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Introduction

Background and motivation

Triangulations are among the most important and well-studied objects in com-
putational geometry. One of their applications is meshing, in which a continuous
shape is approximated by subdividing it into cells with a discrete representation.
This allows the use of computer algorithms to analyze the geometry of the shape
or perform simulations.

A particular kind of triangulation called the Delaunay triangulation is char-
acterized by the property that the circumscribed disk of every triangle does not
contain any vertices in its interior. An example is shown in Figure 1. Due to their
favorable properties for meshing, Delaunay triangulations are used for example in
height interpolation in the modelling of terrain [27, Chapter 9].

Figure 1: Left: Delaunay triangulation of a point set in the Euclidean plane, together
with three circumscribed circles. Right: Triangulation of the same point set that is not
a Delaunay triangulation.

Delaunay triangulations were initially studied for point sets in the Euclidean
plane and higher-dimensional Euclidean spaces, but a similar notion exists for
Riemannian manifolds [53]. More specifically, in the last decade algorithms for
computing Delaunay triangulations have been extended to point sets in hyperbolic
spaces [22, 13, 44].

ix



x INTRODUCTION

Hyperbolic geometry is an example of non-Euclidean geometry. It was in-
troduced in the first half of the nineteenth century as a negative answer to the
long-standing open problem whether Euclid’s parallel postulate was a consequence
of his other four postulates [56]. One of the models that is used to represent the
hyperbolic plane is the Poincaré disk model (see Figure 2). In this model, the
hyperbolic plane is represented by a disk of radius 1 and hyperbolic lines are given
by diameters of the disk or circle segments that intersect the boundary circle or-
thogonally. The properties of the hyperbolic plane, and in particular its constant
Gaussian curvature K = −1, allow its application in describing shapes or struc-
tures that, intuitively speaking, cannot be “flattened” in the Euclidean plane.

L1

L2

L3

Figure 2: Hyperbolic lines in the Poincaré disk model: lines L1 and L3 are disjoint,
lines L2 and L3 intersect within the Poincaré disk and lines L1 and L2 intersect at a
point of the boundary circle, i.e., they are parallel.

In this thesis, we consider Delaunay triangulations of hyperbolic surfaces.
Roughly speaking, a hyperbolic surface is a surface that locally “looks like” the
hyperbolic plane. Every hyperbolic surface can be represented as a hyperbolic
polygon together with a set of side-pairing transformations, i.e. isometries of the
hyperbolic plane that pair sides of the polygon. For example, the hyperbolic oc-
tagon in Figure 3 together with the set of side-pairing transformations that pair
opposite sides corresponds to a hyperbolic surface of genus 2 called the Bolza sur-
face. We will discuss this and other representations of hyperbolic surfaces in more
detail in Chapter 1.

The representation of hyperbolic surfaces mentioned above allows us to in-
terpret triangulations of hyperbolic surfaces as periodic triangulations of infinite
periodic point sets in the hyperbolic plane. In our case, the infinite periodic point
set is the image of a set of points in the hyperbolic plane under the action of the
group generated by the side-pairing transformations (see Figure 4). Under certain
conditions on the hyperbolic polygon, this group is a so-called Fuchsian group
and the infinite periodic point set is discrete. See Chapter 1 for more details.
Furthermore, the triangulation of a point set on a hyperbolic surface corresponds
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Figure 3: A representation of the Bolza surface, a hyperbolic surface of genus 2.

to a periodic triangulation of the corresponding infinite periodic point set in the
hyperbolic plane.

Figure 4: Left: point set on (a representation of) the Bolza surface. Middle: the infinite
periodic point set that is the image of the point set shown in the left figure under the
action of the group generated by the side-pairing transformations. Right: a Delaunay
triangulation of the infinite periodic point set shown in the middle figure.

Even though our point of view is primarily mathematical, let us mention that
periodic point sets and hyperbolic surfaces find many applications in different fields
of science, like materials science [58], cosmology [51, 6], neuromathematics [26, 36]
and quantum chaos theory [8, 68].

Previous work

In previous work, Delaunay triangulations of hyperbolic surfaces were mostly stud-
ied from an algorithmic point of view. For instance, Bowyer’s incremental algo-
rithm [19] for computing Delaunay triangulations of point sets in the Euclidean
plane was generalized to hyperbolic surfaces and implemented for the Bolza sur-
face [15, 16, 45]. Lawson’s flip algorithm [52] has also been shown to generalize
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on hyperbolic surfaces [30]. Here, we restrict our discussion to the former, since
experience gained in the Cgal project has shown that it leads to cleaner code
that is easier to maintain (see also Chapter 3).

Let us illustrate the idea of Bowyer’s algorithm by considering a set of points
in the Euclidean plane (see Figure 5). Bowyer’s algorithm inserts the points
one by one and after each insertion the triangulation is updated. To update the
triangulation, we first delete the triangles that contain the inserted point in their
circumscribed disk. The triangulation is then repaired by forming new triangles
with the inserted point as a vertex.

p

Figure 5: Insertion of a point in a Delaunay triangulation with Bowyer’s incremental
algorithm.

A necessary condition for Bowyer’s algorithm to work is that the triangulation
is a simplicial complex. In our context, that means that it should not contain
any loops or double edges. In a triangulation in the Euclidean plane where edges
are given by straight lines this condition is automatically satisfied, but this is not
necessarily the case for hyperbolic surfaces, as Figure 6 illustrates.

Figure 6: Surface of genus 2 with two triangles containing two double edges (top left)
and a triangle containing a loop and a double edge (bottom right).

Observe that the loop in Figure 6 is a non-contractible closed curve on the
surface. The length of the shortest non-contractible closed curve on a hyperbolic
surface (which is a closed geodesic) is called the systole of that surface. If the length
of every edge in a triangulation is shorter than the systole, then the triangulation
does not contain any loops. Adding a factor 1

2 , i.e., requiring that the length of
every edge is shorter than half the systole, prevents double edges as well. This
leads to the so-called validity condition. We note that, given a set of points, the
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validity condition is usually stated as a condition on the diameter of the largest
empty disk instead of the length of edges. We refer to Chapter 3 for more details.

The validity condition is satisfied when the input point set is sufficiently large
and well-distributed. However, to make sure that the validity condition is satisfied
during all insertions as well, the algorithm is initialized by computing the Delaunay
triangulation of an appropriate (but small) set of points that satisfies the validity
condition by construction. These points are called dummy points. After sufficiently
many and well-distributed input points have been inserted, the validity condition
is satisfied without the dummy points, which can then be removed.

Statement of the problem

In this thesis we will study Delaunay triangulations of hyperbolic surfaces from
two points of view. First, we discuss how to extend the results for the Bolza
surface [45] to a larger class of hyperbolic surfaces so that we can compute Delau-
nay triangulations of point sets on these surfaces using Bowyer’s algorithm. More
specifically, we will look at the so-called generalized Bolza surfaces. As mentioned
before, the Bolza surface can be represented by a regular hyperbolic octagon where
opposite sides are paired. Similarly, the generalized Bolza surface of genus g ≥ 2
can be represented by a regular hyperbolic 4g-gon where opposite sides are paired
(see Figure 7).

Figure 7: A representation of the Bolza surface (left) and the generalized Bolza surface
of genus 3 (right).

Even though there is a generalization of Bowyer’s algorithm to arbitrary hy-
perbolic surfaces in the literature [15], the validity condition in this generalization
depends on the value of the systole, which is not known in general. There exists
an algorithm to compute the systole of a given hyperbolic surface [2], but since the
complexity of this algorithm has not been analyzed, it is not clear whether it can
be used in practice. Therefore, one part of our extension of Bowyer’s algorithm to
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the generalized Bolza surfaces will be to find a method for computing the systole
of these surfaces.

Our second point of view is more theoretical and concerns the minimal number
of vertices of Delaunay triangulations of hyperbolic surfaces in terms of their
genus. To the extent of our knowledge, this problem has not been studied before
in this context, even though the more general combinatorial problem of finding
the minimal number of vertices of a simplicial triangulation of a topological surface
has been studied extensively [48].

Contribution

After providing an introduction to hyperbolic geometry and triangulations in
Chapter 1, we present the contribution of this thesis in three chapters.

In Chapter 2 we discuss a number of results on the systole of hyperbolic sur-
faces. First, we show that the value of the systole of the generalized Bolza surface
of genus g is given by 2 arccosh(1 + 2 cos( π

2g )). To illustrate the idea of the proof,
consider the two oriented line segments in Figure 8 indicated by the arrows. Be-

Figure 8: The sequence of two oriented hyperbolic line segments indicated by the black
arrows is a representation of a closed geodesic on the Bolza surface. The starting point of
each arrow is identified with the endpoint of the other arrow through the transformations
that pair opposite sides.

cause opposite sides of the octagon are paired, the head of each of the arrows is
identified with the tail of the other arrow. Therefore, the union of these two ori-
ented line segments represents a closed curve on the Bolza surface. More generally,
we show that every closed geodesic on the generalized Bolza surface of genus g
can be represented in this way as a sequence of oriented hyperbolic line segments
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between the sides of the corresponding hyperbolic 4g-gon. Then, the result follows
by obtaining bounds on the lengths of these line segments.

Second, we discuss the question whether our method for computing the systole
of generalized Bolza surfaces can also be applied to different hyperbolic surfaces.
To do this, we slightly perturb the vertices of the regular hyperbolic 4g-gon rep-
resenting the generalized Bolza surface of genus g (see Figure 9) and look at the
corresponding hyperbolic surface obtained by pairing opposite sides. The surfaces
that we construct in this way are so-called hyperelliptic surfaces in a neighbor-
hood of the generalized Bolza surfaces in the corresponding Teichmüller space.
For sufficiently small perturbations, the geometry of the polygons is quite similar,
so it seems reasonable that the geometry of the corresponding hyperbolic surfaces
is similar as well. Indeed, we show that for sufficiently small perturbations our
method for computing the systole of the generalized Bolza surfaces also works for
the hyperbolic surfaces resulting from this construction.

Figure 9: The Bolza surface (black) with a hyperbolic surface (red) obtained from
slightly perturbing the vertices of the regular octagon.

Third, motivated by our computations of the systole, we look at the so-called
word length of systoles. It is known that every closed geodesic on a closed hyper-
bolic surface corresponds to an element of the group generated by the side-pairing
transformations, up to conjugacy. The minimal number of generators of a group
that need to be multiplied to obtain a specific element of that group is called
the word length of that element. The elements corresponding to a systole of a
generalized Bolza surface are products of precisely two of the side-pairing trans-
formations. This raised the question whether there exists a general upper bound
for the word length of the elements corresponding to systoles of a given hyperbolic
surface, but we proved that there is no such bound.
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In Chapter 3 we describe the properties of the generalized Bolza surfaces that
allow Bowyer’s algorithm for computing Delaunay triangulations to be applied to
these surfaces. First, to be able to check whether a given point set on a generalized
Bolza surface satisfies the validity condition, it is necessary to know the value of
the systole, which was already computed in Chapter 2.

Second, recall that triangulations of a hyperbolic surface can be seen as peri-
odic triangulations of infinite periodic point sets in the hyperbolic plane, as was
illustrated in Figure 4. In practice, the Delaunay triangulation of a point set
on the surface is usually obtained by computing a Delaunay triangulation of a
corresponding point set in the hyperbolic plane and projecting the result to the
hyperbolic surface. However, it is not possible to compute a triangulation of an
infinite set of points. Therefore, we show that during the execution of the algo-
rithm it is sufficient to consider the Delaunay triangulation of only a small set of
copies of the input points (see Figure 10).

Figure 10: To compute a Delaunay triangulation of a point set on the Bolza surface, it is
sufficient to consider the copies of the input points that lie in the shaded area. This area
consists of the regular hyperbolic octagon used to represent the Bolza surface, together
with all images of this hyperbolic octagon that are adjacent to it under the action of a
side-pairing transformation.

Third, we mentioned that a set of dummy points is used to make sure that
the validity condition is satisfied throughout the execution of Bowyer’s algorithm.
Therefore, we create several algorithms to construct dummy point sets for the
generalized Bolza surfaces and analyze the resulting number of points of each.
More generally, we prove upper and lower bounds for the cardinality of a dummy
point set for arbitrary hyperbolic surfaces.

One disadvantage of the validity condition from the literature [15] is that it
uses the value of the systole as criterion to determine whether a point set is suffi-
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ciently dense and well-distributed. If a hyperbolic surface has only one short closed
geodesic and the remainder of the surface is relatively “thick”, then a dummy point
set satisfying the validity condition might be denser than necessary in the parts of
the surface far away from the short closed geodesic. Therefore, we will also briefly
discuss a local validity condition. The local validity condition does not depend
on the value of the globally shortest non-contractible curve, i.e., the systole, but
instead considers for each point on the surface the shortest non-contractible curve
(which is a geodesic loop) passing through that point.

Finally, in a preliminary implementation of the described algorithm [44] it turns
out that our extension of Bowyer’s algorithm to the generalized Bolza surfaces
is computationally quite expensive for genus g ≥ 3. We discuss the occurring
numerical issues and derive a bound for the degree of the predicates used in the
computations.

In Chapter 4 we discuss the minimal number of vertices of Delaunay triangula-
tions of hyperbolic surfaces. It is known that the minimal number of vertices of a
simplicial triangulation of a topological surface is Θ(

√
g) [48]. We show that this

lower bound is tight for Delaunay triangulations of hyperbolic surfaces as well.
Moreover, we show that every hyperbolic surface of genus g ≥ 2 has a Delaunay
triangulation with at most 151g vertices. Finally, we construct a class of hyper-
bolic surfaces for which the number of vertices of any Delaunay triangulation is
Ω(g), which implies that the O(g) upper bound is optimal.

Publications

Several parts of this thesis have previously appeared as conference papers or
preprints:

M. Ebbens, I. Iordanov, M. Teillaud, G. Vegter. Delaunay triangulations of gener-
alized Bolza surfaces. Extended abstract in 35th European Workshop on Compu-
tational Geometry, 15:1-15:8, 2019. http://www.eurocg2019.uu.nl/papers/15.
pdf. Full version accepted up to revision at Journal of Computational Geometry.
Preprint: arXiv:2103.05960.
(Section 2.2 of Chapter 2 and Chapter 3)

M. Ebbens, H. Parlier, G. Vegter. Minimal Delaunay triangulations of hyperbolic
surfaces. Extended abstract in Proceedings of the 37th International Symposium
on Computational Geometry, 31:1-31-16, 2021. doi:10.4230/LIPIcs.SoCG.2021.31.
Full version accepted up to revision at Discrete and Computational Geometry.
Preprint: arXiv:2011.09847.
(Chapter 4)

http://www.eurocg2019.uu.nl/papers/15.pdf
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Chapter 1

Mathematical preliminaries

1.1 Hyperbolic geometry

1.1.1 History

Around 300 B.C. Euclid wrote in the first book of his Elements1:

1. Let it be postulated that from every point to every point we can
draw a straight line,

2. and that from a bounded straight line we can produce an un-
bounded straight line,

3. and that for every center and distance we can draw a circle,

4. and that all right angles are identical to each other,

5. and that, if a straight line intersecting two other straight lines
makes the interior angles on one side less than two right angles,
then the two straight lines, extended to infinity, intersect on the
side where the angles are less than two right angles.

Given the first four postulates, the fifth postulate can be shown to be equivalent
with the parallel postulate: given a line and a point not on this line, there exists
precisely one line through the point parallel to the given line. The first four of
Euclid’s postulates are intuitively clear, but the fifth has been cause for much
debate. It has been regarded as not self-evident enough to be assumed without
proof, but for over two thousand years it could not be proved from the other
postulates.

In the first half of the nineteenth century2, the construction of so called non-
Euclidean geometry by Lobachevsky and Bolyai (independently) proved that the

1The translation is mine. For a translation of the complete work, see [40].
2The following discussion is primarily based on [56], but we refer to [18] for a more detailed

treatise. For an extensive bibliography on the history of non-Euclidean geometry, see [64, 33ff.].

1



2 CHAPTER 1. MATHEMATICAL PRELIMINARIES

attempts would be fruitless from the start. In both Euclidean and non-Euclidean
geometry the first four of Euclid’s postulates hold, but in the latter the fifth pos-
tulate does not hold. This early non-Euclidean geometry is usually called Bolyai-
Lobachevsky geometry and formed the basis of hyperbolic geometry. It should be
noted that several years before Lobachevsky and Bolyai published their findings
Gauss described similar ideas in a letter, but he never published his construction.

Initially, the study of non-Euclidean geometry existed separately from the rest
of mathematics. However, in 1868 Beltrami showed that two-dimensional non-
Euclidean geometry coincides with the study of suitable surfaces of constant neg-
ative curvature, in this way connecting non-Euclidean and Riemannian geometry.
His idea can be illustrated as follows. Consider all points inside the unit disk in
R2. Identify each (x, y) in the unit disk with the point (x, y,

√
1− x2 − y2) on the

unit hemisphere in R3 equipped with the Riemannian metric

ds2 =
dx2 + dy2 + dz2

z2
.

If we project orthogonally onto the xy-plane, then geodesics in the hemisphere
project onto straight line segments in the unit disk in the xy-plane. It can be
shown that the fifth postulate does not hold in this situation. This construction
is called the Beltrami-Klein model of the hyperbolic plane. We will not discuss
this model further. However, in Section 1.1.2 we will discuss a different model
of hyperbolic geometry: the Poincaré disk model. This model can be obtained
from the hemisphere in the above construction by stereographic projection from
(0, 0,−1) onto the plane z = 1.

The study of the geometry arising from the models mentioned above is usually
called hyperbolic geometry to distinguish it from spherical geometry, another form
of non-Euclidean geometry. Where hyperbolic geometry violates the parallel pos-
tulate by having multiple lines through a point parallel to a given line, spherical
geometry violates the parallel postulate by having no parallel lines at all.

The embedding of hyperbolic geometry in Riemannian geometry by using these
models enabled the development of a theory of hyperbolic geometry. In 1882,
Poincaré described the isometries of the hyperbolic plane by using the upper half-
plane model. Furthermore, he stressed the importance of discrete subgroups of
isometries, leading to the theory of Fuchsian groups. In the beginning of the
twentieth century the notion of a smooth manifold was rigorously defined and this
led to the definition of hyperbolic manifolds. In the following subsections we will
treat each of these topics in more detail.

1.1.2 The Poincaré disk

The model of the hyperbolic plane that we use in this thesis is the Poincaré
disk [10, 20]. This model is given by the open unit disk D in the complex plane
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equipped with the Riemannian metric

ds =
2|dz|

1− |z|2

of constant Gaussian curvature K = −1. The Euclidean boundary D∞ of the unit
disk consists of the points at infinity or ideal points of the hyperbolic plane (which
do not belong to D). The geodesic segment [z,w] between points z,w ∈ D is the
(unique) shortest curve connecting z and w. A hyperbolic line (i.e., a geodesic
for the given metric) in this model is a curve which contains the geodesic segment
between any two of its points. These geodesics are diameters of D or circle arcs
whose supporting lines or circles intersect D∞ orthogonally (see the leftmost frame
of Figure 1.1). A circle in the hyperbolic plane is a Euclidean circle in the Poincaré
disk, in general with a hyperbolic center and radius that are different from their
Euclidean counterparts.

L0
L1

L2

L3
L4

z
w

w

f (w)

f−1(z)

z

f (z)

Figure 1.1: Left: the Poincaré disk model D of the hyperbolic plane, with some
geodesics. The boundary D∞ does not belong to D, but consists of ideal points of
D. Geodesics L0 and L1 are parallel (have an ideal point in common), L2 and L3 are
intersecting and L4 is disjoint from the other geodesics. The points z and w are con-
nected by a hyperbolic segment.
Right: A hyperbolic translation f has two fixed points on the boundary D∞ of the
Poincaré disk D. The axis of f is the (unique) geodesic connecting the fixed points of
f . The orbit of point w is contained in the axis of f . The orbit of point z, which does
not lie on the axis of f , is contained in an equidistant of the axis (an arc of a Euclidean
circle through the fixed points). The red region containing the point z is mapped by f
to the red region containing f(z).

1.1.3 Trigonometry

In this subsection we will briefly state some results about hyperbolic trigonome-
try [10, 49]. Since in both models the first four postulates of Euclid hold, in par-
ticular there exists for distinct z and w in the hyperbolic plane a unique geodesic
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segment [z,w] joining z to w. For distinct, non-collinear points z1, z2, z3 in the
hyperbolic plane, the hyperbolic triangle with vertices z1, z2, z3 is [z1, z2, z3] =
[z1, z2] ∪ [z2, z3] ∪ [z3, z1]. More generally, [z1, z2, . . . ,zn] = [z1, z2] ∪ . . . ∪
[zn−1, zn] ∪ [zn, z1] denotes the hyperbolic n-gon with vertices z1, . . . ,zn. Let
[A,B,C] be a hyperbolic triangle with angles α, β, γ at A,B,C respectively and
let a, b, c be the length of the opposite edges (Figure 1.2). First assume that γ = π

2 .
In this case the hypotenuse c is given by

cosh c = cosh a cosh b,

which is called the hyperbolic Pythagorean Theorem. Equations for the angles in

Figure 1.2: Hyperbolic triangle

terms of two of the sides are given by

sinα =
sinh a

sinh c
,

cosα =
tanh b

tanh c
,

tanα =
tanh a

sinh b
.

Now, let γ ∈ [0, π) be arbitrary. The hyperbolic sine rule is given by

sinh a

sinα
=

sinh b

sinβ
=

sinh c

sin γ

and it is the analogue of the Euclidean sine rule. The first hyperbolic cosine rule
is given by

cosh c = cosh a cosh b− sinh a sinh b cos γ

and given the form of the hyperbolic Pythagorean Theorem, it is the analogue of
the Euclidean cosine rule. The second hyperbolic cosine rule is given by

cosh c =
cosα cosβ − cos γ

sinα sinβ
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and it has no analogue in Euclidean geometry. It implies that hyperbolic triangles
with identical angles are isometric, which is not true in Euclidean geometry due
to scaling. The hyperbolic area of T = T (A,B,C) is given by

area(T ) = π − α− β − γ.

In particular, area(T ) ≤ π with identity if and only if T is an ideal triangle,
i.e. A,B,C are points at infinity. Similarly, if an n-gon P has interior angles
α1, . . . , αn, then its area is given by

area(P ) = (n− 2)π −
n∑

i=1

αi.

1.1.4 Classification of Möbius transformations

The group of orientation preserving isometries of D is denoted by Isom+(D) and
each f ∈ Isom+(D) is of the form

f(z) =
az + b

b̄z + ā
(1.1)

for a, b ∈ C with |a|2−|b|2 = 1. Conversely, every map of this form is an orientation
preserving isometry of D. From now on, we will abbreviate orientation preserving
isometry as isometry.

Every isometry of the hyperbolic plane is either elliptic, parabolic or hyper-
bolic. We distinguish between these three by the number and the location of their
fixed points. If an isometry f of D has

� one fixed point in D, then it is called elliptic (or a rotation);

� one fixed point in D∞, then it is called parabolic (or a dilation);

� two fixed points in D∞, then it is called hyperbolic (or a translation).

In the last case, the geodesic connecting the two fixed points is called the axis Xf

of f . The distance d(x, f(x)) is constant for all x ∈ Xf and this constant is called
the translation length of f , denoted by ℓ(f).

To a transformation of the form given in Equation (1.1) we can associate an
equivalence class of matrices [

a b
b̄ ā

]
,

where A is equivalent to B if and only if A = ±B. Working with equivalence
classes is necessary here, since we could write f(z) = (−az− b)/(−b̄z− ā) as well.
We will use the same notation for the transformation itself and the corresponding
matrix. Composition in the group of isometries is then given by matrix multiplica-
tion. Furthermore, it can be seen that the classification of isometries into elliptic,
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parabolic and hyperbolic transformations corresponds to |Tr(f)| < 2, |Tr(f)| = 2
and |Tr(f)| > 2 respectively. Here |Tr(f)| denotes the absolute value of the trace
of (a matrix corresponding to) f , which is well defined, because f determines its
corresponding matrix up to sign. An explicit formula for the translation length
ℓ(f) is given by

cosh

(
ℓ(f)

2

)
= 1

2 |Tr(f)|.

1.1.5 Fuchsian groups

In this section we will first define Fuchsian groups and then look at fundamental
domains. Proofs of propositions will be omitted. For more details we refer to [10,
49, 74].

Recall that a subset of a topological space is called discrete if the subspace
topology on this set is the discrete topology, i.e., the topology where every subset is
open and closed. The identification of elements of Isom+(D) with matrices induces
the structure of a topological space on Isom+(D). We now give the definition of a
Fuchsian group.

Definition 1.1. A discrete subgroup of Isom+(D) is called a Fuchsian group.

For a Fuchsian group Γ and a point x ∈ D, the orbit of x under Γ is defined
as Γ(x) = {f(x) | f ∈ Γ} ⊂ D.

Proposition 1.2. Let Γ be a subgroup of Isom+(D). The following statements
are equivalent:

1. Γ is a Fuchsian group,

2. For all x ∈ D, Γ(x) is a discrete subset of D.

3. For all x ∈ D, there exists a neighbourhood N , such that f(N) ∩N ̸= ∅ for
only finitely many f ∈ Γ.

If Γ satisfies the third statement, we usually say that Γ acts properly discon-
tinuously on D, even though definitions of properly discontinuous may vary in the
literature. Denote the interior of a subset F of a topological space by F̊ .

Definition 1.3. Given a Fuchsian group Γ, a fundamental domain F for Γ is a
closed subset of D such that

1.
⋃

f∈Γ f(F ) = D,

2. For all f1, f2 ∈ Γ we have: if f1 ̸= f2, then f1(F̊ ) ∩ f2(F̊ ) = ∅.
A priori, we do not know that there actually exists a fundamental domain for

a given Fuchsian group Γ, but later on we will explicitly construct a fundamental
domain called the Dirichlet region. Different fundamental domains can look very
different, but the following proposition states that their area is always the same.
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Proposition 1.4. Let Γ be a Fuchsian group with fundamental domains F, F ′

such that area(∂F ) = area(∂F ′) = 0 and area(F ) <∞. Then

area(F ) = area(F ′).

It can be shown that for every Fuchsian group Γ there exists a point p ∈ D
such that f(p) ̸= p for all f ∈ Γ \ {1}, i.e. there exists a point that is not fixed
by any non-trivial element of Γ. We now define the Dirichlet region.

Definition 1.5. Let Γ be a Fuchsian group and let p be a point that is not fixed by
any non-trivial element of Γ. Define the Dirichlet region Dp(Γ) of p with respect
to Γ as

Dp(Γ) = {x ∈ D | d(x,p) ≤ d(x, f(p)) for all f ∈ Γ}.

Intuitively, Dp(Γ) can be seen as the collection of points that are closer to p
than to the other elements of Γ(p). Indeed, Dp(Γ) is a fundamental domain.

Proposition 1.6. Let Γ be a Fuchsian group and let p be a point that is not fixed
by any non-trivial element of Γ. The Dirichlet region Dp(Γ) is a fundamental
domain for Γ. If area(Dp(Γ)) < ∞, then Dp(Γ) is a convex hyperbolic polygon
with finitely many sides.

Suppose that in the situation above there exists a side s of Dp(Γ) and f ∈ Γ,
such that f(s) is also a side of Dp(Γ). Then we call such a f a side pairing
transformation. Indeed, sides are paired, since f−1 maps the side f(s) back to
the side s. In fact, for a Dirichlet region Dp(Γ) we can find such a side pairing
transformation for every side s of Dp(Γ). Namely, every side is a piece of the
perpendicular bisector of the segment [p, f(p)] for some f ∈ Γ \ {1} and it can be
shown that f−1 maps s to another side of Dp(Γ). Hence, to any Dirichlet region
we can associate a set of side pairing transformations.

1.1.6 Hyperbolic surfaces

A Fuchsian group Γ naturally acts on D, so we can form the quotient space D/Γ.
We saw in the previous section that we can associate a set of side pairing transfor-
mations to a Dirichlet region of Γ. These side pairing transformations can be seen
as ‘glueing’ the Dirichlet region along paired sides. In this way we can see D/Γ as
a surface which locally looks like a part of the hyperbolic plane. Such a surface
will be called a hyperbolic surface. In this section we will see that the converse
holds as well: a given hyperbolic surface is isometric to a quotient D/Γ for some
Fuchsian group Γ. Another construction is provided by Poincaré’s Theorem: in
this case from a polygon and a set of side pairing transformations the correspond-
ing Fuchsian group is constructed, provided some conditions are satisfied. We will
not discuss this in detail, see instead [49, 74].

First we give the definition of hyperbolic surface.
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Definition 1.7. A hyperbolic surface is a connected 2-dimensional manifold that
is locally isometric to an open subset of D.

We emphasize that points in the hyperbolic plane D will be denoted by z,w,p,
q and so on, whereas the corresponding points on the surface D/Γ are denoted by
z, w, p, q and so on. Because hyperbolic surfaces are defined to be locally isometric
to open subsets of the hyperbolic plane, they have an induced Riemannian metric
of constant Gaussian curvature -1. As such, they cannot be embedded in R3 [41].
However, for visualization we will still draw hyperbolic surfaces as if they were
surfaces in R3. Furthermore, we will always assume that the surface is complete
(as a metric space) and orientable. Hyperbolic surfaces can be obtained as a
quotient space under the action of a Fuchsian group.

Proposition 1.8. For every hyperbolic surface M there exists a Fuchsian group
Γ acting on D without fixed points, such that M is isometric to D/Γ.

Since elliptic Möbius transformations have a fixed point in D, a Fuchsian group
as in the previous proposition does not contain any elliptic elements. A compact
hyperbolic surface is called closed. A Fuchsian group is called cocompact, if D/Γ
is compact. It can be shown that a cocompact Fuchsian group does not contain
any parabolic elements [49].

Corollary 1.9. For every closed hyperbolic surface M there exists a Fuchsian
group Γ of which all non-trivial elements are hyperbolic, such that M is isometric
to D/Γ.

A note on the literature: this section is mostly based on [70], since the main
statement of this section is stated there explicitly. Works on Teichmüller spaces,
such as [43, 69], often focus more on the classification of Riemann surfaces. For
Riemann surfaces a conformal structure is a maximal atlas such that all transi-
tion maps are holomorphic. Buser [20] gives a proof that the classifications of
conformal structures on Riemann surfaces of genus g ≥ 2 and atlases for hyper-
bolic surfaces coincide. Namely, since the transition maps of a hyperbolic atlas
are restrictions of Möbius transformations, a hyperbolic atlas naturally induces a
conformal structure. Reversely, given a Riemann surface M of genus g ≥ 2 there
exists by the Uniformization Theorem a universal covering map π : D→ M. The
covering transformations are conformal self-mappings of D, so the local inverses of
π can be used as parametrizations for a hyperbolic surface. Beardon [10] evades
this distinction: initially he considers Riemann surfaces, but then he introduces
‘Riemann surfaces of hyperbolic type’, which are defined to be of the form D/Γ.

1.1.7 Generalized Bolza surfaces

The Fuchsian group Γg. The generalized Bolza group of genus g, g ≥ 2, is
the Fuchsian group Γg defined in the following way. Consider the regular hyper-
bolic 4g-gon Dg with angle-sum 2π. The counterclockwise sequence of vertices is
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f0

f1
f2

f3

v1

v2v3

v4

v5

v6 v7

v0

f4

f5 f6

f7

v1

v2v3

v4

v5

v6 v7

v0

Figure 1.3: The side-pairings f0, . . . , f3 of the Bolza surface (of genus 2) pair opposite
edges of the fundamental octagon (a regular octagon in D with angles 1

4
π). Their inverses

f4, . . . , f7 satisfy fk+4 = f−1
k . The side-pairings generate the Fuchsian group Γ2. All

vertices are in the same Γ2-orbit. The composition f0f5f2f7f4f1f6f3 is the identity
1 ∈ Γ2.

v0, . . . ,v4g−1, where the midpoint of edge [v0,v1] lies on the positive real axis.
See Figure 1.3 for g = 2. The sides of Dg are sj , j = 0, . . . , 4g − 1, where sj is
the side with vertices vj and vj+1 (counting indices modulo 4g). The orientation
preserving isometries f0, . . . , f4g−1 pair opposite sides of Dg. More precisely, fj
maps sj+2g to sj , and sj = fj(Dg) ∩Dg. According to (1.1) the side-pairing fj ,
j = 0, 1, . . . , 4g − 1, is represented by any of two matrices ±Aj with determinant
1. Using some elementary hyperbolic geometry it can be seen that Aj is given
by [5]

Aj =

 cot( π
4g ) exp( ijπ2g )

√
cot2( π

4g )− 1

exp(− ijπ
2g )
√
cot2( π

4g )− 1 cot( π
4g )

 . (1.2)

By Poincaré’s Theorem ([10, Chapter 9.8] and [64, Chapter 11.2]) these side-
pairings generate a Fuchsian group, the generalized Bolza group Γg, all non-
identity elements of which are hyperbolic translations. The polygon Dg is a fun-
damental domain for the action of this group, and it is even the Dirichlet region
of the origin.

Since vj = fjf
−1
j+1(vj+2), we see that the element f0f

−1
1 f2f

−1
3 · · · f4g−2f

−1
4g−1

of Γg maps v4g to v0. In other words, v0 is a fixed point of this element. Since all
non-identity elements of Γg are hyperbolic translations, and, hence, without fixed
points in D, this element is the identity 1 of Γg:

f0f
−1
1 f2f

−1
3 · · · f4g−2f

−1
4g−1 = 1. (1.3)

For even j we have fj = fj(2g+1), since we are counting indices modulo 4g. Simi-
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larly, f−1
j = fj+2g = fj(2g+1), for odd j. Therefore, we can rewrite (1.3) as

4g−1∏
j=0

fj(2g+1) = f0f2g+1f2(2g+1) · · · f(4g−1)(2g+1) = 1. (1.4)

The order of the factors in this product does matter since the group Γ is not
abelian. Equation (1.4) is usually called the relation of Γg. In addition to (1.3)
and (1.4), there are many other ways to write the relation. By rotational symmetry

of Dg, conjugating
∏4g−1

j=0 fj(2g+1) with the rotation by angle kπ/2g around the

origin yields the relation
∏4g−1

j=0 fk+j(2g+1) = 1. The latter expression can be
rewritten as

fkf
−1
k+1fk+2f

−1
k+3 · · · fk+4g−2f

−1
k+4g−1 = 1. (1.5)

Neighbors of vertices of the fundamental polygon. In the clockwise se-
quence of Dirichlet regions h1(Dg), h2(Dg), · · · , h4g(Dg) around vertex vk the el-
ement hj ∈ Γg is the prefix of length j in the left-hand side of (1.5):

hj =

fkf
−1
k+1 · · · fk+j−2f

−1
k+j−1, if j is even,

fkf
−1
k+1 · · · f−1

k+j−2fk+j−1, if j is odd.
(1.6)

Prefixes hj of length j ≥ 2g can be reduced to a word of length 4g − j in
fk, f

−1
k+1, . . . , f

−1
k+2g−1 using relation (1.5) (where the empty word – of length zero

– corresponds to 1) and the fact that fj = f−1
j−2g for j ≥ 2g. More precisely, h4g−j

is the prefix of length j in f−1
k+2g−1fk+2g−2 · · · f−1

k+1fk, for j = 0, . . . , 2g. Figure 1.4
depicts the neighbors of vk for the case g = 2.

f−1
k+3

fk

f−1
k+3fk+2

f−1
k+3fk+2f

−1
k+1

fkf
−1
k+1fk+2f

−1
k+3

fkf
−1
k+1

fkf
−1
k+1fk+2

1

vk

Figure 1.4: Enumeration of the regions around a vertex vk, k = 0, 1, . . . , 7, for the case
g = 2. Note that f−1

k+3fk+2f
−1
k+1fk = fkf

−1
k+1fk+2f

−1
k+3 by the group relation.
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The hyperbolic surface Mg. The generalized Bolza surface of genus g is the
hyperbolic surface D/Γg, denoted by Mg. The projection map is πg : D→ D/Γg.
The surface M2 is the classical Bolza surface [17, 4].

1.1.8 Geodesics on a hyperbolic surface

In this section we will discuss geodesics, the systole and the length spectrum of
hyperbolic surfaces, following primarily [64, 70]. The relevant homotopy theory
can be found in an introduction on algebraic topology; see, e.g., [37].

Let M = D/Γ be a closed hyperbolic surface with projection π : D → M. By
using the metric on D and the fact that Γ consists of isometries, we obtain a metric
on M, so we can speak of geodesics on M. We define triangles and circles on a
hyperbolic surface in a similar way. A triangle t on M is the π-image of a triangle
t in D such that π is injective on t. Clearly, the vertices of t are the projections
of the vertices of t and the edges of t are geodesic segments. A circle on M is the
π-image of a circle in the hyperbolic plane. In this case, we do not require π to
be injective on the circle, so the image may have self-intersections.

Next, we consider closed geodesics. Define the circle S1 = R/∼, where x ∼ x+1
for all x ∈ R. A closed curve on M is a continuous map γ : S1 → M. We will
always assume differentiability, except maybe at a point: a curve γ : [0, 1] → M
such that γ(0) = γ(1) which is differentiable at (0, 1) is called a loop. Closed
curves γ0, γ1 : S1 → M are called freely homotopic if there exists a continuous
map H : S1 × [0, 1]→M such that

H(x, 0) = γ0(x), H(x, 1) = γ1(x)

for all x ∈ S1. Curves which are homotopic to a point are called homotopically
trivial. We will always consider a closed geodesic together with a parametrization;
in this way we can distinguish between a closed geodesic γ and the closed geodesic
γ2 obtained by traversing γ twice.

Closed geodesics are closely related to the structure of the corresponding Fuch-
sian group.

Proposition 1.10 ([64, Thm. 9.6.2]). Closed geodesics of a closed hyperbolic sur-
face M = D/Γ are in one-to-one correspondence with conjugacy classes of elements
of Γ.

In the above correspondence, the projection π : D → D/Γ maps (oriented)
geodesics of D to (oriented) geodesics of M = D/Γ, and it maps the axis of a
hyperbolic translation f ∈ Γ to a closed geodesic of M. Every (oriented) closed
geodesic γ on M arises in this way, i.e., there is a hyperbolic translation f ∈ Γ
such that γ lifts to the axis of f . The axes of two hyperbolic translations f, f ′ ∈ Γ
project to the same closed geodesic of M if and only if f ′ is conjugate to f in Γ
(i.e., iff there is an h ∈ Γ such that f ′ = h−1fh). It follows that the length of γ is
given by the distance d(x, f(x)) for x ∈ Xf , as this is the distance that f moves
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x along the axis Xf until it reaches the next point in the orbit. Therefore, the
length of γ is equal to the translation length ℓ(f).

Around a simple closed geodesic γ, the local geometry of a surface is given by
its so-called collar. Roughly speaking, for small enough r, the set

Cγ(r) = {x ∈M | d(x, γ) ≤ r}

is an embedded cylinder. A bound on how large one can take the r to be while
retaining the cylinder topology is given by the Collar Lemma:

Lemma 1.11 ([20, Theorem 4.1.1]). Let γ by a simple closed geodesic on a closed
hyperbolic surface M. The collar Cγ(w(γ)) of width w(γ) given by

w(γ) = arcsinh

(
1

sinh( 12ℓ(γ))

)
(1.7)

is an embedded hyperbolic cylinder isometric to [−w(γ), w(γ)] × Γ1 with the Rie-
mannian metric ds2 = dρ2+ℓ(γ)2 cosh2(ρ)dt2 at (ρ, t). Furthermore, if two simple
closed geodesics γ and γ′ are disjoint, then the collars Cγ(w(γ)) and Cγ′(w(γ′))
are disjoint as well.

In the algorithm for computing Delaunay triangulations of hyperbolic surfaces
that we will discuss in Chapter 3, a central role is played by the systole of a surface.

Definition 1.12. The length of the shortest homotopically non-trivial closed
curve on a closed hyperbolic surface M is called the systole of M and denoted
by sys(M).

In Chapter 2 we will state a number of results on systoles, among which the
exact value of the systole of generalized Bolza surfaces. The systole of a surface
is attained as the length of some closed curve. Clearly, the shortest closed curves
on M are simple, i.e. they have no self-intersections except at the endpoints. By
the following proposition it is sufficient to consider only (simple) closed geodesics.

Proposition 1.13 ([64, Thm. 9.6.4 & 9.6.5]). Every homotopically non-trivial
(simple) closed curve on a closed hyperbolic surface is freely homotopic to a unique
(simple) closed geodesic, which is the shortest curve in the corresponding free ho-
motopy class.

The following proposition gives an upper bound for the systole.

Proposition 1.14 ([20, Theorem 5.2.1]). Let M be a closed hyperbolic surface of
genus g ≥ 2. Then

sys(M) ≤ 2 log(4g − 2).
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Proof. Let γ be the shortest homotopically non-trivial closed curve on M and fix
p ∈ γ. We have that Dr = {q ∈ M | d((p, q) < r)} is a hyperbolic disk of radius r
as long as r < sys(M)/2. Then

4π(g − 1) = area(M) > area(Dr) = 2π(cosh(r)− 1).

Taking the limit r → sys(M)/2 we obtain

cosh(sys(M)/2) ≤ 2g − 1.

Since 1
2 exp(sys(M)/2) < cosh(sys(M)/2), it follows that

exp(sys(M)/2) < 4g − 2,

which proves the result.

The above upper bound is up to a constant the best possible. Namely, in [21]
a family of hyperbolic surfaces M(g) is constructed with genus g →∞ and

sys(M(g)) ≥ 4
3 log g − c

for some constant c. The same bound is found in [50] for a different family of
surfaces. In both cases the families of surfaces are constructed by considering
principal congruence subgroups of arithmetic Fuchsian groups. We will not discuss
arithmeticity here, but refer to [49]. In [55] it is shown that the coefficient 4

3 is
the best possible for surfaces obtained in this way. Whether there are families of
surfaces that yield larger coefficients, is currently not known. A universal nonzero
lower bound for the systole of hyperbolic surfaces does not exist: in [11] it is
shown3 that for any ε > 0 there exists a hyperbolic surface M with sys(M) < ε.

As a final remark, the systole is the first element of a certain sequence called
the length spectrum.

Definition 1.15. The length spectrum L(M) of a closed hyperbolic surface M is
the ascendingly ordered sequence of lengths of closed geodesics on M.

In light of the discussion before, the length spectrum of a hyperbolic surface
M = D/Γ is equal to the ordered sequence of translation lengths of conjugacy
classes of Γ. Since isometries preserve the length of every geodesic on the surface,
isometric surfaces have the same length spectrum. However, the converse is not
true: there exist non-isometric surfaces which are isospectral, i.e., they have the
same length spectrum. In [73], upper bounds are given for the number of non-
isometric, isospectral surfaces in terms of genus and systole.

3In fact, they show the corresponding statement for hyperbolic n-dimensional manifolds. We
will see in the definition of the Fenchel-Nielsen coordinates that the statement for hyperbolic
surfaces is trivial.
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1.1.9 Teichmüller space

Classifying the isomorphism classes of Riemann surfaces is known as the moduli
problem. By the remark in Section 1.1.6, this is equivalent to the description of all
isometry classes of hyperbolic surfaces. This problem is currently unsolved, even
though there are solutions for low genera. In Section 1.1.9, we will see an example
of such a solution for surfaces of signature (0, 3), i.e., of genus 0 with 3 punctures.

First we will discuss pairs of pants and cubic graphs, the building blocks and
skeletons, respectively, of hyperbolic surfaces. Then we will discuss the twist pa-
rameters, extra degrees of freedom that arise when we glue pairs of pants together.
These ingredients will be combined to define the Fenchel-Nielsen coordinates, a
natural model for the Teichmüller space, which consists of equivalence classes
of marked hyperbolic surfaces. We will see that isometry classes of hyperbolic
surfaces have multiple representatives in the Teichmüller space and this multiplic-
ity is described in the mapping class group. We will follow [20] closely, but see
also [43, 64, 69].

Pairs of pants

Let H be a right-angled hyperbolic hexagon with consecutive sides b1, s1, b2, s2, b3,
s3 (see Figure 1.5).

Figure 1.5: Right-angled hyperbolic hexagon

Let H ′ be a copy of H with sides b′i, s
′
i. We will glue H and H ′ together along

the seams s1, s2, s3 and s′1, s
′
2, s

′
3 (see Figure 1.6).

Parametrize the sides with constant speed to obtain t 7→ si(t), t 7→ s′i(t), t ∈
[0, 1]. Let Y = H ⊔H ′/ ∼ be the disjoint union of H and H ′ modulo the glueing
condition ∼, where p ∼ q for p ∈ H and q ∈ H ′ if and only if there exists
i ∈ {1, 2, 3} and t ∈ [0, 1] such that p = si(t) and q = s′i(t). The resulting Y will



1.1. HYPERBOLIC GEOMETRY 15

Figure 1.6: Construction of pair of pants

be called a pair of pants. It is a hyperbolic surface with boundary4 homeomorphic
to a thrice-punctured sphere. There are three boundary curves, namely bi∪ b′i, i =
1, 2, 3. These boundary curves are closed geodesics, since all angles in the hexagons
are right angles.

Now, let Y be a pair of pants. For every pair of boundary geodesics of Y
there exists a unique simple common perpendicular. These perpendiculars, i.e.,
the seams, are mutually disjoint and divide the boundary geodesics in two arcs
of the same length. Therefore, by cutting Y open along the seams we obtain two
isometric right-angled hexagons.

By the construction above, we see that for any triple l1, l2, l3 of positive real
numbers, there exists a pair of pants with boundary geodesics of lengths l1, l2, l3.
By the decomposition of a pair of pants into hexagons and the fact that the lengths
of b1, b2, b3 determine the hexagon up to isometry, we see that such a pair of pants
is unique up to isometry.

Cubic graphs

Recall that a graph G = (V,E) consists of a set of vertices V = V (G) and
edges E = E(G). Denote the number of vertices and edges of G by v(G), e(G)
respectively. We will assume that the graph is undirected and loops and double
edges are allowed. A graph is connected if for all v, w ∈ G, there exists a sequence
v = v1, v2, . . . , vk = w such that (vi, vi+1) ∈ E for all i = 1, . . . , k − 1.

For our purpose it is useful to interpret each edge as two half-edges. A cubic
graph is a graph where every vertex has three emanating half-edges. Therefore, a
cubic graph G contains 3v(G) half-edges, so 3v(G) = 2e(G). This means that the
number of vertices of a cubic graph is always even, say v(G) = 2g− 2. Denote the
vertices of G by v1, . . . , v2g−2 and its edges by e1, . . . , e3g−3. Denote the half-edges
emanating from vi by eiα, α = 1, 2, 3. Each edge ek = (vi, vj) is interpreted as the

4Technically, we did not define hyperbolic surfaces with boundary, but the definition is similar
to manifolds with boundary.
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union of two half-edges ek = eiα ∪ ejβ for some α, β ∈ {1, 2, 3}. Then the list

ek = eiα ∪ ejβ , k = 1, . . . , 3g − 3

completely describes the graph G.

Example 1.16. In Figure 1.7 we see an example of a cubic graph. It is completely
described by the following list:

e1 = e11 ∪ e21,
e2 = e12 ∪ e22,
e3 = e13 ∪ e31,
e4 = e23 ∪ e32,
e5 = e33 ∪ e41,
e6 = e42 ∪ e43.

Figure 1.7: Example of a cubic graph

Twist parameters

Let Y and Y ′ be pairs of pants with boundary geodesics bi : S1 → Y, b′i : S1 → Y ′

parametrized with constant speed. Assume that ℓ(b1) = ℓ(b′1), where ℓ(b1) denotes
the length of b1. We will glue Y and Y ′ together along the boundaries b1 and b′1
(see Figure 1.8). For any a ∈ R, let Xa = Y ⊔ Y ′/

a∼ be the disjoint union of Y

and Y ′ modulo the glueing condition
a∼, where p a∼ q for p ∈ Y and q ∈ Y ′ if and

only if there exists t ∈ S1 such that p = b1(t) and q = b′1(a− t). Observe that we
took S1 to be a quotient space with base space R, so the expression a − t makes
sense. Furthermore, we use b′1(a−t) instead of b′1(a+t) to preserve the orientation.
The resulting Xa is a hyperbolic surface with boundary homeomorphic to a sphere
with four punctures. Of course we can continue this glueing procedure with Xa

and another pair of pants and we will do so in the next part. The parameter a is
called a twist parameter and can be seen as the amount of twisting used in the
glueing of Y and Y ′.
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Figure 1.8: Glueing of pairs of pants with twist parameter 1
4

Fenchel-Nielsen coordinates

Now we have all the ingredients to construct hyperbolic surfaces. Intuitively, the
construction is as follows: suppose we are given a connected cubic graph. Each
vertex corresponds to a pair of pants. Two pairs of pants are glued together along
a pair of their boundary geodesics if and only if there is an edge between the
corresponding vertices. A loop in the graph means that two boundary geodesics
of one and the same pair of pants are glued together. The isometry class of the
resulting surface will depend on the lengths of the boundary geodesics and the
twist parameters.

Example 1.17. In Figure 1.9 we see an example of the construction of a hy-
perbolic surface, where the underlying structure is given by the cubic graph of
Figure 1.7. In this case vertex vi corresponds to pair of pants Yi. Indeed, Y1 and
Y2 are glued together along two of their boundary geodesics as there is a dou-
ble edge between them in the cubic graph. In the same way the other edges are
represented by glueing.

Y1

Y2

Y3

Y4

Figure 1.9: Construction of hyperbolic surfaces

Now we will formally describe this procedure. Let g ≥ 2 be an integer. Let G
be a connected cubic graph with v(G) = 2g−2, which can be completely described
by

ek = eiα ∪ ejβ , k = 1, . . . , 3g − 3.
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Choose l1, . . . , l3g−3 ∈ R+ and a1, . . . , a3g−3 ∈ R. Associate to each vertex vi with
half-edges eiα, α = 1, 2, 3 a pair of pants Yi with boundary geodesics biα, α = 1, 2, 3
such that for the pairs in the list above

lk = ℓ(biα) = ℓ(bjβ), k = 1, . . . , 3g − 3.

Let

M =

3g−3⊔
k=1

Yk

/ 3g−3⊔
k=1

ak∼

be the disjoint union of the Yk modulo all the glueing conditions
ak∼, where each

ak∼ is understood to apply to the corresponding Yi and Yj from the list above.
In this way we obtain a hyperbolic surface M of genus g. We call the sequence
(l1, . . . , l3g−3, a1, . . . , a3g−3) the Fenchel-Nielsen coordinates of the closed hyper-
bolic surface M. The following theorem shows the usefulness of the above con-
struction.

Theorem 1.18. Let G be a fixed connected cubic graph with v(G) = 2g−2. Then
every closed hyperbolic surface of genus g can be obtained by the construction above
with underlying graph G.

We immediately see that closed hyperbolic surfaces can be constructed in mul-
tiple ways using the procedure above, for example by constructing one hyperbolic
surface from different graphs. In Section 1.1.9 we will discuss this further.

Teichmüller space

The Fenchel-Nielsen coordinates provide a natural model for the Teichmüller space
Tg,n. To formally define the Teichmüller space we need to introduce marked hy-
perbolic surfaces. For each signature (g, n), where g is the genus and n the number
of punctures, define a fixed closed hyperbolic surface Bg,n of genus g with n punc-
tures such that its boundary components are smooth closed curves.

Definition 1.19. A marked hyperbolic surface (M, φ) of signature (g, n) consists
of a closed hyperbolic surface M of signature (g, n) and a homeomorphism φ :
Bg,n →M, which is called the marking homeomorphism.

Marked hyperbolic surfaces are considered to be ‘the same’ if they are marking
equivalent.

Definition 1.20. Two marked hyperbolic surfaces (M, φ), (M′, φ′) are called mark-
ing equivalent if there exists an isometry f : M → M′ such that φ′ and f ◦ φ are
isotopic.

Recall that homeomorphisms f0, f1 : X → Y of topological spaces are isotopic
if there exists a continuous map J : [0, 1]×X → Y such that

J(0, x) = f0(x), J(1, x) = f1(x)
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for all x ∈ X and J(t, · ) : X → Y is a homeomorphism for all t ∈ [0, 1].

Definition 1.21. The Teichmüller space Tg,n of signature (g, n) is the set of all
marking equivalence classes of marked hyperbolic surfaces. We write Tg instead
of Tg,0.

To see that the Fenchel-Nielsen coordinates are a model of the Teichmüller
space, for a given connected cubic graph G, set BG equal to the hyperbolic surface
with underlying graph G and Fenchel-Nielsen coordinates lk = 1, ak = 0 for k =
1, . . . , 3g−3. Then we can construct the marking homeomorphism from BG to the
hyperbolic surface with arbitrary Fenchel-Nielsen coordinates, which consists of
stretching (to make the lk larger) and twisting (to make the ak larger). We will not
elaborate on this; see [20] for more details. The set of marked hyperbolic surface
with such a marking homeomorphism, with base surface BG and with underlying
graph G, is called TG.

Theorem 1.22. Let G be a fixed connected cubic graph with v(G) = 2g−2. Then
for every marked hyperbolic surface (M, φ) there exists a unique (M′, φ′) ∈ TG,
which is marking equivalent to (M,φ).

It follows that we indeed have a bijection between Tg and the Fenchel-Nielsen
coordinates for a fixed connected cubic graph G.

Mapping class group

The Teichmüller space does not solve the moduli problem. Indeed, an isome-
try class of hyperbolic surfaces of signature (g, n) has multiple representatives in
Tg,n. For example, consider the Teichmüller space of signature (0, 3), i.e. pairs
of pants. Two marked pairs of pants (Y, φ), (Y ′, φ′) are marking equivalent if
and only if φ ◦ φ′ fixes each of the boundary components. Therefore, a pair of
pants with boundary lengths (1, 2, 3) for the labeled boundary geodesics b1, b2, b3
is not marking equivalent to a pair of pants with boundary lengths (2, 1, 3), even
though they are isometric. It is clear that in this case the moduli space of isome-
try classes of hyperbolic surfaces is given by T0,3/S3, where S3 is the permutation
group permuting the labels of the boundary geodesics.

More generally, consider the mapping class group.

Definition 1.23. For a fixed signature (g, n) and base surface Bg,n the mapping
class group Mg,n is the group of all isotopy classes of homeomorphisms Bg,n →
Bg,n.

Each such homeomorphism f induces an action m(f) : Tg,n → Tg,n on marked
hyperbolic surfaces by the following rule:

m(f)(M, φ) = (M, φ ◦ f).
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Definition 1.24. The Teichmüller modular groupMg,n is the group of transfor-
mations

Mg,n = {m(f) | f ∈Mg,n}.

We see that the Teichmüller modular group plays the role that S3 plays in the
case of pairs of pants.

Proposition 1.25. Marked hyperbolic surfaces (M, φ), (M′, φ′) ∈ Tg,n are isomet-
ric if and only if there exists µ ∈Mg,n such that µ(M, φ) = (M′, φ′).

It follows that the moduli space Rg,n of isometry classes of hyperbolic surfaces
of signature (g, n) is

Rg,n = Tg,n/Mg,n,

so describing Rg,n is equivalent to finding a fundamental domain for the action of
Mg,n on Tg,n. For some signatures this has succeeded, but in general this problem
is unsolved.

1.2 Triangulations

In this section we will discuss triangulations in general, the Delaunay property and
how to extend the notion of Delaunay triangulation to hyperbolic surfaces. An
algorithm to compute Delaunay triangulations of some specific hyperbolic surfaces
will be discussed in Chapter 3 and the minimal number of vertices of a Delaunay
triangulation of an arbitrary hyperbolic surface will be treated in Chapter 4.

1.2.1 Simplicial complexes

In short, a triangulation is a subdivision of a 2-dimensional topological manifold
into vertices, edges and triangles such that distinct triangles either have no inter-
section or intersect only in a vertex or an edge. More specifically, in this thesis we
assume that every triangulation is a simplicial complex. Here, a collection K of
vertices, edges, and triangles (together called simplices) is called a simplicial com-
plex if it satisfies the following two conditions (cf [3, Chapter 6] and [60, Chapter
1]):

� each face of a simplex of K is also an element of K;
� the intersection of two simplices of K is either empty or is a simplex of K.

Note that, as we will always assume that the set of vertices is finite, all tri-
angulations considered in this thesis are locally finite, so, we can skip the local
finiteness in the above conditions (see also the discussion in [24, Section 2.1]).

In our case, an embedding of a graph into a surface is a simplicial complex
if and only if it does not contain any 1- or 2-cycles. In particular, a geodesic
triangulation of a point set in the Euclidean or hyperbolic planes is always a
simplicial complex. This is because there are no geodesic monogons or bigons.
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1.2.2 Delaunay triangulations

We recall that given a set of vertices in the Euclidean plane a triangle is called
a Delaunay triangle if its circumscribed disk does not contain any vertex in its
interior. A triangulation of a set of vertices in the Euclidean plane is a Delaunay
triangulation if all triangles are Delaunay triangles (Figure 1.10).

Figure 1.10: Delaunay triangulation of a point set in the Euclidean plane, together
with three circumscribed circles.

We define Delaunay triangulations in the hyperbolic plane in the same way as
in the Euclidean plane, where we use the fact that hyperbolic circles are Euclidean
circles. Delaunay triangulations on hyperbolic surfaces are defined by lifting ver-
tices on a hyperbolic surface M to the universal cover D [15, 30]. More specifically,
let P be a set of vertices on M and let π : D → D/Γ be the projection of the hy-
perbolic plane D to the hyperbolic surface M = D/Γ. A triangle (v1, v2, v3) with
vi ∈ P is called a Delaunay triangle if there exist pre-images v′i ∈ π−1({vi}) such
that the circumscribed disk of the triangle (v′1, v

′
2, v

′
3) in the hyperbolic plane does

not contain any point of π−1(P) in its interior. A triangulation of P on M is a
Delaunay triangulation if all triangles are Delaunay triangles.

A Delaunay triangulation of a point set on a hyperbolic surface M is related
to a Delaunay triangulation in D as follows [15]. Given a point set P on M, we
consider a Delaunay triangulation T ′ of the infinite point set π−1(P). Then, we let
T = π(T ′). By definition, T is a Delaunay triangulation. Moreover, because every
triangulation in D is a simplicial complex, T ′ is a simplicial complex. However, T
is not necessarily a simplicial complex, because projecting T ′ to M might intro-
duce 1- or 2-cycles. In Chapter 3 we will discuss the so-called validity condition



22 CHAPTER 1. MATHEMATICAL PRELIMINARIES

that ensures that the result after projection to M is simplicial. In Chapter 4 we
will show explicitly that the projection to M is simplicial for a specific Delaunay
triangulation (that does not necessarily satisfy the mentioned validity condition).

consider specific triangulations and show that will show explicitly that the
result after projection of specific Delaunay triangulations is simplicial. We will
use the correspondence between Delaunay triangulations in D and in M in Defini-
tion 4.9 and the proof of Theorem 4.2 and show explicitly that in these cases the
result after projecting to M is simplicial.

To make sure that T = π(T ′) is a well-defined triangulation, we will assume
without loss of generality that T ′ is Γ-invariant, i.e., the image of any Delaunay
triangle in T ′ under an element of Γ is a Delaunay triangle. Otherwise, it is
possible that in so-called degenerate cases T contains edges that intersect in a
point that is not a vertex [16]. Namely, suppose that T ′ contains a polygon
P = {p1, p2, . . . , pk} consisting of k ≥ 4 concircular vertices and let TP be the
Delaunay triangulation of P in T ′. Because the Delaunay triangulation of a set of
at least four concircular vertices is not uniquely defined, assume that there exists
A ∈ Γ such that the Delaunay triangulation TA(P ) of A(P ) in T ′ is not equal to
A(TP ). Because π(P ) = π(A(P )), there exists an edge of π(TA(P )) and an edge
of π(A(TP )) that intersect in a point that is not a vertex.



Chapter 2

Systoles of hyperbolic surfaces

2.1 Introduction

In Section 1.1.8, we have introduced the notion of the systole of a hyperbolic
surface and stated a well-known upper bound in terms of the genus of the surface.
In general, an expression for the systole of a hyperbolic surface in terms of, for
example, its Fenchel-Nielsen coordinates is unknown. There exists an algorithm
for computing the systole of a given hyperbolic surface [2], but it is not clear how
efficient this algorithm is.

Apart from being studied from a purely theoretical viewpoint, the systole also
plays a central role in a certain validity condition that is used in the algorithm for
computing Delaunay triangulations that we present in Chapter 3. This chapter
provides three results concerning the systoles of hyperbolic surfaces in general and
generalized Bolza surfaces in particular.

First, we give an explicit value for the systole of the generalized Bolza surface
Mg in Section 2.2:

Theorem 2.1. The systole of the surface Mg is given by ςg, where ςg is defined
as

ςg := 2 arccosh
(
1 + 2 cos( π

2g )
)
.

The same result was also recently obtained by Bai et al. [7]. Our proof gives
more insight into the representation in Dg of closed geodesics on Mg. Note also
that this result generalizes an earlier work of Aurich and Steiner [5], which was
restricted to the Bolza surface M2.

Second, we show in Section 2.3 that the method used to compute the value of
the systole of generalized Bolza surfaces can also be applied to hyperbolic surfaces
of genus 2 in some neighborhood of the Bolza surface M2.

From the proofs of the results in Sections 2.2 and 2.3 we will see that systoles
of these particular surfaces correspond to products of precisely two generators of
the corresponding Fuchsian group. However, this is not the case in general. In

23
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Section 2.4 we will show that for any hyperbolic surface M = D/Γ there exists a
set of generators of Γ such that elements of Γ that correspond to systoles of M are
the product of an arbitrarily large number of generators.

2.2 Systole of generalized Bolza surfaces

This section is devoted to proving Theorem 2.1 stated in the introduction, which
gives the value of the systole for the generalized Bolza surfaces Mg. As a prepa-
ration for the proof we show in Section 2.2.1 how to represent a simple closed
geodesic γ on Mg by a sequence γ of pairwise disjoint hyperbolic line segments
between sides of the fundamental domain Dg. The length of γ is equal to the sum
of the lengths of the line segments in γ.

The proof consists of two parts. In Section 2.2.2 we show that sys(Mg) ≤
ςg by constructing a simple (non-contractible) closed geodesic of length ςg. In
Section 2.2.3 we show that length(γ) ≥ ςg for all closed geodesics γ by a case
analysis based on the line segments contained in the sequence γ representing γ.
This shows that sys(Mg) ≥ ςg.

2.2.1 Representation of a simple closed geodesic by a sequence
of segments

Consider a simple closed geodesic γ on the generalized Bolza surface Mg. Because
Dg is compact, there is a finite number, saym, of pairwise disjoint hyperbolic lines
intersecting Dg in the preimage π−1

g (γ) of γ. See the leftmost panel in Figure 2.1.
These hyperbolic lines are the axes of conjugated elements of Γg. Therefore, the
intersection of π−1

g (γ) with Dg consists of m pairwise disjoint hyperbolic line seg-
ments between the sides of Dg, the union of which we denote by γ. See the
rightmost panel in Figure 2.1. These line segments are oriented and their orienta-
tions are compatible with the orientation of γ. In particular, every line segment
has a starting point and an endpoint. Since Dg is a fundamental domain for Γg,
the πg-images of these line segments form a covering of the closed geodesic γ by
m closed subsegments with pairwise disjoint interiors. In other words, these pro-
jected segments lie side-by-side on γ, so they form a (cyclically) ordered sequence.
This cyclic order lifts to an order γ1, . . . ,γm of the m segments in Dg, which
together represent the simple closed geodesic γ. More precisely:

Definition 2.2. An oriented simple closed geodesic γ on Mg is represented by a
sequence of oriented geodesic segments γ1, . . . ,γm in Dg if (i) the starting point
and endpoint of each segment lie on different sides of ∂Dg, and (ii) the projec-
tions πg(γ1), . . . , πg(γm) are oriented closed subsegments of γ that cover γ, have
pairwise disjoint interiors, and lie side-by-side on γ in the indicated order.

We now discuss in more detail how such a sequence is obtained from a hyper-
bolic isometry the axis of which intersects Dg and projects onto the simple closed
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1
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0 (γ∗
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γ3 = (f0f5)
−1(γ∗

3)

γ∗
3

f0f5(Dg)

Figure 2.1: Left: Connected components of the preimage of an oriented simple closed
geodesic γ on the Bolza surface intersecting the fundamental octagon D2. The geodesic
is covered by f = f0f5f0 (and all its conjugates in the Bolza group), which has axis l1.
Right: The cyclic sequence of geodesic segments γ1,γ2,γ3 in Dg represents γ. The
segments γ∗

1, γ
∗
2 and γ∗

3 are the successive intersections of the axis of f with F0(Dg),
F1(Dg) and F2(Dg), where F0 = 1, F1 = f0 and F2 = f0f5. The endpoint of γ

∗
3 is F3(p

∗
0),

where F3 = f and p∗
0 is the starting point of γ∗

1. The endpoint of γk is paired with the
starting point of γk+1 by the side-pairing F−1

k Fk−1. In this example F−1
1 F0 = f−1

0 = f4,
F−1
2 F1 = f−1

5 = f1, and F−1
3 F2 = f−1

0 = f4.

geodesic. Let l1 be an arbitrary oriented geodesic in the set of m connected com-
ponents of π−1

g (γ) that intersect Dg. The oriented segment γ1 is the intersection
l1∩Dg. Let f ∈ Γg be the hyperbolic isometry that covers γ and has axis l1. More
precisely, if p∗

0 is the starting point of γ1, then the segment [p∗
0, f(p

∗
0)] projects

onto γ, and πg is injective on the interior of this segment.

Let F0(Dg), F1(Dg), . . . , Fm−1(Dg), be the sequence of successive Dirichlet do-
mains intersected by the segment [p∗

0, f(p
∗
0)]. Here F0 = 1 and F0, F1, . . . , Fm−1

are distinct elements of Γg. This sequence consists ofm regions, since the segments
F−1
0 (l1), F

−1
1 (l1), . . . , F

−1
m−1(l1) are the (pairwise disjoint) geodesics in π

−1
g (γ) that

intersect Dg. This implies that the segment [p∗
0, f(p

∗
0)] is covered by the se-

quence of closed segments γ∗
1, . . . ,γ

∗
m in which l1 intersects these m regions, i.e.,

γ∗
k = Fk−1(Dg) ∩ l1, for k = 1, . . . ,m. (Note that γ∗

1 = γ1.) The segments
γk = F−1

k−1(γ
∗
k), k = 1, . . . ,m, lie in Dg and project onto the same subsegment of

γ as γ∗
k. In other words, πg(γ1), . . . , πg(γm) lie side-by-side on the closed geodesic

γ and cover γ. Therefore, the simple closed geodesic γ is represented by the
sequence γ1, . . . ,γm.

It is convenient to consider f(p∗
0) as the starting point of the segment l1∩f(Dg),

which we denote by γ∗
m+1. Taking Fm = f , we see that γ∗

m+1 = l1 ∩ Fm(Dg).

Extending our earlier definition γk = F−1
k−1(γ

∗
k) to k = m+1, we see that γm+1 is

the subsegment of π−1
g (γ) ∩Dg with starting point F−1

m (f(p∗
0)) = p∗

0, so γm+1 =
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γ1.
Finally, we show that the endpoint of γk is mapped to the starting point of γk+1

by a side-pairing transformation of Dg, for k = 1, . . .m. Since Fk−1(Dg)∩Fk(Dg)
is a side of Fk(Dg), for k = 1, . . . ,m, the intersection F−1

k Fk−1(Dg)∩Dg is a side of
Dg, say sjk . Then F

−1
k Fk−1 = fjk , since sjk = fjk(Dg)∩Dg. Let γ

∗
k = [p∗

k−1,p
∗
k],

then γk = [F−1
k−1(p

∗
k−1), F

−1
k−1(p

∗
k)]. Therefore, fjk maps the endpoint F−1

k−1(p
∗
k) of

γk to the starting point F−1
k (p∗

k) of γk+1, since fjkF
−1
k−1 = F−1

k . See the rightmost
panel in Figure 2.1.

2.2.2 Upper bound for the systole

To show that sys(Mg) ≤ ςg it is sufficient to prove the following lemma.

Lemma 2.3. There is a simple closed geodesic on Mg of length ςg.

Proof. The axis of the hyperbolic translation f2g+1f0 projects onto a simple closed
geodesic γ on Mg with length equal to the translation length ℓ(f2g+1f0). See
Section 1.1.8. Since f2g+1f0 is represented by the matrix A2g+1A0, with Aj given
by (1.2), we see that

cosh 1
2ℓ(f2g+1f0) =

1
2 |Tr(A2g+1A0) | = 1 + cos( π

2g ).

Since 1 + cos( π
2g ) = cosh 1

2 ςg we conclude that γ has length ςg.

Remark 2.4. Two connected components of the pre-image π−1
g (γ) of the simple

closed geodesic γ, appearing in the proof of Lemma 2.3, intersect the fundamental
polygon Dg: the axis l1 of f = f2g+1f0, and the geodesic l2 = f−1

2g+1(l1), which is
the axis of f0f2g+1. The geodesic γ is represented by the segments γ1 = l1 ∩Dg

and γ2 = l2 ∩Dg. The first segment connects the midpoint m2g of s2g and the
midpoint m2g+1 of s2g+1, whereas the second segment connects the midpoints of
s0 and s1. See Figure 2.2.

This can be seen as follows. Since f = f2g+1f
−1
2g and the axes of f2g and f2g+1

intersect at the origin O, (the proof of) Theorem 7.38.6 of [10] implies that the
axis of f passes through the midpoint of the segment [O, f2g(O)] and the midpoint
of [O, f2g+1(O)]. But these midpoints coincide with m2g and m2g+1, respectively,
so [m2g,m2g+1] = γ1. This theorem also implies that the length of the latter
segment is half the translation length of f , i.e., 1

2 ςg. A similar argument shows
that the length of γ2 is 1

2 ςg.

2.2.3 Lower bound for the systole

We now prove that the length of every simple closed geodesic of Mg is at least ςg,
or, equivalently, that the total length of the segments representing such a geodesic
is at least ςg. To this end we consider different types of closed geodesics based on
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Figure 2.2: Two geodesics in the pre-image of γ intersect the fundamental polygon
Dg (left) The intersections are the segments γ1 and γ2, which represent γ (right). The
figure illustrates the situation for the Bolza surface (g = 2).

which “kind” of segments are contained in the sequence. We say that an oriented
hyperbolic line segment between two sides of Dg is a k-segment, 1 ≤ k ≤ 4g − 1,
if its starting point and endpoint are contained in sj and sj+k, respectively, for
some j with 0 ≤ j ≤ 4g − 1, where indices are counted modulo 4g. Furthermore,
we say that the segment is k-separated or has separation k, 1 ≤ k ≤ 2g, if either
the segment itself or the segment with the opposite orientation is a k-segment.
Equivalently, a k-separated segment is either a k-segment or a (4g − k)-segment.
For example, both segments in Figure 2.2 - Right are 1-separated, but γ1 is a
1-segment while γ2 is a 7-segment.

In the derivation of the lower bound for the systole we will use the following
lemma. This lemma will be used in the proof of Proposition 3.18 in Section 3.6 as
well.

Lemma 2.5. For geodesic segments between the sides of Dg the following prop-
erties hold:

1. The length of a segment that has separation at least 4 is at least ςg.
2. The length of a segment that has separation at least 2 is at least 1

2 ςg.
3. Every pair of consecutive 1-separated segments consists of exactly one 1-

segment and one (4g − 1)-segment.
4. The length of two consecutive 1-separated segments is at least 1

2 ςg.
5. A sequence of segments consisting of precisely two 1-separated segments has

length ςg.

Proof. We prove the different properties in the same order as the statement of the
lemma.
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1. Consider a segment γj of separation k ≥ 4. By symmetry of Dg, we can
assume that γj is a segment between s0 and sk. The length of γj is greater
than or equal to the distance between s0 and sk, which is given as the
length of the common orthogonal line segment γ⊥

j between s0 and sk (see
Figure 2.3).

v0

v1

s0

O

vk

vk+1

sk

π
4g

π
4g

arccosh−1(cot( π
4g

))
kπ
4g

1
2
length(γ⊥

j )

kπ
4g

Figure 2.3: Computing the length of γ⊥
j .

To find an expression for length(γ⊥
j ), we draw line segments between the

origin O and s0 and between O and sk. In this way, we obtain a hyperbolic
pentagon with four right-angles and remaining angle kπ

2g . The line segment
from O to s0 is a non-hypotenuse side of an isosceles triangle with angles
π
4g ,

π
4g ,

π
2 , as shown in Figure 2.3. Therefore, [10, Theorem 7.11.3(i)]

cosh(d(O, s0)) =
cos( π

4g )

sin( π
4g )

= cot( π
4g ).

Drawing a line segment from O orthogonal to γ⊥
j , we obtain two quadrilat-

erals, each of which has three right angles and remaining angle kπ
4g . It follows

that [10, Theorem 7.17.1(ii)]

cosh( 12 length(γ
⊥
j )) = cosh(d(O, s0)) sin(

kπ
4g ) = cot( π

4g ) sin(
kπ
4g ) (2.1)

The lower bound for the length of a segment of separation at least 4 fol-
lows from sin(kπ4g ) ≥ sin(πg ) and a direct computation using properties of
trigonometric functions.
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2. Now, consider a segment γj of separation k ≥ 2. Using the same argument
as in Part 1, wee see that formula (2.1) still holds. The lower bound for the
length of γj follows from sin(kπ4g ) ≥ sin( π

2g ) and a direct computation using
properties of trigonometric functions.

3. Consider a pair γ1,γ2 of consecutive 1-separated segments. By symmetry,
we can assume without loss of generality that γ1 is a 1-segment between s0
and s1 (Figure 2.4).

s0

s1

s2g

s2g+1

ax
is(
f 2g

+
1
)

L

p

p′

γ1

γ2

f−12g+1(γ2)

α

α

Figure 2.4: Construction in the proof of Part 3 of Lemma 2.5.

The side-pairing transformation f2g+1 maps the endpoint p of γ1 to the
starting point p′ of γ2. Both p and p′ lie on the same equidistant curve L of
the axis of f2g+1. The curve L intersects all geodesics that are perpendicular
to axis(f2g+1) orthogonally. It can be seen that the angle α between γ1 and
s1 is acute and that γ1 and f−1

2g+1(γ2) lie on opposite sides of L. Moreover,
the parts of D separated by L are f2g+1-invariant (see also Figure 1.1 -
Right). Hence, γ1 and γ2 lie on opposite sides of L as well. We conclude
that the endpoint of γ2 lies on s2g so γ2 is a (4g − 1)-segment.

4. As in Part 3, denote the two segments by γ1 and γ2. By Part 3, we know that
one of γ1 and γ2 is a 1-segment and the other is a (4g− 1)-segment. Hence,
we can assume without loss of generality that γ1 is a 1-segment between s0
and s1 and γ2 is a (4g− 1)-segment between s2g+1 and s2g (see Figure 2.5).
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Let x be the distance between p1 and v1 and let α1 be the angle between
γ1 and s0. The distance between p′

1 and v2g+1 is ℓ − x, where the length
ℓ of the sides satisfies cosh( 12ℓ) = cot( π

4g ). Let α2 be the angle between γ2

and s2g.

s0

s1

s2g

s2g+1

p

p′

γ1

γ2

α1

α2

x

`− x

Figure 2.5: Construction in the proof of Part 4 of Lemma 2.5.

By the hyperbolic sine rule,

sinh(length(γ1))

sin( π
2g )

=
sinh(x)

sin(α1)
,

so
sinh(length(γ1)) ≥ sinh(x) sin( π

2g ).

In a similar way, we obtain

sinh(length(γ2)) ≥ sinh(ℓ− x) sin( π
2g ).

We minimize

f(x) := arcsinh(sinh(x) sin( π
2g )) + arcsinh(sinh(ℓ− x) sin( π

2g ))

subject to 0 < x < ℓ, as this provides a lower bound for length(γ1 ∪ γ2).
Because

d2

dx2
arcsinh(sinh(x) sin( π

2g )) =
sin( π

2g ) cos
2( π

2g ) sinh(x)

(sin2( π
2g ) sinh

2(x) + 1)3/2
> 0
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for all x > 0, the function x 7→ arcsinh(sinh(x) sin( π
2g )) is strictly convex.

It follows that f is also strictly convex, so it has a unique global minimum.
The derivative of f is given by

f ′(x) =
sin( π

2g ) cosh(x)

(sin2( π
2g ) sinh

2(x) + 1)1/2
−

sin( π
2g ) cosh(ℓ− x)

(sin2( π
2g ) sinh

2(ℓ− x) + 1)1/2
.

It is clear that f ′( 12ℓ) = 0, so x = 1
2ℓ is the unique minimizer with minimum

value f( 12ℓ) = 2 arcsinh(sinh( 12ℓ) sin(
π
2g )). By the discussion above, this

implies that

sinh( 12 length(γ1 ∪ γ2)) ≥ sinh( 12ℓ) sin(
π
2g ).

Then

cosh(length(γ1 ∪ γ2)) = 2 sinh2( 12 length(γ1 ∪ γ2)) + 1,

≥ 2 sinh2( 12ℓ) sin
2( π

2g ) + 1,

= 2(cot2( π
4g )− 1) sin2( π

2g ) + 1,

= (1 + 2 cos( π
2g ))

2,

from which we conclude that length(γ1 ∪ γ2) >
1
2 ςg.

5. Now, using the notation from Part 4, assume that γ = γ1 ∪ γ2. By the
argument in Part 4, the length of γ is minimal when p1 is the midpoint of
s1 and p′

1 is the midpoint of s2g+1, given any location of the starting point
of γ1 and the endpoint of γ2. By symmetry of the argument, it follows that
length(γ) is minimal when the starting point of γ1 is the midpoint of s0 and
the endpoint of γ2 is the midpoint of s2g. It can be seen that the resulting
curve is the curve constructed in the proof of Lemma 2.3, the length of which
is ςg. This finishes the proof.

The lower bound for the systole follows from the following result.

Lemma 2.6. Every closed geodesic on Mg has length at least ςg.

Proof. It is sufficient to show that every sequence of segments representing a closed
geodesic on Mg has length at least ςg. Let γ be a sequence of segments. We
distinguish between the following four types:

1. γ contains at least one segment that has separation at least 4,
2. γ contains at least two segments that have separation 2 or 3 and all other

segments are 1-separated,
3. γ contains exactly one segment that has separation 2 or 3 and all other

segments are 1-separated,



32 CHAPTER 2. SYSTOLES OF HYPERBOLIC SURFACES

4. all segments of γ are 1-separated.

It is straightforward to check that every sequence of segments is of precisely
one type.

First, suppose that γ is of Type 1 or 2. Then, it follows directly from Part 1
and 2 of Lemma 2.5 that length(γ) ≥ ςg.

Second, suppose that γ is of Type 3. It is not possible to form a closed geodesic
with a segment of separation 2 or 3 and just one segment of separation 1, so we can
assume that there are at least two 1-separated segments. In the cyclic ordering
of the segments, these 1-separated segments are consecutive, so it follows from
Part 4 of Lemma 2.5 that their combined length is at least 1

2 ςg. By Part 2 of
Lemma 2.5 the length of the segment of separation 2 or 3 is at least 1

2 ςg as well,
so we conclude that length(γ) ≥ ςg.

Finally, suppose that γ is of Type 4. By Part 3 of Lemma 2.5 every 1-segment
is followed by a (4g − 1)-segment and reversely, so in particular the number of 1-
segments and (4g−1)-segments is identical. Therefore, the number of 1-separated
segments in γ is even (and at least two). If the number of 1-separated segments
is exactly two, then length(γ) = ςg by Part 5 of Lemma 2.5. If the number of
1-separated segments is at least four, then length(γ) ≥ ςg, since every pair of
consecutive 1-separated segments has combined length at least 1

2 ςg by Part 4 of
Lemma 2.5.

This finishes the proof.

2.3 Systole of hyperelliptic surfaces

In the previous section, we computed the value of the systole of generalized Bolza
surfaces. These surfaces are examples of hyperelliptic surfaces, i.e., hyperbolic sur-
faces of genus g that have an isometry ψ with ψ2 = id and with 2g+2 fixed points.
In particular, all hyperbolic surfaces of genus 2 are hyperelliptic [67]. In this sec-
tion, we will show that we can use the same reasoning as in Section 2.2 to compute
the systole of hyperelliptic surfaces in some neighborhood of the generalized Bolza
surfaces (Theorem 2.8).

2.3.1 Neighborhood of hyperelliptic surfaces

Before we state the main result of this section in Section 2.3.2, we first describe
more precisely what we mean by a neighborhood of hyperelliptic surfaces.

Every hyperelliptic surface of genus g can be represented by a 4g-gon in the
Poincaré disk in the following way, based on a similar representation of hyper-
bolic surfaces of genus 2 [1]. Given a set of 2g points z0, z1, . . . ,z2g−1 in D with
arguments

0 = arg(z0) < arg(z1) < · · · < arg(z2g−1) < π,

set zj = −zj−2g for j = 2g, . . . , 4g − 1 and let P = [z0, z1, . . . ,z4g−1] be the
resulting geodesic 4g-gon. We call P admissible if the interior angle sum is 2π. By
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pairing opposite sides of an admissible polygon P we obtain a smooth hyperelliptic
surface MP . Moreover, it is known that every hyperelliptic surface M of genus g
corresponds to an admissible 4g-gon P , i.e., M = MP for some admissible 4g-gon
P [67, Theorem 14].

More precisely, there is a one-to-one correspondence between the set of all ad-
missible 4g-gons and the subset of the Teichmüller space Tg consisting of marked
hyperelliptic surfaces. In this correspondence, the marking of a hyperelliptic sur-
face is given by the closed geodesics represented by the sides of the admissible
polygon. Henceforth, we will denote the marked hyperelliptic surface correspond-
ing to the admissible polygon P by MP . Note that different admissible polygons
may correspond to the same isometry class of hyperbolic surfaces, just like mul-
tiple marked hyperbolic surfaces may correspond to the same isometry class. For
example, rotations around the origin of an admissible polygon that map zj for
j ∈ {1, . . . , 2g − 1} to the real axis do not change the isometry class of the corre-
sponding hyperelliptic surface.

We define an ε-neighborhood of the generalized Bolza surfaces in the set of
(marked) hyperelliptic surfaces in the following way. In the definition, distMg

=
arccosh(cot2( π

4g )) denotes the distance between O and a vertex of Dg.

Definition 2.7. Let 0 < ε < 1. The ε-neighborhood of Mg in the set of hyperel-
liptic surfaces is the set of (marked) hyperelliptic surfaces MP represented by an
admissible 4g-gon P satisfying

|zj | ∈ ((1− ε) distMg
, (1 + ε) distMg

),

arg(zj+1)− arg(zj) ∈ ((1− ε) π
2g , (1 + ε) π

2g ).

We denote the ε-neighborhood of Mg by Mg(ε).

An illustration of a hyperelliptic surface in a neighborhood of Mg for g = 2 is
given in Figure 2.6.

2.3.2 Systole of hyperelliptic surfaces in a neighborhood of
bounded size

The next theorem is the main result of this section.

Theorem 2.8. There exists a positive constant c ∈ R such that for any g ≥ 2
and MP ∈Mg(c(log(g))

−1) a systole of MP is the projection onto MP of a single
segment or a sequence of two 1-separated segments between the sides of P .

We checked numerically that c = 0.04 is sufficient for 2 ≤ g ≤ 104. For more
details on obtaining an estimate for c, we refer to the discussion at the end of
Section 2.3.4. Moreover, we do not claim that the O((log(g))−1) order of growth
is necessary; it could be the case that the statement is also true for Mg(ε) where
ε has a larger order of growth.
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z0

z1

z2

z3

z4

z5

z6

z7

Figure 2.6: The Bolza surface M2 (black) with a hyperelliptic surface (red) in a neigh-
borhood of M2.

To illustrate the idea of the proof, let us recall the proof of Theorem 2.1 stating
that sys(Mg) = ςg. We first found a closed geodesic with length ςg (Lemma 2.3)
and then showed that sys(Mg) ≥ ςg (Lemma 2.6). The main ingredients of the
proof of Lemma 2.6 were lower bounds for the length of a k-segment for k ≥
2 and the length of a pair of consecutive 1-segments presented in Lemma 2.5.
The trigonometric computations from which these lower bounds followed, were
relatively simple due to the rotational symmetry of Dg.

However, an admissible polygon in some neighborhood ofMg does not necessar-
ily have the same rotational symmetry. Therefore, we will derive lower bounds on
several trigonometric quantities of an arbitrary admissible polygon in a neighbor-
hood Mg(ε) of Mg (as function of ε) in Section 2.3.3. Using these lower bounds, we
will present an extension of Lemma 2.5 to hyperelliptic surfaces in a neighborhood
of Mg in Section 2.3.4. Finally, the proof of Theorem 2.8 is given in Section 2.3.5.

Remark 2.9. In Section 3.6.2 we will introduce the inclusion property, an im-
portant ingredient for defining the data structure of the algorithm to compute
Delaunay triangulations of the generalized Bolza surfaces. The proof of the in-
clusion property follows more or less directly from the statements in Lemma 2.5
that provide lower bounds for the lengths of k-segments for k ≥ 2 and pairs of
1-separated segments. We will see in the proof of Theorem 2.8 that these lower
bounds are also satisfied for all admissible polygons corresponding to hyperelliptic
surfaces in Mg(c(log(g))

−1). Hence, the inclusion property is satisfied for these
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hyperelliptic surfaces as well.

2.3.3 Trigonometry of admissible polygons

As mentioned, the main ingredients of the proof of sys(Mg) ≥ ςg in Lemma 2.6
were lower bounds for the length of a k-segment for k ≥ 2 and the length of a
pair of consecutive 1-segments in Lemma 2.5. The lower bound for the length
of a k-segment for g ≥ 2 was proved using the angle between the line segments
connecting O with consecutive midpoints and the distance between O and the
sides of Dg. By the rotational symmetry of Dg, these lengths and angles were all
identical, but for an admissible polygon in Mg(ε) this is not necessarily the case.
Therefore, for a given admissible polygon P let mj be the orthogonal projection
of O onto side [zj , zj+1] and let mj = d(O,mj) for j = 0, . . . , 4g − 1. Note that
if MP = Mg then the mj are the midpoints of the sides of P = Dg. Furthermore,
we define ξj to be the angle between [O,mj ] and [O,mj+1] (see Figure 2.7 (left)).
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Figure 2.7: Definitions of mj and ξjk (left) and dj and αj (right).

Similarly, the lower bound of the length of a pair of consecutive 1-segments
was proved using the length of the sides and the angle between adjacent sides of
Dg. Hence, let dj = d(zj , zj+1) and let αj be the angle between sides [zj−1, zj ]
and [zj , zj+1] for j = 0, . . . , 4g − 1 (see Figure 2.7 (right)).

The following lemma states lower boundsmmin, ξmin,dmin and αmin formj , ξj , dj
and αj , respectively, as function of ε.

Lemma 2.10. Let 0 < ε < 1 and let P be an arbitrary admissible polygon in
Mg(ε). Then the following four properties hold:
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1. The distances from O to the sides satisfy mj > mmin for all j = 0, . . . , 4g−1,
with

mmin = arctanh(tanh((1− ε) distMg
) cos((1 + ε) π

4g )). (2.2)

2. The angles between consecutive midpoints satisfy ξj > ξmin for all j =
0, . . . , 4g − 1, with

ξmin = 2η, (2.3)

where η is the solution of

cos(η) =
tanh((1 + ε) distMg

)

tanh((1− ε) distMg )
· cos

(
(1− ε) π

2g − η
)
.

3. The lengths of the sides satisfy dj > dmin for all j = 0, . . . , 4g − 1, with

dmin = arccosh(cosh2((1− ε) distMg )− sinh2((1− ε) distMg ) cos((1− ε) π
2g )).

(2.4)

4. The angles between the sides satisfy αj > αmin for all j = 0, . . . , 4g−1, with

αmin = 2arcsin

(
sinh(arctanh(tanh((1 + ε) distMg

) cos(η′)))

sinh((1 + ε) distMg )

)
, (2.5)

where η′ is the solution of

cos(η′) =
tanh((1− ε) distMg

)

tanh((1 + ε) distMg
)
· cos

(
(1 + ε) π

2g − η′
)
.

Proof.

1. Let j = 0, . . . , 4g− 1 and consider the triangle [O,zj , zj+1] (see Figure 2.8).
By symmetry of the argument, we may assume without loss of generality
that |zj | ≥ |zj+1|. For fixed |zj+1| and any angle arg(zj+1) − arg(zj)
the distance mj to side [zj , zj+1] is monotonically increasing as function of
|zj+1|. Therefore, mj is minimal when |zj+1| is minimal, i.e., when |zj | =
|zj+1|. Then, we know that in the right-angled triangle [O,mj , zj ]

tanh(mj) = tanh(|zj |) cos( 12 (arg(zj+1)− arg(zj))),

so mj is monotonically increasing as function of |zj | and monotonically de-
creasing as function of arg(zj+1)− arg(zj). Therefore, a lower bound mmin

is obtained by substituting |zj | = (1− ε) distMg
and arg(zj+1)− arg(zj) =

(1 + ε) π
2g . The result follows.
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O
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mj
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Figure 2.8: Trigonometry in a triangle contained in P .

2. Again, consider the triangle [O,zj , zj+1] for j = 0, . . . , 4g − 1. For k = 0, 1,
let ηjk be the angle between [O,mj ] and [O,zj+k]. To show that ξj > ξmin =
2η, it is sufficient to show that ηj1 > η by symmetry of the argument. In
the right-angled triangles [O,mj , zj ] and [O,mj , zj+1] we know that

cos(ηj0) =
tanh(d(O,mj))

tanh(|zj |)
,

cos(ηj1) =
tanh(d(O,mj))

tanh(|zj+1|)
,

so that

cos(ηj1) =
tanh(|zj |)
tanh(|zj+1)

cos(ηj0).

Because arg(zj+1)− arg(zj) = ηj0 + ηj1, we see that in this case ηj1 is the
solution η of

cos(η) =
tanh(|zj |)
tanh(|zj+1)

cos (arg(zj+1)− arg(zj)− η) .

Therefore, ηj1 is minimal when |zj | is maximal, |zj+1| is minimal and
arg(zj+1) − arg(zj) is minimal, i.e., when |zj | = (1 + ε) distMg

, |zj+1| =
(1− ε) distMg and arg(zj+1)− arg(zj) = (1− ε) π

2g . This proves the desired
formula.

3. Let j = 0, . . . , 4g− 1 and consider the triangle [O,zj , zj+1]. As in the proof
of the formula for mmin, we may assume that |zj | ≥ |zj+1| by symmetry of
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the argument. For fixed |zj+1| and any angle arg(zj+1) − arg(zj) the side
[zj , zj+1] has minimal length when |zj | is minimal, i.e., when |zj | = |zj+1|.
Applying the hyperbolic cosine rule yields

cosh(dj) = cosh2(|zj |)− sinh2(|zj |) cos(arg(zj+1)− arg(zj)).

It can be seen that dj is a monotonically increasing function of |zj | and
arg(zj+1) − arg(zj). Therefore, a lower bound dmin is obtained by substi-
tuting |zj | = (1− ε) distMg

and arg(zj+1)− arg(zj) = (1− ε) π
2g . The result

follows.

4. Again, consider the triangle [O,zj , zj+1] for j = 0, . . . , 4g − 1. For k = 0, 1,
let αjk be the angle between [O,zj+k]. To prove that αj > αmin for αmin as
in Equation (2.5) it is sufficient to show that

αj0 > arcsin

(
sinh(arctanh(tanh((1 + ε) distMg

) cos(η′)))

sinh((1 + ε) distMg
)

)
,

where η′ is as stated in the result. By the hyperbolic sine rule we know that

sin(αj0)

sinh(|zj+1|)
=

sin(arg(zj+1)− arg(zj))

sinh(d(zj , zj+1))
.

For any fixed |zj+1| and arg(zj+1) − arg(zj), d(zj , zj+1) is an increasing
function of |zj |, so αj0 is a decreasing function of |zj |. Therefore, αj0 is
minimal for |zj | = (1+ ε) distMg

. By a similar argument, it can be seen that
αj0 is an increasing function of |zj+1| for any fixed |zj | and arg(zj+1) −
arg(zj), so αj0 is minimal for |zj+1| = (1 − ε) distMg . Hence, to find a
lower bound for αj0 we can assume without loss of generality that |zj | =
(1 + ε) distMg

and |zj+1| = (1− ε) distMg
. Now, because

cosh(|zj |) = cot(αj0) cot(ηj0),

and because we have fixed |zj |, αj0 is minimal for maximal ηj0. Since we
have fixed |zj | and |zj+1|, it can be seen by a similar reasoning as in the
proof of ξmin that ηj0 is maximal when arg(zj+1)− arg(zj) is maximal, i.e.,
when arg(zj+1)− arg(zj) = (1 + ε) π

2g . Then ηj0 is the solution η′ of

cos(η′) =
tanh((1− ε) distMg )

tanh((1 + ε) distMg
)
· cos

(
(1 + ε) π

2g − η′
)
.

Finally, substituting the expression for mj

tanh(mj) = tanh(|zj |) cos(ηj0),
in

sin(αj0) =
sinh(mj)

sinh(|zj |)
and plugging in |zj | = (1 + ε) distMg and ηj0 = η′ yields the result.
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2.3.4 Line segments between sides of admissible polygons

The lower bounds for mj , ξj , dj and αj given in Lemma 2.10 allow us to state the
following extension of Lemma 2.5 to hyperelliptic surfaces in the neighborhood
Mg(ε). Here, segments of separation k between the sides of an admissible polygon
P are defined in a similar way as for segments between the sides of Dg.

Lemma 2.11. Let 0 < ε < 1 and letmmin, ξmin, dmin and αmin be as in Lemma 2.10.
If

2 sin
(

(g+1)π
12g

)
cosh(mmin) sin(ξmin) > 1, (2.6)

4 sin2
(

(g+1)π
12g

) (
1 + sinh2( 12dmin) sin

2(αmin)
)
> 1, (2.7)

then for every MP ∈ Mg(ε), the admissible polygon P satisfies the following two
properties:

1. The length of a segment of separation at least 2 is larger than 1
2 sys(MP ).

2. The length of two consecutive 1-separated segment is larger than 1
2 sys(MP ).

Proof. First, we show that Inequality (2.6) implies that the length of a segment
of separation at least 2 is at least 1

2 sys(MP ). Let γ be a segment of separation
k ≥ 2 between (without loss of generality) sides [z0, z1] and [zk, zk+1]. The
length of γ is at least the length of the common orthogonal γ⊥ of sides [z0, z1]
and [zk, zk+1]. By symmetry of the argument, we can assume without loss of
generality that m0 ≤ mk. Note that for fixed ξ0+ ξ1+ . . .+ ξk−1, the length of γ⊥

is monotonically increasing as function of mk. Therefore, we may assume without
loss of generality that mk = m0. By a similar computation as in the proof of
Part 1 of Lemma 2.5 we see that

cosh( 12 length(γ
⊥)) = cosh(m0) sin

 1
2

k−1∑
j=0

ξj

 .

Because m0 > mmin and ξj > ξmin, it follows that

cosh( 12 length(γ
⊥)) > cosh(mmin) sin(

1
2kξmin).

Since length(γ) ≥ length(γ⊥) and k ≥ 2, we conclude that

cosh( 12 length(γ)) > cosh(mmin) sin(ξmin). (2.8)

It is known that [9]

cosh( 14 sys(MP )) ≤
1

2 sin
(

(g+1)π
12g

) ,
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which, combined with Inequalities (2.6) and (2.8), yields length(γ) > 1
2 sys(MP ),

as we wanted to show.
Second, we show that Inequality (2.7) implies that the length of two consecutive

1-separated segments is at least 1
2 sys(MP ). Let γ1 ∪ γ2 be a pair of consecutive

1-separated segments. The proof of Part 3 of Lemma 2.5 does not use the metric of
the generalized Bolza surfaces, so this property holds for all hyperelliptic surfaces
as well, i.e., every pair of consecutive 1-separated segments consists of exactly one
1-segment and one (4g − 1)-segment. Therefore, we can assume without loss of
generality that γ1 is a 1-segment between [z0, z1] and [z1, z2] and γ2 is a (4g−1)-
segment between [z2g+1, z2g+2] and [z2g, z2g+1]. By the same reasoning as in
Part 4 of Lemma 2.5, it can be shown that

sinh( 12 length(γ1 ∪ γ2)) ≥ sinh( 12d1) sin(α1).

Since d1 > dmin and α1 > αmin, it follows that

cosh( 12 length(γ1 ∪ γ2)) ≥
√

1 + sinh2( 12dmin) sin
2(αmin) (2.9)

Combining

cosh( 14 sys(MP )) ≤
1

2 sin
(

(g+1)π
12g

) ,
with Inequalities (2.7) and (2.9) yields length(γ1∪γ2) >

1
2 sys(MP ), as we wanted

to show.

Given g and ε it is straightforward to check numerically whether Inequali-
ties (2.6) and (2.7) are satisfied. Using a computer algebra program we found
that they are satisfied for 2 ≤ g ≤ 104 and ε = 0.04(log(g))−1. The constant 0.04
is optimal up to two decimal digits: if ε = 0.05(log(g))−1, then Inequality (2.7)
fails for g ≥ 14. In the next section we will see that Inequalities (2.6) and (2.7)
being satisfied is sufficient for proving the result of Theorem 2.8. Therefore, taking
c = 0.04 in the statement of Theorem 2.8 is sufficient for 2 ≤ g ≤ 104.

2.3.5 Proof of Theorem 2.8

Proof. (Theorem 2.8)
If for some 0 < ε < 1 Inequalities (2.6) and (2.7) are satisfied, then segments of
separation at least 2 and pairs of consecutive 1-separated segments have length at
least 1

2 sys(MP ) by Lemma 2.11. Therefore, we can reuse the proof of Lemma 2.6
to show that a systole of MP corresponds to either a single segment (of separation
2g) or a pair of consecutive 1-separated segments between the sides of P .

Hence, it is sufficient to prove that Inequalities (2.6) and (2.7) are satisfied for
ε = c(log(g))−1 for some positive c ∈ R. We do this by approximating each of the
terms in these inequalities depending on ε by their 0-th order Taylor expansion
and giving an upper bound for the estimation error. The remainder of the proof
is given in Appendix A.1.
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2.4 Word length of systoles

Recall from the proof of Theorem 2.1 (in particular, from the construction in
Lemma 2.3) that the closed geodesics with length sys(Mg) on the generalized Bolza
surface Mg of genus g ≥ 2 correspond to elements of Γg consisting of the product
of precisely two generators. More generally, given an arbitrary hyperbolic surface
M = D/Γ, one could ask whether there exists an upper bound for the number
of generators that need to be multiplied to obtain an element of Γ corresponding
to a systole of M. The number of generators that need to be multiplied is called
the word length of the element of Γ (see Definition 2.14). For convenience, we
abbreviate ‘element of Γ corresponding to a systole of M’ to systole element of
Γ. The following theorem states that there is no bound on the world length of a
systole element if there are no restrictions on the generating set of Γ.

Theorem 2.12. Let M = D/Γ be a closed hyperbolic surface of genus g ≥ 2.
For every Ng ∈ N there exists a generating set G of Γ consisting of hyperbolic
translations, such that the word length of every systole element of Γ with respect
to G is at least N .

The idea of the proof is the following. First, we consider a ‘standard’ generating
set A of Γ satisfying the commutator relation. We will modify this generating set
to obtain another generating set Gm with m ∈ N. Second, it is known that there
are finitely many conjugacy classes of systole elements of Γ. We define the notion
of a G-chain for a generator G ∈ A and use the length of G-chains for different
values of G to describe systole elements. This allows us to find an m such that
G = Gm has the desired properties.

We will first introduce some notions from geometric group theory. First, note
that the Fuchsian group Γ is the fundamental group of the closed hyperbolic surface
M = D/Γ of genus g ≥ 2. Let A = {A1, B1, . . . , Ag, Bg} be the usual generating
set for the fundamental group that satisfies the relation [A1, B1] . . . [Ag, Bg] = 1,
where [Ai, Bi] denotes the commutator of Ai and Bi. Every element X ∈ Γ can
be represented as a word X = Xϵ1

1 · · ·Xϵℓ
ℓ , where Xi ∈ A and ϵi = ±1.

Definition 2.13. We call Xϵ1
1 · · ·Xϵℓ

ℓ a reduced word if for all i = 1, . . . , ℓ − 1
either Xi ̸= Xi+1 or ϵi = ϵi+1. We call Xϵ1

1 · · ·Xϵℓ
ℓ a cyclically reduced word if

every cyclic permutation of the word is reduced.

Any word can be written as a reduced word after reduction, i.e., deleting all
instances of GG−1 or G−1G for G ∈ A. Similarly, any word can be written as a
cyclically reduced word by cyclic reduction. These representations are not unique
as we can add or delete instances of the group relation. Furthermore, from the
process of reduction it is clear that a word is reduced if and only if all subwords
consisting of two consecutive generators are reduced.

We now define the word length of an element of A.
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Definition 2.14. If X = Xϵ1
1 · · ·Xϵℓ

ℓ is a cyclically reduced word, then we call
ℓA(X) := ℓ the word length of X with respect to the generating set A.

In some texts, the word length of X is defined using the reduction of X instead
of the cyclic reduction of X. Sometimes, word length is defined without any
reduction whatsoever. For example, the word length of A1B1B

−1
1 A2A

−1
1 is 5, 3

or 1 when the word length is defined without reduction, with reduction and with
cyclic reduction respectively. Since cyclic permutation of a word can be obtained as
a conjugation in the group Γ, there is a natural correspondence between cyclically
reduced words and conjugacy classes of words in the group Γ. Note, however, that
this is not a one-to-one correspondence, as instances of the group relation can be
added or deleted without changing the conjugacy class. Nevertheless, this is the
reason that we use cyclic reduction to define word length.

Instead of A, consider a different generating set G = {S1, T1, . . . , Sg, Tg}. Since
by definition Si and Ti are elements of Γ, we can write Si and Ti as words in A.
Now, given a representation of a word X in G, we can write X as word in A by
substituting the representations of Si and Ti in A. Note that X being reduced as
word in G does not mean that X is also reduced as word in A.

Example 2.15. Let g = 1. Let S1 = A1 and T1 = A1B1. Clearly, G = {S1, T1}
is a generating set for the group generated by A = {A1, B1}. Consider the word
X = S−1

1 T1. Observe that X is reduced as word in G. Using the representations
of S1 and T1 as words in A, we see that X = A−1

1 A1B1. In particular, X is not
reduced as word in A.

To prove Theorem 2.12 we use the generating set defined below.

Definition 2.16. Let A be the generating set defined above. Let m ∈ N. Define
Gm = {S1, T1, . . . , Sg, Tg}, where

Si = Bm
i Ai,

Ti = (Bm
i Ai)

mBi.

It is straightforward to check that Gm is indeed a generating set. The generating
set Gm was defined in such a way that Si and Ti contain sequences ofm consecutive
letters Bi. More generally, we define a G-chain in a word X as a sequence of
consecutive letters G in a cyclically reduced representation of X.

Definition 2.17. Let X = Xϵ1
1 · · ·Xϵℓ

ℓ be cyclically reduced. We say that X
contains a G-chain of length L if there exists i = 1, . . . , ℓ such that Xj = G for
j = i, i+ 1, . . . , i+ L− 1 and ϵi = ϵi+1 = . . . = ϵi+L−1 = 1, where the indices are
counted modulo ℓ.

A G−1-chain is defined similarly, but with ϵi = . . . = ϵi+L−1 = −1. The
existence of G-chains of a certain length may depend on the representation of X.
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Example 2.18. Consider g = 1. Consider the word X = A2
1. Clearly, X con-

tains a A1-chain of length 2. However, since A1B1A
−1
1 B−1

1 = 1, X can also be
represented by A2

1 = A1 · A1 = A1B1A1B
−1
1 . With this representation, X only

contains a A1-chain of length 1 (in fact, it contains two such chains). Note that it
is important that both representations are cyclically reduced. For example, A3

1A
−1
1

would also be a representation of X, but it is not reduced. We want to avoid this,
because in this way we would be able to construct A1-chains of arbitrarily large
lengths.

The generators S±1
i and T±1

i of Gm contain B±1
i -chains of length m. The

following lemma states that the same holds for products of at most m generators
in Gm.

Lemma 2.19. Let X = Xϵ1
1 · · ·Xϵℓ

ℓ with Xi ∈ Gm be a cyclically reduced word in

Gm. Let X̃ be the representation of X as word in A obtained from substituting the
representations of the generators Si and Ti as words in A. If ℓ ≤ m, then there
exists a cyclical reduction of X̃ that contains a B±1

j -chain of length at least m for
some j = 1, . . . , g.

Proof. Because X is a non-trivial word, there exists j such that X contains S±1
j or

T±1
j . Because each of S±1

j and T±1
j contains at least one B±1

j -chain of length m, it

is sufficient to show that at least one of these B±1
j -chains remains after cyclically

reducing X̃.
First, suppose that X contains at least one Tj and no T−1

j (the proof for X

containing at least one T−1
j and no Tj is similar, so we omit it). Every Tj contains

m Bj-chains of length m. Because X does not contain any T−1
j , every B−1

j -chain
of length m that may possibly reduce one of the Bj-chains of length m of Tj is
contained in some S−1

j . Because X is the product of at most m generators, it

contains at most m − 1 generators S−1
j in addition to Tj , so at most m − 1 Bj-

chains of length m are possible reduced in this way. It follows that at least one
Bj-chain of length m remains in a cyclical reduction of X̃.

Second, suppose that X contains at least one Tj and at least one T−1
j . The

B−1
j -chains of length m in T−1

j can only be involved in a reduction with the Bj-

chains of length m in Tj if Tj and T−1
j are separated by a subword W of X that

reduces to 1 when cyclically reducing X̃. Because X is cyclically reduced, this
can only occur if W is the group relation (or a product of group relations), but a
straightforward computation shows that the group relation in terms of G consists
of (far) more thanm generators. Therefore, the B−1

j -chains of lengthm in T−1
j are

not involved in a reduction with the Bj-chains of length m in Tj . Again, because
every S−1

j in X reduces at most one Bj-chain of length m in Tj , we conclude that

at least one Bj-chain of length m remains in X̃.
Third, suppose that X does not contain any Tj nor T−1

j . Then X contains Sj

or S−1
j . We will only treat the case in which X contains at least one Sj , since
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the proof for X containing S−1
j is similar. The Sj in X contains one Bj-chain of

length m. Because X does not contain any Tj , the Bj-chain of length m in Sj

can only be reduced by a B−1
j -chain in S−1

j . Similar to the argument above for Tj
and T−1

j , a Bj-chain of length m in Sj can only be involved in a reduction with

a B−1
j -chain of length m in S−1

j if they are separated by a subword of X that

reduces to 1 when cyclically reducing X̃. Because X is a product of at most m
generators, this is not possible for X, so we conclude that at least one Bj-chain

of length m remains in X̃ after cyclical reduction.

Now, we give a proof of Theorem 2.12.

Proof. Let A = {A1, B1, . . . , Ag, Bg} be the standard generating set as before.
Let N ∈ N. Up to conjugation there are only finitely many elements of Γ, say
W1, . . . ,Wn, corresponding to systoles of M. For each Wj , let LG(Wj) be the
length of the maximal G-chain contained in any cyclical reduction of Wj . This
number is well-defined, since it is not possible to construct arbitrary long G-
chains in a cyclical reduction of Wj by adding or subtracting instances of the
group relation. Then, choose m ∈ N such that

m > max{N,LG(Wj) : G ∈ A, j = 1, . . . , n}.

We claim that G := Gm is the generating set that we are looking for. Consider an
arbitrary Wj . We will show that every representation of Wj in G is the product of
at least N generators. Represent Wj = Xϵ1

1 · · ·Xϵℓ
ℓ as a cyclically reduced (non-

trivial) word in G, i.e., Xi ∈ G. Consider any Bi ∈ A. By definition of m, we
know that the longest Bi-chain inWj has length smaller than m. By Lemma 2.19,
we see that ℓ > m. Since m > N , we conclude that ℓ > N , which finishes the
proof.



Chapter 3

Computing Delaunay
triangulations of generalized Bolza
surfaces

3.1 Introduction

Lawson’s well-known incremental algorithm that computes Delaunay triangula-
tions using edge flips in the Euclidean plane [52] has recently been proved to
generalize on hyperbolic surfaces [30]. However, the experience gained in the
Cgal project for many years has shown that Bowyer’s algorithm [19] leads to a
cleaner code, much easier to maintain; there is actually work in progress in Cgal
to replace Lawson’s flip algorithm, in triangulation packages that are still using
it, by Bowyer’s algorithm. In the context of quotient spaces Bowyer’s algorithm
was used already in the Cgal packages for 3D flat quotient spaces [23] and for the
Bolza surface [46]. To the best of our knowledge, the latter package is the only
available software for a hyperbolic surface. The advantages of Bowyer’s algorithm
largely compensate the constraint that it intrinsically requires that the Delaunay
triangulation be a simplicial complex.

In this chapter, we study the extension of this approach to the generalized
Bolza surfaces. For a set of points Q ⊂M, let δ(Q) be the diameter of the largest
disks in D that do not contain any point in π−1(Q). In Section 3.2 we recall the
following validity condition [24, 16]: If a finite set Q of points on the surface M
satisfies the inequality

δ(Q) < 1
2 sys(M) (condition (3.1) in Proposition 3.2)

then Bowyer’s algorithm can be extended to the computation of the Delaunay
triangulation of any finite set of points S on M containing Q. Before actually
inserting the input points, the algorithm performs a preprocessing step consisting
of computing the Delaunay triangulation of an appropriate (but small) set Q

45
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satisfying this validity condition; following the terminology of previous papers [16,
24], we refer to the points of Q as dummy points. When sufficiently many and
well-distributed input points have been inserted, the validity condition is satisfied
without the dummy points, which can then be removed. This approach was used
in the Cgal package for the Bolza surface M2 [45, 46].

Other practical approaches for (flat) quotient spaces start by computing in
a finite-sheeted covering space [24] or in the universal covering space [62], thus
requiring the duplication of some input points. In contrast to this approach,
our algorithm proceeds directly on the surface, thus circumventing the need for
duplicating any input points. While the number of copies of duplicated points in
approaches using covering spaces is small, the number of duplicated input points
is always much larger than the number of dummy points that could instead be
added to the set of input points in our approach. Moreover, to the best of our
knowledge, the number of required copies in the case of hyperbolic surfaces is
largely unknown; first bounds have been obtained recently [29].

Results.
We describe the extension of Bowyer’s algorithm to the case of the generalized
Bolza surface Mg in Section 3.2. Then, we derive bounds on the number of dummy
points necessary to satisfy the validity condition (Propositions 3.4 and 3.5 in Sec-
tion 3.3), yielding the following result:

Theorem 3.1. The number of dummy points that must be added on Mg to satisfy
the validity condition (3.1) grows as Θ(g).

Because the validity condition depends on the systole of a hyperbolic surface,
that is, on a global property of the surface, the resulting dummy point set might
contain more dummy points than necessary in parts of the surface that are far from
small non-contractible closed curves. Therefore, we will consider a local validity
condition that does not depend on the systole of the hyperbolic surface, but on the
local systole, i.e., the length of the smallest non-contractible closed curve passing
through a given point on the hyperbolic surface. In Section 3.4 we briefly discuss a
local validity condition and give a lower bound for the number of resulting dummy
points.

In Section 3.5 we propose two algorithms to compute dummy points. For ease
of computation, these algorithms depend on the validity condition (not on the
local validity condition). The first algorithm is based on the well-known Delau-
nay refinement algorithm for mesh generation [66]. Using a packing argument,
we prove that it provides an asymptotically optimal number of dummy points
(Theorem 3.12). The second algorithm modifies the refinement algorithm so as
to yield a symmetric dummy point set, at the expense of a slightly larger output
size Θ(g log g) (Theorem 3.13); this symmetry may be interesting for some appli-
cations [25]. The two algorithms have been implemented and we quickly present
results for small genera g = 2 and g = 3.
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Finally, in Section 3.6, we describe the data structure that we are using to
support the extension of Bowyer’s algorithm to generalized Bolza surfaces. We
also discuss the algebraic degree of the predicates used in the computations and
present experimental results.

3.2 Computing Delaunay triangulations

3.2.1 Bowyer’s algorithm in the Euclidean plane

There exist various algorithms to compute Delaunay triangulations in Euclidean
spaces. Bowyer’s algorithm [19, 75] has proved its efficiency in Cgal [47].

Let us focus here on the two-dimensional case. Let P be a set of points in the
Euclidean plane E and DTE(P) its Delaunay triangulation. Let p ̸∈ P be a point
in the plane to be inserted in the triangulation. Bowyer’s algorithm performs the
insertion as follows.

1. Find the set of triangles of DTE(P) that are in conflict with p, i.e., whose
open circumcribing disks contain p;

2. Delete each triangle in conflict with p; this creates a “hole” in the triangu-
lation;

3. Repair the triangulation by forming new triangles with p and each edge of
the hole boundary to obtain DTE(P ∪ {p}).

Degeneracies can be resolved using a symbolic perturbation technique, which ac-
tually works in any dimension [32].

An illustration is given in Figure 3.1. The first step of the insertion of p uses

p

Figure 3.1: Insertion of a point in a Delaunay triangulation with Bowyer’s incremental
algorithm.

geometric computations, whereas the next two are purely combinatorial. This
is another reason why this algorithm is favored in Cgal: it allows for a clean
separation between combinatorics and geometry, as opposed to an insertion by
flips, in which geometric computations and combinatorial updates would alternate.

Note that the combinatorial part heavily relies on the fact that the union of
the triangles of DTE(P) in conflict with p is a topological disk. We will discuss
this essential property in the next section.
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3.2.2 Delaunay triangulations of points on hyperbolic surfaces

Let M = D/Γ be a hyperbolic surface, as introduced in Section 1.1.6, with the
associated projection map π : D→M, and F ⊂ D a fundamental domain.

Let us consider a triangle t and a point p on M. The triangle t is said to be
in conflict with p if the circumscribing disk of one of the triangles in π−1(t) is
in conflict with a point of π−1(p) in the fundamental domain. As noticed in the
literature [14], the notion of conflict in D is the same as in E, since for the Poincaré
disk model, hyperbolic circles are Euclidean circles (see Section 1.1.2).

Let us now consider a finite set P of points on the surface M and a partition
of M into triangles with vertex set P. Assume that the triangles of the partition
have no conflict with any of the vertices. Let p ̸∈ P be a point on M. The region
Cp formed by the union of the triangles of the partition that are in conflict with
p might not be a topological disk (see Figure 3.2). In such a case, the last step
of Bowyer’s algorithm could not directly apply, as there are multiple geodesics
between p and any given point on the boundary of Cp.

?

?

p

Figure 3.2: Bowyer’s insertion is not well defined when the conflict region is not a
topological disk.

In order to be able to use Bowyer’s algorithm on M, the triangles on M without
conflict with any vertex, together with their edges and their vertices, should form
a simplicial complex. In other words, the graph of edges of the triangles should
have no loops (1-cycles) or multiple edges (2-cycles).

For a set of points Q ⊂M we denote by δ(Q) the diameter of the largest disks
in D that do not contain any point in π−1(Q). We will reuse the following result.

Proposition 3.2 (Validity condition [16]). Let Q ⊂ M be a set of points such
that

δ(Q) < 1

2
sys(M). (3.1)

Then, for any set of points S ⊂ M such that Q ⊆ S, the graph of edges of the
projection π

(
DTD

(
π−1(S)

))
has no 1- or 2-cycles.

This condition is stronger than just requiring that the Delaunay triangulation
of Q be a simplicial complex: if only the latter condition holds, inserting more
points could create cycles in the triangulation [24, Figure 3]; see also Remark 3.8
below.

The proof is easy, we include it for completeness.
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Proof. Assume that condition (3.1) holds. For each edge e of the (infinite) Delau-
nay triangulation DTD

(
π−1(Q)

)
in D, there exists an empty ball having the end-

points of e on its boundary, so, the length of e is not larger than δ(Q). Assume now
that there is a 2-cycle formed by two edges π(e1) and π(e2) in π

(
DTD

(
π−1(Q)

))
,

then the length of the non-contractible loop that they form is the sum of the
lengths of e1 and e2, which is at most 2δ(Q) and smaller than sys(M). This is
impossible by definition of sys(M), so, there is no 2-cycle in π

(
DTD

(
π−1(Q)

))
.

As the diameter of the largest empty disks does not increase with the addition
of new points, the same holds for any set S ⊇ Q.

The most obvious example of a set that does not satisfy the validity condition
is a single point: each edge of the projection is a 1-cycle. The condition is satisfied
when the set contains sufficiently many and well-distributed points.

Definition 3.3. Let S ⊂ M be a set of points satisfying the validity condi-
tion (3.1). The Delaunay triangulation of M defined by S is then defined as
π
(
DTD

(
π−1(S)

))
and denoted by DTM(S).

As for the Bolza surface [16], Proposition 3.2 naturally suggests a way to adapt
Bowyer’s algorithm to compute DTM(P) for a given set P of n points on M:

� Initialize the triangulation as the Delaunay triangulation DTM(Q) of M de-
fined by an artificial set of dummy points Q that satisfies condition (3.1);

� Compute incrementally the Delaunay triangulation DTM(Q∪ P) by insert-
ing the points p1, p2, . . . , pk, . . . , pn of P one by one, i.e., for each new point
pk:

– find all triangles of the Delaunay triangulation DTM(Q∪ {p1, . . . , pk−1})
that are in conflict with pk; let Cpk

denote their union; since Q satisfies
the validity condition, Cpk

is a topological disk;

– delete the triangles in Cpk
;

– repair the triangulation by forming new triangles with pk and each edge
of the boundary of Cpk

;

� Remove from the triangulation all points ofQ whose removal does not violate
the validity condition.

We ignore degeneracies here; they can be resolved as in the case of flat orbit
spaces [24]. Depending on the size and distribution of the input set P, the final
Delaunay triangulation of M might have some or all of the dummy points as
vertices. If P already satisfies the validity condition then no dummy point is left.
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3.3 Bounds on the number of dummy points

In the following proposition we show that a dummy point set exists and give
an upper bound for its cardinality. The proof is non-constructive, but we will
construct dummy point sets for generalized Bolza surfaces in Section 3.5.

Proposition 3.4. Let M be a hyperbolic surface of genus g with systole sys(M).
Then there exists a point set Q ⊂ M satisfying the validity condition (3.1) with
cardinality

|Q| ≤ 2(g − 1)

cosh( 18 sys(M))− 1
.

Proof. Let Q be a maximal set of points such that for all distinct p, q ∈ Q we
have d(p, q) ≥ 1

4 sys(M). By maximality, we know that for all x ∈ M there exists
p ∈ Q such that d(x, p) < 1

4 sys(M): if this is not the case, i.e., if there exists
x ∈M such that d(x, p) ≥ 1

4 sys(M) for all p ∈ Q, then we can add x to Q, which
contradicts maximality of Q. Hence, for any x ∈M the largest disk centered at x
and not containing any points of Q has diameter less than 1

2 sys(M), which implies
δ(Q) < 1

2 sys(M).
To prove the statement on the cardinality of Q, denote the open disk centered at
p ∈ Q with radius R by Bp(R). The disk Bp(

1
8 sys(M)) for p ∈ Q is embedded in

M, because its radius is smaller than 1
2 sys(M). Furthermore, by construction of

Q,
Bp(

1
8 sys(M)) ∩Bq(

1
8 sys(M)) = ∅

for all distinct p, q ∈ Q. Hence, the cardinality of Q is bounded from above by the
number of disjoint embedded disks of radius 1

8 sys(M) that we can fit in M. We
obtain

|Q| ≤ area(M)

area(Bp(
1
8 sys(M)))

=
4π(g − 1)

2π(cosh( 18 sys(M))− 1)
=

2(g − 1)

cosh( 18 sys(M))− 1
.

Similarly, in the next proposition we state a lower bound for the cardinality of
a dummy point set.

Proposition 3.5. Let M be a hyperbolic surface of genus g ≥ 2. Let Q be a set
of points in M such that the validity condition (3.1) holds. Then

|Q| >
(

π

π − 6 arccot(
√
3 cosh( 14 sys(M)))

− 1

)
· 2(g − 1).

The proof uses the following lemma.

Lemma 3.6. Let T be a hyperbolic triangle with a circumscribed disk of radius
R. Then

area(T ) ≤ π − 6 arccot(
√
3 cosh(R)).
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Lemma 3.6 is the special case m = 3 of the following lemma. A proof was
given in my master’s thesis [33], but for completeness it is included it here as well.

Lemma 3.7. Let P be a convex hyperbolic m-gon for m ≥ 3 with all vertices on
a circle with radius R. Then the area of P attains its maximal value A(R) if and
only if P is regular and in this case

coshR = cot
( π
m

)
cot

(
(m− 2)π −A(R)

2m

)
.

Proof. A lower bound for the circumradius of a polygon given the area of the poly-
gon is given in the literature [61]. We use the same approach to prove Lemma 3.7.

Consider m = 3. Divide P into three pairs of right-angled triangles with
angles θj at the center of the circumscribed circle, angles αj at the vertices and
right angles at the edges of P (see Figure 3.3).

Figure 3.3: Division of P into three pairs of right-angled triangles

By the second hyperbolic cosine rule

coshR = cot θj cotαj

for j = 1, 2, 3. Furthermore,
∑3

j=1 θj = π and A = π − 2
∑3

j=1 αj . Therefore,
maximizing A reduces to minimizing

f(θ1, θ2, θ3) =

3∑
j=1

arccot(coshR tan θj) (3.2)

subject to the constraints
∑3

j=1 θj = π and 0 ≤ θj < π, i.e., minimizing (3.2)

over the triangle in R3 with vertices (π, 0, 0), (0, π, 0), (0, 0, π). We parametrize
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this triangle as follows

θ1 = s+ t, θ2 = s− t, θ3 = π − 2s

for 0 < s < π/2 and |t| ≤ s. By (3.2), we can view f as a function of s and t.
First, we fix s and minimize over t. Then

∂

∂t
f(θ1(s, t), θ2(s, t), θ3(s, t)) =

3∑
j=1

− sec2 θj

1 + cosh2R tan2 θj

∂θj
∂t

,

=
sec2 θ2

1 + cosh2R tan2 θ2
− sec2 θ1

1 + cosh2R tan θ1
,

=
1

1 + (cosh2R− 1) sin2 θ2
− 1

1 + (cosh2R− 1) sin2 θ1
.

Therefore, a minimum is obtained if and only if θ1 = θ2, i.e., if and only if t = 0.
In a similar way, we minimize over s.

∂

∂s
f(θ1(s, t), θ2(s, t), θ3(s, t)) =

3∑
j=1

− sec2 θj

1 + cosh2R tan2 θj

∂θj
∂s

,

=
2

1 + (cosh2R− 1) sin2 θ3
− 2

1 + (cosh2R− 1) sin2 θ1
,

and it follows that a minimum is obtained for θ1 = θ3. Therefore, the area of P
obtains its maximal value A(R) if and only if θ1 = θ2 = θ3 = π/3, i.e., if and only
if P is a regular triangle. In this case,

α1 = α2 = α3 =
π −A(R)

6
,

so

cosh(R) = cot θj cotαj = cot
(π
3

)
cot

(
π −A(R)

6

)
.

For arbitrarym ≥ 3, the proof that maximal area is obtained for a regular polygon
is the same but with more parameters. In this case θj = π/m and

A(R) = (m− 2)π − 2mαj ,

so the area A(R) of the regular polygon is given by

cosh(R) = cot θj cotαj = cot
( π
m

)
cot

(
(m− 2)π −A(R)

2m

)
.

We continue with the proof of Proposition 3.5.



3.3. BOUNDS ON THE NUMBER OF DUMMY POINTS 53

Proof. Denote the number of vertices, edges and triangles in the (simplicial) De-
launay triangulation DTM(Q) of M by k0, k1 and k2, respectively. We know that
3k2 = 2k1, since every triangle consists of three edges and every edge belongs to
two triangles. By Euler’s formula,

k0 − k1 + k2 = 2− 2g,

so
k2 = 4g − 4 + 2k0. (3.3)

Consider an arbitrary triangle t in DTM(Q). Because the validity condition
holds, the circumradius of t is smaller than 1

2 sys. By Lemma 3.6, area(t) <

π − 6 arccot(
√
3 cosh( 14 sys)). Because M has area 4π(g − 1), it follows that

k2 >
4π(g − 1)

π − 6 arccot(
√
3 cosh( 12 sys))

. (3.4)

Combining (3.3) and (3.4) yields the result.

To show that our lower and upper bounds are meaningful, we consider the
asymptotics of these bounds for a family of surfaces of which the systoles are 1.
contained in a compact subset of R>0, 2. arbitrarily close to zero, or 3. arbitrarily
large.

1. If the systoles of the family of surfaces are contained in a compact subset
of R>0, which is the case for the generalized Bolza surfaces, then the upper
bound is of order O(g) and the lower bound of order Ω(g). Hence, a minimum
dummy point set has cardinality Θ(g).

2. If sys(M)→ 0, then cosh( 18 sys(M))−1 ∼ 1
2 (

1
8 sys(M))2, so our upper bound

is of order g ·O(sys(M)−2). In a similar way, it can be shown that(
π

π − 6 arccot(
√
3 cosh( 14 sys(M)))

− 1

)
∼ 64π

3
√
3 sys(M)2

,

which means that our lower bound is of order g ·Ω(sys(M)−2). It follows that
in this case a minimum dummy point set has cardinality g ·Θ(sys(M)−2).

3. Finally, consider the case when sys(M)→∞ when g →∞. Since sys(M) ≤
2 log(4g − 2) for all hyperbolic surfaces of genus g (see Lemma 1.14 in Sec-
tion 1.1.8), we only consider the case where sys(M) ∼ C log g for some C
with 0 < C ≤ 2. In this case, we can use coshx ∼ 1

2e
x to deduce that

our upper bound reduces to an expression of order O(g1−
1
8C). Similarly, by

considering the Taylor expansion of the coefficient in the lower bound we see

that the lower bound has cardinality Ω(g1−
1
4C). Of our three cases, this is

the only case in which there is a gap between the stated upper and lower
bound.
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Remark 3.8. Note that the validity condition (3.1) is stronger than just requiring
that the Delaunay triangulation of Q be a simplicial complex. This can also be
seen in the following way. In Chapter 4 we will show that every hyperbolic surface
of genus g has a simplicial Delaunay triangulation with at most 151g vertices. In
particular, this upper bound does not depend on sys(M). Since the coefficient of
g − 1 in the lower bound given in Proposition 3.5 goes to infinity as sys(M) goes
to zero, the minimal number of vertices of a set Q satisfying the validity condition
is strictly larger than the number of vertices needed for a simplicial Delaunay
triangulation of a hyperbolic surface with sufficiently small systole. Moreover,
in the same chapter it is shown that for infinitely many genera g there exists a
hyperbolic surfaceM of genus g which has a simplicial Delaunay triangulation with
Θ(
√
g) vertices. Hence, the number of vertices needed for a simplicial Delaunay

triangulation and a point set satisfying the validity condition differs asymptotically
as well.

3.4 Local validity condition

We have seen in the previous section that the number of dummy points needed to
satisfy the validity condition (3.1) on a hyperbolic surface M with sys(M)→ 0 is
g · θ(sys(M)−2). Recall that a dummy point set satisfies the validity condition if
it is sufficiently dense and well-distributed, where dense and well-distributed are
interpreted with respect to 1

2 sys(M). In particular, if a hyperbolic surface has
only one closed geodesic γ of length sys(M) and the remainder of the surface does
not contain ‘short’ closed geodesics, then a dummy point set that is constructed
to satisfy the validity condition might be denser than necessary in the parts of the
surface far from γ.

In this section, we will introduce a local validity condition and give a lower
bound on the number of dummy points needed to satisfy this local validity condi-
tion. We emphasize that at this stage the local validity condition that we present
here is not practically usable in an implementation. For further details, we refer
to the discussion at the end of the section.

Let us now state the local validity condition. Given a set of points Q on a
hyperbolic surface M and a point p on M (not necessarily in Q), let δp(Q) be the
diameter of the largest disk centered at a point in π−1(p) that does not contain
any point of π−1(Q) in its interior. Furthermore, let the local systole sysp(M) of
M at p be the length of the shortest non-contractible closed curve on M passing
through p.

Proposition 3.9 (Local validity condition). Let Q be a finite point set on a
hyperbolic surface M = D/Γ. Suppose that for each p ∈ M at least one of the
following conditions holds:

� δp(Q) < 1
2 sys(M),

� δp(Q) < C sysp(M), for C = 0.447.
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Then δp(Q′) ≤ δp(Q) for all p ∈ M and Q′ ⊇ Q and π(DTD
(
π−1(Q)

)
) does not

contain 1- or 2-cycles.

Proof. By definition of δp(Q), the statement that δp(Q′) ≤ δp(Q) for all p ∈ M
and Q′ ⊇ Q is immediate. To prove the second statement, we will first prove
that ℓ(e) < 1

2 sysq(M) for all edges e = (u,v) in DTD
(
π−1(Q)

)
, where q is the

midpoint of e and q = π(q).

u vq

r

1
2δr(Q)1

2δr(Q)

Figure 3.4: Sketch of trigonometry used in the proof of Proposition 3.9.

Consider the circumcenter r of one of the triangles in DTD(ΓQ) containing
e. The triangles [u, q, r] and [v, q, r] are congruent and have a right angle at q
(see Figure 3.4). The disk centered at r of radius d(r,u) is the circumdisk of a
triangle in DTD

(
π−1(Q)

)
, so it does not contain any points of π−1(Q). Therefore,

d(r,u) = 1
2δr(Q), where r = π(r). By the hyperbolic Pythagorean law

cosh( 12ℓ(e)) = cosh(d(u, q)) =
cosh(d(r,u))

cosh(d(q, r))
=

cosh( 12δr(Q))
cosh(d(q, r))

.

By assumption one of the following holds:

� δr(Q) < 1
2 sys(M),

� δr(Q) < C sysr(M).

In the first case,

cosh( 12ℓ(e)) =
cosh( 12δr(Q))
cosh(d(q, r))

≤ cosh( 12δr(Q)) < cosh( 14 sys(M)),

so ℓ(e) < 1
2 sys(M) ≤ 1

2 sysq(M), which we wanted to prove. In the second case,

sysr(M) ≤ sysq(M) + 2d(q, r),

since the curve consisting of following [r, q], a local systole at q and [q, r] is a
closed curve passing through r. Therefore,

cosh( 12ℓ(e)) =
cosh( 12δr(Q))
cosh(d(q, r))

<
cosh( 12C sysr(M))

cosh(d(q, r))
≤ cosh(C( 12 sysq(M) + d(q, r)))

cosh(d(q, r))
.



56 CHAPTER 3. COMPUTING DELAUNAY TRIANGULATIONS

To prove ℓ(e) < 1
2 sysq(M) it is sufficient to show that

cosh(C( 12 sysq(M) + d(q, r)))

cosh(d(q, r))
≤ cosh( 14 sysq(M)). (3.5)

Equation (3.5) is equivalent to

C ≤ arccosh(cosh( 14 sysq(M)) cosh(d(q, r)))
1
2 sysq(M) + d(q, r)

.

It can be verified with a computer algebra program that

min
sysq(M),d(q,r)>0

arccosh(cosh( 14 sysq(M)) cosh(d(q, r)))
1
2 sysq(M) + d(q, r)

≈ 0.447....

Because C = 0.447, Equation (3.5) is satisfied and we conclude that ℓ(e) <
1
2 sysq(M) in the second case as well. Hence, ℓ(e) < 1

2 sysq(M) for all edges e

in DTD
(
π−1(Q)

)
.

Now, suppose for a contradiction that there exists a 2-cycle in π(DTD
(
π−1(Q)

)
)

consisting of the edges e1, e2. By the above reasoning, we know that ℓ(ei) <
1
2 sysqi

(M), where qi is the midpoint of ei. Assume without loss of generality that
sysq1

(M) ≥ sysq2
(M). Then ℓ(e1) + ℓ(e2) < sysq1

(M). Since 2-cycles correspond
to homotopically non-trivial closed curves on M, and since this is a curve through
q1 with length less that sysq1

(M), we obtain a contradiction. Therefore, there are

no 2-cycles in π(DTD
(
π−1(Q)

)
). By a similar reasoning, there are no 1-cycles as

well. This finishes the proof.

Because the local validity condition is weaker than the (global) validity con-
dition (3.1), the number of dummy points necessary to satisfy the local validity
condition is in general smaller. Since the density of a point set satisfying the global
validity condition depends only on the (global) systole, the local validity condition
seems to be particularly useful for surfaces with a small systole.

This can also be seen from the following example. Consider a continuous
deformation of a hyperbolic surface that is defined by monotonically decreasing
the length of a fixed closed geodesic on the surface. As the length of this fixed
closed geodesic is decreasing, a point set satisfying the global validity condition
will need an increasing number of points and these extra points will need to be
inserted across the entire surface. On the other hand, a point set satisfying the
local validity condition only needs more points near the fixed closed geodesic with
decreasing length, since the remainder of the surface is unchanged.

Unfortunately, so far we were not able to prove the existence of a point set
satisfying the local validity condition with a cardinality that is (asymptotically)
strictly smaller than the bound given in Proposition 3.4. Simulations suggest that
it may be sufficient to place O(sys(M)−1) points near any short closed geodesic
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(of which there are O(g)) and O(g) points in the remainder of the surface. This
would lead to a point set of cardinality g ·O(sys(M)−1) instead of g ·O(sys(M)−2)
for point sets satisfying the global validity condition, but we emphasize that at
this stage it is no more than a conjecture.

Moreover, an important practical drawback of the local validity condition is
that in general we do not know the local systole at every point on a given hyper-
bolic surface (or, at a sufficiently dense set of points on the surface). Therefore,
constructing a dummy point set that satisfies the local validity condition is gener-
ally harder than constructing a dummy point set that satisfies the (global) validity
condition. For this reason, and because we cannot precisely quantify the benefit of
the local validity condition over the global validity condition, we will not consider
the local validity condition when computing dummy point sets for the generalized
Bolza surfaces in Section 3.5.

3.5 Computation of dummy point sets

In this section we present three algorithms for constructing a dummy point set
Qg satisfying the validity condition (3.1) for Mg and give the growth rate of the
cardinality of Qg as a function of g.

All algorithms use the setWg of the so-called Weierstrass points of Mg. In the
fundamental domain Dg, the Weierstrass points are represented by the origin, the

vertices and the midpoints of the sides. In the original domain D̃g, where there is
only one point of each orbit under the action of Γg, this reduces to 2g + 2 points:
the origin, the midpoint of each of the 2g closed sides, and the vertex v0. Some
special properties of Weierstrass points are known in Riemann surface theory [34],
however we will not use them in this paper.

Each of the algorithms has its own advantages and drawbacks. The refinement
algorithm (Section 3.5.1) yields a point set with optimal asymptotic cardinality
Θ(g) (Proposition 3.5). The idea is borrowed from the well-known Delaunay refine-
ment algorithm for mesh generation [66]. The symmetric algorithm (Section 3.5.2)
uses the Delaunay refinement algorithm as well. However, instead of inserting one
point in each iteration, we insert its images by all rotations around the origin by
angle kπ/2g for k = 1, . . . , 4g. In this way, we obtain a dummy point set that pre-
serves the symmetries of Dg, at the cost of increasing the asymptotic cardinality to
Θ(g log g). The approach of the structured algorithm (Section 3.5.3) is fundamen-
tally different from the refinement and symmetric algorithms: the dummy point
set and the corresponding Delaunay triangulation are exactly described. As in the
symmetric algorithm, the resulting dummy point set preserves the symmetries of
Dg and is of order Θ(g log g).

Let us now elaborate on the refinement algorithm. The set Qg is initialized
as Wg and the triangulation as DTMg

(Wg). Then, all non-admissible triangles in
DTD

(
π−1
g (Qg)

)
are removed by inserting the projection onto Mg of their circum-

center, while updating the set Qg of vertices of the triangulation. The following
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proposition shows that DTD
(
π−1
g (Qg) ∩DNg

)
contains at least one representative

of each face of DTD
(
π−1
g (Qg)

)
, thus providing the refinement algorithm with a

finite input.

Proposition 3.10. For any finite set of points Qg on Mg containing Wg, each

face in DTD
(
π−1
g (Qg)

)
with at least one vertex in D̃g is contained in DNg .

The proof will use the following lemma.

Lemma 3.11. Let Cq be a Euclidean disk centered at O and passing through a
point q (Figure 3.5). Let H1 and H2 denote the two open half-planes bounded
by the Euclidean line through O and q. Let H0 be a half-plane that contains
q, bounded by another Euclidean line passing through O but not through q. Let
Rj = (H0

⋂
Hj) \ Cq, j = 1, 2, and let pj ∈ Rj , i = 1, 2. The disk C(p1,p2)

through O,p1, and p2 contains q.

O

q

p1

p2

H2

H1

Cq

R2

R1

H0

O

q

p

H2

H1

Cq

Cp

F

Figure 3.5: Illustrations for the proof of Lemma 3.11.

Proof. It is easy to verify that there exist pairs of points (p1,p2) ∈ R1 × R2 for
which the point q lies inside the disk C(p1,p2). For instance, consider a line
perpendicular to the line through O and q so that q is closer to O than to their
intersection point, as shown in Figure 3.5 - Left. If p1 lies on this perpendicular
line and p2 is the reflection of p1 in the line through O and q, then the disk
C(p1,p2) contains q. Since this disk varies continuously when (p1,p2) ranges
over R1 × R2, it is sufficient to prove that there are no pairs (p∗

1,p
∗
2) ∈ R1 × R2

for which q lies on the boundary of C(p∗
1,p

∗
2).

Suppose, for a contradiction, that there exists a pair (p∗
1,p

∗
2) ∈ R1 × R2 for

which C(p∗
1,p

∗
2) is a disk with q and O on its boundary. Consider the disk Cq

centered at O and passing through q. Let F be the intersection of the disk with
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diameter [O, q] with the half-plane H1, as shown in Figure 3.5 - Right. For any
point p ∈ H2 \Cq, the circle Cp through O, q, and p has a non-empty intersection
with H1, which is completely included in F , so in particular C(p∗

1,p
∗
2) intersects

H1 inside the disk with diameter [O, q]. By a symmetric observation, C(p∗
1,p

∗
2)

also intersects H2 inside the same disk. Therefore, C(p∗
1,p

∗
2) is the disk with

diameter [O, q]. This implies that both p1 and p2 lie in the disk Cq, which is
a contradiction. Therefore, there exists no pair (p∗

1,p
∗
2) ∈ R1 × R2 for which

C(p∗
1,p

∗
2) has q on its boundary. This finishes the proof.

Note that Lemma 3.11 can be directly used in the Poincaré disk because hyper-
bolic circles are represented as Euclidean circles, and hyperbolic geodesics through
the origin O are supported by Euclidean lines.

We now proceed with the proof of Proposition 3.10.

pj

e

pk

e′ = f−
1 (e)

m`

lO
e

O

e ′′

e ′

mj+1

lO

pj

pk

Figure 3.6: Illustration for the proof of Proposition 3.10 for g = 2.

Proof. We show that each edge in DTD
(
π−1
g (Qg)

)
with one endpoint in D̃g has

its other endpoint inside DNg .

Let e be a segment with an endpoint in D̃g and an endpoint outside DNg . We
will prove that every disk passing through the endpoints of e contains a point in
Wg. There are two cases to consider: e either crosses only one image of D̃g under
an element of Ng \ {1}, or it crosses several of its images. We examine each case
separately.

Case A: The edge e crosses only one image of D̃g before leaving DNg .

This case is illustrated in Figure 3.6 - Left. Let f(D̃g), f ∈ Ng\{1} be the Dirichlet

region that e crosses. The image e′ = f−1(e) of e then crosses D̃g, intersecting
two of its non-adjacent sides sj and sk in the points pj and pk, respectively.
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We can assume without loss of generality that the hyperbolic segment [pj ,pk]
does not contain the origin, since in that case any disk through pj and pk clearly
contains the origin. Then, there exists a line lO through O such that pj and pk

are contained in the same half-space. Let mℓ be the midpoint of a side between sj
and sk in the same half-space as pj and pk. Consider the disk centered at O that
passes through mℓ (and, of course, through all the other midpoints mk as well),
and consider also the line through O and mℓ. By Lemma 3.11, the disk C(pj ,pk)
passing through O,pj , and pk contains mℓ. Since O and mℓ are on both sides

of the segment
[
pj ,pk

]
, any disk through pj and pk contains either mℓ or O,

therefore there is no empty disk that passes through pj and pk. Assume now that
there is an empty disk that passes through the endpoints of e′. This empty disk
can then be shrunk continuously so that it passes through pj and pk. The shrunk
version of the disk must be also empty, which is a contradiction. Therefore, there
is no empty disk passing through the endpoints of e′, which implies that e′ (and,
by consequence, e) cannot be an edge in DTD

(
π−1
g (Qg)

)
.

Case B: The edge e crosses several images of D̃g before leaving DNg
.

This case is illustrated in Figure 3.6 - Right. There exist multiple images of e
in DTD

(
π−1
g (Q)

)
that intersect D̃g, in fact as many as the number of Dirichlet

regions it intersects. Each one of these images intersects two adjacent sides of D̃g.

Let e′ be an image of e that intersects two adjacent sides sj and sj+1 of D̃g so
that the hyperbolic line supporting e′ separates O and the midpoint mj+1. Note
that such an image of e exists always: e either separates O and the midpoint
mj+1, or it separates an image of O under some translation f of Γg and mj+1;
in the second case, f−1(e) separates O and the midpoint f−1(mj+1). The edge
e′ intersects also the side sk adjacent to sj+1 in the Dirichlet region that shares

the side sj+1 with D̃g (see Figure 3.6 - Right). Let pj and pk be the intersection
points of e′ with sj and sk, respectively. Consider the circle centered at the origin
that passes through mj+1. Consider also the line through O and mj+1 and the
line l0 through O perpendicular to it. By Lemma 3.11, the disk C(pj ,pk) passing
through O,pj , and pk contains mj+1. Since O and mj+1 are on both sides of the

segment
[
pj ,pk

]
, any disk through pj and pk contains either mj+1 or O, therefore

there is no empty disk that passes through pj and pk. By the same reasoning as in
Case A, there is no empty disk passing through the endpoints of e′ either, which
implies that e′ (and, by consequence, e) cannot be an edge in DTD

(
π−1
g (Qg)

)
.

In conclusion, no edge of DTD
(
π−1
g (Qg)

)
can have an endpoint in D̃g and

an endpoint outside DNg , therefore all faces with at least one vertex in D̃g are
included in DNg .

The set π−1
g (Qg) ∩ DNg

is obtained as follows: we first consider the set of
canonical representatives (as defined in Section 1.1.7) of the points of Qg, which

is π−1
g (Qg) ∩ D̃g. Then, we obtain π−1

g (Qg) ∩ DNg
by computing the images of
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π−1
g (Qg) ∩ D̃g under the elements in Ng. In other words, π−1

g (Qg) ∩DNg
can be

computed as QNg = {f(π−1
g (Qg) ∩ D̃g), f ∈ Ng}.

3.5.1 Refinement algorithm

Following the refinement strategy introduced above and using Proposition 3.10,
we insert the circumcenter of each triangle in DTD

(
QNg

)
having a non-empty

intersection with the domain D̃g and whose circumradius is at least 1
2 sys(Mg)

(see Algorithm 1). Figure 3.7 illustrates the computation of DTD(QN3).

Input : hyperbolic surface Mg

Output: finite point set Qg ⊂Mg such that δ(Qg) <
1
2 sys(Mg)

1 Initialize: let Qg be the set Wg of Weierstrass points of Mg.

2 Compute DTD
(
QNg

)
.

3 while there exists a triangle ∆ in DTD
(
QNg

)
with circumdiameter at

least 1
2 sys(Mg) and ∆ ∩Dg ̸= ∅ do

4 Add to Qg the projection onto Mg of the circumcenter of ∆

5 Update DTD
(
QNg

)
6 end

Algorithm 1: Refinement algorithm

We can now show that the cardinality of the resulting dummy point set is
linear in the genus g.

Theorem 3.12. The refinement algorithm terminates and the resulting dummy
point set Qg satisfies the validity condition (3.1). The cardinality |Qg| is bounded
as follows

5.699(g − 1) < |Qg| < 27.061(g − 1).

Proof. We first prove that the hyperbolic distance between two distinct points of
Qg is greater than 1

4 sys(Mg). It is known that the distance between any pair of
Weierstrass points is larger than 1

2 sys(Mg) [9]. Furthermore, every point added
after the initialization is the projection of the circumcenter of an empty disk in
D of radius at least 1

4 sys(Mg), so the distance from the added point to any other
point in Qg is at least 1

4 sys(Mg). For arbitrary p ∈ Qg, consider the disk Dp in
Mg of radius 1

8 sys(Mg) centered at p, i.e., the set of points in Mg at distance at
most 1

8 sys(Mg) from p. Every disk of radius at most 1
2 sys(Mg) is embedded in

Mg, so in particular Dp is an embedded disk. Because the distance between any
pair of points of Qg is at least 1

4 sys(Mg), the disks Dp and Dq of radius 1
8 sys(Mg)

centered at p and q, respectively, are disjoint for every distinct p, q ∈ Qg. For fixed
g, the area of such disks is fixed, as is the area of Mg, so only a finite number of
points can be added. Hence, the algorithm terminates.

Observe that the algorithm terminates if and only if the while loop ends, i.e.
Qg satisfies the validity condition.
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After initialization First insertion

After first insertion After last insertion

Figure 3.7: Several steps in the refinement algorithm (genus 3)

Finally, we bound for the cardinality of Qg. From the above argument we
know that the cardinality of Qg is bounded above by the number of disjoint disks
D of radius 1

8 sys(Mg) that fit inside Mg. Hence,

| Qg | ≤
area(Mg)

area(D)
=

4π(g − 1)

2π
(
cosh

(
1
8 sys(Mg)

)
− 1
) =

2(g − 1)

cosh
(
1
8 sys(Mg)

)
− 1

.

Proposition 3.5 gives a lower bound. The coefficients of g − 1 in these upper
and lower bounds decrease as a function of g, so the announced bounds can be
obtained by plugging in the value of sys(Mg) (see Theorem 2.1) for g → ∞ and
g = 2 respectively. This finishes the proof.
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3.5.2 Symmetric algorithm

This algorithm is similar to the refinement algorithm. However, instead of adding
one point at every step in the while loop, it uses the 4g-fold symmetry of the fun-
damental polygon Dg to add 4g points at every step (see Algorithm 2). Figure 3.8
illustrates the computation of DTD(QN3

).

Input : hyperbolic surface Mg

Output: finite point set Qg ⊂Mg such that δ(Qg) <
1
2 sys(Mg)

1 Initialize: let Qg be the set Wg of Weierstrass points of Mg.

2 Compute DTD
(
QNg

)
.

3 while there exists a triangle ∆ in DTD
(
QNg

)
with circumdiameter at

least 1
2 sys(Mg) do

4 for k = 0, . . . , 4g − 1 do
5 Let pk be the circumcenter of ∆ rotated around the origin by

angle kπ
2g .

6 Add πg(pk) to Qg.

7 end

8 Update DTD
(
QNg

)
.

9 end

Algorithm 2: Symmetric algorithm

By using the symmetry of the regular 4g-gon we obtain a more symmetric
dummy point set, which may be interesting for some applications [25]. However,
asymptotically the resulting point set is larger than the point set obtained from
the refinement algorithm.

Theorem 3.13. The symmetric algorithm terminates and the resulting dummy
point set satisfies the validity condition (3.1). Its cardinality is of order Θ(g log g).

Proof. The first two statements follow directly from the proof of Theorem 3.12,
so we only have to prove the claim on the cardinality of Qg.
First, we prove that |Qg| is of order O(g log g). Again, the distance between the
Weierstrass points is more than 1

4 sys(Mg). We claim that the distance between
points that are added in different iterations of the while loop is at least 1

4 sys(Mg).
Namely, by the same reasoning as in the proof of Theorem 3.12, the distance
between the circumcenter of an empty disk of radius at least 1

4 sys(Mg) and any
other point in Qg is at least 1

4 sys(Mg). Because Qg is invariant under symmetries
of Dg, it follows that the distance between an image of the circumcenter under a
rotation around the origin and any other point in Qg is at least 1

4 sys(Mg) as well.
However, the distance between points in Qg can be smaller than 1

4 sys(Mg) if
they are added simultaneously in some iteration of the while loop. Denote the
points added to Qg in iteration j by πg(p

j
k) where k = 0, . . . , 4g−1. In particular,

pj
k is the circumcenter of a triangle in DTD

(
QNg

)
, i.e, in the hyperbolic plane.
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After initialization First insertion

After first insertion After second (also last) insertion

Figure 3.8: Several steps in the symmetric algorithm (genus 3)

Let D(p, r) be the hyperbolic disk with center p and radius r, where p is either
a point in H2 or in Mg. For each iteration j, define

U j =

4g−1⋃
k=0

D
(
pj
k,

1
8 sys(Mg)

)
and let Uj = πg(U j). Let aj = area(Uj). Denote the area of a hyperbolic circle
of radius 1

8 sys(Mg) by a, i.e.

a := 2π
(
cosh

(
1
8 sys(Mg)

)
− 1
)
.

Observe that a ≤ aj ≤ 4ga, where the lower bound is in the limiting case where
all disks are equal and the upper bound in the case where all disks are disjoint.
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Define
I = {j | aj < 2ga}

and denote its complement by Ic. We give upper bounds for |I| and |Ic|. To see
for which j the inequality aj < 2ga holds, we first look at the area of U j (see

Figure 3.9a). The amount of overlap between D(pj
k) and D(pj

k+1) can be written

as a strictly decreasing function of d(pj
k,p

j
k+1), which can be written as a strictly

increasing function of d(O,pj
k). Therefore, there exists a constant dg > 0 such

that area(U j) < 2ga if and only if d(O,pj
k) < dg for all k = 0, . . . , 4g − 1.

We claim that j ∈ I if and only if there exists k ∈ {0, . . . , 4g − 1} such that
either d(O,pj

k) < dg or d(v0,p
j
k) < dg. First, assume that such a k exists. If

d(O,pj
k) < dg (Figure 3.9a), then area(U j) < 2ga by definition of dg, so j ∈ I.

Now, assume that d(v0,p
j
k) < dg (Figure 3.9b). By symmetry d(vℓ,p

j
k+ℓ) =

d(v0,p
j
k) for all ℓ = 0, . . . , 4g − 1 (counting modulo 4g). Recall that f0 is the

side-pairing transformation that maps s2g to s0. Then

d(f0(p
j
k+2g+1),v0) = d(f−1

0 (f0(p
j
k+2g+1)), f

−1
0 (v0)),

= d(pj
k+2g+1,v2g+1),

= d(pj
k,v0).

Therefore, the circle Cj centered at v0 and passing through pj
k passes through

f0(p
j
k+2g+1) as well. By induction, for every pair of adjacent fundamental domains

f(Dg) and f ′(Dg) that contain v0 there exists an ℓ ∈ {0, . . . , 4g − 1} such that

f(pj
ℓ) and f

′(pj
ℓ+2g+1) are equidistant from v0. There are 4g fundamental domains

that have v0 as one of their vertices. Because 2g+1 and 4g are co-prime, it follows
that Cj contains exactly one translate of pj

ℓ for every ℓ = 0, . . . , 4g − 1. Hence,
if we translate the union of disks of radius 1

8 sys(Mg) centered at the translates

of pj
ℓ , ℓ = 0, . . . , 4g − 1 on Cj by the hyperbolic translation that maps v0 to the

origin, we obtain a union of disks of radius 1
8 sys(Mg) at distance d(v0,p

j
k) < dg

from the origin. By definition of dg, it follows that aj < 2ga.

Second, assume that d(O,pj
k) ≥ dg and d(v0,p

j
k) ≥ dg for all k ∈ {0, . . . , 4g −

1}. If d(pj
0, ∂Dg) ≥ 1

8 sys(Mg), then U j is completely contained in Dg. Because

d(O,pj
k) ≥ dg, it follows that aj ≥ 2ga by definition of dg, so j ∈ Ic. Now,

assume that d(pj
0, ∂Dg) <

1
8 sys(Mg). If pj

0 is close to the midpoint of a side of

Dg, then D(pj
0,

1
8 sys(Mg)) can only overlap with a translate of D(pj

2g,
1
8 sys(Mg))

(Figure 3.9c). Then, Uj contains at least 2g pairwise disjoint disks, so aj ≥ 2ga.

Therefore, j ∈ Ic. Hence, the only way that D(pj
0,

1
8 sys(Mg)) can overlap with

multiple other disks is when pj
0 is sufficiently close to a vertex of Dg. Consider

again the circle Cj centered at v0 and passing through a translate of vj
ℓ for all

ℓ ∈ {0, . . . , 4g − 1}. Because now d(v0,p
j
k) ≥ dg, it follows that aj ≥ 2ga by

definition of dg.
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v0

p
j
k

(a) d(O,pj
k) < dg for all k = 0, . . . , 4g − 1.

v0
p
j
k

(b) d(v0,p
j
k) < dg for some k ∈ {0, . . . , 4g− 1}.

v0

p
j
0

f0(p
j
2g)

(c) d(O,pj
k) ≥ dg and d(v0,p

j
k) ≥ dg for all

k ∈ {0, . . . , 4g−1} and d(pj
0, ∂Dg) <

1
8
sys(Mg).

Figure 3.9: Schematic drawings of different cases. In the first two drawings, the mini-
mum width of the corresponding annulus is marked in red. In the second drawing, only
the disks with center inDg or sufficiently close to v0 are drawn. In the third drawing, only
the disks with center in Dg together with the unique disk that overlaps D(pj

0,
1
8
sys(Mg))

are drawn.
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We conclude that j ∈ I if and only if there exists k ∈ {0, . . . , 4g−1} such that
either d(O,pj

k) < dg or d(v0,p
j
k) < dg. We have also shown that if d(O,pj

k) < dg,

thenU j is a topological annulus around the origin. If d(v0,p
j
k) < dg, then π

−1
g (Uj)

contains a topological annulus around v0. In either case, the boundary of such
an annulus consists of two connected components. Let the minimum width of an
annulus be given by the distance between these connected components. Suppose,
for a contradiction, that the minimum width of an annulus corresponding to j ∈ I
can be arbitrarily close to 0. Then the disks in Uj have arbitrarily small overlap,
so aj is arbitrarily close to 4ga. However, this is not possible, since aj < 2ga for all
j ∈ I. Therefore, there exists ε > 0 (independent of the output of the algorithm)
such that the minimum width of an annulus corresponding to j ∈ I is at least ε.

To find an upper bound for |I|, consider the line segment [O,v0] between the
origin and v0. By the above discussion, [O,v0] crosses the annulus corresponding
to any j ∈ I exactly once. Because the annuli are pairwise disjoint and each
annulus has minimum width ε, there are at most length([O,v0])/ε annuli, where

length([O,v]) = arccosh
(
cot2

(
π
4g

))
.

Therefore,

|I| ≤
arccosh

(
cot2

(
π
4g

))
ε

.

Because cot2( π
4g ) ∼ 16

π2 g
2 for g →∞, it follows that |I| is of order O(log g).

Now, consider Ic. Because the disks of radius 1
8 sys(Mg) centered at points of

Qg that correspond to different iterations of the while loop are disjoint, we see
that

area(Mg) ≥ area (∪j∈IcUj) =
∑
j∈Ic

area(Uj) =
∑
j∈Ic

aj ≥ |Ic| · 2ga.

Since area(Mg) = 4π(g − 1) and a is constant, |Ic| is of order O(1).
Because the number of iterations is given by |I|+ |Ic|, the number of iterations

is of order O(log g). Each iteration adds 4g points, so the resulting dummy point
set has cardinality of order O(g log g).

Secondly, we show that |Qg| is of order Ω(g log g). As before, the points added

toQg in iteration j of the while loop are denoted by πg(p
j
k) where k = 0, . . . , 4g−1.

Fix an arbitrary vertex v of Dg. Let P =
〈
O,pj1

k1
,pj2

k2
, . . . ,pjn

kn
,v
〉
be a shortest

path from the origin to v in the Delaunay graph of π−1
g (Qg). We claim that all

indices jh are distinct, i.e. P contains at most one element of each of the sets
{pj

k | k = 0, . . . , 4g − 1} (see Figure 3.10).
Suppose, for a contradiction, that there exist l and m with l < m, such that

jl = jm. We will construct a path P ′ from O to v that is shorter than P . We
know that pjl

kl
̸= pjm

km
, because otherwise the shortest path would contain a cycle,
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O

v

p1
1

p2
4

p2
3

p3
2

O

v

p1
1

p2
4

p2
3

p3
2

P P ′

Figure 3.10: The left figure shows a path P from the origin to v that visits two vertices
from the same iteration, namely p2

3 and p2
4. The right figure shows a shorter path from

the origin to v. In this case, j1 = j2 = 2 and k1 = 4 and k2 = 3. The subdivision of P
into three parts is given by P1 =

〈
O,p2

4

〉
, P2 =

〈
p2
4,p

2
3

〉
and P3 =

〈
p2
3,p

1
1,p

3
2,v

〉
. The

path P ′ is defined as P ′
1 ∪ P3, where P ′

1 is obtained by rotating P1 around the origin by
angle − π

2g
, i.e., P ′

1 =
〈
O,p2

3

〉
.

so in particular kl ̸= km. Subdivide P into three paths: the path P1 from O to
pjl
kl
, the path P2 from pjl

kl
to pjm

km
, and the path P3 from pjm

km
to v. Now, let P ′

1 be
the image of P1 after rotation around O by angle (km− kl) · π

2g . It is clear that P
′
1

is a path from O to pjm
km

of the same length of P1. It follows that P
′ := P ′

1∪P3 is a
path from O to v that is shorter than P . This is a contradiction, so all indices jh
are distinct. Therefore, the number of vertices of the graph that P visits is smaller
than the number of iterations of the while loop. Each edge in the path P is the
side of a triangle with circumdiameter smaller than 1

2 sys(Mg), so in particular the
length of each edge is smaller than 1

2 sys(Mg). The length of P is at least

length([O,v]) = arccosh
(
cot2

(
π
4g

))
∼ 2 log g.

As 1
2 sys(Mg) is bounded as a function of g (Theorem 2.1), the number of edges

in P is of order Ω(log g). Then, the number of iterations of the while loop is of
order Ω(log g), so |Qg| has cardinality of order Ω(g log g). The result follows by
combining the lower and upper bounds.

3.5.3 Structured algorithm

Like the symmetric algorithm, this algorithm respects the 4g-fold symmetry of
the Dirichlet region of Mg. Before we give the algorithm in pseudocode, we first
explain the idea and the notation. See Figure 3.11 for an illustration of the dummy
points within one slice of the 4g-gon.
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p∗
k

O

pm
k+1

pm−1
k+1

pm
k

pm−1
k

p2
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k+1
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k+1
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k+1

q1
k+1

q2
k+1

q2
k

q1
k

qm−1
k

qm
k

qm
k+1

qm−1
k+1

v1

Figure 3.11: Dummy points within one slice of the 4g-gon.

1. As in the other algorithms, initially Qg consists of the Weierstrass points
of Mg: the origin, the vertex and the midpoints of the sides. As usual, the
origin and the vertices of Dg are denoted by O and vk respectively. The
midpoint of side sk is denoted by p0

k. Because the sides are paired to obtain
Mg, we only consider k = 0, . . . , 2g − 1 to avoid that several points are
actually the same on the surface. Just as the side sk is obtained from s0
by rotating it around the origin by angle kπ

2g , so p0
k is obtained from p0

0 by
rotating it in the same way. Hence, we use the lower index as ‘rotation’
index in the definition of the other points as well.

2. Secondly, the projections πg(p
∗
k) of the midpoints p∗

k of the geodesic segment
in H2 connecting consecutive pairs (p0

k,p
0
k+1) of midpoints are added to Qg.

These points are unique in the sense that they will be the only points in Qg

that have their pre-image in D̃g not on some line segment [O,p0
k]. This is

the reason why they have a star as superscript.

3. Thirdly, points pj
0 are consecutively added on [O,pj−1

0 ] in such a way that the

distance between consecutive points pj−1
0 and pj

0 is given by d(pj
0,p

j−1
0 ) =

1
4 sys(Mg), until d(p

j
0, O) ≤ 1

4 sys(Mg). By rotating the points in the same

way as before we obtain the points pj
k. The projections πg(p

j
k) are added

to Qg. Here, the upper index denotes the ‘iteration’ index. Notice that
the midpoints of the sides were denoted p0

k to initialize this process. Since
d(O,p0

0) = arccosh(cot( π
4g )), this step consists of

m =

⌈
arccosh(cot( π

4g ))
1
4 sys(Mg)

⌉
− 1

iterations.

4. Finally, observe that the triangles [O,p0
k,p

0
k+1] and [v,p0

k,p
0
k+1] are con-

gruent under reflection in [p0
k,p

0
k+1]. To establish the same congruence in
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Qg, we want to apply this reflection to all points in [O,p0
k,p

0
k+1] that are

currently in π−1
g (Qg) ∩Dg. However, if we do so directly, we obtain several

pairs of points projecting to the same point on Mg. To avoid this, we reflect

the points pj
k in one half of the fundamental polygon across the line through

p0
k and p0

k+1 and the points pj
k in the other half of the fundamental polygon

across the line through p0
k−1 and p0

k. In each case, the image of the pj
k after

reflection is denoted by qj
k and its projection πg(q

j
k) is added to Qg.

One of the major advantages of this algorithm is that the combinatorics of the
resulting Delaunay triangulation can be explicitly described. Below we describe
these combinatorics. The proof that this is the Delaunay triangulation of the
dummy point set will be given in Lemma 3.16. Again, see Figure 3.11 for an
illustration of the dummy points and the triangulation T within one slice of the
4g-gon.

Definition 3.14. Define the infinite triangulation T of π−1
g (Qg) as follows:

� As vertices take π−1
g (Qg).

� The edges completely contained in the hyperbolic triangle [O,p0
0,p

0
1] are

given by the following list.

(pj
k,p

j+1
k ) j = 0, . . . ,m− 1, k = 0, 1,

(pj
0,p

j+1
1 ) j = 1, . . . ,m− 1,

(pm
k , O) k = 0, 1,

(pj
0,p

j
1) j = 1, . . . ,m,

(pj
k,p

∗
0) j = 0, 1, k = 0, 1.

The other edges can be obtained as the images of the edges in the list above
under the following maps:

– rotation around the origin by angle kπ
2g ,

– reflection in the line through p0
0,p

0
1,

– reflection in the line through p0
0,p

0
1, followed by rotation around the

origin by angle kπ
2g ,

– any one of the above maps, followed by an element of Γg.

Algorithm 3 shows the algorithm in pseudocode. We refer to this algorithm as
the structured algorithm.

The main difference between the structured algorithm and the other two algo-
rithms is that there is no while loop in the structured algorithm, only for loops.
As a result, the cardinality of the resulting dummy point set is known precisely
(see Theorem 3.17). On the other hand, for the cardinality of the dummy point
sets for the refinement or symmetric algorithm we can only give an estimate and
the exact number of points depends on the implementation.



3.5. COMPUTATION OF DUMMY POINT SETS 71

Input : hyperbolic surface Mg

Output: finite point set Qg ⊂Mg such that diamQg <
1
2 sys(Mg)

1 Initialize: let Qg be the set Wg of Weierstrass points of Mg.
2 Label the vertex by v and the origin by O.
3 For all k = 0, . . . , 4g − 1, label the midpoint of side sk by p0

k.
4 For all k = 0, . . . , 4g − 1, label the midpoint of p0

k and p0
k+1 by p∗

k

and add πg(p
∗
k) to Qg.

5 m← ⌈4 arccosh(cot( π
4g ))/ sys(Mg)⌉ − 1.

6 for i = 1, . . . ,m do

7 Let pj
0 be the point on [pj−1

0 , O] with d(pj
0,p

j−1
0 ) = 1

4 sys(Mg) and

add πg(p
j
0) to Qg.

8 for k = 1, . . . , 2g − 1 do

9 Let pj
k be pj

0 rotated clockwise around the origin by angle kπ
2g .

10 Let qj
k be the reflection of pj

k in the line through p0
k,p

0
k+1.

11 Add πg(p
j
k) and πg(q

j
k) to Qg.

12 end
13 for k = 2g, . . . , 4g − 1 do

14 Let pj
k be pj

0 rotated clockwise around the origin by angle kπ
2g .

15 Let qj
k be the reflection of pj

k in the line through p0
k−1,p

0
k.

16 Add πg(p
j
k) and πg(q

j
k) to Qg.

17 end

18 end

Algorithm 3: Structured algorithm

The following two lemmas show that the circumdiameters of triangles T are
smaller than 1

2 sys(Mg) and that T is a Delaunay triangulation. The proofs are
given in Appendix A.1.

Lemma 3.15. The circumdiameters of triangles in T are smaller than 1
2 sys(Mg).

Lemma 3.16. The triangulation T is a Delaunay triangulation of π−1
g (Qg).

From these two lemmas the main statement of this subsection follows directly.

Theorem 3.17. The structured algorithm terminates. The resulting dummy point
Qg set satisfies diamQg <

1
2 sys(Mg) and its cardinality |Qg| is equal to

6g + 2 + 8g(⌈4 arccosh(cot( π
4g ))/ sys(Mg)⌉ − 1).

A Delaunay triangulation DTD
(
π−1
g (Qg)

)
is given by T .

Proof. Termination of the algorithm is trivial. By Lemma 3.15, the resulting
dummy point set satisfies diamQg <

1
2 sys(Mg). The cardinality of Qg can be
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computed as follows. In line 1, Qg contains the 2g + 2 Weierstrass points of Mg.
In line 4 we add 4g points to Qg. There are

m = ⌈4 arccosh(cot( π
4g ))/ sys(Mg)⌉ − 1

iterations of the for loop in line 6, each adding 8g points Qg. The cardinality of
Qg is obtained by adding these expressions. By Lemma 3.16, T is a Delaunay
triangulation. This finishes the proof.

3.5.4 Experimental results for small genus

The refinement algorithm and the symmetric algorithm have been implemented.
The implementation uses the CORE::Expr number type [77] to represent coordi-
nates of points, which are algebraic numbers.

For the Bolza surface (genus 2), both algorithms compute a set of 22 dummy
points. In Figure 3.12 we have shown the dummy point set computed by the
symmetric algorithm. However, a smaller set, consisting of 14 dummy points, was
proposed earlier [16]: in addition to the six Weierstrass points, it contains the
eight midpoints of the segments [O,vk], k = 0, 1, . . . 7 (see Figure 3.12).

Figure 3.12: Set of 22 dummy points for the Bolza surface computed by the symmetric
algorithm (left) and set of 14 dummy points constructed by hand [16] (right).

The computation does not terminate for higher genus after seven hours of
computations when performing the computations exactly. To be able to obtain a
result, we impose a finite precision to CORE::Expr.

For genus 3, we obtain sets of dummy points with both strategies with preci-
sion 512 × g bits (chosen empirically). The refinement algorithm yields a set of
28 dummy points (Figure 3.7), while the symmetric algorithm leads to 32 dummy
points (Figure 3.8). Computing dummy point sets for Bolza surfaces of higher
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genus poses a challenge regarding the evaluation of algebraic expressions. Our ex-
periments show that we have to design a new strategy for arithmetic computations,
which goes beyond the scope of this paper.

3.6 Data structure, predicates, and implementation

In this section, we detail two major aspects of Bowyer’s algorithm for generalized
Bolza surfaces. On the one hand, the combinatorial aspect, i.e., the data structure
and the way it supports the algorithm, is studied in Section 3.6.2. On the other
hand, the algebraic degree of the predicates based on which the decisions are
made by the algorithm is analyzed in Section 3.6.3. Finally, we report on our
implementation and experimental results in Section 3.6.4.

Let us first define a unique canonical representative for each vertex and triangle
of a triangulation, which is a major ingredient for the data structure.

3.6.1 Canonical representatives

Let the original domain D̃g be a subset ofDg containing exactly one representative
of each point on the surface Mg, i.e., of each orbit under Γg. The original domain

D̃g is constructed from the fundamental domain Dg as follows (see Figure 3.13):

D̃g and Dg have the same interior; the only vertex of Dg belonging to D̃g is the
vertex v0; the 2g sides s2g, . . . , s4g−1 of Dg preceding v0 (in counter-clockwise

order) are in D̃g, while the subsequent 2g sides are not. For a point p on Mg, the

v0

s0

v1

v4g−1

s4g−1

s1

f0

f1

f4g−1

Figure 3.13: Original domain D̃g for g = 2. Only vertex v0 and the solid sides are
included in D̃g.

canonical representative of p is the unique point of the orbit π−1
g (p) that lies in

D̃g.
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To determine a unique canonical representative for each orbit of a triangle in
D under the action of Γg, we first define the set Ng of neighboring translations as:

Ng =
{
f ∈ Γg

∣∣ f(Dg) ∩Dg ̸= ∅
}
.

Each Dirichlet region sharing an edge or a vertex with the (closed) domain Dg is
the image of Dg under the action of a translation in Ng, which is used to label
the region. Also see Figure 1.4. We denote the union of these neighboring regions
of Dg by DNg

, so

DNg
=
⋃

f∈Ng

f(Dg).

Note that we slightly abuse terminology in the sense that the identity is an element
of Ng, and, therefore, a neighboring translation, even though it is not a hyperbolic
translation. Also note that Dg is a neighboring region of itself.

We consider all the neighboring regions to be ordered counterclockwise around
0, starting with the Dirichlet region

2g−1∏
j=0

fj(2g+1)(Dg) = f0f2g+1f2(2g+1) . . . f(2g+1)2(Dg)

(where indices are taken modulo 4g) incident to v0, which gives an ordering of
Ng \ {1}. An illustration for genus 2 is shown in Figure 3.14.

f 0
f

−
1

1
f 2
f

−
1

3v0

Figure 3.14: The ordering of N2 starts with f0f
−1
1 f2f

−1
3 = f0f5f2f7.

We say that a triangle in D is admissible if its circumdiameter is less than half
the systole of Mg. We can prove the following property:

Proposition 3.18 (Inclusion property). If at least one vertex of an admissible

triangle is contained in D̃g, then the whole triangle is contained in DNg
.
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Proof. It is sufficient to show that the distance between the boundary ∂Dg of Dg

and the boundary ∂DNg
of DNg

is at least 1
2 sys(Mg). Consider points p ∈ ∂Dg

and q ∈ ∂DNg
. We will show that d(p, q) ≥ 1

2 sys(Mg). By symmetry of Dg,
we can assume without loss of generality that p ∈ s0. In Section 2.2.3, we gave
a definition for a k-segment and a k-separated segment, where the segment is a
hyperbolic line segment between sides of Dg. This definition extends naturally to
line segments between sides of a translate of Dg.

v0

v1

s0

p
q

(a) Case where q ∈ f0(Dg).

v0

s0

p

q

(b) Case where p = v1.

v0

v1

s0

p

q

r

(c) Case where [p, q] inter-
sects f0(Dg) \ ∂DNg .

Figure 3.15: Cases in the proof of Proposition 3.18.

Recall that f0 is the side-pairing transformation that maps s2g to s0. First,
assume that q ∈ f0(Dg). Because q ∈ ∂DNg , [p, q] is a segment of separation at
least 2 (see Figure 3.15a). By Part 2 of Lemma 2.5, d(p, q) ≥ 1

2 sys(Mg).
Second, assume that q ̸∈ f0(Dg). Without loss of generality, we may assume

that q is contained in a translate of Dg that contains either v0 or v1 as a vertex.
If p is either v0 or v1, then again [p, q] is a segment of separation at least 2
(see Figure 3.15b), so d(p, q) ≥ 1

2 sys(Mg) by Part 2 of Lemma 2.5. If p is not
a vertex of Dg, then [p, q] intersects one of the two sides in f0(Dg) \ ∂DNg

, say
in a point r (see Figure 3.15c). In particular, [p, r] is a 1-separated segment. If
[r, q] is a segment of separation at least 2, then d(r, q) ≥ 1

2 sys(Mg) by Part 2 of
Lemma 2.5, so d(p, q) ≥ 1

2 sys(Mg) as well. If [r, q] is a 1-separated segment, then
d(p, r) + d(r, q) ≥ 1

2 sys(Mg) by Part 4 of Lemma 2.5.
We have shown that in all cases d(p, q) ≥ 1

2 sys(Mg), which finishes the proof.

Remark 3.19. As mentioned in Remark 2.9 in Section 2.3.2, the inclusion prop-
erty also holds for hyperelliptic surfaces in a neighborhood Mg(c(log(g))

−1) of the
generalized Bolza surfaces.

Let now S ⊂ Mg be a set of points satisfying the validity condition (3.1).
By definition, all triangles in the Delaunay triangulation DTD

(
π−1
g (S)

)
are ad-

missible and thus satisfy the inclusion property. Let t be a face in the Delaunay
triangulation DTMg

(S).
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By definition of D̃g, each vertex of t has a unique preimage by πg in D̃g, so,
the set

Σ =
{
t ∈ π−1

g (t) | t has at least one vertex in D̃g

}
(3.6)

contains at most three faces. See Figure 3.16. When Σ contains only one face,
then this face is completely included in D̃g, and we naturally choose it to be
the canonical representative tc of t. Let us now assume that Σ contains two or
three faces. From Proposition 3.18, each face t ∈ Σ is contained in DNg

. So, for
each vertex u of t, there is a unique translation T (u, t) in Ng such that u lies in

T (u, t)(D̃g). This translation is such that

T (u, t)(uc) = u.

Considering the triangles in D to be oriented counterclockwise, for t ∈ Σ, we
denote as u⋆

t the first vertex of t that is not lying in D̃g. Using the ordering on
Ng defined above, we can now choose tc as the face of Σ for which T (u⋆

tc , t
c) is

closest to f0f2g+1f2(2g+1) . . . f(2g+1)2 for the counterclockwise order on Ng.

Figure 3.16: Examples (for g = 2) of faces of DTD
(
π−1
g (S)

)
with one (left), two (middle)

and three (right) vertices in D̃g that project to the same face on Mg. Their respective
vertices drawn as a dot project to the same vertex on Mg (same for cross and square).
The canonical representative is the shaded face.

To summarize, we have shown that:

Proposition 3.20. Let S ⊂ Mg be a set of points satisfying the validity condi-
tion (3.1). For any face t in DTMg

(S), there exists a unique canonical represen-
tative tc ⊂ DNg

in DTD
(
π−1
g (S)

)
.

Using a slight abuse of vocabulary, for a triangle t in D, we will sometimes
refer to the canonical representative tc of its projection t = πg(t) as the canonical
representative of t.

3.6.2 Data structure

Proposition 3.20 allows us to propose a data structure to represent Delaunay
triangulations of generalized Bolza surfaces.
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A triangulation of a point set S ⊂ Mg is represented via its vertices and

triangular faces. Each vertex u stores its canonical representative uc in D̃g and
gives access to one of its incident triangles. Each triangle t is actually storing
information to construct its canonical representative tc: it gives access to its three
incident vertices u0, u1, and u2 and its three adjacent faces; it also stores the three
translations T (uj , t) := T (uj , t

c), j = 0, 1, 2 in Ng as defined in Section 3.6.1,
so that applying each translation to the corresponding canonical point yields the
canonical representative tc of t, i.e.,

tc = ( T (u0, t)(u
c
0), T (u1, t)(u

c
1), T (u2, t)(u

c
2) ) .

In the rest of this section, we show how this data structure supports the algo-
rithm that was briefly sketched in Section 3.2.2.

Finding conflicts. The notion of conflict defined in section 3.2.2 can now be
made more explicit: a triangle t ∈ DTMg

(S) is in conflict with a point p ∈ Mg if
the circumscribing disk of one of the (at most three) triangles in Σ is in conflict
with pc, where Σ is the set defined by relation (3.6).

By the correspondence between Euclidean circles and hyperbolic circles in the
Poincaré disk model, the triangle in the Delaunay triangulation in D whose asso-
ciated Euclidean triangle contains the point pc is in conflict with this point; these
Euclidean and hyperbolic triangles will both be denoted as tp, which should not
introduce any confusion. To find this triangle, we adapt the so-called visibility
walk [31]: the walk starts from an arbitrary face, then, for each visited face, it vis-
its one of its neighbors, until the face whose associated Euclidean triangle contains
pc is found. This walk will be detailed below.

We first need some notation. Let t, t′ be two adjacent faces in DTMg
(S). We

define the neighbor translation T nbr(t′
c
, tc) from t′

c
to tc as the translation of Γg

such that T nbr(t′
c
, tc)(t′

c
) is adjacent to tc in DTD

(
π−1(S)

)
. See Figure 3.17. Let

u be a vertex common to t and t′, and let uj and uj′ be the vertices of tc and t′
c

that project on u by πg. We can compute the neighbor translation from t′
c
to tc

as T nbr(t′
c
, tc) = T (uj , t)(T (uj′ , t

′))−1. It can be easily seen that T nbr(t′
c
, tc) =

T (uj , t)(T (uj′ , t
′))−1 =

(
T (uj′ , t

′)(T (uj , t))
−1
)−1

= (T nbr(tc, t′
c
))−1.

tc

t′
c

T nbr(t′
c
, tc)(t′

c
)

T nbr(tc, t′
c
)(tc)

Figure 3.17: Translating t′
c
by T nbr(t′

c
, tc) gives a face adjacent to tc.
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Finally, we define the location translation T loc
p as the translation that moves

the canonical face tcp to tp. This translation is computed during the walk. The
walk starts from a face containing the origin. As this face is necessarily canonical,
T loc
p is initialized to 1. Then, for each visited face t of DTD

(
π−1(S)

)
, we consider

the Euclidean edge e defined by two of the vertices of t. We check whether the
Euclidean line supporting e separates pc from the vertex of t opposite to e. If
this is the case, the next visited face is the neighbor t′ of t through e; the location
translation is updated: T loc

p := T loc
p T nbr(t′

c
, tc). The walk stops when it finds

the Euclidean triangle tp containing pc. Then the canonical face tcp in conflict
with pc is (T loc

p )−1(tp). See Figure 3.18 for an example. Here the walk first visits
canonical faces and reaches the face tD ⊂ Dg; up to that stage, T loc

p is unchanged.
Then the walk visits the non-canonical neighbor t′ of tD, and T loc

p is updated to

T nbr(t′
c
, tD). The next face visited by the walk is tp, which contains pc; as tp

c

and t′
c
are adjacent, T loc

p is left unchanged.

Let us now present the computation of the set Cp of faces of DTD
(
π−1(S)

)
in

conflict with pc. Starting from tp, for each face of DTD
(
π−1(S)

)
in conflict with

pc we recursively examine each neighbor (obtained with a neighbor translation)
that has not yet been visited, checking it for conflict with pc. When a face is
found to be in conflict, we temporarily store directly in each of its vertices the
translation that moves its corresponding canonical point to it (we cannot store
such translations in the face itself, since this face will be deleted by the insertion).
Since the union of the faces of Cp is a topological disk by definition, the resulting
translation for a given vertex is the same for all faces of Cp incident to it, so this
translation is well defined for each vertex. The temporary translations will be
used during the insertion stage described below. We store the set Cc

p of canonical
faces corresponding to faces of Cp. Note that Cc

p is not necessarily a connected
region in D, as illustrated in Figure 3.18(Right).

Inserting a point. To actually insert the new point p on Mg, we first create a
new vertex storing pc. We store 1 as the temporary translation in the new vertex.

For each edge e on the boundary of Cp, we create a new face te on Mg corre-
sponding to the triangle te in D formed by the new vertex and the edge e. The
neighbor of te through e is the neighbor through e of the face in Cc

p that is in-
cident to e. Two new faces consecutive along the boundary of Cp are adjacent.
We now delete all faces in Cp. The triangle te is not necessarily the canonical
representative of te; we must now compute the three translations to be stored in
te to get tce. To this aim, we first retrieve the translations temporarily stored in
its vertices uj , j = 0, 1, 2 and we respectively initialize the translations T (uj , te)
in te to them. If all translations are equal to 1, then the face is already canonical
and there is nothing more to do. Otherwise, the translations stored in the face are
updated following Section 3.6.1: T (uj , te) := (T (uk, te))

−1T (uj , te), j = 0, 1, 2,
where k is the index in {0, 1, 2} for which uk = u⋆

tce
.
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p

tp

t′

tD

tcp

t′c

p

Figure 3.18: Left: The shaded faces are the (not necessarily canonical) faces in Cp,
i.e., faces in conflict with the red point pc. Their union is a topological disk. Right: The
region Cc

p of the (shaded) corresponding canonical faces is not connected in D.

Once this is done for all new faces, temporary translations stored in vertices
can be removed.

3.6.3 Degree of predicates

Following the celebrated exact geometric computation paradigm [76], the correct-
ness of the combinatorial structure of the Delaunay triangulation relies on the
exact evaluation of predicates. The main two predicates are

� Orientation, which checks whether an input point p in D̃g lies on the right
side, the left side, or on an oriented Euclidean segment.

� InCircle, which checks whether an input point p in D̃g lies inside, outside,
or on the boundary of the disk circumscribing an oriented triangle.

Input points, which lie in D̃g, are tested against canonical triangles of the tri-
angulation, whose vertices are images of input points by translations in Ng. If
points are assumed to have rational coordinates, then evaluating the predicates
boils down to determining the sign of polynomial expressions whose coefficients
are lying in some extension field of the rationals. Proposition 3.21 gives an upper
bound on the degree of these polynomial expressions. For the special case of the
Bolza surface (g = 2), it improves the previously known upper bound from 72 [45,
Proposition 1], which was proved using symbolic computations in Maple, to 48.

Proposition 3.21. For the generalized Bolza surface of genus g ≥ 2, the predi-
cates can be evaluated by determining the sign of rational polynomial expressions
of total degree at most 12φ(4g) ≤ 24g in the coordinates of the input points, where
φ is the Euler totient function.
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Recall that the Euler totient function φ(n) counts the number of integers up
to a given integer n that are relatively prime to n [54].

Proof. We will only consider the InCircle predicate; the strategy for determining
the maximum degree for the Orientation predicate is similar and the resulting
maximum degree is lower. The InCircle predicate is given by the sign of

InCircle(p1,p2,p3,p4) =

∣∣∣∣∣∣∣∣
x1 y1 x21 + y21 1
x2 y2 x22 + y22 1
x3 y3 x23 + y23 1
x4 y4 x24 + y24 1

∣∣∣∣∣∣∣∣
=x3y4(x

2
1 + y21)− x3y4(x22 + y22) + . . . ,

for points pj = xj + yji, j = 1, . . . , 4, in D. In the second equality, we have just
written 2 of the 24 terms to illustrate what the terms look like. This will be
used later in the proof to determine their maximum degree. Since at least one of
the four points is contained in D̃g, we will assume without loss of generality that
x1, y1 ∈ Q. The other points are images of points with rational coordinates under
some elements of Γg. We know that Γg is generated by fk for k = 0, . . . , 4g − 1.
The translation fk can be represented by the matrix Ak (see Equation (1.2) in
Section 1.1.7). The entries of Ak are contained in the extension field

L = Q
[
ζ4g,

√
cot2( π

4g )− 1
]
,

where ζ4g = exp(πi2g ) is a primitive 4g-th root of unity. The field L is an extension

field of degree 2 of the cyclotomic field Q[ζ4g], which is an extension field of degree
φ(4g) of Q so the total degree of L as an extension field of Q is 2φ(4g). Later in
the proof, we will actually look at the degree of the field L ∩ R over Q. Because
L∩R is the fixed field of L under complex conjugation, L is a quadratic extension
of L∩R. Therefore, the degree of L∩R as an extension field of Q is φ(4g). Since
each translation in Γ can be represented by a product of matrices Ak, it follows
that for j = 2, 3, 4 we can write

xj + yji =
αj(x

c
j + ycj i) + β

β̄(xcj + ycj) + ᾱ
,

where xcj and ycj are the (rational) coordinates of the canonical representative of
xj + yji and where αj and βj are elements of L. As usual, we can get rid of the
i in the denominator by multiplying numerator and denominator by the complex
conjugate of the denominator. Because both the numerator and denominator are
linear as function of xcj and ycj , we obtain

xj + yji =
Pj(x

c
j , y

c
j) +Qj(x

c
j , y

c
j)i

Rj(xcj , y
c
j)

,
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where Pj , Qj and Rj are polynomials in xcj and ycj of total degree at most 2
with coefficients in L∩R. Note that we indeed know that the coefficients are real
numbers, since by construction we have already split the real and imaginary parts.
Hence, suppressing the dependencies on xcj and ycj , we see that

InCircle(p1,p2,p3,p4)

=
P3Q4(x

2
1 + y21)

R3R4
− P3Q4(P

2
2 +Q2

2)

R2
2R3R4

+ . . . ,

=
R2

2P3R3Q4R4(x
2
1 + y21)− P3R3Q4R4(P

2
2 +Q2

2) + . . .

R2
2R

2
3R

2
4

.

Now, testing whether InCircle(p1,p2,p3,p4) > 0 amounts to testing whether

R2
2P3R3Q4R4(x

2
1 + y21)− P3R3Q4R4(P

2
2 +Q2

2) + . . . > R2
2R

2
3R

2
4.

Since all Pj , Qj and Rj are polynomials in xcj and ycj of degree at most 2, this
reduces to evaluating a polynomial of total degree at most 12 in the coordinates
of the input points, with coefficients in L ∩ R. Because L ∩ R is an extension
field of Q of degree φ(4g), we conclude that evaluating InCircle(p1,p2,p3,p4)
amounts to determining the sign of a polynomial of total degree at most 12φ(4g)
with rational coefficients. To prove 12φ(4g) ≤ 24g, we write g = 2kg′ where g′ is
odd. Then

φ(4g) = φ(2k+2g′) = φ(2k+2)φ(g′) = (2k+2 − 2k+1)φ(g′) = 2k+1φ(g′).

If g′ = 1, then φ(g′) = 1, so φ(4g) = 2k+1 = 2g. If g′ > 1, then φ(g′) ≤ g′ − 1, so
φ(4g) ≤ 2k+1(g′ − 1) ≤ 2(g − 1). Hence, in both cases φ(4g) ≤ 2g. This finishes
the proof.

3.6.4 Implementation and experimental results

The algorithm presented in Section 3.2 was implemented in C++, with the data
structure described in Section 3.6.2. The preprocessing step consists in computing
dummy points that serve for the initialization of the data structure, following the
two options presented in Section 3.5. The implementation also uses the value of
the systole given by Theorem 2.1.

Let us continue the discussion on predicates. In practice, the implementation
relies on the CORE::Expr number type [77], which provides us with exact and
filtered computations. As for the computation of dummy points (Section 3.5.4),
the evaluation exceeds the capabilities of Core for genus bigger than 2, due
to the barriers raised by their very high algebraic degree, so, only a non-robust
implementation of the algorithm can be obtained.

The rest of this section is devoted to the implementation for the Bolza surface,
for which a fully robust implementation has been integrated in Cgal [46]. All
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details can be found in Iordanov’s PhD thesis [44]. We only mention a few key
points here.

To avoid increasing further the algebraic degree of predicates, the coordinates
of dummy points are rounded to rationals (see Table 3.1). We have checked
that the validity condition (3.1) still holds for the rounded points, and that the
combinatorics of the Delaunay triangulations of exact and rounded points are
identical.

Table 3.1: Exact and rational expressions for the dummy points for the Bolza surface.
The midpoint of side sj of the fundamental domain is denoted as mj . The midpoint of
segment [0,vj ] is denoted as pj .

Point Expression Rational approximation

v0

(
23/4
√

2+
√
2

4 ,− 23/4
√

2−
√
2

4

)
(97/125,−26/81)

m4

(
−
√√

2− 1, 0
)

(−9/14, 0)

m5

(
−

√
2
√√

2−1
2 ,−

√
2
√√

2−1
2

)
(−5/11,−5/11)

m6

(
0,−

√√
2− 1

)
(0,−9/14)

m7

(√
2
√√

2−1
2 ,−

√
2
√√

2−1
2

)
(5/11,−5/11)

p0

(
21/4
√

2+
√
2

2
√
2+2
√

2−
√
2
,− 21/4

√
2−

√
2

2
√
2+2
√

2−
√
2

)
(1/2,−4/19)

p1

(
23/4

(√
2+

√
2+
√

2−
√
2
)

4
√
2+4
√

2−
√
2

,
23/4

(√
2+

√
2−
√

2−
√
2
)

4
√
2+4
√

2−
√
2

)
(1/2, 4/19)

p2

(
21/4
√

2−
√
2

2
√
2+2
√

2−
√
2
, 21/4

√
2+

√
2

2
√
2+2
√

2−
√
2

)
(4/19, 1/2)

p3

(
23/4

(√
2−

√
2−
√

2+
√
2
)

4
√
2+4
√

2−
√
2

,
23/4

(√
2+

√
2+
√

2−
√
2
)

4
√
2+4
√

2−
√
2

)
(−4/19, 1/2)

p4

(
− 21/4

√
2+

√
2

2
√
2+2
√

2−
√
2
, 21/4

√
2−

√
2

2
√
2+2
√

2−
√
2

)
(−1/2, 4/19)

p5

(
− 23/4

(√
2+

√
2+
√

2−
√
2
)

4
√
2+4
√

2−
√
2

,
23/4

(√
2−

√
2−
√

2+
√
2
)

4
√
2+4
√

2−
√
2

)
(−1/2,−4/19)

p6

(
− 21/4

√
2−

√
2

2
√
2+2
√

2−
√
2
,− 21/4

√
2+

√
2

2
√
2+2
√

2−
√
2

)
(−4/19,−1/2)

p7

(
23/4

(√
2+

√
2−
√

2−
√
2
)

4
√
2+4
√

2−
√
2

,− 23/4
(√

2−
√
2+
√

2+
√
2
)

4
√
2+4
√

2−
√
2

)
(4/19,−1/2)

Attention has also been paid to the manipulation of translations. As seen in
Section 3.6.2, translations are composed during the execution of the algorithm. To
avoid performing the same multiplications of matrices several times, we actually
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represent a translation as a word on the elements of Z8, where Z8 is considered as
an alphabet and each element corresponds to a generator of Γ2. The composition
of two translations corresponds to the concatenation of their two corresponding
words. Section 3.6.2 showed that only the finitely many translations in N2 must
be stored in the data structure. Moreover, words that appear during the various
steps of the algorithm can be reduced by Dehn’s algorithm [28, 38], yielding a
finite number of words to be stored, so, a map can be used to associate a matrix
to each word. Dehn’s algorithm terminates in a finite number of steps and its time
complexity is polynomial in the length of the input word. From Sections 3.6.1
and 3.6.2, words to be reduced are formed by the concatenation of two or three
words corresponding to elements of N2, whose length is not more than four, so,
the longest words to be reduced have length 12.

Running times have been measured on a MacBook Pro (2015) with processor
Intel Core i5, 2.9 GHz, 16 GB and 1867 MHz RAM, running MacOS X (10.10.5).
The code was compiled with clang-700.1.81. We generate 1 million points in the
half-open octagon D̃2 and construct four triangulations:

� a Cgal Euclidean Delaunay triangulation with double as number type.
� a Cgal Euclidean Delaunay triangulation with CORE::Expr as number type,
� our Delaunay triangulation of the Bolza with double as number type,
� our Delaunay triangulation of the Bolza surface with CORE::Expr as number
type,

Note that the implementations using double are not robust and are only consid-
ered for the purpose of this experimentation. The insertion times are averaged
over 10 executions. The results are reported in Table 3.2.

Runtime (in seconds)
Euclidean DT (double) 1
Euclidean DT (CORE::Expr) 24
Bolza DT (double) 16
Bolza DT (CORE::Expr) 55

Table 3.2: Runtimes for the computation of Delaunay triangulations of 1 million random
points in the half-open octagon D̃2.

The experiments confirm the influence of the algebraic demand for the Bolza
surface: almost two thirds of the runnning time is spent in predicate evaluations.
Also, it was observed that only 0.76% calls to predicates involve translations in
N2, but these calls account for 36% of the total time spent in predicates.

Note also that the triangulation can quickly be cleared of dummy points: in
most runs, all dummy points are removed from the triangulation after the insertion
of 30 to 70 points.
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3.7 Conclusion and open problems

We have extended Bowyer’s algorithm to the computation of Delaunay triangula-
tions of point sets on generalized Bolza surfaces, a particular type of hyperbolic
surfaces. A challenging open problem is the generalization of our algorithm to
arbitrary hyperbolic surfaces.

One of the main ingredients of our extension of Bowyer’s algorithm is the va-
lidity condition (3.1), and to be able to say whether it holds or not we need to
know the value of the systole of the hyperbolic surface. For general hyperbolic sur-
faces an explicit value, or a ‘reasonable’ lower bound of the systole, is not known,
and there are no efficient algorithms to compute or approximate it. The effective
procedure presented in [2] is based on the construction of a pants decomposition
of a hyperbolic surface, and computes the systole from the Fenchel-Nielsen co-
ordinates associated with this decomposition. However, the complexity of this
algorithm does not seem to be known, and it is not clear how to turn this method
into an efficient and robust algorithm.

If the systole is known, then it seems that we can use the refinement algorithm
presented in Section 3.5.1 to compute a dummy point set satisfying the validity
condition. However, in the case of generalized Bolza surfaces it is sufficient to
consider only the translates of vertices in DNg

by Proposition 3.10, whereas it is
not clear how many translates are needed for an arbitrary hyperbolic surface.

A more modest attempt towards generalization could focus on hyperbolic sur-
faces represented by a ‘nice’ fundamental polygon. Hyperelliptic surfaces have
a point-symmetric fundamental polygon (See [67]), so these surfaces are obvious
candidates for future work.



Chapter 4

Minimal Delaunay triangulations
of hyperbolic surfaces

4.1 Introduction

In this chapter we consider the minimal number of vertices of a simplicial Delaunay
triangulation of a closed hyperbolic surface of genus g. Motivated by the interest
in embeddings where edges are shortest paths between their endpoints [35, 42],
which have applications in for example the field of graph drawing [71], we restrict
ourselves to distance Delaunay triangulations, where edges are distance paths, i.e.,
shortest paths between their endpoints.

Our main result is the upper bound on the number of vertices with sharp order
of growth:

Theorem 4.1. An orientable closed hyperbolic surface of genus g ≥ 2 has a
distance Delaunay triangulation with at most O(g) vertices. Furthermore, there
exists a family of surfaces, Xg, g ≥ 2, such that the number of vertices of any
distance Delaunay triangulation of them grows like Ω(g).

The above result is a compilation of Theorems 4.2 and 4.17 where explicit
upper and lower bounds are given.

Another reason to study triangulations whose edges are distance paths, comes
from the study of moduli spaces Mg. As mentioned in Section 1.1.9, these
spaces admit natural coordinates associated to pants decompositions, the so-called
Fenchel-Nielsen coordinates. It is a classical theorem of Bers [12] that any surface
admits a short pants decomposition, meaning that the length of each of its simple
closed geodesics is bounded by a function that only depends on the topology of
the surface (but not its geometry). As these curves provide a local description
of the surface, one might hope that they are also geodesically convex, meaning
that the shortest distance path between any two points of a given curve is con-
tained in the curve. It is perhaps surprising that most surfaces admit no short
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pants decompositions with geodesically convex curves. Indeed it is known that
any pants decomposition of a random surface (chosen with respect to a natural

probability measure onMg) has at least one curve of length on the order of g
1
6−ε

as g grows (for any fixed ε > 0) [39]. And it is a theorem of Mirzakhani that these
same random surfaces are also of diameter on the order of log(g) [57]. Hence the
longest curve of any pants decomposition of a random surface is not convex.

The lengths of edges in a given triangulation are another parameter set for
Mg. By the theorem above, such a parameter set can be chosen with a reasonable
number of vertices such that the edges are all convex. Using the moduli space
point of view, one has a function ω :Mg → N which associates to a surface the
minimal number of vertices of any of its distance Delaunay triangulations. The
above result implies that

lim sup
g→∞

max
X∈Mg

ω(X)

g

is finite and strictly positive, but for instance we do not know whether the actual
limit exists.

The examples we exhibit are geometrically quite simple, as they are made by
gluing hyperbolic pants, with bounded cuff lengths, in something that resembles a
line as the genus grows. One might wonder whether all surfaces have this property,
but we show this is not the case by exploring the quantity minX∈Mg

ω(X). This
quantity has a precise lower bound on the order of Θ(

√
g) because we ask that

our triangulations be simplicial [48]. We show how to use the celebrated Ringel-
Youngs construction [65] to construct a family of hyperbolic surfaces that attain
this bound for infinitely many genera (Theorem 4.25), showing that one cannot
hope for better than the simplicial lower bound in general.

Although our results provide a good understanding on the extremal values of
ω, there are still plenty of unexplored questions. For example, what is the behavior
of ω for a random surface (using Mirzakhani’s notion of randomness [57] alluded
to above)?

This chapter is structured as follows. In Section 4.2, we prove our linear upper
bound for the number of vertices of a minimal distance Delaunay triangulation. In
Section 4.3, we construct classes of hyperbolic surfaces attaining the order of this
linear upper bound. Finally, in Section 4.4, we construct a family of hyperbolic
surfaces attaining the general Θ(

√
g) lower bound.

4.2 Linear upper bound for the number of vertices of a
minimal distance Delaunay triangulation

As our first result, we prove that for every hyperbolic surface there exists a dis-
tance Delaunay triangulation whose cardinality grows linearly as a function of the
genus. For convenience, the set of all distance Delaunay triangulations of a closed
hyperbolic surface M is denoted by D(M).
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Theorem 4.2. For every closed hyperbolic surface M of genus g there exists a
distance Delaunay triangulation T ∈ D(M) with at most 151g vertices.

Note that the constant 151 is certainly not optimal. The idea of the proof
is the following. Given a hyperbolic surface M, we construct a vertex set P on
M consisting of at most 151g vertices such that the projection T of a Delaunay
triangulation of π−1(P) in D to M is a distance Delaunay triangulation of M.

It is known that T is a simplicial complex if P is sufficiently dense and well-
distributed [15]. More precisely, there are no 1- or 2-cycles in T if the diameter of
the largest disk in D not containing any points of π−1(P) is less than 1

2 sys(M),
where sys(M) is the systole of M, i.e. the length of the shortest homotopically non-
trivial closed curve. However, the systole of a hyperbolic surface can be arbitrarily
close to zero, which means that we would need an arbitrarily dense set P to satisfy
this condition.

Instead, for a constant ε > 0 we subdivide M into its ε-thick part

Mε
thick = {x ∈M | injrad(x) > ε}

and its ε-thin part Mε
thin = M \Mε

thick, where injrad(x) is the injectivity radius
at x, i.e., the radius of the largest embedded open disk centered at x. Note that
the minimum of injrad(x) over all x ∈ M is given by 1

2 sys(M). We will see
in Section 4.2.1 that, for sufficiently small ε, Mε

thin is a collection of hyperbolic
cylinders (see Figure 4.1). In these hyperbolic cylinders we want to construct a
set of vertices the cardinality of which does not depend on sys(M). To do this,
we put three vertices on the “waist” and each of the two boundary components of
the cylinders that are “long and narrow”. In the cylinders that are not “long and
narrow” it suffices to place three vertices on its waist only. The notions of “waist”
and “long and narrow” will be specified in Section 4.2.1. Because injrad(x) > ε
for all x ∈Mε

thick, we can construct a sufficiently dense and well-distributed point
set in Mε

thick whose cardinality does not depend on sys(M) but only on ε. In
Section 4.2.2 we will describe how we combine the vertices placed in the hyperbolic
cylinders with the dense and well-distributed set of vertices in Mε

thick. Finally, the
proof of Theorem 4.2 is given in Section 4.2.3.

4.2.1 Distance Delaunay triangulations of hyperbolic cylinders

We now describe our construction of a set of vertices for the ε-thin part Mε
thin of

the hyperbolic surface M. The following lemma describes Mε
thin in more detail.

Lemma 4.3 ([20, Theorem 4.1.6]). If ε < arcsinh(1) then Mε
thin is a collection of

at most 3g − 3 pairwise disjoint hyperbolic cylinders.

The following description of the geometry of the hyperbolic cylinders inMε
thin is

based primarily on a similar description in the context of colourings of hyperbolic
surfaces [63]. Each hyperbolic cylinder C inMε

thin consists of points with injectivity
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Figure 4.1: Decomposition of a hyperbolic surface into a thick part consisting of two
connected components and two narrow hyperbolic cylinders (in red).

radius at most ε and the boundary curves γ+ and γ− consist of all points with
injectivity radius equal to ε. Every point on the boundary curves is the base
point of an embedded geodesic loop of length 2ε (Figure 4.2), which is completely
contained in the hyperbolic cylinder. All points on the boundary curves have
the same distance KC to a closed geodesic γ (called the waist of C), where KC

only depends on ε and the length ℓ(γ) of γ. To see this, fix a point p on γ+

and consider a distance path ξ from p to γ (Figure 4.2). Cutting along γ, ξ and
the loop of length 2ε with base point p yields a hyperbolic quadrilateral. The
common orthogonal of γ and the geodesic loop subdivides this quadrilateral into
two congruent quadrilaterals, each with three right angles. Applying a standard
result from hyperbolic trigonometry yields [20, Formula Glossary 2.3.1(v)]

sinh(ε) = sinh(12ℓ(γ)) cosh(ℓ(ξ)).

Because KC = ℓ(ξ), it follows that

KC = arccosh

(
sinh(ε)

sinh( 12ℓ(γ))

)
. (4.1)

We see that γ+ consists of points that are equidistant to γ. By symmetry, the
distance between a point on γ− and γ is equal to KC as well. Moreover, γ+ and
γ− are smooth.

Recall the notion of a collar from Section 1.1.8. In particular, each hyperbolic
cylinder C inMε

thin is a collar of widthKC , i.e., C = Cγ(KC). Comparing equation
(4.1) for KC with equation (1.7) in the statement of the Collar Lemma, we see
that w(γ) > KC , because sinh ε < 1. This inequality will be used in the proof
of Lemma 4.5 to give a lower bound for the distance between distinct hyperbolic
cylinders in Mε

thin.
We distinguish between two kinds of hyperbolic cylinders in Mε

thin, namely ε′-
thin cylinders and ε′-thick cylinders, where ε′ = 0.99ε. An ε′-thick cylinder with
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Figure 4.2: Computing KC .

waist γ satisfies 2ε′ ≤ ℓ(γ) ≤ 2ε, since γ is contained in the ε-thin part. An ε′-thin
cylinder satisfies ℓ(γ) < 2ε′.

Lemma 4.12 in Section 4.2.2 states that the triangulation depicted in Figure 4.3
is a Delaunay triangulation for ε′-thin cylinders. We call this triangulation a
standard triangulation and describe it in more detail in the following definition.
For ε′-thick cylinders we use a different construction defined in Definition 4.8.

Definition 4.4. Let M be a closed hyperbolic surface. Let C be an ε′-thin
hyperbolic cylinder in Mε

thin with waist γ and boundary curves γ+, γ−. Place
three equally-spaced points xi, i = 1, 2, 3 on γ (see Figure 4.3). Then, place three
points x+i , i = 1, 2, 3 on γ+ and three points x−i , i = 1, 2, 3 on γ− such that the
projection of x±i on γ is equal to xi for i = 1, 2, 3. Let V be the set consisting of
xi, x

−
i and x+i for i = 1, 2, 3. Let E be the set of edges of one of the forms

(x−i , x
−
i+1), (x

−
i , xi), (x

−
i , xi+1), (xi, xi+1), (xi, x

+
i ), (xi, x

+
i+1), (x

+
i , x

+
i+1)

for i = 1, 2, 3 (counting modulo 3), where the embedding of an edge in C is as
shown in Figure 4.3. We call (V,E) a standard triangulation of C.

We not only have to prove that a standard triangulation of an ε′-thin cylinder
is a Delaunay triangulation, we also have to show that its edges are distance paths.
Corollary 4.7 states that all edges in a standard triangulation are distance paths
if ε ≤ 0.72. Before we can prove Corollary 4.7, we first need the following lemma.

Lemma 4.5. Let M be a closed hyperbolic surface and let ε ≤ 0.72. For each
pair of distinct closed geodesics γ1 and γ2 in Mε

thin the collars Cγ1
(KC1

+ 1
3ε) and

Cγ2
(KC2

+ 1
3ε) are embedded and disjoint.
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Figure 4.3: Standard triangulation of an ε′-thin cylinder.

Remark 4.6. The value 0.72 was found experimentally and is optimal up to
two decimal digits, i.e., the statement is not true for ε = 0.73. More specifically,
if ε ≥ 0.73 then there exists a closed hyperbolic surface M with disjoint closed
geodesics γ1 and γ2 in Mε

thin such that Cγ1
(KC1

+ 1
3ε) and Cγ2

(KC2
+ 1

3ε) are not
disjoint.

Proof. See Figure 4.4. We will show that w(γi)−KCi
≥ 1

3ε for i = 1, 2. Namely,
this implies that Cγi

(KCi
+ 1

3ε) ⊆ Cγi
(w(γi)). Because Cγ1

(w(γ1)) and Cγ2
(w(γ2))

are embedded and disjoint by the Collar Lemma, it follows that Cγ1
(KC1

+ 1
3ε)

and Cγ2
(KC2

+ 1
3ε) are embedded and disjoint as well.

Comparing expression (4.1) for KCi
and expression (1.7) for w(γi), we see

that w(γi) − KCi is a positive number, with infimum when ℓ(γi) → 0 [63]. A
straightforward computation shows that for ε = 0.72 this infimum is equal to
0.24 . . . > 1

3ε. Since w(γi) −KCi
is decreasing as a function of ε, it follows that

w(γi)−KCi
≥ 1

3ε for all ε ≤ 0.72.

Corollary 4.7. Let M be a closed hyperbolic surface and let ε ≤ 0.72. All edges
in a standard triangulation of an ε′-thin cylinder in Mε

thin are distance paths.

Proof. It is clear that edges of the form (x−i , x
−
i+1), (xi, xi+1), (x

+
i , x

+
i+1) for i =

1, 2, 3 are distance paths. Now, consider the edge of length KC between xi and
x+i . Because we know the metric of the cylinder, it can be shown explicitly that
there are no shorter paths completely contained in the cylinder. Furthermore,
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Figure 4.4: Illustration of the collars Cγi(KCi) ⊂ Cγi(KCi +
1
3
ε) ⊆ Cγi(w(γi)).

because the collar Cγ(KC + 1
3ε) is embedded by Lemma 4.5, any path that leaves

the top half of the cylinder and returns through the bottom half has length at
least KC + 2

3ε. It follows that the edges of the form (xi, x
+
i ) are distance paths.

By symmetry, the edges of the form (x−i , xi) are distance paths as well.
Finally, consider the edge between xi and x

+
i+1. Because d(xi, xi+1) =

1
3ℓ(γ) <

2
3ε and d(xi+1, x

+
i+1) = KC , we see from the triangle inequality that d(xi, x

+
i+1) <

KC + 2
3ε. Because any path that leaves the top half of the cylinder and returns

through the bottom part of the cylinder has length at least KC + 2
3ε by the same

reasoning as above, it follows that edges of the form (xi, x
+
i+1) are distance paths.

By symmetry, edges of the form (x−i , xi+1) are distance paths as well.

For ε′-thick cylinders, we see from Equation (4.1) for KC that the width KC

is close to zero. It turns out that we do not need to place three points on its waist
and on each of its two boundary curves. Instead, three vertices on its waist suffice.

Definition 4.8. Let M be a closed hyperbolic surface. Let C be a ε′-thick hyper-
bolic cylinder inMε

thin with waist γ. Place three equally-spaced points xi, i = 1, 2, 3
on γ. Let V = {xi | i = 1, 2, 3} and E = {(x1, x2), (x2, x3), (x3, x1)}. We call
(V,E) a standard cycle of C.

4.2.2 Constructing a distance Delaunay triangulation of a
hyperbolic surface with few vertices

After constructing sets of vertices in the cylinders in the ε-thin part Mε
thin, we

construct a sufficiently dense and well-distributed set of vertices in the remainder
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of the surface. The following definition shows more precisely how we construct a
set of vertices in Mε

thick and a corresponding Delaunay triangulation.

Definition 4.9. Set ε = 0.72 and ε′ = 0.99ε. Let M be a closed hyperbolic
surface. Let P1 be the set consisting of the vertices of a standard triangulation of
every ε′-thin cylinder in Mε

thin together with the vertices of a standard cycle for
every ε′-thick cylinder in Mε

thin. Let Tj be the union of triangles in a standard
triangulation (Vj , Ej) of an ε′-thin cylinder Cj . For every ε′-thick cylinder Cj ,
set Tj = ∅. Define P2 to be a maximal set in M \ ∪jTj such that d(p, q) ≥ 1

2ε
for all distinct p ∈ P1 ∪ P2, q ∈ P2. Denote the union P1 ∪ P2 by P and let T
be the Delaunay triangulation of P on M obtained after projecting a Delaunay
triangulation of π−1(P) in D to M. We call T a thick-thin Delaunay triangulation
of M. The vertices in P1 and P2 are called the cylinder vertices and non-cylinder
vertices of T , respectively.

Remark 4.10. Because by Corollary 4.7 all edges in a standard triangulation
of any ε′-thin cylinder are distance paths if we choose ε ≤ 0.72, we have chosen
ε = 0.72 in Definition 4.9. Namely, we will see in the proof of Theorem 4.2 that
the larger we choose ε, the smaller the constant (in our case 151) in the upper
bound for the number of vertices. As in Section 4.2.1 we will fix ε = 0.72 and
ε′ = 0.99ε throughout this subsection.

The edges between vertices on the same boundary curve of Cj are not equal to
the boundary curves of Cj (because the latter are not geodesics), so Tj is strictly
contained in Cj . We define P2 as a point set in M \ ∪jTj instead of in M \ ∪jCj

to simplify our proof of Lemma 4.15, where we show that a thick-thin Delaunay
triangulation of M is a simplicial complex.

The definition of P does not explicitly forbid placing vertices of P2 in ε′-thick
cylinders. However, we will see in the next lemma that there are no vertices of
P2 in ε′-thick cylinders, because then they would be too close to the vertices of a
standard cycle.

Lemma 4.11. Let M be a closed hyperbolic surface and let T be a thick-thin
Delaunay triangulation of M. Every vertex of T contained in an ε′-thick cylinder
in Mε

thin is a cylinder vertex.

Proof. Let P1 be the set of cylinder vertices and P2 the set of non-cylinder vertices.
Let C be an arbitrary ε′-thick cylinder with waist γ and standard cycle (V,E).
We will show that the union U of the disks of radius 1

2ε centered at the vertices
of V covers C completely. Namely, this implies that every point of C has distance
at most 1

2ε to a vertex of V . Because d(p, q) ≥ 1
2ε for all p ∈ P1 and q ∈ P2, it

follows that there are no vertices of P2 contained in C.
To prove that U covers C completely, first observe that d(xi, xi+1) =

1
3ℓ(γ) <

2
3ε for all i = 1, 2, 3 (counting modulo 3). Therefore, the circles of radius 1

2ε
centered at xi and xi+1 intersect in two points, of which we call one p. Since the
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collar Cγ(d(γ, p)) is contained in U , it suffices to show that KC < d(γ, p), because
then C = Cγ(KC) ⊂ Cγ(d(γ, p)) ⊂ U . From equation (4.1) for KC we know that

cosh(KC) =
sinh(ε)

sinh( 12ℓ(γ))
≤ sinh(ε)

sinh(ε′)
≤ 1.02,

where we substituted ε′ = 0.99ε and ε = 0.72 in the last step. On the other hand,
the hyperbolic Pythagorean theorem yields

cosh(d(γ, p)) =
cosh( 12ε)

cosh( 16ℓ(γ))
≥ cosh( 12ε)

cosh( 13ε)
≥ 1.03,

(see Figure 4.5) where again we substituted ε = 0.72 in the last step. We conclude
that KC < d(γ, p), which finishes the proof.

Figure 4.5: Computing d(γ, p).

Even though the set of vertices of a thick-thin Delaunay triangulation of M
contains the vertices of a standard triangulation (Vj , Ej) for every ε

′-thin cylinder
Cj , a priori it is not clear that the edges in Ej are edges in T as well. In the next
lemma, we will show that for every ε′-thin cylinder the triangles in a standard
triangulation are Delaunay triangles with respect to the set of vertices of any
thick-thin Delaunay triangulation of M. Namely, if this holds, then there exists
a Delaunay triangulation of P on M containing a standard triangulation of every
ε′-thin cylinder in Mε

thin.

Lemma 4.12. Let M be a closed hyperbolic surface. Let T be a thick-thin Delau-
nay triangulation of M with vertex set P and let C be an ε′-thin cylinder in Mε

thin

with waist γ. Let (V,E) be a standard triangulation of C such that V ⊂ P. Then
all triangles of (V,E) are Delaunay triangles with respect to the point set P.

Proof. To prove that the triangles of (V,E) are Delaunay triangles, we will show
that every circumscribed disk does not contain any point of P in its interior. By
symmetry, it is sufficient to consider the top half of the cylinder. Let i = 1, 2, 3
be arbitrary and denote the disk passing through x+i , x

+
i+1, xi, xi+1 by Di. That

Di does not contain any p ∈ V in its interior is clear. The remainder of the proof
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consists of showing that p is not contained in the interior of Di for all p ∈ P \ V .
Take p ∈ P \ V arbitrarily. Let ci be the center of Di. If d(ci, p) > d(ci, xi), then
p is not contained in the interior of Di.

Observe that d(p, x±i ) ≥ 1
2ε for i = 1, 2, 3. Namely, if p ∈ P2, where P2 is the

subset of P constructed in Mε
thick, then by definition d(p, x±i ) ≥ 1

2ε for i = 1, 2, 3.
On the other hand, if p ∈ P1, then p is a vertex in some hyperbolic cylinder C ′ ̸= C
with waist γ′ in Mε

thin. By Lemma 4.5, the collars Cγ(KC+ 1
3ε) and Cγ′(KC′ + 1

3ε)
are disjoint, so the distance between C and C ′ is at least 2

3ε. Hence, d(p, xi) ≥ 1
2ε

for i = 1, 2, 3.

Figure 4.6: Construction to show that we can assume without loss of generality that
d(x+

i , p) = d(x+
i+1, p) =

1
2
ε in the proof of Lemma 4.12.

Now, we claim that we can assume without loss of generality that d(x+i , p) =
d(x+i+1, p) = 1

2ε. Let mi be the midpoint of xi and xi+1 and let m+
i be the

midpoint of x+i and x+i+1, as in Figure 4.6. Consider the curve γc consisting
of points of distance d(ci, γ) from γ and let pc be the point of γc closest to p.
Because ci ∈ γc, we know that d(p, ci) ≥ d(p, pc). Now, note that a standard
result from hyperbolic trigonometry in the quadrilateral (xi, x

+
i ,m

+
i ,mi) with

three right angles [20, Formula Glossary 2.3.1(v)] states that

sinh( 12d(x
+
i , x

+
i+1)) = sinh( 16ℓ(γ)) cosh(KC) =

sinh( 16ℓ(γ)) sinh(ε)

sinh( 12ℓ(γ))
,

where the last equality follows from expression (4.1) for KC . It can be deduced
that d(x+i , x

+
i+1) < ε. Because d(x+i , x

+
i+1) < ε, the circles of radius 1

2ε centered
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at x+i and x+i+1 intersect in two points. We see that d(p, pc) is minimized when

d(x+i , p) = d(x+i+1, p) =
1
2ε. Furthermore, if d(x+i , p) = d(x+i+1, p) =

1
2ε, then p lies

on the geodesic passing through mi and m
+
i , so d(p, pc) = d(p, ci), which means

that d(p, ci) is minimized as well. We conclude that we can assume without loss
of generality that d(x+i , p) = d(x+i+1, p) =

1
2ε.

Figure 4.7: Schematic overview of the trigonometry in Lemma 4.12.

Let c′i be the projection of ci on (xi, x
+
i ), as in Figure 4.7. To prove that

d(ci, p) > d(ci, xi),

observe that d(ci, p) = d(mi,m
+
i )−d(mi, ci)+d(m

+
i , p), where d(mi,m

+
i ), d(mi, ci)

and d(m+
i , p) satisfy the equations

coth(d(mi,m
+
i )) =

cosh( 16ℓ(γ))

tanh(KC)
, (4.2)

tanh(d(mi, ci)) =
cosh( 16ℓ(γ))

coth( 12KC)
, (4.3)

cosh(d(m+
i , p)) =

cosh( 12ε)

cosh( 12d(x
+
i , x

+
i+1))

. (4.4)

Here, equation (4.2) follows from applying a standard formula in hyperbolic
trigonometry [20, Formula Glossary 2.3.1(iv)] in quadrilateral (xi, x

+
i ,m

+
i ,mi).

Equation (4.3) follows from applying the same formula in quadrilateral (xi, c
′
i, ci,mi).
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Equation (4.4) follows from applying the hyperbolic Pythagorean theorem in tri-
angle (x+i , p,m

+
i ). Moreover, applying the hyperbolic Pythagorean theorem in

triangle (xi, ci,mi) yields

cosh(d(ci, xi)) = cosh(16ℓ(γ)) cosh(d(c,mi)),

= cosh( 16ℓ(γ)) cosh

(
arctanh

(
cosh( 16ℓ(γ))

coth( 12KC)

))
, (4.5)

where we used equation (4.3) in the second line.
When we substitute the expressions for KC and d(x+i , x

+
i+1) into equations

(4.2),(4.3),(4.4) and (4.5), we find expressions for d(mi,m
+
i ), d(mi, ci), d(m

+
i , p)

and d(ci, xi) in terms of ε and ℓ(γ). As ε = 0.72 is fixed, we can treat these
as functions of ℓ(γ). By a straightforward (but tedious) computation, it can be
shown that d(mi,m

+
i )− d(mi, ci)− d(ci, xi) is strictly decreasing as a function of

ℓ(γ) with minimum −0.180 . . . for ℓ(γ) = 2ε′. By a similar computation, d(m+
i , p)

is strictly increasing as a function of ℓ(γ) with minimum 0.247 . . . for ℓ(γ) → 0.
We conclude that

d(mi,m
+
i )− d(mi, ci)− d(ci, xi) + d(m+

i , p) ≥ −0.180 . . .+ 0.247 . . . > 0,

from which it follows that d(ci, p) = d(mi,m
+
i )− d(mi, ci) + d(m+

i , p) > d(ci, xi).
Hence, p is not contained in Di. This finishes the proof.

Remark 4.13. We note that in the proof it is shown as an intermediate step that
d(x±i , x

±
i+1) < ε for all i = 1, 2, 3. This inequality is used once more in the proof

of Lemma 4.14.

Henceforth, we will assume that for each ε′-thin cylinder the vertices and edges
of a standard triangulation are contained in a thick-thin Delaunay triangulation
of M. To show that T ∈ D(M), we must show that T is a simplicial complex, i.e.
it does not contain any 1- or 2-cycles, and that its edges are distance paths.

In the next lemma, we show that any edge that intersects Mε
thick has length

smaller than ε. Moreover, we show that it follows that all edges that intersect
Mε

thick are distance paths and that there are no 1- and 2-cycles consisting of edges
intersecting Mε

thick.

Lemma 4.14. Let M be a closed hyperbolic surface and let T be a thick-thin
Delaunay triangulation of M. Any edge of T that intersects Mε

thick has length
smaller than ε and is a distance path. Moreover, there are no 1- or 2-cycles that
intersect Mε

thick and consist of edges of length smaller than ε.

Proof. Let (u, v) be an edge of T with non-empty intersection withMε
thick. Assume

that (u, v) is contained in a triangle (u, v, w) in T with circumradius r and circum-
center c. We will first show that ℓ(u, v) < ε. We consider two cases, depending on
which set c is contained in. First, if c ∈ Tj for some ε′-thin cylinder Cj , then at
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least one of u and v is contained in P1. If both are contained in P1, then (u, v) is
contained in Tj , because the edges of a standard triangulation of an ε′-thin cylin-
der are distance paths by Corollary 4.7. This contradicts (u, v)∩Mε

thick ̸= ∅, so we
can assume that only one of u and v, say v, is contained in P1. Then without loss
of generality the situation is as depicted in Figure 4.8, where {v, w} = {x+i , x+i+1}.

Figure 4.8: Circumscribed disk of a triangle (u, x+
i , x

+
i+1).

The distance between either x+i or x+i+1 and a point on the shortest arc of

the circumscribed circle between x+i and x+i+1 is less than the distance between

x+i and x+i+1. In particular, ℓ(u, v) < d(x+i , x
+
i+1). Because d(x+i , x

+
i+1) < ε by

Remark 4.13, it follows that ℓ(u, v) < ε. Second, if c ∈ M \ ∪j∈ITj , then we can
deduce that r < 1

2ε. Namely, if we suppose for a contradiction that r ≥ 1
2ε, then

d(c, p) ≥ 1
2ε for all p ∈ P, because the circumcircle of (u, v, w) is empty. Then we

could add c to P2, which contradicts its maximality. We conclude that r < 1
2ε.

Because (u, v) is contained in a circle of radius r < 1
2ε, it follows that ℓ(u, v) < ε.

Because ℓ(u, v) < ε in both cases, the first claim of the lemma follows.

To show that (u, v) is a shortest distant path between its endpoints, suppose
for a contradiction that it is not. Then there exists a geodesic γ from u to v, such
that ℓ(γ) < ℓ(u, v). This means that (u, v)∪γ is a homotopically non-trivial closed
curve of length smaller than 2ℓ(u, v) < 2ε. However, because injrad(x) > ε for all
x ∈Mε

thick, every homotopically non-trivial closed curve γ intersecting Mε
thick has

length at least 2ε, which contradicts ℓ((u, v)∪ γ) < 2ε. We conclude that (u, v) is
a distance path between its endpoints.

A 1- or 2-cycle in T corresponds to a homotopically non-trivial closed curve on
M [16]. By the same argument as before, the length of a 1- or 2-cycle σ intersecting
Mε

thick is at least 2ε. Therefore, there are no 1- or 2-cycles that intersect Mε
thick

and consist of edges of length smaller than ε.

Using the previous lemma, we show that a thick-thin Delaunay triangulation
of M is a distance Delaunay triangulation.

Lemma 4.15. Every thick-thin Delaunay triangulation of a closed hyperbolic sur-
face is a distance Delaunay triangulation.
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Proof. Let M be a closed hyperbolic surface and let T be a thick-thin Delaunay
triangulation of M. By definition, T is a Delaunay triangulation. We will show
that T does not contain any 1- or 2-cycles to prove that it is a simplicial complex.
We know from Lemma 4.14 that any edge (u, v) such that (u, v) ∩ Mε

thick ̸= ∅
is not a 1-cycle. Because by construction there are no 1-cycles in a standard
triangulation or standard cycle in Mε

thin as well, we conclude that T contains no
1-cycles.

To prove that T does not contain any 2-cycles, consider two distinct edges
(u, v) and (v, w) of T with at least one shared endpoint. There are three cases,
depending on whether two, one or zero of the edges (u, v) and (v, w) intersect
Mε

thick.
First, if (u, v) and (v, w) both intersect Mε

thick, then they do not form a 2-cycle by
Lemma 4.14.
Second, if precisely one of (u, v) and (v, w), say (u, v), intersects Mε

thick, then
ℓ(u, v) < ε and (v, w) is an edge contained in a hyperbolic cylinder of Mε

thin. If
(v, w) is an edge contained in an ε′-thick cylinder C with waist γ, then (v, w) is
one of the edges of the standard cycle of C, because there are no other vertices in
C by Lemma 4.11. Then ℓ(v, w) = 1

3ℓ(γ) <
2
3ε, so (u, v) and (v, w) do not form a

2-cycle by Lemma 4.14. Next, assume that (v, w) is an edge in an ε′-thin cylinder
with waist γ. Then either w lies on γ and v lies on one of the boundary curves of
C or v and w both lie on the same boundary curve of C. If w lies on γ and v on a
boundary curve of C, then (u, v) and (v, w) do not form a 2-cycle, because u does
not lie on γ. If v and w both lie on the same boundary geodesic, then ℓ(v, w) < ε
by Remark 4.13, so (u, v) and (v, w) do not form a 2-cycle by Lemma 4.14.
Third, if neither (u, v) nor (v, w) intersects Mε

thick, then (u, v) and (v, w) are
both contained in a hyperbolic cylinder in Mε

thin. They are contained in the
same cylinder, because different cylinders are separated by Mε

thick. Because by
construction standard triangulations and standard cycles do not contain any 2-
cycle, (u, v) and (v, w) do not form a 2-cycle.
This finishes the case analysis and we conclude that T is a simplicial complex.

To prove that all edges of T are distance paths, we know from Lemma 4.14
that any edge that intersects Mε

thick is a distance path. Because all edges in a
standard triangulation are distance paths by Corollary 4.7 and because all edges
in a standard cycle are distance paths by construction, we conclude that all edges
in T are distance paths.

4.2.3 Proof of Theorem 4.2

Proof. (Theorem 4.2)
Let M be an arbitrary hyperbolic surface of genus g and let T be a thick-thin
Delaunay triangulation of M. By definition, T is a Delaunay triangulation. By
Lemma 4.15, T is a simplicial complex and all edges of T are distance paths.
Hence, T ∈ D(M).
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We will show here that the number of vertices of T is smaller than 151g. By
Lemma 4.3, Mε

thin consists of at most 3g− 3 cylinders and each of these cylinders
contains either 9 vertices (if it is ε′-thin) or 3 vertices (if it is ε′-thick). Therefore,
|P1| ≤ 27g − 27.

To find an upper bound for the cardinality of P2, observe that for distinct p, q ∈
P2 the disks Bp(

1
4ε) and Bq(

1
4ε) of radius

1
4ε centered at p and q, respectively, are

embedded and disjoint. Therefore, the cardinality of P2 is bounded above by the
number of disjoint, embedded disks of radius 1

4ε that we can fit in M. Because
the area of a hyperbolic disk of radius 1

4ε is 2π(cosh(
1
4ε)− 1) [10] and because the

area of M is 4π(g − 1) [70], we obtain

|P2| ≤
2(g − 1)

cosh( 14ε)− 1
.

Therefore,

|P| ≤ 27g − 27 +
2(g − 1)

cosh( 14ε)− 1
≤ 151g.

This finishes the proof.

Remark 4.16. The constant 151 is not optimal. We can obtain the stronger
upper bound |P| ≤ 124g by looking more precisely at the upper bounds of |P1|
and |P2| but because we are mainly interested in the the order of growth, we will
not provide any details.

4.3 Classes of hyperbolic surfaces attaining the order of
the upper bound

As our second result, we show that there exists a class of hyperbolic surfaces
which attains the order of the upper bound presented in Theorem 4.2. We will
first introduce this class of hyperbolic surfaces and then state the precise result in
Theorem 4.17.

Recall from the Preliminaries that cutting a hyperbolic surface along 3g − 3
disjoint simple closed geodesics decomposes the surface into 2g − 2 pairs of pants
and that each pair of pants decomposition has an associated 3-regular graph.
Conversely, define Lg as the trivalent graph depicted in Figure 4.9. Here, every
vertex vi corresponds to a pair of pants Yi. There is one edge from v1 to itself
and similarly from v2g−2 to itself. Moreover, for 1 ≤ i ≤ 2g − 3 there is one edge
between vi and vi+1 if i is odd and there are two edges if i is even.

Now, fix some interval [a, b] ⊂ R with 0 < a < b. Let Sg(a, b) be the subset
of Tg with underlying graph Lg such that all length parameters are contained in
[a, b]. In particular, Sg(a, b) contains an open subset of Tg, showing that having
a linear number of vertices in terms of genus is relatively stable in this part of
Teichmüller space. We will now state the result of this section.
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(a) Trivalent graph Lg .

(b) Pair of pants decomposition corresponding to Lg

Figure 4.9: Trivalent graph Lg with corresponding pair of pants decomposition.

Theorem 4.17. There exists a constant B > 0 depending only on a, b such that a
minimal distance Delaunay triangulation of any hyperbolic surface in Sg(a, b) has
at least Bg vertices.

The idea of the proof is the following. Let a hyperbolic surface M ∈ Sg(a, b)
and a triangulation T ∈ D(M) be given. Euler’s formula implies v − 1

3e = 2− 2g
for triangulations of a surface of genus g, where v and e are the number of vertices
and edges of the triangulation. We prove that e ≤ B′v for some constant B′ > 3
only depending on a, b, which implies that

v ≥ 6g − 6

B′ − 3
.

This implies the result of Theorem 4.17. Hence, the argument consists mostly in
finding an upper bound for the number of edges in terms of the number of vertices.

Before we continue with the proof of Theorem 4.17, we will look at our con-
struction of Sg(a, b) in more detail. By definition, every boundary geodesic of a
pair of pants in the pair of pants decomposition of M ∈ Sg(a, b) with respect to Lg

has length in [a, b]. As explained in Section 1.1.9, the geometry of a pair of pants
depends continuously on the lengths of its three boundary geodesics. In partic-
ular, the diameter diam(Y ) of a pair of pants Y as well as the minimal distance
mindist(Y ) between any two of its boundary geodesics depend continuously on
the lengths of its boundary geodesics. Because [a, b] is a compact set, we obtain
as an immediate consequence the following lemma.

Lemma 4.18. There exist positive numbers m(a, b) and M(a, b) depending on a
and b such that m(a, b) ≤ mindist(Y ) < diam(Y ) ≤M(a, b) for every pair of pants
Y whose boundary geodesics have length in [a, b].

Remark 4.19. It is not too difficult to compute bounds for mindist(Y ) and
diam(Y ) in terms of the lengths of the boundary geodesics of Y . This would give
explicit expressions for m(a, b) and M(a, b) in terms of a and b. As we are only
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interested in the order of growth, to avoid further technical details, we do not
provide details.

From now on, the numbers m = m(a, b) and M = M(a, b) will be fixed.
Furthermore, a cluster in a hyperbolic surface M is a subset of M consisting
of a number of consecutive pairs of pants, where consecutive is with respect to
the ordering of Lg. Consider T ∈ D(M). A k-gap is a cluster consisting of k
consecutive empty pairs of pants, where empty means that the pairs of pants do
not contain any vertices of T . If a vertex of T is contained in two pairs of pants,
i.e., if the vertex lies on a boundary geodesic, then we only count it as a vertex of
the pair of pants with the lowest index in Lg. We say that an edge of T crosses a
cluster if the pairs of pants containing its endpoints are separated by the cluster.
Note that the cluster need not contain all pairs of pants which separate the two
endpoints.

The next lemma states that if an edge of a distance Delaunay triangulation
crosses many pairs of pants, then “many” of these pairs of pants are empty.

Lemma 4.20. Let M ∈ Sg(a, b) and define N = N(a, b) as

N(a, b) :=

⌈
M(a, b)

m(a, b)

⌉
+ 1.

Then, for every T ∈ D(M) the following statements hold:

1. If an edge of T crosses a cluster consisting of at least 3N pairs of pants, this
cluster contains an N -gap.

2. If an edge of T crosses a cluster in which the first N and the last N pairs of
pants are empty, then all pairs of pants in the cluster are empty.

Proof. Let T ∈ D(M) and let (u, v) be an edge of T with u ∈ Yi and v ∈ Yj . We will
show that the cluster consisting of the union of all Yk with i+N+1 ≤ k ≤ j−N−1
is empty. In other words, only the first N and last N pairs of pants are possibly
non-empty. In particular, this implies that the two properties of the lemma hold.

Now, because (u, v) is a Delaunay edge, it is contained in some empty disk D
passing through u and v. Consider Yk with i +N + 1 ≤ k ≤ j −N − 1 and take
p ∈ Yk arbitrarily (see Figure 4.10). We will show that the distance between p and
the center c of D satisfies dist(p, c) < dist(u, c). This implies that p is contained
in the interior of D, so it cannot be a vertex of T . Therefore, Yk is empty.

Let γu be a distance path from c to u. First assume that γu ∩ Yk ̸= ∅. Let xk
be the intersection of γu with one of the boundary geodesics of Yk. By the triangle
inequality and the definition of M , we know that

dist(c, p) ≤ dist(c, xk) + dist(xk, p) ≤ dist(c, xk) +M.

To give an upper bound for dist(c, xk), observe that the part of γu from xk to
u passes through Yk−1, . . . , Yi+1 before reaching u ∈ Yi. By definition of m, the
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Figure 4.10: Depiction of the construction in the proof of Lemma 4.20.

length of the part of γu within each of these k − 1− i pair of pants is at least m,
so dist(xk, u) ≥ (k − 1− i)m. This means that

dist(c, xk) = dist(c, u)− dist(xk, u) ≤ dist(c, u)− (k − 1− i)m.

It follows that
dist(c, p) ≤ dist(c, u) +M − (k − 1− i)m.

Because k − 1− i ≥ N and Nm > M , we see that M − (k − 1− i)m < 0, so

dist(c, p) < dist(c, u),

so Yk ⊆ D, hence Yk does not contain any vertices of T . Note that we assumed
that γu ∩ Yk ̸= ∅. If γu ∩ Yk = ∅, then we consider a distance path γv from c to v
instead of γu. The rest of the proof is analogous. We conclude that Yk is empty
for i+N + 1 ≤ k ≤ j −N − 1. This finishes the proof.

The following lemma states that we can construct a set of clusters which has
as one of its properties that every edge of the distance Delaunay triangulation has
its endpoints in the same cluster, or in two consecutive clusters.

Lemma 4.21. Let M ∈ Sg(a, b) be a hyperbolic surface and let N = N(a, b) be as
defined in Lemma 4.20. Let T ∈ D(M). There are interior-disjoint clusters with
the following properties:

1. Each cluster consists of at most 6N consecutive pairs of pants;

2. Every cluster contains at least one vertex of T , and every vertex of T belongs
to exactly one cluster;

3. Every edge of T has its endpoints in the same cluster, or in two consecutive
clusters.

Proof. A wide gap in the sequence of 2g−2 pairs of pants is a maximal subsequence
consisting of at least N consecutive empty pairs of pants, where maximality is
defined with respect to inclusion. The complement of the collection of wide gaps
of M consists of a number of sequences of consecutive pairs of pants, that we call



4.3. ATTAINING THE ORDER OF THE UPPER BOUND 103

superclusters (see Figure 4.11). To obtain clusters that satisfy the properties of
the lemma, each supercluster will be chopped up into one or more subsequences
of length at most 6N in the following way:

� Each supercluster consisting of at most 3N pairs of pants is a cluster. Such
a cluster is said to be a short cluster.

� Each supercluster consisting of more than 3N pairs of pants is chopped up
into non-overlapping subsequences of length 3N , followed by a subsequence
of length between 3N and 6N − 1.

More precisely, let l be the length of such a supercluster. Since l > 3N there
are integers k and r, with 0 ≤ r < 3N and k ≥ 1, such that l = 3kN + r.
Define the integers l1, . . . , lk by setting l1 = · · · = lk−1 = 3N and lk = 3N+r.
Then l1 + · · ·+ lk = l and 3N ≤ li < 6N . Therefore, the supercluster is the
concatenation of k subsequences of length l1, . . . , lk.

This construction enforces Property 1.

Figure 4.11: Illustration of the construction in the proof of Lemma 4.21. Each square
represents a pair of pants in the pair of pants decomposition of a hyperbolic surface of
genus 17. A pair of pants corresponding to a black square contains vertices of T , whereas
a pair of pants corresponding to a white square does not contain vertices of T . We assume
that N = 2. The superclusters and clusters that are defined during the construction are
indicated.

Proof of Property 2. Each supercluster contains at least one vertex. Therefore,
short clusters contain at least one vertex. The clusters obtained by chopping up
a supercluster have length at least 3N . Since a supercluster contains no N -gap,
each of these clusters contains at least one vertex.

Since all vertices belong to some supercluster, they belong to at least one
cluster. Since the clusters are interior disjoint, every vertex belongs to exactly one
cluster. We note again that vertices on a boundary geodesic of some pair of pants
are considered to belong to the cluster containing the pair of pants with the lowest
index in Lg. This completes the proof of Property 2.

Proof of Property 3. Suppose the property does not hold. Then there is an edge of
T with vertices in non-adjacent clusters. In other words, this edge crosses another
cluster, say C. The construction of clusters implies that C does not contain an N -
gap. By Part 1 of Lemma 4.20 the cluster C consists of less than 3N pairs of pants.
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Therefore, C is a short cluster. Since this short cluster is neither the first nor the
last in the sequence of superclusters, it is preceded by a wide gap and succeeded
by a wide gap. Since a wide gap contains an N -gap, Part 2 of Lemma 4.20 implies
that cluster C is empty. This contradicts Property 2. Therefore, Property 3
holds.

In the following corollary, we denote the number of vertices of T ∈ D(M)
contained in a subset U of M by v(U). Likewise, let e(U,W ) be the number of
edges of T with one endpoint in U ⊂M and one endpoint in W ⊂M.

Corollary 4.22. Let M ∈ Sg(a, b) be a hyperbolic surface and let T ∈ D(M).
Let {Γi | i = 1, . . . , n} be a collection of clusters satisfying the properties of
Lemma 4.21 for some n ∈ N. If v and e are the number of vertices and edges
of T , respectively, then

n ≤ v,

v =

n∑
i=1

v(Γi),

e =

n∑
i=1

e(Γi,Γi) +

n−1∑
i=1

e(Γi,Γi+1).

Proof. Because every cluster contains at least one vertex, the number of clusters
is at most the number of vertices, which proves the first equation. The second
equation follows from the property that every vertex is contained in a cluster.
Because every edge has its endpoints in the same cluster, or in two consecutive
clusters, the third equation holds.

Recall that we want to find a linear upper bound for the number of edges of
a distance Delaunay triangulation in terms of the number of vertices. By Corol-
lary 4.22, it suffices to find upper bounds for e(Γi,Γi) and e(Γi,Γi+1) for clusters
Γi satisfying the properties of Lemma 4.21. We will do this in the next lemma.
The proof is given in Appendix A.3.

Lemma 4.23. Let the notation be as in Corollary 4.22. Then, the following upper
bounds hold:

1. e(Γi,Γi) ≤ 3v(Γi) + 18N(N + 1) for all i = 1, . . . , n,

2. e(Γi,Γi+1) ≤ 18v(Γi ∪ Γi+1) + 216N(N + 1) for all i = 1, . . . , i− 1.

We now continue with the proof of Theorem 4.17.

Proof. (Theorem 4.17)
Take M ∈ Sg(a, b) arbitrary and let T ∈ D(M) be arbitrary. Let {Γi | i =



4.4. LOWER BOUND 105

1, . . . , n} be a collection of clusters satisfying the properties of Lemma 4.21. By
Corollary 4.22,

e =

n∑
i=1

e(Γi,Γi) +

n−1∑
i=1

e(Γi,Γi+1).

Substituting the upper bounds for e(Γi,Γi) and e(Γi,Γi+1) from Lemma 4.23, we
obtain

e ≤
n∑

i=1

(
3v(Γi) + 18N(N + 1)

)
+

n−1∑
i=1

(
18v(Γi ∪ Γi+1) + 216N(N + 1)

)
,

≤ 39

n∑
i=1

(
v(Γi) + 6N(N + 1)

)
.

From Corollary 4.22, we know that
∑n

i=1 v(Γi) = v and n ≤ v. Hence,

e ≤ 39(1 + 6N(N + 1))v.

Euler’s formula for triangulations v − 1
3e = 2− 2g implies that

39(1 + 6N(N + 1))v ≥ e = 3v + 6g − 6,

v ≥ g − 1

6 + 39N(N + 1)
,

which finishes the proof.

4.4 Lower bound

In this section, we will look at a general lower bound for the minimal number of
vertices of a distance Delaunay triangulation of a hyperbolic surface of genus g.

In the more general situation of a simplicial triangulation of a topological
surface of genus g, one has an immediate lower bound on the minimal number of
vertices. The fact that this lower bound is sharp is the following classical theorem
of Jungerman and Ringel:

Theorem 4.24. [48, Theorem 1.1] The minimal number of vertices of a simplicial
triangulation of a topological surface of genus g is⌈

7 +
√
1 + 48g

2

⌉
.

We show that the same result holds for the minimal number of vertices of a
distance Delaunay triangulation of a hyperbolic surface of genus g for infinitely
many values of g.
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Theorem 4.25. For any g ≥ 2 of the form

g =
(n− 3)(n− 4)

12

for some n ≡ 0 mod 12, the minimal number of vertices of a distance Delaunay
triangulation of a hyperbolic surface of genus g is

n =
7 +
√
1 + 48g

2
.

Proof. Because every distance Delaunay triangulation of a hyperbolic surface is
a simplicial triangulation of the corresponding topological surface, it follows from
Theorem 4.24 that the minimal number of vertices is at least⌈

7 +
√
1 + 48g

2

⌉
.

In the remainder of the proof, we will construct for a given hyperbolic surface
a distance Delaunay triangulation with the required number of vertices, inspired
by a similar construction in the context of the chromatic number of hyperbolic
surfaces [63].

Let n ≡ 0 mod 12 and assume that n ̸= 0. The complete graph Kn on n
vertices can be embedded in a topological surface Sg of genus

g =
(n− 3)(n− 4)

12
,

which is the smallest possible genus [65]. Because we have assumed that n ≡ 0
mod 12, we know that the embedding of Kn into Sg is a triangulation T [72]. To
turn T into a distance Delaunay triangulation, we will add a hyperbolic metric to
the topological surface as follows. Every triangle in T is replaced by the unique
equilateral hyperbolic triangle with all three angles equal to 2π

n−1 . In the complete
graph Kn every vertex has n− 1 neighbouring vertices. This means that in every
vertex n − 1 equilateral triangles meet, so the total angle at each vertex is 2π.
Therefore, the result after replacing all triangles in T by hyperbolic triangles is a
smooth hyperbolic surface Zg.

It remains to be shown that T ∈ D(Z). By construction, T is a simplicial
complex. It has also been shown that all edges are distance paths [63]. We will
show here that T is a Delaunay triangulation of Zg. Consider an arbitrary triangle
(u, v, w) in T with circumcenter c and let p ̸∈ {u, v, w} be an arbitrary vertex of
T (Figure 4.12). Consider a distance path γ from c to p. We can regard γ as the
concatenation of simple segments that each pass through an individual triangle.

The first of these simple segments starts from c and leaves the triangle (u, v, w),
so its length is at least the distance between c and a side of (u, v, w). Therefore,
denoting by x the projection of c on one of the edges as shown in Figure 4.12, the
length of the first segment is at least d(c, x). The last of the simple segments passes
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Figure 4.12: Schematic overview of the proof of T being a Delaunay triangulation.

through a triangle, say ∆, before arriving at p, so it has to pass through the side
of ∆ opposite to p. Therefore, its length is at least the distance between p and the
opposite side of ∆. It is known that the distance between a vertex and the opposite
side of an equilateral triangle is at least 1

2ℓ, where ℓ denotes the length of the sides
of the equilateral triangle [63]. Hence, d(c, p) = ℓ(γ) ≥ d(c, x)+ 1

2ℓ. By the triangle
inequality in triangle (c, w, x) we see that d(c, w) ≤ d(c, x)+d(x,w) = d(c, x)+ 1

2ℓ,
so we conclude that d(c, p) ≥ d(c, w). This means that p is not contained in the
interior of the circumcircle of (u, v, w), which shows that (u, v, w) is a Delaunay
triangle. By symmetry, it follows that all triangles are Delaunay triangles, which
finishes the proof.





Appendix A

Omitted proofs

A.1 Proofs omitted in Chapter 2

Proof. (Theorem 2.8 (continued))
First, consider Inequality (2.6). The terms depending on ε are cosh(mmin) and
sin(ξmin). The 0-th order Taylor expansion of cosh(mmin) around ε = 0 is

cosh(mmin) = cosh(mmin)|ε=0 + Em(ε, g), (A.1)

where Em(ε, g) is the error term. Technically speaking, we only definedmmin, ξmin,
dmin and αmin for ε > 0, but it is clear that the formulas given in Lemma 2.10
are well-defined for ε = 0 as well. The constant term in the Taylor expansion
is equal to cosh(d(O, sj)), where sj is a side of Dg, i.e., it is equal to cot( π

4g ),
as was shown in the proof of Lemma 2.5. The Lagrange error bound for Taylor
expansions implies that if ∣∣∣∣d cosh(mmin)

dε

∣∣∣∣ ≤Mm(g)

for all ε and g, then
|Em(ε, g)| ≤Mm(g)ε. (A.2)

Therefore, we will compute an upper bound for | ddε cosh(mmin)|. Differentiating

cosh(mmin) = cosh(arctanh(tanh((1− ε) distMg
) cos((1 + ε) π

4g ))),

=
(
1− tanh2((1− ε) distMg ) cos

2((1 + ε) π
4g )
)−1/2

yields

d cosh(mmin)

dε
=−

distMg
tanh((1− ε) distMg

) cos2((1 + ε) π
4g )

cosh2((1− ε) distMg
)(1− tanh2((1− ε) distMg

) cos2((1 + ε) π
4g ))

3/2

−
tanh2((1− ε) distMg ) sin((1 + ε) π

4g ) cos((1 + ε) π
4g )

(1− tanh2((1− ε) distMg
) cos2((1 + ε) π

4g ))
3/2

· π
4g
.

109
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Because
0 ≤ tanh((1− ε) distMg

) ≤ tanh(distMg
) ≤ 1

and
0 ≤ cos((1 + ε) π

4g ) ≤ cos( π
4g ) ≤ 1,

we see that

1− tanh2((1− ε) distMg
) cos2((1 + ε) π

4g ) ≥ 1− tanh2(distMg
) cos2( π

4g ) = tan( π
4g ).

Therefore,∣∣∣∣d cosh(mmin)

dε

∣∣∣∣ ≤ distMg
cot3( π

4g )

cosh2((1− ε) distMg )
+ sin((1 + ε) π

4g ) cot
3( π

4g ) ·
π

4g
. (A.3)

Note that cosh(x) ∼ 1
2e

x and arccosh(x) ∼ log(2x), so

cosh((1− ε) distMg ) = cosh((1− ε) arccosh(cot2( π
4g ))),

∼ 1
2 exp((1− ε) log(2 cot2( π

4g ))),

= 1
2 (
√
2 cot( π

4g ))
2(1−ε).

We assume without loss of generality that ε ≤ 1
4 , so that cosh((1 − ε) distMg ) =

Ω(g3/2), since cot( π
4g ) = Θ(g). Then the leading term in the right-hand side of

Inequality (A.3) is the second term, which is Θ(g), since sin( π
4g ) = Θ(g−1). Hence,∣∣∣∣d cosh(mmin)

dε

∣∣∣∣ ≤ Cmg

for some constant Cm ∈ R, which means that we can take Mm(g) := Cmg in
Inequality (A.2).

Now, consider sin(ξmin). We write

sin(ξmin) = sin(ξmin)|ε=0 + Eξ(ε, g) (A.4)

and we want to find Mξ(g) such that∣∣∣∣d sin(ξmin)

dε

∣∣∣∣ ≤Mξ(g)

for all ε and g, so that
|Eξ(ε, g)| ≤Mξ(g)ε. (A.5)

Recall that ξmin = 2η, where η is the solution of

cos(η) =
tanh((1 + ε) distMg

)

tanh((1− ε) distMg
)
· cos

(
(1− ε) π

2g − η
)
. (A.6)
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For ε = 0, we see that η = π
4g , so sin(ξmin)|ε=0 = sin( π

2g ). Furthermore,

d sin(ξmin)

dε
= cos(ξmin) ·

dξmin

dε
= 2 cos(ξmin)

dη

dε
,

so ∣∣∣∣d sin(ξmin)

dε

∣∣∣∣ ≤ 2

∣∣∣∣dηdε
∣∣∣∣ . (A.7)

Differentiating both sides of Equation (A.6) with respect to ε we obtain after some
simplifications

dη

dε
=− β−1 sin((1− ε) π

2g − η) ·
π

2g
−

β−1 distMg cos((1− ε) π
2g − η)

tanh((1− ε) distMg
) cosh2((1 + ε) distMg

)

−
β−1 distMg

cos((1− ε) π
2g − η) tanh((1 + ε) distMg

)

sinh2((1− ε) distMg
)

,

where we abbreviated

β := sin(η) +
tanh((1 + ε) distMg

)

tanh((1− ε) distMg
)
sin((1− ε) π

2g − η).

Since

β−1 sin((1−ε) π
2g−η) ≤ (β−sin(η))−1 sin((1−ε) π

2g−η) =
tanh((1− ε) distMg )

tanh((1 + ε) distMg
)
≤ 1

and in a similar way

β−1 cos((1− ε) π
2g − η) ≤ cot((1− ε) π

2g − η) ≤ cot((1− ε) π
4g ),

where the last step follows from (1− ε) π
2g − η ≥ (1− ε) π

4g , we see that∣∣∣∣dηdε
∣∣∣∣ ≤ π

2g
+

distMg

tanh((1− ε) distMg
) cosh2((1 + ε) distMg

)
+

distMg

sinh2((1− ε) distMg
)
.

Looking at the asymptotics in the same way as for cosh(mmin), we see that the
leading term is π

2g , which is Θ(g−1). Using Inequality (A.7), it follows that∣∣∣∣d sin(ξmin)

dε

∣∣∣∣ ≤ Cξg
−1

for some constant Cξ ∈ R, which means that we can take Mξ(g) := Cξg
−1 in

Inequality (A.5).
Plugging Equations (A.1) and (A.4) into Inequality (2.6) we obtain

2 sin
(

(g+1)π
12g

)(
cot( π

4g ) + Em(ε, g)
)(

sin( π
2g ) + Eξ(ε, g)

)
> 1.
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Because cot( π
4g ) sin(

π
2g ) = 1 + cos( π

2g ), we can rewrite this as

2 sin
(

(g+1)π
12g

)
(1 + cos( π

2g ))− 1 >

− 2 sin
(

(g+1)π
12g

)(
sin( π

2g )Em(ε, g) + cot( π
4g )Eξ(ε, g)

)
.

(A.8)

Note that the left-hand side is monotonically decreasing for g ≥ 2 with infimum

lim
g→∞

2 sin
(

(g+1)π
12g

)
(1 + cos( π

2g ))− 1 =
√
6−
√
2− 1 ≈ 0.035 . . . .

In particular, the left-hand side is positive for all g ≥ 2. Because sin( π
2g ) =

Θ(g−1), |Em(ε, g)| ≤ Cmgε, cot(
π
4g ) = Θ(g) and |Eξ(ε, g)| ≤ Cξg

−1ε we know that

2 sin
(

(g+1)π
12g

)(
sin( π

2g )|Em(ε, g)|+ cot( π
4g )|Eξ(ε, g)|

)
≤ Cε,1ε

for some constant Cε,1 ∈ R. Using −Em(ε, g) ≤ |Em(ε, g)| and −Eξ(ε, g) ≤
|Eξ(ε, g)|, we conclude that Inequality (A.8), and hence Inequality (2.6), is satisfied
for any g ≥ 2 if

ε < cε,1 :=

√
6−
√
2− 1

Cε,1
.

Second, consider Inequality (2.7). The terms depending on ε are sinh2( 12dmin)

and sin2(βmin). As before, we write

sinh2( 12dmin) = sinh2( 12dmin)|ε=0 + Ed(ε, g) (A.9)

and we want to find Md(g) such that∣∣∣∣∣d sinh2( 12dmin)

dε

∣∣∣∣∣ ≤Md(g)

for all ε and g, so that
|Ed(ε, g)| ≤Md(g)ε. (A.10)

The constant term sinh2( 12dmin)|ε=0 is equal to sinh2( 12ℓ), where ℓ is the length of
the sides ofDg. It was shown in the proof of Lemma 2.5 that ℓ = 2arccosh(cot( π

4g )),
so

sinh2( 12dmin)|ε=0 = cosh2( 12ℓ)− 1 = cot2( π
4g )− 1.

Furthermore,

sinh2( 12dmin) =
cosh(dmin)− 1

2
,

so ∣∣∣∣∣d sinh2( 12dmin)

dε

∣∣∣∣∣ = 1

2

∣∣∣∣d cosh(dmin)

dε

∣∣∣∣ .
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Since

dmin = arccosh(cosh2((1− ε) distMg
)− sinh2((1− ε) distMg

) cos((1− ε) π
2g )),

a straightforward computation shows that

d cosh(dmin)

dε
=− 4 distMg

sin2((1− ε) π
4g ) sinh((1− ε) distMg

) cosh((1− ε) distMg
)

− sinh2((1− ε) distMg
) sin((1− ε) π

2g ) ·
π

2g

Using sin((1 − ε) π
4g ) ≤ sin( π

4g ) and similar inequalities for cosh and sinh and

substituting distMg
= arccosh(cot2( π

4g )), we obtain∣∣∣∣∣d sinh2( 12dmin)

dε

∣∣∣∣∣ ≤ 2 distMg
cos2( π

4g )
√

cot4( π
4g )− 1− cot( π

4g )(cot
2( π

4g )− 1) · π
2g

Here, the first term is the leading term, which is Θ(g2 log(g)). Therefore,∣∣∣∣∣d sinh2( 12dmin)

dε

∣∣∣∣∣ ≤ Cdg
2 log(g)

for some constant Cd ∈ R, which means that we can take Md(g) := Cdg
2 log(g) in

Inequality (A.10).
Now consider sin2(αmin). We write

sin2(αmin) = sin2(αmin)|ε=0 + Eα(ε, g) (A.11)

and we want to find Mα(g) such that∣∣∣∣d sin2(αmin)

dε

∣∣∣∣ ≤Mα(g)

for all ε and g, so that
|Eα(ε, g)| ≤Mα(g)ε. (A.12)

Because the angle between any two adjacent sides of Dg is π
2g , the constant

term in Equation (A.11) is sin2( π
2g ). Because Lemma 2.10 gives an expression

for sin( 12αmin) instead of sin(αmin) we write

sin2(αmin) = 4 sin2( 12αmin) cos
2( 12αmin) = 4 sin2( 12αmin)− 4 sin4( 12αmin),

so that

d sin2(αmin)

dε
= 8 sin( 12αmin) ·

d sin( 12αmin)

dε
− 16 sin3( 12αmin) ·

d sin( 12αmin)

dε
,

= 8 sin( 12αmin) cos(αmin) ·
d sin( 12αmin)

dε
.
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Because sin(αmin) ≤ sin( π
4g ) and cos(αmin) ≤ 1, we see that∣∣∣∣d sin2(αmin)

dε

∣∣∣∣ ≤ 8 sin( π
4g ) ·

∣∣∣∣d sin( 12αmin)

dε

∣∣∣∣ . (A.13)

Differentiating

sinh( 12αmin) =
sinh(arctanh(tanh((1 + ε) distMg ) cos(η

′)))

sinh((1 + ε) distMg
)

,

=
tanh((1 + ε) distMg

) cos(η′)

sinh((1 + ε) distMg
)
√

1− tanh2((1 + ε) distMg
) cos2(η′)

,

=
cos(η′)√

cosh2((1 + ε) distMg
)− sinh2((1 + ε) distMg

) cos2(η′)
,

we obtain

d sin( 12αmin)

dε
=− sin(η′)

δ1/2
· dη

′

dε
− sin(η′) cos2(η′) sinh2((1 + ε) distMg

)

δ3/2
· dη

′

dε

− distMg
sin2(η′) cos(η′) cosh((1 + ε) distMg

) sinh((1 + ε) distMg
)

δ3/2
,

where we abbreviated

δ := cosh2((1 + ε) distMg )− sinh2((1 + ε) distMg ) cos
2(η′).

Using

δ ≥ cosh2(distMg
)− sinh2(distMg

) cos2( π
4g ),

= cot2( π
4g )

in the first term and

δ = sin2(η′) cosh2((1 + ε) distMg
) + cos2(η′),

≥ sin2(η′) cosh2((1 + ε) distMg
)

in the second and third term, we see that∣∣∣∣d sin( 12αmin)

dε

∣∣∣∣ ≤ sin(η′) tan( π
4g ) ·

∣∣∣∣dη′dε
∣∣∣∣+ distMg

sin(η′) cosh((1 + ε) distMg
)

+
1

sin2(η′) cosh((1 + ε) distMg )
·
∣∣∣∣dη′dε

∣∣∣∣
Since

sin( π
4g ) ≤ sin(η′) ≤ sin( π

2g ) ≤ 2 sin( π
4g )
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and
cosh((1 + ε) distMg

) ≥ cosh(distMg
) = cot2( π

4g ),

it follows that∣∣∣∣d sin( 12αmin)

dε

∣∣∣∣ ≤2 sin( π
4g ) tan(

π
4g ) ·

∣∣∣∣dη′dε
∣∣∣∣+ distMg

tan( π
4g )

cos( π
4g )

+
1

cos2( π
4g )
·
∣∣∣∣dη′dε

∣∣∣∣ .
By similar computations as for η, it can be shown that∣∣∣∣dη′dε

∣∣∣∣ ≤ π

2g
+

distMg

tanh((1− ε) distMg
) cosh2((1 + ε) distMg

)
+

distMg

sinh2((1− ε) distMg
)
.

In particular, the leading term of the right-hand side is Θ(g−1). It follows that
the leading term of the upper bound for | ddε sin( 12αmin)| is the second term, which
is Θ(g−1 log(g)), since tan( π

4g ) = Θ(g−1). Using Inequality (A.13) and sin( π
4g ) =

Θ(g−1), it follows that ∣∣∣∣d sin2(αmin)

dε

∣∣∣∣ ≤ Cαg
−2 log(g)

for some constant Cα ∈ R, which means that we can take Mα(g) = Cαg
−2 log(g)

in Inequality (A.12).
Plugging Equations (A.9) and (A.11) into Inequality (2.7) and rearranging the

terms as we did for Inequality (2.6), we obtain

4 sin2
(

(g+1)π
12g

)
(1 + 4 cos2( π

4g ) cos(
π
2g ))− 1 >

− 4 sin2
(

(g+1)π
12g

)(
sin2( π

2g )Ed(ε, g) + (cot2( π
4g )− 1)Eα(ε, g)

)
.

(A.14)

Note that the left-hand side is monotonically decreasing for g ≥ 2 with infimum

lim
g→∞

4 sin2
(

(g+1)π
12g

)
(1 + 4 cos2( π

4g ))− 1 = 5(2−
√
3)− 1 ≈ 0.340 . . . .

In particular, the left-hand side is positive for all g ≥ 2. Because sin( π
2g ) =

Θ(g−1), |Ed(ε, g)| ≤ Cdg
2 log(g)ε, cot( π

4g ) = Θ(g) and |Eα(ε, g)| ≤ Cαg
−2 log(g)ε,

we know that

4 sin2
(

(g+1)π
12g

)(
sin2( π

2g )|Ed(ε, g)|+ (cot2( π
4g )− 1)|Eα(ε, g)|

)
≤ Cε,2 log(g)ε

for some constant Cε,2 ∈ R. Using −Ed(ε, g) ≤ |Ed(ε, g)| and −Eα(ε, g) ≤
|Eα(ε, g)|, we conclude that Inequality (A.14), and hence Inequality (2.7), is sat-
isfied for any g ≥ 2 if ε < cε,2(log(g))

−1, where

cε,2 :=
9− 5

√
3

Cε,2
.
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Combining the results for Inequalities (2.6) and (2.7), we see that both in-
equalities are satisfied for ε = c(log(g))−1 with c = min{cε,1, cε,2}. This finishes
the proof.

A.2 Proofs omitted in Chapter 3

Proof. (Lemma 3.15)
For convenience, we show the figure illustrating the dummy points within one slice
of the 4g-gon once again in Figure A.1.

p∗
k

O

pm
k+1

pm−1
k+1

pm
k

pm−1
k

p2
k p1

k
p0
k

p2
k+1

p1
k+1

p0
k+1

q1
k+1

q2
k+1

q2
k

q1
k

qm−1
k

qm
k

qm
k+1

qm−1
k+1

v1

Figure A.1: Dummy points within one slice of the 4g-gon.

By symmetry it is sufficient to consider the circumscribed disks of the triangles

[p0
0,p

1
0,p

∗
0], [p

1
0,p

1
1,p

∗
0], [p

m
0 ,p

m
1 , O], [pj

0,p
j
1,p

j+1
1 ],

for 1 ≤ j ≤ m − 1. For easy reference, the used lengths and angles satisfy the
following relations. Here we denote length([p, q]) by abuse of notation by [p, q].

[p0
0,p

∗
0] = [p0

0,p
1
0] =

1
4 sys(Mg), (A.15)

cosh( 12 sys(Mg)) = 1 + 2 cos( π
2g ), (A.16)

∠(Op0
0p

∗
0) =

π
4 , (A.17)

sinh( 12 [p
1
0,p

∗
0]) = sinh( 14 sys(Mg)) sin(

1
2∠(Op0

0p
∗
0)), (A.18)

sin∠(p1
0p

∗
0p

0
0) =

sinh( 14 sys(Mg)) sin∠(Op0
0p

∗
0)

sinh([p1
0,p

∗
0])

, (A.19)

∠(p1
0p

∗
0p

1
1) = π − 2∠(p1

0p
∗
0p

0
0). (A.20)

Equations (A.15) and (A.16) follow from the construction in the proof of Lemma 2.3
and from Theorem 2.1, respectively. Equation (A.17) holds because ∠(Op0

0v1) =
π
2 and the triangles [O,p0

0,p
0
1] and [v1,p

0
0,p

0
1] are congruent. Equation (A.18)

follows from the application of [10, Theorem 7.11.2(ii)] to the triangle with ver-
tices p1

0,p
0
0 and the midpoint of p1

0 and p∗
0: this is a right-angled triangle, because
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a

1
2b

1
2b

b
R

1
2
α 1

2
α

Figure A.2: Deriving a formula for the circumradius of an isosceles triangle.

[p1
0,p

0
0,p

∗
0] is isosceles. Equation (A.19) is the sine rule [10, Chapter 7.12] in

triangle [p1
0,p

0
0,p

∗
0]. Finally, Equation (A.20) holds by symmetry.

The circumradius R of an isosceles triangle with legs of length b and vertex
angle α (see Figure A.2 satisfies

tanh(R) =
tanh( 12c)

cos( 12α)
, (A.21)

which can be derived by applying [10, Theorem 7.1..2(iii)] to the interior tri-
angle with edges of length R and 1

2b.

First, consider the circumradius R(p0
0,p

1
0,p

∗
0) of [p0

0,p
1
0,p

∗
0]. By the above

observation,

tanh(R(p0
0,p

1
0,p

∗
0)) =

tanh( 18 sys(Mg))

cos( 12∠(Op0
0p

∗
0))

,

=

√
4− 2

√
2 tanh(18 sys(Mg)).

We want to prove that R(p0
0,p

1
0,p

∗
0) <

1
4 sys(Mg), or, equivalently, that

tanh(R(p0
0,p

1
0,p

∗
0)) < tanh( 14 sys(Mg)).

Because tanh( 18 sys(Mg)) is strictly increasing as function of g, we know that√
4− 2

√
2 tanh(18 sys(Mg)) <

√
4− 2

√
2 lim
g→∞

tanh( 18 sys(Mg)) ≈ 0.448.
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For the same reason,

tanh( 14 sys(Mg)) ≥ tanh( 14 sys(Mg))
∣∣
g=2
≈ 0.643.

It follows that tanh(R(p0
0,p

1
0,p

∗
0)) < tanh( 14 sys(Mg)) holds. This proves that the

circumdiameter of [p0
0,p

1
0,p

∗
0] is smaller than 1

2 sys(Mg).
Second, consider the circumradius R(p1

0,p
1
1,p

∗
0) of [p

1
0,p

1
1,p

∗
0]. By a similar com-

putation as above, we see that

tanh(R(p1
0,p

1
1,p

∗
0)) =

tanh( 12 [p
1
0,p

∗
0])

cos( 12∠(p
1
0p

∗
0p

1
1))

,

(A.20)
=

tanh( 12 [p
1
0,p

∗
0])

sin∠(p1
0p

∗
0p

0
0)
.

By using

sin∠(p1
0p

∗
0p

0
0)

(A.19)
=

sinh( 14 sys(Mg)) sin∠(Op0
0p

∗
0)

sinh([p1
0,p

∗
0])

,

=
sinh( 14 sys(Mg)) · 2 sin( 12∠(Op0

0p
∗
0)) cos(

1
2∠(Op0

0p
∗
0))

sinh([p1
0,p

∗
0])

,

(A.18)
=

sinh( 12 [p
1
0,p

∗
0]) · 2 cos( 12∠(Op0

0p
∗
0))

2 sinh(12 [p
1
0,p

∗
0]) cosh(

1
2 [p

1
0,p

∗
0])

,

=
cos( 12∠(Op0

0p
∗
0))

cosh( 12 [p
1
0,p

∗
0])

,

we can rewrite this as

tanh(R(p1
0,p

1
1,p

∗
0)) =

tanh( 12 [p
1
0,p

∗
0]) cosh(

1
2 [p

1
0,p

∗
0])

cos( 12∠(Op0
0p

∗
0))

,

=
sinh( 12 [p

1
0,p

∗
0])

cos( 12∠(Op0
0p

∗
0))

,

(A.18)
= sinh( 14 sys(Mg)) tan(

1
2∠(Op0

0p
∗
0)),

= (
√
2− 1) sinh(14 sys(Mg)).

By the same reasoning as before,

tanh(R(p1
0,p

1
1,p

∗
0)) < (

√
2− 1) lim

g→∞
sinh( 14 sys(Mg)) ≈ 0.414,

which shows that tanh(R(p1
0,p

1
1,p

∗
0)) < tanh( 14 sys(Mg)). This proves that the

circumdiameter of [p1
0,p

1
1,p

∗
0] is smaller than 1

2 sys(Mg).



A.2. PROOFS OMITTED IN CHAPTER 3 119

Third, consider the circumradius R(pm
0 ,p

m
1 , O) of [pm

0 ,p
m
1 , O]. We know that

[O,pm
0 ] = x ≤ 1

4 sys(Mg). By a similar computation as above, we see that

tanh(R(pm
0 ,p

m
1 , O)) =

tanh( 12x)

cos( π
4g )

,

≤ tanh( 18 sys(Mg))

cos(π8 )
,

= tanh(R(p0
0,p

1
0,p

∗
0)),

< tanh( 14 sys(Mg)),

from which we conclude that R(pm
0 ,p

m
1 , O) < 1

4 sys(Mg). This proves that the
circumdiameter of [pm

0 ,p
m
1 , O] is smaller than 1

2 sys(Mg).

Finally, let 1 ≤ j ≤ m − 1 and consider the circumradius R(pj
0,p

j
1,p

j+1
1 ) of

[pj
0,p

j
1,p

j+1
1 ]. In fact, the points pj

0,p
j
1,p

j+1
0 ,pj+1

1 are concircular due to sym-

metry, so the center of the circumscribed circle of [pj
0,p

j
1,p

j+1
1 ] lies on the line

segment [O,p∗
0]. It follows that the circumradius of this disk decreases when the

distance of pj
0 to [O,p∗

0] decreases, or equivalently, when the distance [O,pj
0] de-

creases. Hence, for all 1 ≤ j ≤ m− 1, R(pj
0,p

j
1,p

j+1
1 ) < R(p1

0,p
1
1,p

2
1). Therefore,

it is sufficient to show that R(p1
0,p

1
1,p

2
1) <

1
4 sys(Mg).

In this case, we cannot use equation (A.21), since [p1
0,p

1
1,p

2
1] is not an isosceles tri-

angle. There exists a more general expression for the circumradius of an arbitrary
(not necessarily isosceles) triangle, but this will lead to unnecessarily long expres-
sions. Instead, consider the circumcenter c of [p1

0,p
1
1,p

2
1]. See also Figure A.3

for a more detailed view of the relevant triangles. By the discussion above, we

p0
0

p0
1

p∗0

p1
0

p2
0

O

p1
1

p2
1

c

c′

1
8

sys(Mg)

Figure A.3: Close-up of situation at [p1
0,p

1
1,p

2
1]

know that c ∈ [O,p∗
0]. Let c

′ be the orthogonal projection of c onto [O,p0
1]. Since
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[c,p1
1,p

2
1] is isosceles, we know that

[O, c′] = [O,p2
1]+

1
8 sys(Mg) = [O,p0

1]− 3
8 sys(Mg) = arccosh(cot( π

4g ))− 3
8 sys(Mg),

from which it can be seen that [O, c′] is strictly increasing as function of g. Fur-
thermore, [10, Theorem 7.11.2(i)]

tanh([c, c′]) = sinh([O, c′]) tan( π
4g ),

which after substitution of our expression for [O, c′] can be rewritten as

tanh([c, c′]) =
√

1− tan2( π
4g ) cosh(

3
8 sys(Mg))− sinh( 38 sys(Mg)).

By the Pythagorean law in [c, c′,p2
1] we know

cosh(R(p1
0,p

1
1,p

2
1)) = cosh(18 sys(Mg)) cosh([c, c

′]).

Using this expression of R(p1
0,p

1
1,p

2
1), it can be seen that R(p1

0,p
1
1,p

2
1) is strictly

increasing as function of g. Therefore,

cosh(R(p1
0,p

1
1,p

2
1)) < lim

g→∞
cosh(R(p1

0,p
1
1,p

2
1)) ≈ 1.140,

which can be obtained by computing the corresponding limits of cosh( 18 sys(Mg))
and cosh([c, c′]). Hence, tanh(R(p1

0,p
1
1,p

2
1)) < 0.480, so tanh(R(p1

0,p
1
1,p

2
1)) <

tanh( 14 sys(Mg)). This proves that the circumdiameter of [p1
0,p

1
1,p

2
1] is smaller

than 1
2 sys(Mg). Since the circumdiameters of all four triangles are smaller than

1
2 sys(Mg) and since by symmetry every triangle is congruent to one of these four,
this concludes the proof.

Proof. (Lemma 3.16)
We show that the circumdisks of triangles in T do not have vertices of T in their
interior. Denote the circumscribed circle and open circumscribed disk of a triangle
[p, q, r] by C(p, q, r) and D(p, q, r) respectively, and similarly when more than
three points are concircular. Observe in particular that C(p, q, r)∩D(p, q, r) = ∅.
Denote the hyperbolic line through points p, q by L(p, q) and the open and
closed line segments connecting p, q by (p, q), [p, q] respectively. By symme-
try it is sufficient to consider only D(p0

0,p
1
0,p

∗
0), D(p1

0,p
1
1,p

∗
0), D(pm

0 ,p
m
1 , O) and

D(pj
0,p

j
1,p

j+1
1 ) for 1 ≤ j ≤ m − 1. For convenience, we treat the cases for each

circumdisk in a fixed order, namely

1. O,v

2. p∗
k, k = 0, . . . , 4g − 1,

3. pj
k, k = 0, . . . , 4g − 1, j = 0, . . . ,m,
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4. qj
k, k = 0, . . . , 4g − 1, j = 1, . . . ,m.

First, consider D(p0
0,p

1
0,p

∗
0).

1. Clearly, O and v are too far away from p∗
0 to be inside D(p0

0,p
1
0,p

∗
0).

2. Since p∗
0 ∈ C(p0

0,p
1
0,p

∗
0), we know that p∗

0 ̸∈ D(p0
0,p

1
0,p

∗
0). Since the

center of D(p0
0,p

1
0,p

∗
0) lies inside D(p0

0,p
1
0,p

∗
0) on the bisector of angle

∠(p1
0p

0
0p

∗
0) we see that p

∗
4g−1 is farther away from this center than p∗

0. Since
p∗
0 ̸∈ D(p0

0,p
1
0,p

∗
0), it follows that p∗

4g−1 ̸∈ D(p0
0,p

1
0,p

∗
0) as well. Since

D(p0
0,p

1
0,p

∗
0) ∩ C(p∗

0, . . . ,p
∗
4g−1) is contained in the shortest open chord of

C(p∗
0, . . . ,p

∗
4g−1) between p∗

0 and p∗
4g−1, we see that p∗

k ̸∈ D(p0
0,p

1
0,p

∗
0) for

k = 0, . . . , 4g − 1.

3. Since the center of D(p0
0,p

1
0,p

∗
0) is in the interior of [p0

0,p
1
0,p

∗
0] ⊂ [O,p0

0,p
∗
0],

we know that pj
0 is closer to the center of D(p0

0,p
1
0,p

∗
0) than pj

k for j =
0, . . . ,m and k ̸= 0. Because L(O,p0

0) ∩D(p0
0,p

1
0,p

∗
0) = (p0

0,p
1
0), we know

that pj
0 ̸∈ D(p0

0,p
1
0,p

∗
0) for all j = 0, . . . ,m. Therefore, pj

k ̸∈ D(p0
0,p

1
0,p

∗
0)

for j = 0, . . . ,m and k = 0, . . . , 4g − 1.

4. By a reasoning similar to above, pj
k is closer to the center of D(p0

0,p
1
0,p

∗
0)

than qj
k. Since by the previous step pj

k ̸∈ D(p0
0,p

1
0,p

∗
0) for j = 1, . . . ,m and

k = 0, . . . , 4g − 1, it follows that qj
k ̸∈ D(p0

0,p
1
0,p

∗
0) for j = 1, . . . ,m and

k = 0, . . . , 4g − 1 as well.

Second, consider D(p1
0,p

1
1,p

∗
0).

1. Clearly, O and v are too far away from p∗
0 to be inside D(p1

0,p
1
1,p

∗
0).

2. The circle C(p1
0,p

1
1,p

∗
0) is tangent to C(p∗

0, . . . ,p
∗
4g−1), because both cir-

cles have their center on [O,p∗
0] and pass through p∗

0. Since the radius
of C(p1

0,p
1
1,p

∗
0) is smaller than the radius of C(p∗

0, . . . ,p
∗
4g−1), this means

that D(p1
0,p

1
1,p

∗
0) ⊆ D(p∗

0, . . . ,p
∗
4g−1). Therefore, p

∗
k ̸∈ D(p1

0,p
1
1,p

∗
0) for all

k = 0, . . . , 4g − 1.

3. First, to prove that pj
0 ̸∈ D(p1

0,p
1
1,p

∗
0) for all j = 0, . . . ,m, we now show that

D(p1
0,p

1
1,p

∗
0) ∩ (O,p1

0) = ∅. First observe that the line L(O,p0
0) intersects

C(p1
0,p

1
1,p

∗
0) in one or two points. If the intersection consists of one point,

then it has to be p1
0 and we are done. If the intersection consists of two

points, then it is sufficient to show that p1
0 is the closest of these two to

O. Let pM
0 denote the midpoint of p1

0 and p1
1. It is sufficient to show that

[p∗
0,p

M
0 ] ≥ R(p1

0,p
1
1,p

∗
0), since then the center of D(p1

0,p
1
1,p

∗
0) is contained

in [p1
0,p

1
1,p

∗
0]. It is known that [10, Theorem 7.11.2(iii)]

tanh([p∗
0,p

M
0 ]) = tanh([p1

0,p
∗
0]) cos

1
2∠(p

1
0p

∗
0p

1
1),

= tanh([p1
0,p

∗
0]) sin∠(p

1
0p

∗
0p

0
0),
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where the second equality follows from Equation (A.20) in the proof of
Lemma 3.15. Therefore, [p∗

0,p
M
0 ] ≥ R(p1

0,p
1
1,p

∗
0) is equivalent with the

following sequence of inequalities:

tanh([p∗
0,p

M
0 ]) ≥ tanh(R(p1

0,p
1
1,p

∗
0)),

tanh([p1
0,p

∗
0]) sin∠(p

1
0p

∗
0p

0
0) ≥

tanh( 12 [p
1
0,p

∗
0])

sin∠(p1
0p

∗
0p

0
0)
,

sin2 ∠(p1
0p

∗
0p

0
0) ≥

tanh( 12 [p
1
0,p

∗
0])

tanh([p1
0,p

∗
0])

.

Since
tanh( 12 [p

1
0,p

∗
0])

tanh([p1
0,p

∗
0])

= 1
2 tanh

2( 12 [p
1
0,p

∗
0]) +

1
2 ,

and since [p1
0,p

∗
0] is strictly increasing by (A.18) in the proof of Lemma 3.15,

we find that

tanh( 12 [p
1
0,p

∗
0])

tanh([p1
0,p

∗
0])
≤ lim

g→∞

tanh( 12 [p
1
0,p

∗
0])

tanh([p1
0,p

∗
0])
≈ 0.542.

Furthermore, since

sin2 ∠(p1
0p

∗
0p

0
0)

(A.19)
=

sinh2( 14 sys(Mg)) sin
2 ∠(Op0

0p
∗
0)

sinh2([p1
0,p

∗
0])

,

(A.18)
=

sinh2( 12 [p
1
0,p

∗
0]) sin

2 ∠(Op0
0p

∗
0)

sin2( 12∠(Op0
0p

∗
0)) sinh

2([p1
0,p

∗
0])
,

=
cos2( 12∠(Op0

0p
∗
0))

cosh2( 12 [p
1
0,p

∗
0])

,

and since ∠(Op0
0p

∗
0) is constant and [p1

0,p
∗
0] strictly increasing, we see that

sin2 ∠(p1
0p

∗
0p

0
0) is strictly decreasing, so

sin2 ∠(p1
0p

∗
0p

0
0) ≥ lim

g→∞
sin2 ∠(p1

0p
∗
0p

0
0) ≈ 0.744.

From this we can conclude that

sin2 ∠(p1
0p

∗
0p

0
0) ≥

tanh( 12 [p
1
0,p

∗
0])

tanh([p1
0,p

∗
0])

holds, which by the chain of equivalent inequalities means that [p∗
0,p

M
0 ] ≥

R(p1
0,p

1
1,p

∗
0). It follows that if L(O,p

0
0)∩C(p1

0,p
1
1,p

∗
0) consists of two points,

then p1
0 is the closest of these two. This implies thatD(p1

0,p
1
1,p

∗
0)∩(O,p1

0) =
∅. We conclude that pj

0 ̸∈ D(p1
0,p

1
1,p

∗
0) for all j = 0, . . . ,m. By symmetry,

we see that pj
1 ̸∈ D(p1

0,p
1
1,p

∗
0) for all j = 0, . . . ,m.
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Second, by the reasoning above we see that D(p1
0,p

1
1,p

∗
0) is contained in the

union of the triangle [O,p0
0,p

0
1] and the (open) annulus

D(p∗
0, . . . ,p

∗
4g−1) \ (D(p1

0, . . . ,p
1
4g−1) ∪ C(p1

0, . . . ,p
1
4g−1))

centered at O, with boundary passing through p∗
0 on one side and through p1

0

on the other side. Combining this with pj
k ̸∈ D(p1

0,p
1
1,p

∗
0) for j = 0, . . . ,m

and k = 0, 1, we can immediately conclude that pj
k ̸∈ D(p1

0,p
1
1,p

∗
0) for

j = 0, . . . ,m and k = 0, . . . , 4g − 1.

4. As we have seen before, C(p1
0,p

1
1,p

∗
0) is tangent to C(p∗

0, . . . ,p
∗
4g−1), so

D(p1
0,p

1
1,p

∗
0) is contained in the interior of the 4g-gon [p0

0, . . . ,p
0
4g−1]. There-

fore, qj
k ̸∈ D(p1

0,p
1
1,p

∗
0) for j = 1, . . . ,m and k = 0, . . . , 4g − 1.

Third, consider D(pm
0 ,p

m
1 , O).

1. Since O ∈ C(pm
0 ,p

m
1 , O), we know that O ̸∈ D(pm

0 ,p
m
1 , O). Clearly, v is too

far away from O to be inside D(pm
0 ,p

m
1 , O).

2. Clearly, the points p∗
k for k = 0, . . . , 4g − 1 are too far away from O to be

inside D(pm
0 ,p

m
1 , O).

3. Since D(pm
0 ,p

m
1 , O) is contained in the union of the triangle [O,p0

0,p
0
1] and

the disk D(pm
0 ,p

m
1 , . . . ,p

m
4g−1), we see that pj

k ̸∈ D(pm
0 ,p

m
1 , O) for all j =

0, . . . ,m and k ̸= 0, 1. Since L(O,pm
0 ) ∩D(pm

0 ,p
m
1 , O) = (O,pm

0 ), it follows
that pj

0 ̸∈ D(pm
0 ,p

m
1 , O) for j = 0, . . . ,m. Similarly, pj

1 ̸∈ D(pm
0 ,p

m
1 , O)

for j = 0, . . . ,m. Therefore, pj
k ̸∈ D(pm

0 ,p
m
1 , O) for all j = 0, . . . ,m and

k = 0, . . . , 4g − 1.

4. Clearly, the points qj
k for j = 1, . . . ,m and k = 0, . . . , 4g−1 are too far away

from O to be inside D(pm
0 ,p

m
1 , O).

Finally, let 1 ≤ j ≤ n− 1 and consider D(pj
0,p

j
1,p

j+1
1 ).

1. Clearly, v is too far away from the center of D(pj
0,p

j
1,p

j+1
1 ) to be inside

D(pj
0,p

j
1,p

j+1
1 ). Moreover, D(pj

0,p
j
1,p

j+1
1 ) does not contain O because

L(O,p0
1) ∩D(pj

0,p
j
1,p

j+1
1 ) = (pj

1,p
j+1
1 ).

2. Of the set of disks {D(pj
0,p

j
1,p

j+1
1 ), j = 1, . . . ,m−1}, the one that is closest

to p∗
0 is D(p1

0,p
1
1,p

2
1), i.e., if p

∗
0 ̸∈ D(p1

0,p
1
1,p

2
1), then p∗

0 ̸∈ D(pj
0,p

j
1,p

j+1
1 )

for j = 1, . . . ,m − 1. Observe that C(p1
0,p

1
1,p

2
1) and C(p∗

0,p
1
0,p

1
1) inter-

sect in the points p1
0,p

1
1. Since the center of C(p1

0,p
1
1,p

2
1) is closer to O

than the center of C(p∗
0,p

1
0,p

1
1), we can conclude that p∗

0 ̸∈ D(p1
0,p

1
1,p

2
1).

Therefore, p∗
0 ̸∈ D(pj

0,p
j
1,p

j+1
1 ) for j = 1, . . . ,m − 1. It follows that

D(pj
0,p

j
1,p

j+1
1 ) ⊆ D(p∗

0, . . . ,p
∗
4g−1) for j = 1, . . . ,m− 1, which implies that

p∗
k ̸∈ D(pj

0,p
j
1,p

j+1
1 ) for j = 1, . . . ,m− 1 and k = 0, . . . , 4g − 1.
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3. Since pj
0,p

j
1,p

j+1
0 ,pj+1

1 are concircular, we see that D(pj
0,p

j
1,p

j+1
1 ) is con-

tained in the union of the (closed) triangle [O,p0
0,p

0
1] and the (open) annulus

D(pj
0, . . . ,p

j
4g−1) \ (D(pj+1

0 , . . . ,pj+1
4g−1) ∪ C(pj+1

0 , . . . ,pj+1
4g−1))

centered at O, with boundary passing through pj
0 on one side and through

pj+1
0 on the other side. Therefore, pj

k ̸∈ D(pj
0,p

j
1,p

j+1
1 ) for j = 0, . . . ,m and

k ̸= 0, 1. Furthermore, since L(O,p0
0)∩D(pj

0,p
j
1,p

j+1
1 ) = (pj

0,p
j+1
0 ), we see

that pj
0 ̸∈ D(pj

0,p
j
1,p

j+1
1 ) for j = 0, . . . ,m. Similarly, pj

1 ̸∈ D(pj
0,p

j
1,p

j+1
1 )

for j = 0, . . . ,m. We conclude that pj
k ̸∈ D(pj

0,p
j
1,p

j+1
1 ) for j = 0, . . . ,m

and k = 0, . . . , 4g − 1.

4. Clearly, D(pj
0,p

j
1,p

j+1
1 ) is contained in the 4g-gon [p0

0, . . . ,p
0
k, . . . ,p

0
4g−1],

which means that qj
k ̸∈ D(pj

0,p
j
1,p

j+1
1 ) for j = 1, . . . ,m and k = 0, . . . , 4g−1.

Since each triangle of the infinite triangulation T is congruent to one of the tri-
angles above and since the circumdisk of each of the above triangles is empty, it
follows that T is a Delaunay triangulation.

A.3 Proofs omitted in Chapter 4

Proof. (Lemma 4.23)
Throughout the proof, we denote the set of vertices of T contained in a subset U
of M by V (U). Likewise, let E(U,W ) be the set of edges with one endpoint in
U ⊂M and one endpoint in W ⊂M.

Part 1. Consider the graph Gi = (V (Γi), E(Γi,Γi)). Let gi be the genus of Gi,
i.e., the minimal genus of a surface onto which Gi can be embedded. It is known
that [59, Proposition 4.4.4]

gi ≥
⌈
e(Γi,Γi)

6
− v(Γi)

2
+ 1

⌉
,

or, equivalently, that
e(Γi,Γi) ≤ 6gi + 3v(Γi)− 6. (A.22)

We will show that the embedding of Gi into M intersects at most 6N(N + 1) + 2
pairs of pants, which implies that gi ≤ 3N(N+1)+1. Certainly, V (Γi) is contained
in Γi, which consists of at most 6N consecutive pairs of pants. Now, let e ∈
E(Γi,Γi). Because the diameter of Γi is at most 6NM , we know that there exists
a path of length at most 6NM between the endpoints of e. Because e is a distance
path, it follows that

ℓ(e) ≤ 6NM < 6N2m.

Suppose that e intersects exactly k pairs of pants that are not contained in Γi and
denote the farthest pair of pants that it intersects by Y ∗. Here, farthest is defined
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with respect to the distance along the trivalent graph Lg. Because e is an edge
between vertices in Γi, e has to traverse at least k − 1 pairs of pants to reach Y ∗

and similarly at least k−1 pairs of pants to return to Γi. As the length of e within
each of these pairs of pants is at least m, we know

ℓ(e) ≥ 2(k − 1)m.

It follows that
2(k − 1)m < 6N2m,

which implies that k < 3N2 + 1. We conclude that Gi is embedded in a surface
consisting of at most (3N2+1)+6N +(3N2+1) = 6N(N +1)+2 pairs of pants.
It follows that gi ≤ 3N(N + 1) + 1. Hence

e(Γi,Γi) ≤ 6(3N(N + 1) + 1) + 3v(Γi)− 6 = 3v(Γi) + 18N(N + 1),

which finishes the proof.

Part 2. We consider two cases.

Case 1: there are at most 6N2 + 2 pairs of pants between Γi and Γi+1.
Consider the graph (V (Γi ∪ Γi+1), E(Γi ∪ Γi+1,Γi ∪ Γi+1)). We have shown in
Part 1 that edges in E(Γi,Γi) and E(Γi+1,Γi+1) can traverse at most 3N2 − 1
pairs of pants that are not contained in Γi and Γi+1 respectively. Therefore,
E(Γi,Γi) ∪ E(Γi+1,Γi+1) is contained in a surface consisting of at most

(3N2 + 1) + 6N + (3N2 + 1) + (3N2 + 1) + 6N + (3N2 + 1) = 12N2 + 12N + 4

pairs of pants. With a similar argument it can be shown that E(Γi,Γi+1) is
contained in this surface as well. Therefore, (V (Γi∪Γi+1), E(Γi∪Γi+1,Γi∪Γi+1))
is embedded in a surface consisting of at most 12N2 + 12N + 4 pairs of pants.
Replacing Γi by Γi ∪ Γi+1 in Inequality (A.22) yields

e(Γi ∪ Γi+1,Γi ∪ Γi+1) ≤ 6(6N2 + 6N + 4) + 3v(Γi ∪ Γi+1)− 6,

= 3v(Γi ∪ Γi+1) + 36N(N + 1) + 18.

Because e(Γi,Γi+1) ≤ e(Γi ∪ Γi+1,Γi ∪ Γi+1), the desired inequality follows.

Case 2: there are more than 6N2 + 2 pairs of pants between Γi and Γi+1.
We show that there are integers gi,1 and gi,2 with

gi,1 ≤ gi,2, (A.23)

such that
e(Γi,Γi+1) ≤ 2v(Γi) + 2v(Γi+1) + 4gi,1 − 4 (A.24)

and

e(Γi,Γi+1) ≥ 3v(Γi) + 3v(Γi+1)− 3e(Γi,Γi)− 3e(Γi+1,Γi+1) + 6gi,2 − 6. (A.25)
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Combining (A.24) and (A.25) yields

e(Γi,Γi+1) ≤ 6e(Γi,Γi) + 6e(Γi+1,Γi+1) + 12gi,1 − 12gi,2.

Using the upper bound e(Γj ,Γj) ≤ 3v(Γj) + 18N(N + 1) from Part 1 for j = i
and j = i+ 1, together with (A.23) yields

e(Γi,Γi+1) ≤ 18v(Γi ∪ Γi+1) + 216N(N + 1),

which is the desired inequality.
The number gi,1 is the genus of the graph Gi,1 with edge set E(Γi,Γi+1) and

vertex set Vi,1 consisting of all vertices incident to some edge in E(Γi,Γi+1). The
number gi,2 is the genus of the graph Gi,2 with edge set E(Γi ∪ Γi+1,Γi ∪ Γi+1)
and vertex set V (Γi+1 ∪ Γi+1). Since Gi,1 is a subgraph of Gi,2, inequality (A.23)
holds. Therefore, it remains to be proved that (A.24) holds for this value of gi,1,
and that (A.25) holds for this value of gi,2.

To prove that (A.24) holds, we apply a result in graph theory about bipartite
graphs to Gi,1. By construction, Gi,1 contains no cycle of length 3. We claim that
Gi,1 is connected. Then, [59, Prop. 4.4.4, eq. 4.13]

e(Γi,Γi+1) ≤ 2|Vi,1|+ 4gi,1 − 4.

Observing that |Vi,1| ≤ v(Γi) + v(Γi+1) yields the desired inequality.
To prove that Gi,1 is connected, consider a pair of pants Y between Γi and

Γi+1 such that there are at least 3N2 + 1 pairs of pants between Y and Γi and
between Y and Γi+1. Such a pair of pants Y exists because there are more than
6N2 + 2 pairs of pants between Γi and Γi+1. Let γ be the boundary geodesic of
Y such that M \ γ consists of exactly two connected components. Every edge in
E(Γi,Γi+1) intersects γ, because γ separates Γi and Γi+1. Furthermore, every edge
in E(Γi,Γi+1) intersects γ exactly once, because the edges in E(Γi,Γi+1) and γ are
geodesics and there are no hyperbolic bigons. No edge in E(Γi,Γi)∪E(Γi+1,Γi+1)
intersects γ, because by the reasoning in Part 1 edges in E(Γj ,Γj) for j = i and
j = i+1 intersect fewer than 3N2 +1 pairs of pants that are not contained in Γj .
Because T has no edges between non-adjacent clusters, it follows that the only
edges of T that intersect γ are edges in E(Γi,Γi+1) and that each edge intersects
γ in exactly one point. Therefore, we can write E(Γi,Γi+1) = {e1, . . . , ek} for
k = |E(Γi,Γi+1)|, where the indices of the edges correspond to the order in which
they intersect γ. For every i = 1, . . . , k, the edges ei and ei+1 are contained in a
triangle of T consisting of ei, ei+1 and an edge in either E(Γi,Γi) or E(Γi+1,Γi+1).
Hence, ei and ei+1 share an endpoint. Therefore, there is a path in Gi,1 between
any endpoint of ei and any endpoint of ei+1. This implies that there is a path
in Gi,1 between any endpoint of ei and ej for all i, j = 1, . . . , k. Because Vi,1
consists of the vertices incident to some edge in E(Γi,Γi+1), it follows that Gi,1 is
connected. This concludes the proof of Inequality (A.24).

We continue with the proof of Inequality (A.25). Recall that the graph Gi,2

has edge set E(Γi ∪ Γi+1,Γi ∪ Γi+1) and vertex set V (Γi+1 ∪ Γi+1). The union of
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the triangles of T with edges and vertices in Gi,2 define a topological surface with
boundary components1. Each boundary component consists of a finite number
of edges of Gi,2. By adding a face to each boundary component, we obtain an
embedding of Gi,2 in a closed surface Si. When we speak of faces of Gi,2, we will
always refer to faces with respect to the embedding of Gi,2 in Si.

Denote the number of edges that are contained in exactly zero, one or two
triangles in Gi,2 by δ0, δ1 and δ2, respectively. The total number of edges is given
by ei,2 = δ0 + δ1 + δ2. Now, let f∆ be the number of triangular faces of Gi,2. As
the total number of faces fi,2 is at least the number of triangular faces, we know
that fi,2 ≥ f∆. Since 3f∆ = 2δ2 + δ1, it follows that

3fi,2 ≥ 2δ2 + δ1.

As ei,2 = δ0 + δ1 + δ2, we obtain

3fi,2 ≥ 2(ei,2 − δ1 − δ0) + δ1 = 2ei,2 − δ1 − 2δ0.

Because
ei,2 = e(Γi,Γi) + e(Γi,Γi+1) + e(Γi+1,Γi+1), (A.26)

we see

3fi,2 ≥ 2e(Γi,Γi) + 2e(Γi,Γi+1) + 2e(Γi+1,Γi+1)− δ1 − 2δ0. (A.27)

We will now bound the right-hand side from below by proving that

δ1 + 2δ0 ≤ 2e(Γi,Γi) + 2e(Γi+1,Γi+1).

We claim that every edge in E(Γi,Γi+1) is part of two triangles. To prove this,
let e = (u, v) ∈ E(Γi,Γi+1) and consider a triangle (u, v, w) in T containing e.
Because every edge has its endpoints in either the same cluster or consecutive
clusters, there is only an edge between u and w if w ∈ Γj for j = i − 1, i, i + 1
and there is only an edge between v and w if w ∈ Γj for j = i, i+ 1, i+ 2. Since
(u, v, w) is a triangle in T , it follows that w ∈ Γi ∪ Γi+1, so w ∈ Gi,2. This
means that (u, v, w) is a triangle in Gi,2 and since we have chosen it arbitrarily,
both triangles in T containing e are triangles in Gi,2. It follows that the edges
that are contained in no triangles or exactly one triangle in Gi,2 are contained in
E(Γi,Γi) ∪ E(Γi+1,Γi+1). This means that

δ0 + δ1 ≤ e(Γi,Γi) + e(Γi+1,Γi+1),

so
2δ0 + δ1 ≤ 2e(Γi,Γi) + 2e(Γi+1,Γi+1).

1In fact, these triangles define a hyperbolic surface with boundary components consisting
of a finite number of geodesic segments. However, for our argument we do not use any metric
properties.



128 APPENDIX A. OMITTED PROOFS

Combining this upper bound with Equation (A.27) we obtain

3fi,2 ≥ 2e(Γi,Γi+1). (A.28)

To conclude, we will look at Euler’s formula for the graph Gi,2, which is given by

vi,2 − ei,2 + fi,2 = 2− 2g′i,2, (A.29)

where g′i,2 is the genus of the embedding of Gi,2 in Si. Because gi,2 is the minimal
genus of a surface onto which Gi,2 can be embedded, in particular gi,2 ≤ g′i,2.
Substituting Equation (A.26) and Inequality (A.28) into Euler’s formula (A.29),
we obtain after some simplifications

e(Γi,Γi+1) ≥ 3v(Γi ∪ Γi+1)− 3e(Γi,Γi)− 3e(Γi+1,Γi+1) + 6gi,2 − 6.

This finishes the proof.



Conclusion and open problems

In this thesis we studied Delaunay triangulations of hyperbolic surfaces. We con-
sidered the following three topics:

1. computing the systole of a specific class of hyperbolic surfaces,

2. describing the properties of a given class of hyperbolic surfaces that are
needed to compute Delaunay triangulations of point sets on these surfaces,

3. providing upper and lower bounds for the minimal number of vertices of a
Delaunay triangulation of a hyperbolic surface.

Here, we give a summary of the results and state some open problems.
In Chapter 2 we studied the systole of hyperbolic surfaces. We showed that the

systole of the so-called generalized Bolza surface of genus g is given by 2 arccosh(1+
2 cos( π

2g )). In the proof, closed geodesics on the surface are represented by hyper-
bolic line segments between the sides of a fundamental polygon representing the
generalized Bolza surface. The result follows by obtaining bounds on the lengths
of these line segments by using straightforward hyperbolic trigonometry.

The fundamental polygon used to represent the generalized Bolza surface of
genus g is a regular hyperbolic 4g-gon. By perturbing the vertices of this regular
4g-gon while keeping point-symmetric symmetry and considering the correspond-
ing hyperbolic surfaces, we obtain an open neighborhood of the generalized Bolza
surfaces in the set of hyperelliptic surfaces. For sufficiently small perturbations,
the geometry of the resulting polygons is similar to the geometry of the regu-
lar 4g-gon. In particular, we proved that for perturbations of size O((log(g))−1)
the method for computing the systole of generalized Bolza surfaces works for the
hyperelliptic surfaces in the corresponding neighborhood as well.

Motivated by the computation of the systole of generalized Bolza surfaces and
hyperelliptic surfaces, we looked at the so-called word length of systoles. It is
known that every closed geodesic on a closed hyperbolic surface corresponds to
an element of the corresponding Fuchsian group, up to conjugacy. The minimal
number of generators of a group that need to be multiplied to obtain a specific
element of that group is called the word length of that element. The elements
of the Fuchsian group corresponding to a systole of a generalized Bolza surface
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(or hyperelliptic surfaces in some neighborhood) are products of precisely two of
the side-pairing transformations. This raised the question whether there exists a
general upper bound for the word length of the elements corresponding to systoles
of a given hyperbolic surface, but we proved that there is no such bound.

Our study of systoles has multiple directions for future research. First, we
have shown that the method for computing the systole of the generalized Bolza
surfaces can be applied to hyperelliptic surfaces in some neighborhood as well,
but our derivation of an admissible size of the perturbations is rather indirect.
One can ask whether there is a more explicit upper bound on the admissible size
of perturbations. Moreover, a next question could be whether the same sort of
reasoning can be used for hyperbolic surfaces outside this neighborhood as well, for
example by giving a more detailed description of the geometry of the fundamental
polygon. In this way, we might obtain a better understanding of the behavior of
the systole as function on the Teichmüller space of hyperbolic surfaces of a given
genus.

Second, even though we have shown that in general there is no upper bound
for the word length of a systole of a hyperbolic surface, the method used in our
proof leads to a set of generators that belong to a very elongated fundamental
domain. A follow-up question is whether there is still no upper bound when
we pose additional conditions on the fundamental domain, for example being a
Dirichlet region.

In Chapter 3 we described the properties of the generalized Bolza surfaces
that allow Bowyer’s algorithm to be applied to these surfaces. First, to be able
to check whether a given point set on a generalized Bolza surface satisfies the
validity condition, it is necessary to know the value of the systole, which was
already computed in Chapter 2. Using a similar argument as in the computation
of the value of the systole, we proved that during the execution of the algorithm
it is sufficient to consider a small set of copies of the input points, instead of
all (infinitely many) copies in the orbit space, which cannot be done in practice.
Moreover, we created several algorithms to construct a dummy point set with
which Bowyer’s algorithm can be initialized and analyzed the resulting number of
points of each. In a more general setting, we proved upper and lower bounds for
the cardinality of a dummy point set for arbitrary hyperbolic surfaces. Apart from
describing point sets that satisfy the validity condition known from the literature,
we also briefly discussed a local validity condition, that is based on the injectivity
radius of points of the hyperbolic surface instead of the systole. Finally, we looked
at numerical issues for the implementation of the described algorithm and stated
a bound for the degree of the predicates used in the computations.

A natural (but challenging) open problem is to generalize Bowyer’s algorithm
to arbitrary hyperbolic surfaces. Since our extension of Bowyer’s algorithm relies
on the validity condition, for which we need to know the value of the systole, and
since the value of the systole of a hyperbolic surface is not known in general, a
first step could be to consider a subclass of hyperbolic surfaces. We have already
looked at hyperelliptic surfaces in some neighborhood of the generalized Bolza
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surfaces in Chapter 2, so we could start by generalizing the algorithm to these
surfaces.

In Chapter 4 we looked at the minimal number of vertices of a Delaunay
triangulation of a hyperbolic surface. By subdividing an arbitrary hyperbolic
surface into its ‘thick’ and ‘thin’ parts, we were able to show that any hyperbolic
surface of genus g admits a Delaunay triangulation with at most 151g vertices such
that its edges are distance paths. Similarly, there exists a family of hyperbolic
surfaces such that the number of vertices of any Delaunay triangulation where
edges are distance paths grows like Ω(g). The examples that we used to prove
the latter statement are geometrically quite simple, as they are made by gluing
pairs of pants with boundary lengths chosen in some closed interval in a pattern
that somewhat resembles a ‘line’. Finally, one can wonder whether all hyperbolic
surfaces satisfy this Ω(g) bound, but we have shown that this is not the case.
Namely, using the Ringel-Youngs construction we constructed a family of surfaces
for which there exist Delaunay triangulations with Θ(

√
g) vertices.

From the moduli space point of view, we have a function from moduli space
to the set of natural numbers assigning to each hyperbolic surface the minimal
number of vertices of any of its Delaunay triangulations. Even though the results
that we obtained so far give a good understanding of the extremal values of this
function, a further question is how this function behaves in different ‘regions’ of
moduli space. For example, one can wonder how the number of vertices behaves for
a random hyperbolic surface, chosen with respect to a natural probability measure
on moduli space.

Moreover, even though we found an example of a family of hyperbolic surfaces
attaining the general lower bound Ω(

√
g), the geometry of the resulting surfaces

is quite special. It is not immediately clear whether in a small neighborhood of
these surfaces in moduli space the minimal number of vertices is still Θ(

√
g).





Samenvatting

Triangulaties zijn een veelvuldig bestudeerd onderwerp binnen de computationele
meetkunde. Een triangulatie van een oppervlak is een opdeling van dat oppervlak
in driehoeken, een van de meest eenvoudige wiskundige vormen. Het opdelen van
een oppervlak in driehoeken maakt het mogelijk om computeralgoritmes toe te
passen en op deze manier de eigenschappen van het oppervlak te analyseren.

Delaunay triangulaties zijn een specifiek soort triangulaties die vanwege hun
speciale eigenschappen geschikt zijn voor vele toepassingen, bijvoorbeeld het mo-
delleren van hoogteverschillen van een bepaald terrein. Oorspronkelijk werden
Delaunay triangulaties bestudeerd voor verzamelingen van punten in het twee-
dimensionale (Euclidische) vlak, maar ze kunnen ook in andere soorten ruimtes
gedefinieerd worden. Zo zijn er in de afgelopen jaren verschillende algoritmes om
Delaunay triangulaties te construeren gegeneraliseerd naar hyperbolische ruimtes.

Hyperbolische meetkunde kwam op in de eerste helft van de negentiende eeuw.
Een model dat vaak gebruikt wordt om het hyperbolische vlak weer te geven is
het Poincaré schijfmodel. Hierin wordt het hele hyperbolische vlak gerepresenteerd
door een schijf, zoals in Figuur 1. We hebben in Figuur 1 ook drie hyperbolische
lijnen getekend. Hoewel twee van deze hyperbolische lijnen vanuit het Euclidi-
sche perspectief waaraan we gewend zijn gekromd lijken, zijn ze het equivalent
van de rechte lijnen in het Euclidische vlak. Dit illustreert dat het hyperbolische
vlak overal negatief gekromd is, in tegenstelling tot het Euclidische vlak dat niet
gekromd is. De eigenschappen van het hyperbolische vlak zorgen ervoor dat het
gebruikt kan worden om vormen of structuren te beschrijven die, intüıtief gespro-
ken, niet in het Euclidische vlak “plat neergelegd” kunnen worden.

In dit proefschrift bestuderen we Delaunay triangulaties van hyperbolische op-
pervlakken. Hyperbolische oppervlakken zijn oppervlakken die locaal op het hy-
perbolische vlak “lijken”. Ze hebben toepassingen in diverse wetenschapsgebieden,
zoals materiaalwetenschappen, cosmologie, wiskundige neurologie en quantumcha-
ostheorie.

In eerder werk is Bowyers incrementele algoritme, dat oorspronkelijk ontwik-
keld is om Delaunay triangulaties in het Euclidische vlak te construeren, gegenera-
liseerd naar hyperbolische oppervlakken. Er is een implementatie van dit algorimte
voor het Bolzaoppervlak, een specifiek hyperbolisch oppervlak.

Een voorwaarde voor de juiste werking van het algoritme is dat de triangulatie
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L1

L2

L3

Figuur 1: Het Poincaré schijfmodel van het hyperbolische vlak met drie hyperbolische
lijnen L1, L2 en L3.

te allen tijde simpliciaal is tijdens het uitvoeren. Dit betekent dat geen van de
zijden van de driehoeken in de triangulatie hetzelfde begin- als eindpunt mag heb-
ben, en dat tussen elk paar hoekpunten van de triangulatie maar één zijde van een
driehoek mag liggen. Aan deze voorwaarde is voldaan wanneer de verzameling van
hoekpunten van de triangulatie voldoende groot en gelijkmatig over het oppervlak
verdeeld is.

Om te controleren of de verzameling van hoekpunten inderdaad voldoende
groot en gelijkmatig is, gebruiken we een parameter genaamd de systole. Dit is de
lengte van de kortste gesloten kromme op het oppervlak die niet samengetrokken
kan worden. De waarde van de systole is in het algemeen, dat wil zeggen voor een
willekeurig hyperbolisch oppervlak, niet bekend. Er bestaat een algoritme om de
systole van een gegeven hyperbolisch oppervlak uit te rekenen, maar het is niet
duidelijk of dit efficiënt genoeg is om in de praktijk te gebruiken.

We hebben de resultaten van dit proefschrift onderverdeeld in drie hoofdstuk-
ken.

In hoofdstuk 2 berekenen we de waarde van de systole van de gegeneraliseerde
Bolzaoppervlakken, een specifieke klasse van hyperbolische oppervlakken. Verder
bewijzen we dat de methode die we gebruiken om de systole van deze klasse van
oppervlakken uit te rekenen ook gebruikt kan worden voor andere oppervlakken,
zolang ze niet te veel verschillen van de gegeneraliseerde Bolzaoppervlakken.

In hoofdstuk 3 beschrijven we de eigenschappen van de gegeneraliseerde Bol-
zaoppervlakken die nodig zijn om Bowyers incrementele algoritme te kunnen toe-
passen op deze oppervlakken. Een van de karakteristieke kenmerken van Bowyers
algoritme is dat het een incrementeel algoritme is: het begint met een Delaunay
triangulatie van een klein aantal hoekpunten, voegt vervolgens de overige hoekpun-
ten een voor een toe en past na elke toevoeging van een hoekpunt de triangulatie
aan. Om ervoor te zorgen dat de triangulatie ook in het begin simpliciaal is, intro-
duceren we meerdere algoritmes die een verzameling van hoekpunten construeren
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die als startpunt kunnen dienen voor Bowyers incrementele algoritme.
In hoofdstuk 4 behandelen we Delaunay triangulaties van hyperbolische op-

pervlakken met een minimaal aantal hoekpunten. We leiden een bovengrens af
voor dit minimale aantal hoekpunten, dat wil zeggen dat elk hyperbolisch opper-
vlak een Delaunay triangulatie heeft waarbij het aantal hoekpunten niet groter is
dan deze bovengrens. Verder geven we voorbeelden van oppervlakken waarvoor
het minimale aantal hoekpunten van een Delaunay triangulatie dezelfde orde van
grootte heeft als de bovengrens. De orde van grootte van de bovengrens wordt
gegeven in termen van het geslacht van het oppervlak, dat ruwweg het aantal
“gaten” in het oppervlak weergeeft. Zo heeft het oppervlak in Figuur 2 geslacht
3.

Figuur 2: Oppervlak van geslacht 3 onderverdeeld in 4 broeken.

Een hulpmiddel bij de analyse van het minimale aantal hoekpunten van Del-
aunay triangulaties van hyperbolische oppervlakken is de onderverdeling van hy-
perbolische oppervlakken in zogenaamde broeken. Een broek is een oppervlak met
drie openingen: twee voor de benen en een voor het middel. Het oppervlak in
Figuur 2 hebben we onderverdeeld in 4 broeken. Het gaat hierbij alleen om het
aantal openingen; het is voor ons niet van belang of de broeken ook een vorm
hebben zodat ze daadwerkelijk aangetrokken kunnen worden.

Naast de bovengrens leiden we ook een ondergrens af. Tevens geven we voor-
beelden van oppervlakken waarvoor het minimale aantal hoekpunten van een Del-
aunay triangulatie dezelfde orde van grootte heeft als deze ondergrens.
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