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Abstract
Objective: Proton range uncertainties can compromise the effectiveness of proton therapy treatments.
Water equivalent path length (WEPL) assessment byflat panel detector proton radiography (FP-PR)
can providemeans of range uncertainty detection. SinceWEPL accuracy intrinsically relies on the FP-
PR calibration parameters, the purpose of this study is to establish an optimal calibration procedure
that ensures high accuracy ofWEPLmeasurements. To that end, several calibration settingswere
investigated. Approach: FP-PR calibration datasets were obtained simulating PR fields with different
proton energies, directed towardswater-equivalentmaterial slabs of increasing thickness. The
parameters investigatedwere the spacing between energy layers (ΔE) and the increment in thickness
of thewater-equivalentmaterial slabs (ΔX)used for calibration. 30 calibrations were simulated, as a
result of combiningΔE=9, 7, 5, 3, 1MeV andΔX=10, 8, 5, 3, 2, 1 mm. FP-PRs through aCIRS
electron density phantomwere simulated, andWEPL images corresponding to each calibrationwere
obtained. Ground truthWEPL values were provided by range probingmulti-layer ionization chamber
simulations on each insert of the phantom. RelativeWEPL errors between FP-PR simulations and
ground truthwere calculated for each insert.Mean relativeWEPL errors and standard deviations
across all inserts were computed forWEPL images obtainedwith each calibration.Main results: Large
mean and standard deviations were found inWEPL images obtainedwith largeΔE values (ΔE=9 or
7MeV), for anyΔX.WEPL images obtainedwithΔE�5MeV andΔX�5mmresulted in aWEPL
accuracywithmean values within±0.5%and standard deviations around 1%. Significance: An
optimal FP calibration in the framework of this studywas established, characterized by
3MeV�ΔE�5MeV and 2mm�ΔX�5mm.Within these boundaries, highly accurateWEPL
acquisitions using FP-PR are feasible and practical, holding the potential to assist future online range
verification quality control procedures.

Introduction

Range probing and proton radiography (PR)have been proposed as tools to detect andmitigate sources of range
uncertainty (Mumot et al 2010). Based on the principle that the same particle is used for treatment and for
imaging, PR enables a directmeasurement of relative stopping power of tissues, overcoming the uncertainties
arising from the conversion of CTnumbers into relative stopping power (Schneider and Pedroni 1994,
Schneider et al 2005, Knopf and Lomax 2013,Doolan et al 2015).

PR solutions, classified as listmode or integration detector configurations, werefirst developed in the
context of double scattering proton therapy systems (Poludniowski et al 2015). Listmode detector
configurations are composed of upstream and/or downstreamparticle trackers, as well as a residual energy
detector (Talamonti et al 2010, Johnson 2018). Integrating systems rely on a single detector such as diode arrays
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(Gottschalk et al 2011, Testa et al 2013, Doolan et al 2015), scintillators with charge-coupled devices (Zygmanski
et al 2000, Ryu et al 2008), orflat panels (FP) (Jee et al 2017a, Zhang et al 2018), which are typically calibrated to
thewater equivalent path length (WEPL) experimentally or viaMonte Carlo simulations (Poludniowski et al
2015,Würl et al 2020). Given the growing prevalence of pencil beam scanning over double scattering systems,
newPR integrating solutions compatible with pencil beam scanningwere proposed (Mumot et al 2010,
Telsemeyer et al 2012, Bentefour et al 2016).

Multiple studies have shown the suitability of PR for range verificationwith amulti-layer ionization
chamber (MLIC-PR), whichmeasures the integral depth-dose profiles of pencil beams (Mumot et al 2010,
Farace et al 2016b).MLIC-PR enabled the detection of patientmisalignments, range uncertainty assessment in
different types of tissues, as well as in vivo range verification in head and neck cancer patients (Farace et al 2016b,
Hammi et al 2018,Meijers et al 2021).

Other investigations with pencil beam scanning systems focus on PR imagingwithflat panel detectors (FP-
PR), which provide dosemeasurements in a two-dimensional detector array and offer larger readout areaswith
respect toMLIC. TheWEPL of proton beams can be obtained using energy-resolved dose functions (ERDFs),
first proposed by Bentefour et al as a solution tomeasureWEPLby FP-PRwith pencil beam scanning systems.
AnERDF represents the change in the FP signal as a function of different initial pencil beam energies composing
the PRfield (Bentefour et al 2016). TheWEPL can be retrieved by comparing the ERDFs obtained froma PR
acquisition against a set of calibrated ERDFswith slabs of knownwater equivalent thickness (Bentefour et al
2016,Huo et al 2019, Alaka et al 2020,Harms et al 2020).

WEPL obtaining bymeans of FP-PRusing ERDFswas investigated in silico and verified experimentally with
an electron density phantom, achieving relative stopping power accuracy below 1.5% in silico and 2.65%
experimentally (Huo et al 2019,Harms et al 2020). For a head and neck phantom, FP-PR simulationswere
performed, and FP-PR image acquisitions were evaluated qualitatively (Huo et al 2019,Harms et al 2020). Even
thoughWEPL accuracy relies intrinsically on the sparseness of the FP calibration dataset (Harms et al 2020),
research up to date has not yet provided an optimal FP calibration procedure, which is essential for accurate
WEPL assessment using FP-PR. In this work,WEPL accuracywas assessed in silico as a function of different
calibration parameters with the purpose tofind an optimal setting for FP calibration.

Materials andmethods

FP calibration settings
In this study, different calibration settingswere explored. Each simulated calibration contained a collection of
ERDFs obtained by repeatedly delivering a PRfield, composed ofmultiple energy layers, towards water-
equivalentmaterial slabs of increasing thickness. The calibration parameters subject to investigationwere the
spacing between energy layers in the PRfield (ΔE), and the slab thickness increments (ΔX).

Thirty calibration settings were generated, as a result of exploringfive different spacings between energy
layers (ΔE=9, 7, 5, 3 and 1MeV) combinedwith six different slab thickness increments (ΔX=10, 8, 5, 3,
2, 1 mm).

FP-PR simulationswere performed using openREGGUI (openreggui.org) (Farace et al 2016b,Deffet et al
2017), withMCsquare as theMonte Carlo dose engine (Souris et al 2016), which enabled dose calculations with
an isotropic dose grid of 1 mm in all directions. Threewater blocks along the beampath (z-axis)were simulated
(see figure 1), representing a range shifter (40 mmof thickness), slabs of varying thickness (up to 80 mm) and a
FP detector (5 mmof thickness, (Huo et al 2019)). All simulationswere performedwith PRfields covering an
area of 30×30 cm2 at the isocenter in the x–y plane, with a spot spacing of 5 mm, delivered at initial energies
ranging from70 to 225MeV, froma gantry angle of 270 degrees.

For each energy layer in the PR field, the FP signal was extracted by integrating the FP dose along the beam
direction (over the z-axis), thus obtaining a two-dimensional array in the x–y plane corresponding to the FP
signal. For the calibration datasets, the FP signal assigned to each energy layer and slab thickness, e.g. each data
point in every ERDF, was obtained after averaging the FP signal over all the pixels covered by the PRfield in
the x–y plane. Figure 2 shows two exemplary calibration datasets, the first one is composed of 41 ERDFs
(ΔX=2 mmandΔE=3MeV), and the second one contains 9 ERDFs (ΔX=10 mmandΔE=9MeV).

WEPLobtained via FP-PR
In order to evaluate theWEPL accuracy achievable with each calibration setting, FP-PR simulationswere
performed using an electron density phantom (model 062MbyComputerized Imaging Reference Systems, Inc.).
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The phantom consists of a large and a small ring, containing 16 inserts of 8 different tissue equivalent
materials representing the following tissue types: lung (exhale), adipose,muscle, dense bone, lung (inhale),
breast, liver and trabecular bone.

An ERDFwas obtained for each pixel in the FP-PR images of the phantom.WEPL valueswere obtained by
minimizing the squared difference between each ERDF in a phantomFP-PR image and the ERDFs in a chosen
calibration dataset. To allow comparison between ERDFs in the FP-PR images and ERDFs in the calibration, all
ERDFswere normalized over their area. A cubic spline interpolationwas applied to all ERDFswithΔE>1MeV,
in order to have data points every 1 MeV in all calibration datasets and imaging PRfields. A linear interpolation

Figure 1. Schematic representation of the simulated elements for FP-PR calibration. The edges of the PR field and the beamdirection
are depicted in orange. The isocenter is shown in yellow. Threewater blocks on the beampathwere simulated along the z-axis to
represent a range shifter, a water equivalent slab of varying thickness and the FP detector. The thickness of eachwater block is indicated
in the schematic.

Figure 2.Two calibration datasets, withΔX=2 mmandΔE=3 MeV (left) andwithΔX=10 mmandΔE=9 MeV (right).
ERDFs are represented in different colors, corresponding to thicknesses from0 to 80 mm. For each plot, the left-most ERDF
corresponds toX=0 mmand the right-most ERDF corresponds toX=80 mm.The legend in the left side plot is omitted for
readability.
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across ERDFs corresponding to slab thicknesses not present in the calibration dataset was performed during the
minimization process.

WEPLobtained viaMLIC-PR (ground truth)
Ground truthWEPL valueswere provided by a range probingMLIC simulation (MLIC-PR) performed for each
insert of the phantom. In the simulations, theMLICwas represented in theCT image by awater block of 30 cm
of thickness at the exit of the phantom in the beamdirection. The energy of each range probewas 210MeV,
and an isotropic dose grid of 1 mmwas used in all directions. Integral depth dose profiles were obtained by
integrating the dose in the dimensions perpendicular to the beamdirection. TheWEPL value corresponding to
each insert was obtained using the Bragg peak pull-backmethod, with respect to aMLIC simulation in air (Huo
et al 2019,Harms et al 2020).

Calibration assessment
WEPL accuracywas quantified in terms ofWEPL relative errors (%), to determine the suitability of each
calibration setting.WEPL relative errors between the ground truthWEPL values obtained fromMLIC-PR
simulations and the values obtained fromFP-PR simulations in each insert were calculated (Harms et al 2020).
In theWEPL images obtained bymeans of FP-PR, regions of interest of 10 mmwere selected to extract themean
WEPL value in each insert.

Themean and standard deviation of the relativeWEPL errors across all inserts was reported for images
obtainedwith all calibration settings. Furthermore, the variability of theWEPL accuracy was reported as a
function of differentΔXwith afixedΔE, as well as for varyingΔEwith afixedΔX.

Results

ThirtyWEPL images of the electron density phantomwere obtainedmaking use of each calibration setting.
Figure 3 shows two exampleWEPL images, obtainedwith the two calibration datasets depicted infigure 2.

Figure 4 shows themean and standard deviations extracted from eachWEPL image, corresponding to each
calibration setting.Mean and standard deviations are greatest for calibration settings with the largestΔX and
ΔE. Furthermore,figure 4 shows that large deviations are found for largeΔE (ΔE=9 or 7MeV), regardless of
the selectedΔX.

The lowestmean and standard deviations are found for settings with the smallestΔX andΔE. Generally,
settingswithΔX�5 mm, andΔE�5MeV showmean values within±0.5% and standard deviations
around 1%.

Figure 5 shows the variability of themean and standard deviations (error bars) as a function of varyingΔE or
ΔX separately. Standard deviations experience a great reduction as a function of decreasingΔE, with values
from−15% to 15% forΔE=9MeV towards valueswithin±1% forΔE=1MeV. Standard deviations had a
moderate reduction as a function of decreasingΔX, laying from−2% to 1% forΔX=10 mmand from−1.2%
to 0.5% forΔX=1 mm.

Figure 3.WEPL images inmmresulting fromFP-PR simulations using a calibrationwithΔX=2 mmandΔE=3 MeV (left) and
ΔX=10 mmandΔE=9 MeV (right).
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Discussion

The suitability ofmultiple FP-PR calibration settings was assessed bymeans of relativeWEPL errors, to
determine an optimal calibration setting in terms ofΔE andΔX that enables accurateWEPLmeasurements. As
shown infigure 4,WEPL images of an electron density phantomobtainedwithΔE�5MeV andΔX�5 mm
resulted in aWEPL accuracywithmean valueswithin±0.5% and standard deviations around 1%.

Figure 4 shows thatWEPL accuracy strongly depends on the sparseness of the calibration dataset (Harms
et al 2020).WEPL images obtainedwith the sparsest calibration settings (largestΔE andΔX) resulted in the
largest deviations, especially for lung and bone equivalent tissue inserts (see table s1 (available online at stacks.
iop.org/PMB/66/21NT02/mmedia) andfigure s1 in supplementarymaterial). For calibration settings with
ΔE�5MeV andΔX�5 mm, relativeWEPL errors were reduced across all inserts, although higher relative

Figure 4.Mean and standard deviation (error bars) of theWEPL relative error (%) for all calibration settings. DifferentΔE values are
shown across the x-axis, and differentmarker colors stand for differentΔX values.

Figure 5.Mean and standard deviation (error bars) of theWEPL relative error (%), as a function of differentΔE values using afixed
ΔX=2 mm (left side graph), and differentΔX values with a fixedΔE=3 MeV (right side graph).
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WEPL errors were found in inserts corresponding to lung equivalent tissues with respect to other inserts (see
figure s1) (Harms et al 2020). Lung equivalent inserts have the lowest densities,meaning that a sub-millimeter
absoluteWEPL error can result in a relativeWEPL error of up to−2.5%. The ground truthWEPL values used to
calculate relativeWEPL errors were aswell obtainedwith sub-millimeter accuracy,making use of the pull-back
method (Farace et al 2016a, 2016b,Meijers et al 2021).

ΔE andΔXwere investigated separately infigure 5, showing thatΔEhas a stronger impact thanΔX in the
WEPL accuracy. This is due to the fact that the characteristic steep dose increase in an ERDF gets smoothed out
by the cubic interpolation performedwithin data points in an ERDF (across the energy dimension). In that case,
the optimization process inwhich ERDFs in the calibration dataset are compared against ERDFs froma FP-PR
image of the phantom ismore inaccurate. On the contrary,ΔX does not show a strong impact onWEPL
accuracy. Linear interpolation between ERDFs corresponding to different slab thicknesses is successfully
performed since all ERDFs in a calibration dataset have a similar shape.

Mean and standard deviation values are comparable for calibration settings withΔE=3MeVor
ΔE=1MeV, aswell as for settings withΔX=2 mmorΔX=1 mm.However, a calibration dataset with
ΔE=1MeVorΔX=1 mmwould result in a highly time consuming FP calibration dataset acquisition.
For practicability, optimal calibration settings within the framework of this studywere restricted to
3MeV�ΔE�5MeV and 2mm�ΔX�5 mm.

Table 1 shows a comparison between theWEPL accuracy achieved in other studies against theWEPL
accuracy obtained in this study for an exemplary FP calibration setting chosenwithin the optimality boundaries.
Huo et al chose smallΔE andΔX, and obtained aWEPL accuracy similar to the one achieved in this studywith
ΔE=3MeV andΔX=5 mm.Harms et al opted for an experimental acquisition of a calibration dataset with
largeΔX, resulting in larger errors in bone and lung equivalentmaterials.

The implemented procedure to assign aWEPL value to an ERDF extracted from the FP-PR of the phantom
was previously described by other studies (Huo et al 2019,Harms et al 2020). As shown in table 1, the achievable
accuracy between this study and previous studies is comparable.

In this study, an optimal FP calibration procedure in terms ofΔE andΔXwas determined, which is essential
to bring PF-PR acquisitions towards a clinical application.However, acquisition time and imaging dose remain
as limitations of FP-PR (Harms et al 2020). Parameters like the spot spacing, the number of energy layers or the
energy range remain to be optimized to preserve highWEPL accuracywhile reducing the acquisition time and
the imaging dose. In this study, FP-PR fields had energies from70 to 225MeV,which resulted inmany pencil
beams stopping inside the phantom. Therefore, it is imperative to develop amethodology that excludes the
lowest energy layers that would get absorbed in a patient (Huo et al 2019,Harms et al 2020).

Pencil beams in the PRfields directed to the electron density phantomwent across homogeneous tissue
equivalentmaterials. However, rangemixingwill certainly impact FP-PR images acquired for patients, where
pencil beams intersect awide variety of tissues, resulting in ERDFswith a less steep dose increase and a slower
dose fall off (Huo et al 2019). Rangemixing can potentially hamper the optimization process inwhich ERDFs in
the calibration dataset andERDFs acquired from a patient are compared. Therefore, the performance of the
optimization process when ERDFs are subject to rangemixing should be investigated. Furthermore, a
methodology to include rangemixing in the calibration dataset or in the optimization process could be
developed, for instance bymeans of signal deconvolution (Hammi et al 2018) or artificial intelligence (van der
Heyden et al 2021).

In this work, highWEPL accuracy with optimal calibration parameters was achieved bymeans of FP-PR,
which suggests that FP-PR could serve as an online range verification tool. FP-PR could be employed for the
detection of setup errors, CT calibration curve errors or anatomical variations. Furthermore, a simultaneous

Table 1.Cross comparison between the calibration parameters and the
achievedWEPL accuracy for lung, soft, and bone tissue equivalentmaterials
in previous FP-PR studies and in this study (Huo et al 2019,Harms et al
2020).

Huo et al Harms et al SellerOria et al

Type of study Simulation Experiment Simulation

ΔE (MeV) <2 4.8 3

ΔX (mm) 1 5–10 5

LungWEPL acc-

uracy (%)
1.3% 2.65% −1.1%

SoftWEPL accur-

acy (%)
−0.2% −0.14% −0.4%

BoneWEPL acc-

uracy (%)
−0.5% 0.61% 0.0%
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detection ofmultiple sources of range uncertainty using FP-PR could be automated and integrated into adaptive
proton therapyworkflows (SellerOria et al 2020).

Conclusion

Anoptimal FP calibration procedure in the framework of this study has been established, characterized by
3MeV�ΔE�5MeV and 2mm�ΔX�5 mm.Within these boundaries, highly accurateWEPL
acquisitions bymeans of FP-PR are feasible and practical, which could assist future online range verification
quality control procedures.
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