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1  |  INTRODUC TION

Cyclin- dependent kinase (CDK)4/6 inhibitor p16INK4a (from now on 
referred to as p16) levels gradually increase with age in multiple tis-
sues and organisms (Herbig et al., 2006; Liu et al., 2009; Melk et al., 
2004; Yousefzadeh et al., 2020). p16High cells actively contribute to 
aging and age- associated dysfunctions by restricting the regenera-
tive potential of the tissue (Martin et al., 2014) and promoting chronic 
inflammation (Sanada et al., 2018). Genetic or pharmacological 

ablation of p16High cells is able to increase health-  and lifespan in 
mice (Baker et al., 2016; Xu et al., 2018). p16 expression is a com-
mon feature of cellular senescence (Liu et al., 2019), a state of sta-
ble and generally irreversible growth arrest originally described as 
a key process regulating cellular and organismal aging (Hayflick & 
Moorhead, 1961). Senescent cells are characterized by various 
structural changes, including misshaped nuclei, enhanced lysosomal 
content and phagocytic activity, altered mitochondria morphology, 
and changed plasma membrane composition (Hernandez- Segura 
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Abstract
Cells expressing high levels of the cyclin- dependent kinase (CDK)4/6 inhibitor p16 
(p16High) accumulate in aging tissues and promote multiple age- related pathologies, 
including neurodegeneration. Here, we show that the number of p16High cells is signif-
icantly	increased	in	the	central	nervous	system	(CNS)	of	2-	year-	old	mice.	Bulk	RNAseq	
indicated that genes expressed by p16High cells were associated with inflammation 
and	phagocytosis.	Single-	cell	RNAseq	of	brain	cells	indicated	p16High cells were pri-
marily microglia, and their accumulation was confirmed in brains of aged humans. 
Interestingly, we identified two distinct subpopulations of p16High microglia in the 
mouse brain, with one being age- associated and one present in young animals. Both 
p16High clusters significantly differed from previously described disease- associated 
microglia and expressed only a partial senescence signature. Taken together, our study 
provides evidence for the existence of two p16- expressing microglia populations, one 
accumulating with age and another already present in youth that could positively and 
negatively contribute to brain homeostasis, function, and disease.
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et	al.,	2018).	In	addition,	senescent	cells	acquire	a	pro-	inflammatory	
phenotype by releasing cytokines and chemokines (a phenotype 
collectively	defined	as	the	SASP—	senescence-	associated	secretory	
phenotype)	(Gorgoulis	et	al.,	2019).	Virtually,	all	cells	can	up-	regulate	
p16 levels, but this induction is not always reflected by a fully se-
nescent state. For example, p16 expression is significantly increased 
in aged macrophages (Hall et al., 2016), but p16 overexpression can 
also be observed in young macrophages responding to physiological 
stimuli	(Hall	et	al.,l.,	2017),	(Behmoaras	&	Gil,	2021).

Aging	leads	to	a	reduction	in	brain	volume	and	cognition	(Peters,	
2006) and is the main risk factor for dementia and neurodegenera-
tion	 (Wyss-	Coray,	2016).	Aging	 and	neurodegenerative	 conditions	
induce a common gene expression signature in microglia, the res-
ident	 immune	cells	of	 the	CNS	 (Galatro	et	al.,	2017).	Microglia	ex-
hibit a hypersensitive and pro- inflammatory phenotype, known as 
priming, in particular during aging and neurodegeneration (Norden 
&	Godbout,	 2013;	Perry	&	Holmes,	 2014;	Raj	 et	 al.,	 2014).	 These	
primed microglia exert an increased inflammatory response and 
thereby alter CNS function (Norden & Godbout, 2013). In addition 
to primed immune cells, the accumulation of pro- inflammatory se-
nescent cells in the CNS may also predispose elderly to neurodegen-
erative diseases or aggravate disease etiology (Kritsilis et al., 2018). 
In the CNS, p16 expression increases during natural aging and in 
brains	affected	by	pathologies	such	as	Parkinson's	disease	(PD),	mul-
tiple	sclerosis	(MS),	and	Alzheimer's	disease	(AD)	(Martin-	Ruiz	et	al.,	
2020; Nicaiseet al., 2019; Zhang et al., 2019). Removal of p16High 
cells ameliorates the progression of neurodegeneration in amyloid 
and	tau	AD	mouse	models	and	 in	mice	exposed	to	the	neurotoxin	
paraquat	(Bussian	et	al.,	2018;	Chinta	et	al.,	2018;	Zhang	et	al.,	2019).	
In a neurodegenerative context, different cell types become p16High 
and	influence	disease	progression.	A	recent	study	has	attempted	to	
identify senescent cell types naturally occurring in the murine aging 
brain using single- cell transcriptomic profiling, and identified an en-
richment of p16High	 cells	 in	microglia	 and	OPCs	 (Ogrodnik	et	 al.,l.,	
2021).	However,	a	limitation	of	single-	cell	RNA	sequencing	(scRNA-
seq)	 is	 its	 ability	 to	 detect	 low	 abundant	 transcripts,	which	 is	 the	
case of the p16 transcript. Here, we aimed to identify p16High cell 
populations in the aging brain by using a transgenic mouse model 
that allows for the isolation of cells expressing p16 at the protein 
level, and then perform validation of the findings in wild- type mice 
and humans.

2  |  RESULTS

2.1  |  RFPHigh cells expressing inflammatory and 
phagocytosis- related genes accumulate in the aging 
brain of p16- 3MR mice

The p16- 3MR mouse contains a monomeric red fluorescent protein 
(mRFP)	fused	to	Renilla	Luciferase	and	a	truncated	herpes	simplex	
virus	(HSV)-	1	thymidine	kinase	(tTK),	under	control	of	the	p16	pro-
moter (Demaria et al., 2014). In order to evaluate whether the levels 

of the 3MR transgene and the number of 3MRHigh cells increase 
in	 the	brain	with	 age,	we	measured	RFP	 signal	 and	percentage	of	
cells	expressing	high	levels	of	RFP	in	7-		to	12-	week	(defined	young)	
and 105-  to 116- week (defined old) mice by flow cytometry (Figure 
S1a).	The	mean	mRFP	intensity	was	significantly	higher	in	old	mice	
(Figure	1a),	and	the	percentage	of	cells	expressing	high	levels	of	RFP	
(RFPHigh) cells increased >sevenfold with aging, from ~0.2% in young 
to ~1.5% in old mouse brains (Figure 1b). Importantly, the purified 
RFPHigh population was enriched in cells expressing high levels of the 
p16 transcript (Figure S1b).

We	 then	 isolated	 RFPLow	 and	 RFPHigh cells from aged brains 
and generated gene expression profiles of both populations using 
bulk	 RNA	 sequencing	 (RNAseq).	 Principal	 component	 analysis	
(PCA)	 showed	 significant	 transcriptional	 differences	 between	 the	
RFPLow	 and	 RFPHigh populations as indicated by the first princi-
pal component (Figure 1c). Differential gene expression analysis 
revealed 1459 differentially expressed genes between the two 
populations	 (Figure	 1d).	 Among	 the	 most	 enriched	 genes	 in	 the	
RFPHigh samples (Table S1) were Cass4 and Apba2 (or Mint2), which 
are	 involved	 in	 amyloid	 synthesis	 and	 AD	 (Beck	 et	 al.,	 2014;	 Ho	
et al., 2008) and genes associated with macrophage activation, like 
Akr1b3, Angptl7, and Ticam2	(Qian	et	al.,	2016;	Ramana	et	al.,	2006;	
Seya et al., 2005).

To	 determine	 whether	 gene	 networks	 in	 RFPHigh samples as-
sociated with specific biological or cellular functions, a weighted 
gene	correlation	network	analysis	(WGCNA)	(Langfelder	&	Horvath,	
2008) was performed, resulting in branches, or modules, of highly 
correlating genes (Figure S1c; Table S2). One of these modules (the 
“blue” module), involved in phagocytosis and cytokine production, 
was	 significantly	 enriched	 in	 the	 RFPHigh samples, as reflected by 
the Module Eigengene, or first principal component, of the module 
(Figure	1e;	Figure	S1d-	h).	These	data	suggest	that	RFPHigh cells ac-
cumulate in the aging brain and are enriched in expression of genes 
associated with inflammation and phagocytosis pathways.

2.2  |  Single- cell transcriptomic profiling 
demonstrates accumulation of RFPHigh microglia with 
aging in p16- 3MR mice

To	further	characterize	the	phenotype	of	the	RFPHigh cell population 
in	the	aged	mouse	CNS,	we	compared	scRNAseq	profiles	of	purified	
RFPHigh cells to unsorted CNS cell samples (Figure S2a- d; Table S3). 
We	identified	14	clusters	in	the	dataset,	using	unsupervised,	graph-	
based clustering analysis where each cluster corresponds to a dis-
tinct cell type (Figure 2a). The cell types were identified based on the 
expression of well- known cell type marker genes: P2ry12, Cx3cr1, 
and Tgfbr1 for microglia; Cldn5 for endothelial cells; Gfap, Aqp4, and 
Atp1b2 for astrocytes; Grid2	 for	 Purkinje	 neurons;	Npy and Fabp7 
for	glial	restricted	progenitors	(GRP);	Cd3g for T/NK cells; H2- Aa for 
monocytes; F13a1	for	CNS-	associated	macrophages	(CAMs);	Pdgfrb 
for mural cells; Acta2 for neutrophils; Map1b for neurons; Dcn and 
Col1a1 for fibroblasts; Olig1, Mobp, and Plp1 for oligodendrocytes; 
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Ms4a1 for B cells; Ttr for unidentified population 1 (unknown 1); and 
Ak7 for unidentified population 2 (unknown 2) (Figure 2b; Table S4). 
Next,	for	the	total	viable	and	the	RFPHigh populations, the distribu-
tion of cell types within each sample was compared. Microglia, as-
trocytes, and endothelial cells were the most abundant cell types 
obtained with our isolation method (total viable population) from 
aged mouse brains, while other cell types such as neurons and 
oligodendrocytes were less abundant, and most likely underrepre-
sented compared to their normal physiological distribution in the 
CNS	(Valério-	Gomes	et	al.,	2018).	Strikingly,	the	RFPHigh sample was 
almost exclusively comprised of microglia (94.6%) and some glial re-
stricted progenitors (2.6%) (Figure 2c and d).

The	scRNAseq	data	confirmed	that	microglia	expressed	Cdkn2a, 
the genomic locus containing p16, more abundantly compared 
to other cell types in the CNS (Figure 2e). To investigate whether 
microglia showed additional markers of cellular senescence, the 
expression levels of a list of 162 senescence- associated genes in 
each cell type were evaluated (Table S5). These genes were variably 
expressed and not abundantly present in the microglia population 
(Figure	2f).	These	data	suggest	that	RFPHigh microglia accumulate in 

the aging brain of p16- 3MR mice and that their transcriptional pro-
file differs from a classical senescence- associated gene signature.

2.3  |  Microglia are enriched in p16 in the brains of 
wild- type mice and humans

To	 confirm	 the	 presence	 of	 RFPHigh microglia in aged brains, we 
used	 different	 methods.	 First,	 from	 the	 bulk	 RNAseq	 list,	 we	 in-
vestigated the expression level of cell type- specific genes in the 
RFPHigh fraction: Hexb, Cxcr1, P2ry12, and Tmem119 for microglia; 
Aqp4 and Gfap for astrocytes; Cldn5 and Vcan for endothelial cells; 
Rbfox3 for neurons; F13a1 for CNS- associated macrophages; Plp1 for 
oligodendrocytes; and Pdgfra for oligodendrocyte progenitor cells 
and fibroblasts (Figure 3a). The expression level of microglia genes 
was	consistently	higher	in	the	RFPHigh	samples,	while	in	the	RFPLow 
samples, endothelial cell, oligodendrocyte, and oligodendrocyte 
progenitor cell markers were more abundantly expressed. Second, 
we	deconvoluted	transcriptomes	of	 the	bulk	RFPHigh samples with 
CIBERSORT, using our single- cell data as the reference matrix (Table 

F I G U R E  1 p16-	RFP	expression	is	increased	in	the	brain	of	aged	p16-	3MR	mice	and	abundantly	express	inflammatory	and	microglia	genes.	
(a)	Mean	fluorescent	RFP	intensity	of	all	viable	cells	in	young	compared	to	old	brains.	****p<0,0001.	(b)	Percentage	of	viable	cells	positive	for	
RFP	in	young	mouse	brains	compared	to	old.	****p<0,0001.	(c)	PCA	plot	of	bulk	sequenced	RFPLow	and	RFPHigh cells from old mouse brains. 
(d)	Heatmap	of	all	differentially	expressed	gene	between	the	RFPLow	and	RFPHigh samples. E: Expression and gene- ontology analysis of a 
WGCNA	module	enriched	in	RFPHigh samples

(a) (b) (d)

(e)
(c)
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(f)

(b)

(d)

(e)
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S4).	Again,	a	pattern	of	enrichment	for	microglia	in	the	RFPHigh cell 
population was observed (Figure 3b).

To	validate	the	correlation	between	p16	and	RFP	positivity	in	a	
non- transgenic background, we measured p16 levels in wild- type 
animals.	 We	 isolated	 microglia,	 astrocytes,	 and	 non-	microglia/
non- astrocyte (defined as “the rest”) cells from the brain of young 
and	 old	 wild-	type	 C57BL/6	 mouse	 brains	 and	 evaluated	 the	 p16 
transcript levels of the isolated populations. Only microglia of old 
mice revealed a significant p16 upregulation, while no significant 
differences between young and old mice were detected neither in 
astrocytes, a cell population that was minimally represented in the 
RFPHigh cells isolated from aged p16- 3MR mice, nor in other mixed 
cell types mainly consisting of endothelial cells (Figure 3c).

Next, we evaluated the level of p16 expression in human mi-
croglia	and	cortical	CNS	tissue	(Galatro	et	al.,	2017).	Strikingly,	we	
measured a significant enrichment for CDKN2A, the genomic locus 
containing p16, in the microglia population compared to the total 
brain samples (Figure 3d). In addition, we determined the expression 
levels of CDKN2A	 in	 a	 single-	nucleus	RNA	sequencing	data	 set	of	
human	AD	cases	and	healthy	donors	 (Gerrits	et	al.,	2021).	Also	 in	
this dataset, CDKN2A was most abundantly expressed by microglia 
(Figure 3e). Interestingly, lymphocytes and oligodendrocytes, un-
derrepresented	in	our	mouse	scRNAseq,	also	expressed	CDKN2A in 
human	brains.	Altogether,	these	data	confirm	that	both	in	the	mouse	
and in the human aged brain, p16High cells are mostly present in the 
microglia population.

2.4  |  RFPHigh cells cluster in two distinct and 
previously unreported microglia populations

Recent reports based on single- cell transcriptomes identified 
context- dependent microglia subtypes (Masuda et al., 2020; 
Sierksma et al., 2020). Subclustering analysis of the entire microglia 
population	from	our	single-	cell	dataset	(RFPHigh and unpurified) re-
vealed	 5	 distinct	 subpopulations:	 3	 previously	 described—	a	 popu-
lation which surveils the surroundings and maintains homeostasis 
through clearance of cellular debris, called homeostatic (HOM); a 
more	 reactive	 population,	 which	 acquires	 pro-	inflammatory	 and	
antigen- presenting properties, called disease- associated micro-
glia	 (DAM);	 and	 activated	microglia	 with	 high	 interferon	 signaling	
(IFN)—	and	2	additional	clusters,	named	unknown	microglia	clusters	
1	 and	2	 (UM1	and	UM2),	which	 segregated	 from	 the	known	clus-
ters	and	were	almost	exclusively	derived	from	the	RFPHigh samples 
(Figure	4a;	Figure	S3a).	The	HOM	cluster	was	depleted	in	the	RFPHigh 
microglia,	 while	 DAM	 and	 IFN	 clusters	 were	 equally	 present	 in	
both	RFPHigh	and	RFPLow populations. Differential gene expression 

analysis	 revealed	 a	 clear	 distinction	 of	 the	 RFPHigh microglia from 
the total viable population (Figure 4b), even if the expression of se-
lected senescence- associated genes was not specifically enriched in 
the	UM1	and	UM2	clusters,	but	seems	to	be	slightly	increased	in	the	
DAM	cluster	(Figure	4c;	Figure	S3d).	Single-	cell	regulatory	network	
inference and clustering (SCENIC) analysis identified 43 gene net-
works	differentially	expressed	between	RFPHigh and total microglia. 
Interestingly, expression of genes regulated by Ets2, a transcription 
factor that positively regulates p16 expression (Kotake et al., 2015), 
was	enriched	in	RFPHigh microglia (Figure 4d; Figure S3b).

We	then	investigated	the	predicted	functions	of	genes	upregu-
lated	in	the	RFPHigh	microglia.	In	line	with	our	bulk	RNAseq	results,	
two	AD	risk	genes	were	upregulated	in	the	RFPHigh microglia. Gsap 
selectively increases amyloid- beta production (He et al., 2010), 
a	 protein	 that	 is	 aggregated	 in	 AD	 and	 inositol	 polyphosphate-	
5- phosphatase D (Inpp5d)	 is	 suggested	 to	 contribute	 to	 AD	 in	 a	
non-	amyloid-	beta-	dependent	 fashion	 (Efthymiou	 &	 Goate,	 2017).	
Additionally,	we	 found	genes	 involved	 in	macrophage	motility	and	
myelination. Plxnb2 has been shown to negatively regulate cell motil-
ity (Roney et al., 2011), while Kif13b regulates myelination in the CNS 
(Noseda et al., 2016) (Table S4). In addition, we examined the genes 
upregulated	 in	each	UM	cluster.	Gene	ontology	analysis	 for	genes	
enriched	 in	 the	UM1	 cluster	 showed	 an	 enrichment	 for	 genes	 in-
volved	in	the	ERK/MAPK	pathways	(Figure	4e)	suggested	to	underlie	
CNS inflammation (Kaminska et al., 2009). Genes highly expressed 
in	UM2	microglia	were	associated	with	cell	cycle	response	and	Rho	
GTPase	signaling	(Figure	4f),	a	pathway	necessary	for	process	mo-
tility, which is important for scanning of the parenchyma (Neubrand 
et al., 2014).

Finally,	we	compared	the	gene	expression	profile	of	the	RFPHigh 
microglia to previously reported disease-  and aging- associated mi-
croglia	profiles	(Table	S5).	While	both	the	DAM	and	the	IFN	clusters	
significantly overlap with previously reported profiles, none of the 
investigated	 gene	 sets	was	 significantly	 enriched	 in	 our	UM1	 and	
UM2	 clusters	 (Figure	 S3c).	 Interestingly,	 when	 we	 looked	 at	 the	
expression	 levels	 of	UM1	and	UM2	cluster	marker	 genes	 in	 aging	
wild- type mice from the dataset of Zhang et al. 2020, we observed 
that	UM1	 cluster	markers	were	 expressed	 in	microglia	 at	 all	 ages	
albeit	 lower	 at	 19	 months,	 while	 the	 expression	 of	 UM2	 cluster	
marker genes progressively increased with age in these wild- type 
mice	(Figure	4g).	In	summary,	these	data	show	that	RFPHigh microglia 
cluster in two distinct subpopulations with previously unreported 
gene	signatures	which	we	named	UM1	and	UM2.	UM1	negatively	
correlates with age and is characterized by expression of inflamma-
tory	genes.	In	contrast,	UM2	is	age-	associated	and	characterized	by	
differential expression of genes involved in cell cycle regulation and 
cell motility.

F I G U R E  2 RFPHigh	cells	are	highly	enriched	for	microglia.	(a)	UMAP	depicting	mouse	CNS	with	cluster	annotations	based	on	cell	types.	(b)	
Heatmap	showing	the	expression	of	cell	type	markers	in	each	cluster.	(c)	Barplot	of	cluster	distribution	of	total	viable	cells	and	RFPHigh cells. 
(d)	Barplot	showing	the	percentage	of	RFPHigh cells for each cell type. (e) Cdkn2a	plotted	in	UMAP	of	all	sequenced	single	cells.	(f)	Dotplot	
showing the expression of senescence markers in each cluster
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3  |  DISCUSSION

Microglia, tissue- resident macrophages of the CNS, is a heteroge-
neous cell population that change over the course of an organism 
lifespan. Microglia heterogeneity decreases with age, but several 
states—	for	 example	 chemokine-	enriched	 inflammatory	 microglia—	
remain unchanged or increase in aged brains (Hammond et al., 2019). 
Moreover, microglia are reported to age in a regional- dependent 
manner (Grabert et al., 2016). However, there is still little under-
standing of the phenotypical characteristics of microglia subpopu-
lations in the aged brain. The current study reveals two previously 
unreported p16- expressing microglia subpopulations, one with a 
quite	 stable	expression	across	different	 life	 stages	 and	one	which	
accumulation significantly increases with age.

Elevated p16 expression is a marker of cellular senescence and 
has been used to identify the accumulation of senescent astrocytes 
(Bhat et al., 2012; Chinta et al., 2018; Yabluchanskiy et al., 2020), 
oligodendrocyte progenitor cells (Nicaise et al., 2019; Zhang et al., 
2019), and neurons in the human aging brain (Kang et al., 2015) and 
in mouse models of neurodegeneration. Moreover, recent data indi-
cated that microglia accumulate p16High cells in aged mouse brains 
(Ogrodnik et al., 2021).

In this study, using both transgenic and wild- type mice, and var-
ious publicly available mouse and human transcriptomic datasets, 
we identified two distinct subpopulations of p16High microglia, one 
constantly present and one age- associated, that did not express a 
classical	senescence-	associated	gen	signature.	Absence	of	a	senes-
cence profiling is in line with a previous study showing that while 
murine microglia in vitro show markers of replicative senescence, the 
microglia of aged mice express higher levels of p16 but not other 
typical senescence- associated changes (Stojiljkovic et al., 2019).

Distinct transcriptional changes in each cell population were 
found	 during	 single-	cell	 sequencing	 of	 the	 aged	 murine	 brain	
(Ximerakis et al., 2019), indicating that each cell type ages differ-
ently. In our single- cell study, only astrocytes, endothelial cells, and 
microglia	were	represented	in	large	quantities,	while	other	cell	types	
were underrepresented due to our cold protease isolation proce-
dure. Since we also identified higher expression of CDKN2A in lym-
phocytes and oligodendrocytes by analyzing a dataset derived from 
RNAseq	of	single	nuclei	 isolated	from	human	brains	 (Gerrits	et	al.,	
2021), it remains to be seen whether other less represented popula-
tions also express p16 with age.

Our data suggest a clear separation of the p16High microglia 
from other microglia populations and the existence of two distinct 
subsets—	one	expressed	across	the	entire	lifespan	and	the	other	age-	
associated.	A	subset	of	p16High microglia may be part of a homeo-
static mechanism aimed at reducing damage propagation, via cell 
cycle arrest and improved phagocytic properties, and at promoting 

immune surveillance, via activation of specific secretory and pro- 
inflammatory phenotypes. On the other side, the accumulation of 
a subset of p16High cells with age may represent the byproduct of 
excessive damage and reduced clearance capacity, which could con-
tribute to detriment accumulation and loss of tissue homeostasis. 
Future studies need to address this issue by evaluating the effects of 
specifically eliminating specific p16High microglia subsets, and to fur-
ther characterize the presence and function of these subsets in the 
human brain. It will also be important to evaluate whether current 
senolytic approaches are eliminating these p16High microglia sub-
sets, and the balance between benefits and toxicities of removing 
such populations.

4  |  MATERIAL S AND METHODS

4.1  |  Mice

p16–	3MR	mice	with	a	C57BL/6	background	or	wild-	type	C57BL/6	
were used for all experiments (Demaria et al., 2014). Young mice 
were	between	7	and	12	weeks	of	age,	and	old	mice	were	between	
105 and 116 weeks of age. The young mice were a mix of males and 
females (n=5),	male	old	mice	were	used	for	bulk	sequencing	(n=5), 
and	female	mice	were	used	for	single-	cell	sequencing	(n=4). Young, 
18 weeks of age, (n=3) and old, 101 and 104 weeks of age, (n=3) 
wild- type mice were used for the isolation of astrocytes, microglia, 
and rest cells. Mice were raised on a 12- hr light/dark cycle with food 
and water available ad libitum	and	were	individually	housed.	All	ex-
periments	were	performed	 in	 the	Central	Animal	Facility	 (CDP)	of	
the	UMCG,	with	protocol	(15339–	02–	001)	approved	by	the	Animal	
Care	and	Use	Committee	(DEC)	of	the	University	of	Groningen.

4.2  |  Cell isolation from mouse brain tissue

Cells were isolated from adult mouse brain using an enzymatic proto-
col at 4℃. The brains were isolated and dissociated by three rounds of 
GentleMACS	(m_brain_01,	m_brain_02,	and	m_brain_03)	in	enzyme	
mix	of	15	mg/ml	Protease	 (Sigma	P5380),	1	mM	L-	cysteine	hydro-
chloride	(Sigma	C7477),	and	0.5	µg/µl DNase (Roche 10104159001) 
with	10	min	 incubation	 in	the	mix	on	 ice	 in	between	GentleMACS	
programs. The homogenized brain samples were passed through 
a 100 μM cell strainer to obtain a single- cell suspension. The cells 
were	 centrifuged	 at	 300 rcf	 for	 10	min	 at	 4℃, and the pellet was 
resuspended	in	24%	Percoll	gradient	buffer.	3	mL	dPBS	was	pipetted	
onto the gradient buffer, and myelin was removed by centrifuging 
at 950 rcf for 20 min at 4℃. The cell pellets were incubated with 
DAPI	and	Draq5.	Viable	cells	were	FACS	sorted	as	DAPInegDraq5pos 

F I G U R E  3 Increased	expression	of	p16	in	mouse	and	human	microglia.	(a)	Gene	expression	of	cell	marker	genes	in	RFPLow compared 
to	RFPHigh mouse samples. (b) Barplot showing the distribution of cells types in the mouse CNS bulk dataset after deconvolution. (c) p16 
expression	measured	by	qPCR	in	cells	isolated	from	young	and	old	mouse	brains.	****p<0,0001. (d) CCKN2A expression in human microglia 
and	total	cortical	tissue	(from	Galatro	et	al.,	2017).	****p<0,0001E:	UMAP	depicting	CDKN2A expression in 450,000 CNS cell nuclei (Gerrits 
et al. 2021)
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events.	RFPHigh	and	RFPLow bulk samples were sorted from individual 
mice,	but	for	the	single-	cell	sequencing,	RFPHigh (21,500) and total 
viable cells (45,000) from four mice were combined each into one 
lane of a 10X Genomics Chromium chip.

For the isolation of astrocytes, microglia, and rest cells, cell 
pellets	 were	 incubated	 with	 the	 antibodies	 CD11b-	BV421	 (clone	
M1/70,	Biolegend,	San	Diego,	CA,	USA),	CD45-	FITC	(clone	30-	F11,	
Biolegend,	 San	 Diego,	 CA,	 USA),	 CD49d-	PE	 (clone	 R1-	2,	 Miltenyi	
Biotec),	Acsa2-	FITC	(clone	REA969,	Miltenyi	Biotec),	PI,	and	Draq5.	
Microglia	 were	 FACS	 sorted	 as	 PIneg	 Draq5pos CD11bhigh CD45int 
CD49dneg	 events.	 Astrocytes	were	 FACS	 sorted	 as	 PIneg	 Draq5pos 
CD11bneg CD45neg	Acsa2pos	events	and	rest	cells	as	PIneg	Draq5pos 
CD11bneg CD45neg	Acsa2neg events. Bulk samples were sorted from 
individual mice.

4.3  |  FACS analysis

Flowjo	V.10	was	used	to	analyze	the	mean,	median	RFP	expression,	
number	of	RFP	positive	cells,	and	viability	of	cells.	Unpaired	t	tests	
were used to compare the mean, median, and number of positive 
cells.	Paired	t	test	was	used	to	compare	viability.

4.4  |  Real- Time PCR

Total	 RNA	 was	 prepared	 using	 the	 AllPrep	 DNA/RNA	 Micro	 Kit	
(Qiagen,	 80284).	 RNA	was	 reverse	 transcribed	 into	 cDNA	using	 a	
kit	 (Applied	 Biosystems).	 Quantitative	 RT-	PCR	 (qRT-	PCR)	 reac-
tions were performed as described (Demaria et al., 2010) using the 
Universal	Probe	Library	system	(Roche).	Primer	used:

mp16	 #91	 -	FAATCTCCGCGAGGAAAGC	 -	RGTCTGCAGCG	
GACTCCAT.

mHprt1	 #62	 -	FATCACATTGTGGCCCTCTG	 -	RGTCATGG	
GAATGGATCTATCACT.

mHmbs	 #91	 -	FAGAAAAGTGCCGTGGGAAC	 -	RTGTTGA	
GGTTTCCCCGAAT.

4.5  |  Bulk RNAseq library 
construction and sequencing

RNA	was	isolated	from	cell	pellets	with	the	AllPrep	DNA/RNA	Micro	
Kit	(Qiagen,	80284).	RNA	concentrations	were	measured	on	a	Qubit	
using	a	HS	RNA	kit.	2,5	ng	of	the	samples	was	used	for	library	prepa-
ration	with	 the	 Lexogen	QuantSeq	3’	mRNA-	Seq	 Library	Prep	Kit	

(FWD)	from	Illumina.	All	 libraries	were	pooled	equimolarly	and	se-
quenced	on	a	NextSeq	500	at	the	sequencing	facility	in	the	UMCG.

4.6  |  scRNAseq library 
construction and sequencing

The	single-	cell	cDNA	libraries	were	constructed	using	the	Chromium	
Single	 Cell	 3’	 Reagents	 Kit	 v3	 and	 corresponding	 user	 guide	 (10x	
Genomics).	 All	 samples	 were	 pooled	 in	 equimolar	 ratios	 and	 se-
quenced	on	a	NextSeq	500	at	the	sequencing	facility	in	the	UMCG.

4.7  |  Gene sets from literature

To compare our microglia clusters with reported microglia phe-
notypes in literature, several gene sets were downloaded. From 
(Sierksma	et	al.,	2020),	EV7	was	downloaded	and	genes	with	a	p_val_
adj <0.05 and logFC >0.15	were	selected	(304	genes)	and	from	EV6	
the	CPM	gene	set	(521	genes).	From	(Hammond	et	al.,	2019),	table	
S1	was	downloaded	and	marker	genes	from	clusters	OA2	and	OA3	
were	selected	(136	and	37	genes,	respectively).	From	(Keren-	Shaul	
et	 al.,	 2017),	 table	 S2	was	 downloaded	 and	 upregulated	 genes	 of	
“Microglia3”	with	a	p_val_adj	<0.05 were selected (469 genes). From 
(Butovsky	&	Weiner,	2018),	upregulated	genes	listed	in	Figure	2	were	
used (29 genes). From (Gerrits et al., 2020), genes from table S4 with 
a	p_val_adj	<0.05 and logFC >0.15 were selected (188 genes). From 
Galatro	 et	 al.	 (2017),	 Voom	Normalized	 counts	 were	 downloaded	
from GEO. From Gerrits et al. 2021, the exact same analyzed data 
objects as reported in the paper were used as these were generated 
by ourselves.

4.8  |  Bulk RNAseq data analysis

Data	preprocessing	was	performed	with	the	Lexogen	Quantseq	2.3.1	
FWD	 UMI	 pipeline	 on	 the	 BlueBee	 Genomics	 Platform	 (1.10.18).	
Count	files	were	 loaded	 into	R,	and	DAFS	filtering	was	performed	
to	remove	lowly	expressed	genes	(George	&	Chang,	2014).	A	nega-
tive binomial generalized log- linear model was used to model gene 
expression levels, as implemented in edgeR, adjusted for mouse 
since	 the	 RFPLow	 and	 RFPHigh cells were obtained from the same 
mice and differentially expressed genes were determined using a 
likelihood ratio test (Robinson et al., 2010). Thresholds were set at 
abs(logFC) >1 and p <	0.05.	Principal	component	analysis	was	per-
formed	on	 logCPM	transformed	counts.	Visualizations	were	made	

F I G U R E  4 p16High	microglia	express	genes	associated	with	inflammation,	cell	cycle	response,	and	cell	motility.	(a)	UMAP	plots	where	
colors	indicate	the	different	clusters	within	all	the	sequenced	microglia	cells.	DAM=damage-	associated	microglia.	(b)	Volcano	plot	depicting	
differential	expressed	genes	between	the	RFPHigh	microglia	and	total	viable	microglia.	(c)	Violin	plot	showing	the	expression	of	senescence	
genes	in	each	microglia	cluster.	(d)	Heatmap	showing	the	differentially	expressed	regulons	in	the	SCENIC	analysis	between	all	RFPHigh and 
total	viable	microglia.	(e)	GOs	significantly	enriched	in	the	p16-	UM1	cluster.	(f)	GOs	significantly	enriched	in	the	p16-	UM2	cluster.	(g)	Violin	
plot	depicting	the	expression	of	UM1	and	UM2	cluster	markers	with	age	in	wild-	type	mice	of	the	dataset	from	Zhang	et	al.	(Zhang	et	al.,	
2020)
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with	the	CRAN	package	“ggplot2.”	Heatmaps	were	made	with	 the	
CRAN	package	“gplots,”	and	rows	and	columns	were	clustered	using	
hierarchical	clustering	with	the	ward.D2	method	on	Pearson's	cor-
relations.	 For	WGCNA	analysis,	VST-	transformed	counts	obtained	
from	DESeq2	were	used	as	input	(Langfelder	&	Horvath,	2008;	Love	
et	 al.,	 2014).	 Signed	WGCNA	was	 performed	 using	 biweight	mid-	
correlations, and the max number of excluded outliers was restricted 
to 10%. Since we were dealing with binary data (i.e., two experimen-
tal groups), the robust treatment for the y variable of the biweight 
mid- correlation was turned off (Langfelder & Horvath, 2012). Gene 
ontology analysis was performed on significantly differentially ex-
pressed genes (p < 0.05 and logFC >0.15)	 using	 “clusterProfiler”	
with	a	p-		and	q-	value	cutoff	of	0.05.

4.9  |  scRNAseq data analysis

Raw reads were processed using Cell Ranger 3.0.0 with default set-
tings and aligned to the mouse mm10 genome. Barcode filtering 
was	performed	with	DropletUtils	with	a	 threshold	on	>250	UMIs.	
Counts from cellular barcodes were then extracted from the raw 
output count matrix from Cell ranger. Cells with a mitochondrial con-
tent >10% were removed from the dataset. Counts from the differ-
ent sample groups were merged into one using the “Merge” function 
from Seurat (v3). Then, the data were SCTransformed with regres-
sion	 on	 mitochondrial	 and	 ribosomal	 content,	 and	 subsequently,	
PCA,	UMAP,	 finding	neighbors,	 and	clustering	were	performed	as	
implemented by Seurat (Hafemeister & Satija, 2019). For differen-
tial gene expression analysis, raw counts were normalized using 
the “NormalizeData” function; then, DE genes were identified with 
MAST.	Geneset	scores	were	calculated	using	the	“AddModuleScore”	
function.	Average	gene	expression	per	cluster	was	calculated	using	
the	“AverageExpression”	function.	Median	of	expressed	genes	that	
were mitochondrial per cell: 2.2%; ribosomal: 5.6%; and median 
number	of	genes	detected	per	cell:	755.

Regulatory gene network (regulon) analysis was performed using 
SCENIC;	normalized	counts	from	Seurat	were	used	as	 input	 (Aibar	
et	 al.,	 2017).	Only	 genes	with	more	 than	3	 counts	 and	present	 in	
at least 0.5% of all cells were included. GENIE3 and SCENIC were 
used	 with	 default	 settings	 (Huynh-	Thu	 et	 al.,	 2010;	 Aibar	 et	 al.,	
2017).	Enrichment	of	gene	sets	and	regulons	in	our	scRNAseq	data	
was	quantified	using	AUCell.	AUC	values	are	plotted	as	an	average	
per	group.	Regulons	with	a	median	AUC	<0.01 were excluded in the 
downstream analysis.

From Zhang et al. (2020), the raw count matrices of all mice were 
downloaded and raw reads were processed using Cell Ranger 3.0.0 
with	default	settings	and	the	pre-	mRNA	package.	From	the	bam	file,	
exonic reads and intronic reads mapping in the same direction as the 
mRNA	were	counted	per	barcode	with	Abacus	in	order	to	distinguish	
barcodes	 containing	 nuclear	 RNA	 from	 ambient	 and	 cytoplasmic	
RNA	(Xi	et	al.,	2020).	The	counts	corresponding	to	these	barcodes	
were extracted from the raw count matrix generated by Cell Ranger 
and loaded in R with Seurat (3.0.3). Nuclei with a mitochondrial 

content >5% were removed from the dataset. Count matrices of all 
mice were merged. The data were normalized for library size, by a 
scale factor of 10,000 and log- transformed. Scrublet was used to 
identify	and	remove	doublets	 (Wolock	et	al.,	2019)	 (Wolock	et	al.,	
2019).	Highly	variable	 features	 (HVGs)	were	determined	using	 the	
VST	method.	 The	 data	were	 scaled	 and	 heterogeneity	 associated	
with	number	of	UMIs	and	mitochondrial	content	was	regressed	out	
and the data were clustered using the graph- based clustering ap-
proach implemented in Seurat. The microglia cluster was identified 
based on expression of P2ry12, Csf1r, and Cx3cr1.	 Then,	 only	WT	
mice were used for further analysis. Geneset scores were calculated 
using	the	“AddModuleScore”	function	from	Seurat.
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