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OBJECTIVE There is a reported elevated risk of cerebral aneurysms in patients with intracranial dural arteriovenous 
fistulas (dAVFs). However, the natural history, rate of spontaneous regression, and ideal treatment regimen are not well 
characterized. In this study, the authors aimed to describe the characteristics of patients with dAVFs and intracranial 
aneurysms and propose a classification system.
METHODS The Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR) database from 12 cen-
ters was retrospectively reviewed. Analysis was performed to compare dAVF patients with (dAVF+ cohort) and without 
(dAVF-only cohort) concomitant aneurysm. Aneurysms were categorized based on location as a dAVF flow-related an-
eurysm (FRA) or a dAVF non–flow-related aneurysm (NFRA), with further classification as extra- or intradural. Patients 
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Aneurysms associated with brain arteriovenous 
malformations (AVMs)1,2 and moyamoya disease3 
represent a distinct pathology compared with sac-

cular aneurysms, including higher rupture risk and spon-
taneous resolution after AVM treatment.4 Multiple case 
reports and small series have collectively reported an el-
evated risk of associated aneurysm in patients with intra-
cranial dural arteriovenous fistula (dAVF) ranging from 
13% to 21%.5,6 A limitation in these studies is the lack of 
a control group of dAVF patients without aneurysms. Fur-
thermore, little is known regarding their natural history, 
rate of spontaneous regression or dAVF treatment-related 
regression, and ideal management for this population.

The Consortium for Dural Arteriovenous Fistula Out-
comes Research (CONDOR) has collected information 
for more than 1000 patients with intracranial dAVF. Us-
ing this database, we aimed to define 1) the prevalence of 
aneurysms in dAVF patients; 2) subtypes of aneurysms in 
dAVF patients; 3) differences in baseline characteristics 
between dAVF patients with and without aneurysms; and 
4) the treatment trends of intracranial aneurysms.

Methods
The infrastructure for CONDOR is described else-

where in detail.39 Briefly, collaborating institutions ob-
tained individual institutional review board approval to 
conduct a retrospective analysis of all dAVFs treated at 
each institution. Details were collected from the clinical 
record and imaging databases, de-identified, and shared 
via a third-party host institution. Discrepancies in coded 
patient information were addressed directly with each 
contributing center. Twelve centers contributed a total of 
1077 patients with dAVF presenting between 1990 and 
2017. Patients were excluded if the status of a coexisting 
aneurysm was missing or unknown.

Patients were dichotomized into two cohorts based on 
the presence of aneurysms: 1) dAVF patients with coex-
isting aneurysms (dAVF+ cohort); and 2) dAVF patients 
without coexisting aneurysms (dAVF-only cohort). Sta-

tistical analysis was performed by an independent stat-
istician, using the Mann-Whitney U-test for continuous 
variables and Fisher’s exact test for categorical variables. 
Continuous variables are presented as the mean ± SD. No 
adjustments were made for multiple comparisons. Aneu-
rysms were then further categorized as either intra- or 
extradural, and as either a dAVF flow-related aneurysm 
(FRA), defined as an aneurysm located on an arterial ped-
icle to the dAVF, or a completely dAVF non–flow-related 
aneurysm (NFRA). Aneurysms were also categorized 
(separately) based on their location in relation to the dAVF 
(i.e., ipsilateral or contralateral). Patients with bilateral an-
eurysms, midline aneurysm(s), or midline dAVFs were 
assigned to the “other” group. Predictors of associated 
aneurysms were identified using a multivariable logistic 
regression model with forward selection algorithm (p < 
0.05 to enter), on a per-patient basis (i.e., each patient was 
enrolled in the model once, irrespective of the number of 
aneurysms). Any potential bias associated with missing 
covariate information was accounted for using multiple 
imputation by chained equations.

Results
Of the 1077 patients maintained in the CONDOR data 

set, 1043 were eligible for inclusion in this study based on 
the known presence or absence of coexisting intracranial 
aneurysms. The dAVF-only and dAVF+ cohorts com-
prised 978 (93.8%) and 65 (6.2%) patients, respectively. 
The dAVF+ cohort had a total of 96 aneurysms (mean 
1.48 aneurysm/patient). The total mean clinical and radio-
graphic follow-ups for the dAVF+ cohort were 3 ± 3.29 
and 2.38 ± 3.01 years, respectively.

Table 1 compares patient demographics between 
dAVF-only and dAVF+ cohorts. The two cohorts were 
comparable, with the exception of higher rates of illicit 
drug use (p = 0.02) and smoking (p < 0.001) in the dAVF+ 
cohort. Table 2 shows all the aneurysms and the specific 
locations, categorized into FRA or NFRA, and intra- or 
extradural. Fifty-five patients (5.3%) had 84 NFRAs, most 

with traumatic pseudoaneurysms or aneurysms with associated arteriovenous malformations were excluded from the 
analysis. Patient demographics, dAVF anatomical information, aneurysm information, and follow-up data were collected.
RESULTS Of the 1077 patients, 1043 were eligible for inclusion, comprising 978 (93.8%) and 65 (6.2%) in the dAVF-
only and dAVF+ cohorts, respectively. There were 96 aneurysms in the dAVF+ cohort; 10 patients (1%) harbored 12 
FRAs, and 55 patients (5.3%) harbored 84 NFRAs. Dural AVF+ patients had higher rates of smoking (59.3% vs 35.2%, p 
< 0.001) and illicit drug use (5.8% vs 1.5%, p = 0.02). Sixteen dAVF+ patients (24.6%) presented with aneurysm rupture, 
which represented 16.7% of the total aneurysms. One patient (1.5%) had aneurysm rupture during follow-up. Patients 
with dAVF+ were more likely to have a dAVF located in nonconventional locations, less likely to have arterial supply to 
the dAVF from external carotid artery branches, and more likely to have supply from pial branches. Rates of cortical ve-
nous drainage and Borden type distributions were comparable between cohorts. A minority (12.5%) of aneurysms were 
FRAs. The majority of the aneurysms underwent treatment via either endovascular (36.5%) or microsurgical (15.6%) 
technique. A small proportion of aneurysms managed conservatively either with or without dAVF treatment spontane-
ously regressed (6.2%).
CONCLUSIONS Patients with dAVF have a similar risk of harboring a concomitant intracranial aneurysm unrelated to 
the dAVF (5.3%) compared with the general population (approximately 2%–5%) and a rare risk (0.9%) of harboring an 
FRA. Only 50% of FRAs are intradural. Dural AVF+ patients have differences in dAVF angioarchitecture. A subset of 
dAVF+ patients harbor FRAs that may regress after dAVF treatment.
https://thejns.org/doi/abs/10.3171/2021.1.JNS202861
KEYWORDS dural arteriovenous fistula; feeding artery aneurysm; vascular disorders
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of which (84.5%) were intradural. There were no ruptured 
extradural aneurysms. Ten patients (1%) had 12 FRAs, 
half of which were intradural and half were extradural. 
The ICA was the most common location for aneurysms, 
with 33 (34.4%) being either “paraclinoid” (i.e., includ-
ing the cavernous and clinoid segments, and carotid cave 
aneurysms) or supraclinoid (i.e., ophthalmic segment), 11 
(11.5%) in the anterior communicating artery and A1 seg-
ment, and 11 in the middle cerebral artery bifurcation and 
M1 segment.

Table 3 compares the presentations and dAVF angio-
architecture between dAVF-only and dAVF+ cohorts, 
and then between FRA and NFRA/dAVF-only cohorts. 
Patients in the dAVF-only cohort were more likely to 
present with dAVF symptoms (p < 0.001). Patients in the 
dAVF-only cohort also had a higher rate of dAVF rup-
ture, although this did not achieve statistical significance. 
Patients in the dAVF+ cohort were more likely to have 
dAVFs located along the convexity or with superior sagit-
tal sinus drainage (p = 0.002). Conversely, patients in the 
dAVF-only cohort were more likely to have dAVFs in the 
region of the cavernous sinus (i.e., cavernous-carotid fistu-
la, p = 0.038). The most common dAVF location for both 
cohorts was the transverse-sigmoid junction. Pial arterial 
supply to the dAVF was more common in the dAVF+ co-
hort, whereas conventional dAVF supply from the external 
carotid artery (ECA) and dural branches of the internal 
carotid artery (ICA) was more commonly detected in the 
dAVF-only cohort. Similarly, conventional venous sinus 
drainage (i.e., to the transverse-sigmoid sinus junction) 
was more common in the dAVF cohort. Rates of cortical 
venous drainage and Borden type distributions were simi-
lar between the two cohorts, although the dAVF-only co-
hort had a higher rate of venous ectasia (p = 0.048). These 
relationships were all very similar when comparing FRA 
with NFRA/dAVF-only groups. Table 4 demonstrates the 
independent predictors of coexisting aneurysms in dAVF 
patients. Current smoking status, convexity location, and 
pial arterial supply were independent predictors of the 
presence of aneurysms, while venous ectasia was an in-
dependent predictor of the absence of aneurysms. Table 4 

displays the details for the nonimputed multivariate model 
as well (complete-case analysis).

Table 5 and Fig. 1 show details of the dAVF+ cohort. 
Multiple aneurysms were seen in 24.6% of the dAVF+ 
patients. Most (57.3%) aneurysms were small (< 7 mm), 
and only 1 (1.0%) was giant (≥ 25 mm). Most aneurysms 
(78.1%) were saccular. The majority of patients (88%) were 
diagnosed with an aneurysm and dAVF simultaneously. 
Seven patients (11%) were diagnosed with an aneurysm 
first and subsequently developed de novo dAVFs during 
the follow-up period. Of these 7 patients, 5 had adequate 
angiography (i.e., all vessels imaged) at the time of aneu-
rysm diagnosis, suggesting that the dAVFs developed de 

TABLE 1. Demographics for patients with dAVF-only versus 
those with dAVF and aneurysm

dAVF Only (n = 978) dAVF+ (n = 65) p Value

Age 59.5 ± 14.5 60.8 ± 11.3 0.596
Female 428/978 (43.8) 35/65 (53.8) 0.123
CAD 73/960 (7.6) 6/63 (9.5) 0.623
DM 121/962 (12.6) 10/64 (15.6) 0.442
HTN 392/962 (40.7) 33/64 (51.6) 0.115
Cancer 119/961 (12.4) 11/63 (17.5) 0.241
Illicit drugs 12/823 (1.5) 3/52 (5.8) 0.020
Smoking 275/781 (35.2) 32/54 (59.3) <0.001

CAD = coronary artery disease; DM = diabetes mellitus; HTN = hypertension.
Values represent the number of patients/total number of patients with data 
(%) or mean ± SD unless stated otherwise. Boldface type indicates statistical 
significance; p values do not adjust for multiple comparisons.

TABLE 2. Locations of all 96 aneurysms and the 16 ruptured 
aneurysms

Location Total Ruptured 

Unrelated  
(n = 84)

 Extradural 
(n = 13)

ICA (cavernous segment) 10 0
ICA (cervical, petrous,  

lacerum segments)
2 0

ICA (clinoidal segment) 1 0

 Intradural 
(n = 71)

ICA (ophthalmic segment  
& “supraclinoid”)

14 1

M1/M2/MCA bifurcation 11 0
A1/ACoA 11 5

ICA (communicating segment) 10 3
V4/VB junction 6 2

ICA, “paraclinoid” 5 0
Anterior choroidal artery 4 1

Midbasilar 2 1
ICA (terminus) 2 0

A3, A4, & “pericallosal” 2 0
ICA (“cave”) 2 0

PICA 1 1
Basilar tip 1 0

Posterior choroidal artery (FRA 
for tumor)

1* 0

FRA (n = 12)

 Extradural 
(n = 6)

Ophthalmic artery 3 0
ICA (cavernous segment) 1 0

Inferolateral trunk 1 0
Posterior meningeal artery 1 0

 Intradural 
(n = 6)

PICA 2 1
AICA 1 1
ACoA 1 0
SCA 1 0
PCA 1 0

ACoA = anterior communicating artery; AICA = anterior inferior cerebellar 
artery; MCA = middle cerebral artery; PCA = posterior cerebral artery; PICA 
= posterior inferior cerebellar artery; SCA = superior cerebellar artery; VB = 
vertebrobasilar.
* Coded as “multiple aneurysms” but counted as 1 for purposes of table.
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novo. For these 5 patients, the average time to dAVF diag-
nosis was 34.3 ± 27 months. No patient developed de novo 
aneurysms. A significant proportion (40%) of patients in 
the dAVF+ cohort had aneurysm(s) ipsilateral to the side 
of the dAVF.

Most patients presented with an unruptured aneurysm 
(80%), and 17% had a ruptured aneurysm at presentation, 
while 1% experienced rupture during follow-up (rupture 
status was missing in 2% of patients). Only 1 AICA and 
1 PICA (2/16 = 12.5%) in the ruptured aneurysm cohort 
were FRAs, similar to the representation of FRAs within 
the unruptured aneurysm cohort (10/78 = 12.8%).

Aneurysms were managed conservatively in 44.8%, 
treated with endovascular modalities in 36.5%, surgically in 
15.6%, and with both surgery and endovascular techniques 
in 1.0% of the cases. Of the treated aneurysms (51), 68.6% 
remained stable and 13.7% had recurrence or re-treatments 
at the time of final follow-up. Of the untreated aneurysms 
(43), most (44.2%) had no follow-up or were stable dur-

ing follow-up (37.2%). One patient (1.5%) had a fusiform 
basilar trunk aneurysm that ruptured during follow-up. Six 
(6.3%) of the aneurysms (in 4 patients) resolved spontane-
ously; 4 of these were FRAs that resolved after dAVF treat-
ment, 1 was an aneurysm associated with a brain tumor 
feeding artery and resolved after removal of the tumor, and 
1 was a small (2 mm) NFRA aneurysm that also resolved 
after dAVF treatment. Figure 2 illustrates a case example 
of an FRA that resolved after dAVF treatment.

Discussion
It is now well recognized that patients with intracra-

nial dAVFs can also harbor a coexisting underlying in-
tracranial aneurysm. Cagnazzo et al. recently published a 
systematic review of all intracranial aneurysms identified 
in patients with dAVF,7 pooling data from 26 studies (3 
case series5,8,9 and 23 case reports6,10–31), which included 43 
patients with 62 aneurysms, with 23 (37.1%) being FRAs. 

TABLE 3. Presentation and angioarchitecture details for patients with dAVF only versus those with dAVF and aneurysm
No. of Patients/Total No. of Patients w/ Data (%)

p Value
No. of Patients/Total No. of Patients w/ Data (%)

p ValuedAVF Only (n = 978) dAVF+ (n = 65) FRA (n = 10) dAVF & Unrelated (n = 1033)

Symptomatic on presentation 
from dAVF

811/977 (83.0) 23/65 (35.4) <0.001 5/10 (50) 829/1032 (80.3) 0.035

Ruptured dAVF at presentation 242/974 (24.8) 12/65 (18.5) 0.297 4/10 (40) 250/1029 (24.3) 0.27
Location*
 Transverse-sigmoid junction 355/970 (36.6) 19/64 (29.7) 0.286 3/10 (30) 373/1024 (36.4) >0.99
 Convexity/SSS 95/970 (9.8) 15/64 (23.4) 0.002 2/10 (20) 108/1024 (10.5) 0.289
 Tentorial 146/970 (15.1) 10/64 (15.6) 0.858 2/10 (20) 154/1024 (15.0) 0.653
 Cavernous sinus 115/970 (11.9) 2/64 (3.1)†† 0.038 1/10 (10) 108/1024 (10.5) >0.99
 Petrosal 33/970 (3.4) 5/64 (7.8) 0.08 1/10 (10) 37/1024 (3.6) 0.313
 Anterior cranial fossa 51/970 (5.3) 7/64 (10.9) 0.083 1/10 (10) 57/1024 (5.6) 0.44
Arterial supply to dAVF†
 Occipital artery 553/957 (57.8) 22/62 (35.5) 0.001 4/9 (44.4) 571/1010 (56.5) 0.514
 Other ECA‡ 364/958 (38.0) 13/63 (20.6) 0.007 3/10 (10) 374/1011 (37.0) 0.753
 Small ICA§ 366/959 (38.2) 17/63 (27.0) 0.082 2/10 (20) 381/1012 (37.6) 0.336
 Pial artery¶ 188/957 (19.6) 20/64 (31.2) 0.036 7/10 (70) 201/1011 (19.9) 0.001
Venous drainage of dAVF**
 Transverse-sigmoid junction 415/957 (43.4) 18/65 (27.7) 0.014 2 (20) 431/1012 (42.6) 0.204
CVD 627/967 (64.8) 42/65 (64.6) >0.99 7/10 (70) 662/1023 (64.7) >0.99
Venous ectasia 321/927 (34.6) 13/60 (21.7) 0.048 2/10 (20) 332/977 (34.0) 0.509
Borden type 0.411 0.349
 I 327/966 (33.9) 23/65 (35.4) 3/10 (30) 347/1021 (34)
 II 167/966 (17.3) 4/65 (6.2) 0 171 (16.7)
 III 472/966 (48.9) 38/65 (58.5) 7/10 (70) 503 (49.3)

SSS = superior sagittal sinus. 
Boldface type indicates statistical significance; p values do not adjust for multiple comparisons. 
* Only the 3 most common locations and those with near significance (p < 0.1) are included in the table. Eleven locations were analyzed in total.
† Nine arterial pedicles analyzed in total. 
‡ Includes any branches of the ECA other than middle meningeal, occipital, and ascending pharyngeal arteries. 
§ Includes inferolateral trunk, meningohypophyseal trunk, small meningeal branches, and marginal tentorial branch. 
¶ Includes branches from the anterior, middle, and posterior cerebral arteries, and the superior, anterior inferior, and posterior inferior cerebellar arteries.
** Only categories with statistical significance (p < 0.05) are included in table. Six venous sinuses were analyzed in total. 
†† Both patients with associated aneurysm were indirect fistulas.
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TABLE 4. Univariate and multivariate predictors of associated aneurysms in dAVF patients using forward stepwise logistic regression  
starting with the set of best univariate predictors 

Variable

Multiple-Imputation Analysis Complete-Case Analysis
Univariate Multivariate Forward Selection Univariate Multivariate Forward Selection

OR p Value OR p Value OR p Value OR p Value 

Smoking 0.002 0.003 0.001 0.002
 Past (vs never) 1.91 0.087 2.05 0.064 2.18 0.018 2.20 0.018
 Current (vs never) 3.43 0.002 3.20 0.004 3.79 <0.001 3.47 0.001
Illicit drugs 0.095 0.321 — 0.078 0.393
 Nonstimulants (vs no) 2.51 0.178 4.51 0.024
 Stimulants (vs no) 1.23 0.763 0.00 >0.99
Anterior cranial fossa location 2.22 0.060 0.072 2.21 0.062 0.222
Convexity/SSS location 2.78 0.001 2.68 0.002 2.82 0.001 2.99 0.001
Cavernous location 0.24 0.048 0.185 0.24 0.049 0.202
Petrosal location 2.33 0.090 0.102 2.41 0.078 0.183
Pial artery feeders 1.83 0.033 1.97 0.021 1.86 0.028 0.264
Venous ectasia 0.54 0.057 0.47 0.022 0.52 0.043 0.051
Cox-Snell R2 3.1% 2.8%

Boldface type indicates statistical significance.

FIG. 1. Characteristics of aneurysms found in patients with dAVFs. A: Order of diagnoses for the aneurysm and dAVF (for 65 
patients in dAVF+ cohort). Note that there were no cases of de novo aneurysm development. B: Rupture status of aneurysms 
(includes all 96 aneurysms). C: Location of aneurysm(s) in relationship to the location of the dAVF (for 65 patients). D: Categoriza-
tion of aneurysms (for all 96 aneurysms). Figure is available in color online only.
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The included patients derived from an international cohort, 
including patients from the United States, Japan, China, 
Italy, Germany, Canada, and beyond. Interestingly, only 1 
patient was from a CONDOR contributing center.20 How-
ever, the included patient reported was not an adult and 
thus was not included in the current CONDOR database. 
Therefore, we present an entirely new large database that 
is distinct from this recent review, representing a different 
perspective that includes a “control group” with dAVF pa-
tients without concomitant aneurysms for comparisons of 
features and characteristics.

Importantly, the risk of patients with intracranial dAVFs 
harboring a concomitant NFRA intracranial aneurysm ap-
pears similar (5.3%) when compared with the general pop-
ulation (quoted rates range from 1% to 5%32,33). A small 
subset of dAVF+ (1%) do harbor FRAs, half of which are 
intradural. Overall, these rates sum to 6.3%, which is lower 
than the previously reported rate of 13%8 or 21%5 in dAVF 
patients. Dural AVF patients with and without concomi-
tant aneurysms shared similar risk factors.34,35 The preva-
lence of aneurysm in dAVF patients appears to be quite 
different from that of associated aneurysm in AVM pa-
tients, which has been estimated to be 20.2%.36 This likely 
relates to higher rates of intracranial arterial feeders in 
AVMs compared with dAVFs. The proportion of dAVF+ 
patients presenting with aneurysmal hemorrhage is differ-
ent from that of aneurysm rupture in patients with AVM; 
17% of dAVF+ presented with aneurysm rupture, 18.5% 
of dAVF+ presented with fistula rupture, and 24.8% of the 
dAVF-only cohort presented with fistula rupture, while 
64% of patients with AVM-associated aneurysms present-
ed with rupture (compared with 50% without aneurysm), 
49% of which (approximately 32% total) were related to 
the aneurysm.36 Thus, while the presence of aneurysm in 
dAVF patients does increase the overall risk that the pa-
tient will present with hemorrhage of any kind, the overall 
rate of hemorrhage at presentation is much lower than that 
of AVM-associated aneurysms.

Contrary to prior reports, angioarchitectural features of 
the dAVF+ cohort were distinctly different from those of 
the dAVF cohort. The transverse-sigmoid junction was the 
most common dAVF location for both cohorts. However, 
there was a higher proportion of fistulas located along the 
convexity or near the superior sagittal sinus and a lower pro-
portion of CCFs in the dAVF+ cohort. Convexity/superior 
sagittal sinus location emerged as an independent predictor 
of coexisting aneurysms. While typical arterial contribu-
tors to dAVF (ECA and dural ICA branches) were more 
commonly identified in the dAVF-only cohort, pial intra-
cranial feeders were more common in the dAVF+ cohort. 
There did not seem to be differences in venous drainage 
between the two cohorts, except that the dAVF-only cohort 
more commonly had transverse-sigmoid junction venous 
drainage (consistent with this cohort having a more typical 
fistula location/appearance). Finally, while rates of CVD 
and Borden grade distributions were similar between the 
two groups, it is interesting to note that dAVF+ patients less 
often had venous ectasia, which held true after adjusting for 
other covariates. This warrants further histological and mi-
crobiological analyses, as there may be different underlying 
endothelial dysfunction in the arterial and venous systems 
that contributes to preferential aneurysm formation.

FRAs
Only 12 (12.5%) of 96 aneurysms in the study were 

FRAs, which was substantially lower than the rate of 
71.4% reported in AVM-associated aneurysms.36 The 
FRAs in this study can be categorized into those that are 
located on 1) meningeal feeding arteries (e.g., the infero-
lateral trunk, posterior meningeal arteries), 2) pial feed-
ing arteries that otherwise supply parenchyma (such as the 
ophthalmic segment of the ICA when the ophthalmic ar-

TABLE 5. Overview of patients with a dAVF and aneurysm

Category Value

No. of patients (%; n = 65)
 No. of aneurysms
  1 48 (73.8)
  2 9 (13.8)
  3 3 (4.6)
  4 1 (1.5)
  5 2 (3.1)
  6 1 (1.5)
  Multiple 1 (1.5)
No. of aneurysms (%; n = 96)
 Maximum aneurysm dimension, mm
  0–3.9 33 (34.4)
  4–6.9 22 (22.9)
  7–12.9 25 (26.0)
  13–24.9 5 (5.2)
  ≥25 1 (1.0)
  Missing 10 (10.4)
 Morphology
  Saccular 75 (78.1)
  Fusiform &/or dissecting 14 (14.6)
  Missing 7 (7.3)
 Treatment
  None 43 (44.8)
  Endovascular 35 (36.5)
  Surgery 15 (15.6)
  Both 1 (1.0)
  Missing 2 (2.1)
 Follow-up
  Treated
   Stable 35 (36.5)
   No follow-up 9 (9.4)
   Recurrence/progression of residual/re-treatment 7 (7.3)
  Untreated
   No follow-up 19 (19.8)
   Stable 16 (16.7)
    Progression/rupture 2 (2.1)
   Spontaneous regression 6 (6.2)
  Missing 2 (2.1)
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tery supplies the dAVF), or 3) other intracranial branches 
not supplying dura or brain (such as the intraorbital oph-
thalmic artery). Accordingly, FRAs can be grouped into 
intra- and extradural locations, with 50% in each category 
in this series. When triaging FRAs, one must acknowledge 
the less aggressive natural history associated with extra-
dural aneurysms, as they do not carry a risk of subarach-
noid hemorrhage. Importantly, FRAs had a similar rate of 
rupture at presentation compared to NFRAs (2 [16.7%] of 
12 FRAs were ruptured, 15 [17.9%] of 84 NFRAs were 
ruptured or ruptured during follow-up).

Regression
Similar to distal FRAs in the AVM literature,37 we 

found that 4 FRAs spontaneously regressed after treat-
ment of the dAVF, 1 after treatment of a brain tumor (this 
aneurysm was associated with arterial supply to tumor, not 
dAVF), and 1 resolved spontaneously. This likely stems 
from a similar mechanism; after the underlying pathol-
ogy (i.e., arteriovenous shunt) is eliminated, previously 
prominent arterial feeders likely have a reduction in blood 
flow, promoting stasis and eventually thrombosis within 

the aneurysm.38 Figure 2 shows serial angiography for an 
example of an FRA that spontaneously regressed 9 months 
after dAVF treatment.

Limitations
This study, despite representing the largest of its type, 

has limitations. The retrospective design implies that there 
may be potential confounding bias. For example, it is not 
clear why venous ectasia seems to predict dAVF over 
dAVF+, even in multivariable modeling. This may be due 
to an intimate relationship between venous ectasia and an-
other variable. Second, the data were collected by multiple 
people at multiple centers. The architects of CONDOR did 
include a validation process for all chart reviewers prior to 
data collection to decrease the potential spectrum of vari-
ability, but this remains a concern. Third, follow-up varied 
significantly from patient to patient and from institution to 
institution. While the medical records of all patients with 
dAVF and aneurysm were investigated more thoroughly 
after identification, this analysis was performed retrospec-
tively and not in a prospective longitudinal fashion with 
specific attention to aneurysm or dAVF development. 

FIG. 2. Example of spontaneous regression of FRA in a treated ruptured Borden type III tentorial dAVF. A and B: Initial axial (A) 
and sagittal (B) CT angiograms showing an aneurysm (arrow in A, asterisk in B) on a branch vessel of left cavernous. C: Cerebral 
angiography, lateral view, left ICA injection, confirming aneurysm (arrow) as well as tentorial dAVF (asterisk). D: Three-dimension-
al reconstructed angiogram showing meningohypophyseal trunk (arrowhead) and inferolateral trunk arterial feeders to tentorial 
dAVF (asterisk), the inferolateral trunk harboring an FRA (arrow). E: Posttreatment intraoperative angiogram (which included 3 
sequential stages of transarterial Onyx embolization to the middle meningeal artery, meningohypophyseal trunk, and occipital 
arteries, with a final craniotomy for clip ligation), showing resolution of previous dAVF but persistent sluggish filling of the FRA. 
F: Follow-up angiography at 9 months confirms obliteration of dAVF with subsequent regression of the FRA.
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Finally, while we suppose that most patients here had si-
multaneous diagnosis of dAVF and aneurysm (based on 
retrospective chart analysis and available angiographic 
data), we are limited in the imaging performed before pre-
sentation, so the precise timing of dAVF and/or aneurysm 
development is not totally clear. Future studies might aim 
to follow a group of patients with either intracranial an-
eurysm or dAVF (not both) prospectively, to delineate the 
precise rates and timing of de novo lesion development.

Conclusions
The prevalence of intracranial aneurysms in dAVF pa-

tients is 6.2%, most of which are unrelated to the dAVF. A 
minority of concomitant aneurysms are located on arter-
ies supplying the dAVF (defined as FRAs). Aneurysms in 
dAVF patients seem to rupture at lower rates than those as-
sociated with AVMs. Compared with dAVF patients with-
out aneurysm, those with dAVFs with aneurysms harbor 
unique angioarchitecture features. Spontaneous regression 
of aneurysms has been observed with dAVF treatment.
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