the position at
h = h0 to infinity. Integrating Eq. (1) and changing the sign
one finds

� = −
∫ h0p

−∞
dz f (z)W (h0 − z) − W (h0c)R(h0), (2)

where W (h) is the energy between flat parallel plates sepa-
rated by the distance h,

W (h) =
∫ ∞

h
dxP(x). (3)

In Eq. (2) � is just a number that is calculated for the equilib-
rium distance h0. This distance is determined from the force
balance equation Ptot(h0) = 0, which depends on some not
well known parameters. For example, we know the general
behavior of W (h) in the distance range h0c < h < hs, where
hs ∼ 1 nm is the upper limit of the region with important
repulsion. This energy is used in molecular dynamics simula-
tions, but we hardly can use this W (h) for precise calculations.
In addition, the flow stress Pf depends on the detailed nanos-
tructure of the deposited films, which is not specified. Due to
these uncertainties let us consider h0 in Eq. (2) as a variable
and denote it as h∗

0 to distinguish from the true equilibrium
value h0. The adhesion energy �(h∗

0 ) is given by Eq. (2) after
the substitute h0 → h∗

0.
From the first term in (2) we will separate very short local

distances h0c < h∗
0 − z < hs, where conventionally it is cho-

sen hs = 1 nm. It separates the range of distances where the
forces can deviate from pure DFs due to the presence of other
surface forces. Combining this contribution with the second
term in (2) we introduce “nearly” contact contribution to �:

�c(h∗
0 ) = −

∫ hs

h0c

dx f (h∗
0 − x)W (x) − W (h0c)R(h∗

0 ), (4)

where a new integration variable x = h∗
0 − z has been intro-

duced. Note that due to the uncertainties we can estimate
�c, but not to calculate it with a good precision. The rest is
the noncontact contribution, which can be calculated for pure
dispersion interaction:

�nc(h∗
0 ) = −

∫ ∞

hs

dx f (h∗
0 − x)W (x). (5)

L121404-3
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In Eq. (5) the function W (x) can be calculated within the
Lifshitz theory, but in Eq. (4) this function has to include
a short-distance repulsion and possibly some other surface
forces. We can estimate �c using the dispersion energy with
the short-distances repulsion [35]:

W (h) = − AH

12πh2

[
1 − 1

4

(
hc

h

)6]
. (6)

Here AH is the Hamaker constant for the interaction of two
materials in vacuum (air) and hc is the equilibrium distance
between flat parallel surfaces, which can be estimated as hc =
(2/15)1/6σ using the size parameter σ of the Lennard-Jones
model. As an illustrating example we consider Si-Cu interac-
tion, for which hc is predicted as hc = 0.224 nm. The value of
h0c is determined as the equilibrium distance between the flat
surfaces with the pressure equal to the flow stress. It is given
by a solution of equation P(h0c) = Pf , where P(h) at short
distances is defined as the derivative of energy (6) with the
opposite sign. The flow stress is not a well-defined parameter.
For nanostructured Cu with a grain size of about 40 nm it
is estimated as Pf ≈ 2 GPa [36] but significant uncertainties
are possible. Note that in any case the value of Pf is much
larger than that for the bulk material. For Pf = 2 GPa we have
found as the solution h0c = 0.198 nm. The Hamaker constant
AH = 25.9 × 10−20 J was determined via the short-distance
limit of the Lifshitz formula using the optical properties of Cu
and Si from the handbook [37]. For W (h0c) it was found a
value of −84.2 mJ/m2. For Si-Pt and Si-Au systems similar
values of the order of −100 mJ/m2 were determined.

The relative area of real contact R(h∗
0 ) can be evaluated

from AFM images of interacting surfaces. One can imagine a
rough surface as a set of columns with the cross section equal
to the pixel size squared. It is assumed that the columns higher
than h∗

0 − h0c are deformed plastically to the height h∗
0 − h0c

without significant change of the area. Only these columns
contribute to the area of real contact and the result can be
presented as

R(h∗
0 ) =

∫ ∞

h∗
0p

dz f (z), (7)

where h∗
0p = h∗

0 − h0c is defined similar to h0p. Indeed this is
an approximate relation but it can be used as a good estimate.

The softer the material (smaller Pf ) the smaller the distance
h0 separating the surfaces in contact. As a lower limit for h∗

0
we take the solution of the balance equation for Pf , which
is four times smaller than its nominal value. For the Si-Cu
system it is 0.5 GPa that gives h∗

0 = 20.6 nm. The upper limit
for h∗

0 corresponds to the maximum height that is 23.1 nm for
Cu film in Fig. 2. As one can see the plastic deformations can
occur in a rather narrow range of heights.

The adhesion energy as a function of separation in the
range of interest is shown in Fig. 4. Two curves that corre-
spond to Pf = 2 GPa (solid blue) and Pf = 0.5 GPa (brown
dots) practically coincide. It is important because the value
of Pf is known only roughly. Such a weak sensitivity of the
adhesion energy to Pf occurs because in �(h∗

0 ) the flow stress
does not appear explicitly and all the dependence on Pf is
realized via h0c. On the other hand, a sharp dependence of

FIG. 4. The adhesion energy for Si-Cu system as a function of
separation h∗

0 between the flat and rough surfaces in contact. The
solid blue line is for Pf = 2 GPa and the line marked by the brown
dots is for Pf = 0.5 GPa. The red curve at the bottom shows the
contact contribution to �. The inset demonstrates the relative contact
contribution in percent.

the repulsion [second term in (6)] on distance results in a very
small variation of h0c while Pf changes significantly.

An additional feature is that the contact contribution �c

to the adhesion energy is small as show the red curve in
Fig. 4 and the inset. It is important because at short distances
some surface forces different from (6) can contribute to �c.
The contact contribution is small (∼1%, see inset) due to
specific roughness of the films deposited in nonequilibrium
conditions. These films contain an excessive number of high
asperities, which restrict the smallest distance between the
bodies by the value of h0 � w that is significantly larger than
the rms roughness w. The number of such asperities is small
and because of this the area of real contact is also small. Thus
the main contribution to the adhesion energy comes from the
noncontact term (5), where the energy W (h) is calculated in
the Lifshitz theory and well defined.

Since the value of h0 is large in comparison with w the
adhesion energy related to the dispersion interaction is rather
small. For the Si-Cu system with Pf = 2 GPa it is found
� = 5.8 μJ/m2 and for other metals it stays in the range
� < 100 μJ/m2. Such energies are very small in comparison
with the effects usually investigated in the contact theory
where the adhesion is �100 mJ/m2 [38]. In the contact theory
the Gaussian surface roughness is usually considered. In such
a case the surfaces in contact are separated by the distances
(2–3)w that gives much stronger adhesion mostly due to
a much larger area of real contact. Nevertheless, the weak
adhesion considered in this paper is of practical importance
especially for microsystems.

For the weak adhesion the function �(h∗
0 ) is defined practi-

cally only by the dispersion interaction via the average gap
between bodies in contact h∗

0 and is not sensitive to Pf . It
explains the main result of the study [21] where the adhesion
energy between rough surfaces SiO2 and Si were measured
with adhered microcantilevers. It was convincingly demon-
strated experimentally that the weak adhesion (1–10 μJ/m2)
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is due to the dispersion interaction via the average gap sepa-
rating the surfaces.

In contrast to the function �(h∗
0 ), which is nearly universal

for a given pair of materials, the equilibrium distance h0 is
sensitive to the value of the flow stress Pf . For example,
for Pf = 2 GPa we have found h0 = 22.4 nm. This distance
gives a point on the curve �(h∗

0 ), which corresponds to the
equilibrium adhesion energy � = 5.8 μJ/m2 as shown in
Fig. 4 by the dashed lines. For Pf = 0.5 GPa the equilibrium
distance is h0 = 20.6 nm and the corresponding adhesion is
� = 9.5 μJ/m2. Thus variation of Pf moves the equilibrium
point along the universal curve �(h∗

0 ), which is calculated
using only the Lifshitz theory. It is an important prop-
erty that relates the adhesion energy and the distance upon
contact.

The hardest problem for determination of the DFs at dis-
tances h ∼ 10 nm is a restricted precision for measurement
of the distance upon contact h0, which gives the reference
point to count absolute distances. For adhered cantilevers this
distance can be determined interferometrically [25] but with
a restricted precision not better than ±1 nm. One can use the
universal function �(h∗

0 ) to improve this precision. Suppose
that we measure the adhesion energy � with a precision of
10% by measuring the unadhered length s interferometri-
cally by scanning along the cantilever. Then from the graph

presented in Fig. 4 one can determine h0 with precision better
than 0.5 nm. Optimally � can be measured interferometrically
with a precision of 2.5% that is on the same level as uncer-
tainty due to the short distance effects. It will reduce the error
in h0 to δh0 = 0.1 nm. One can argue that this increase in
precision is not a specific property of the Si-Cu system. All the
systems that contain an excessive number of high asperities
demonstrate similar improvement in the determination of h0.

In conclusion, we demonstrated that the weak adhesion
between rough surfaces is almost entirely defined by the non-
contact dispersion interaction across the average gap between
the bodies in contact. The contact contribution to �, which
cannot be calculated precisely, is estimated as a few percent or
less. This property is closely related to a specific roughness of
films deposited in nonequilibrium conditions. For such films
an excessive number of high asperities is observed, which
prevent close contact. It is also demonstrated that � is not
sensitive to such a parameter as the flow stress, which charac-
terize the plastic deformations and its value is not well known.
These properties of the function �(h∗

0 ) enable us to consider
it as a universal function, which is calculated entirely via the
Lifshitz theory.

This work is supported by the Russian Science Foundation,
Grant No. 20-19-00214.
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