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A B S T R A C T   

Understanding the water oxidation mechanism in Photosystem II (PSII) stimulates the design of biomimetic 
artificial systems that can convert solar energy into hydrogen fuel efficiently. The Sr2+-substituted PSII is active 
but slower than with the native Ca2+ containing PSII as an oxygen evolving catalyst. Here, we use Density 
Functional Theory (DFT) to compare the energetics of the S2 to S3 transition in the Mn4O5Ca2+ and Mn4O5Sr2+

clusters. The calculations show that deprotonation of the water bound to Ca2+ (W3), required for the S2 to S3 
transition, is energetically more favorable in Mn4O5Ca2+ than Mn4O5Sr2+. In addition, we have calculated the 
pKa of the water that bridges Mn4 and the Ca2+/Sr2+ in the S2 state using continuum electrostatics. The cal
culations show that the pKa is higher by 4 pH units in the Mn4O5Sr2+cluster.   

The oxygen evolving complex (OEC) is a unique natural bioinorganic 
cluster that catalyzes the water oxidation reaction in the 5-step (S0, S1, 
S2, S3, S4) Kok cycle [1,2]. The core of the OEC contains a metal cluster 
of four Mn and one Ca2+ connected through bridging oxygens [2–4]. 
Ca2+ depletion [5,6] blocks the S2-S3 transition, while replacing Ca2+

with Sr2+ reduces the catalytic activity [7–10]. In addition, in the 
absence of Ca2+, electron transfer from the OEC to Tyrosine (YZ) be
comes uphill [11]. 

Calcium and strontium belong to group 2 alkaline earth metals in the 
periodic table. Thus, they are chemically similar and have a stable 
oxidation state of +2. However, Ca2+ is a stronger Lewis acid, which 
indicates that aqua-Ca2+ compounds have a lower pKa than aqua-Sr2+

(measured pKa is 2 pH unit lower). This difference in proton affinity of 
the bound waters may be the reason for the difference in the catalytic 
activity in the Sr-substituted PSII [10,12,13]. Here, we use Density 
Functional Theory (DFT) to compare the energetics of the S2-S3 transi
tion in native and Sr-substituted PSII. 

The S2-S3 transition involves the insertion of a water molecule that 
binds to the OEC complex. Different mechanisms such as the pivot and 
carousal mechanisms have been proposed for water insertion [14,15]. 
The transition also depends on the specific S2 spin state involved in the 
transition to the S3 state. The S2 state has two types of EPR signals: 

multiline which corresponds to g = 2 and broad corresponding to g = 4.1 
or higher depending upon the species and experimental conditions 
[16,17]. In the g = 4.1 EPR state, Mn1, Mn2, and Mn3 are in the IV 
oxidation state, while Mn4 is in the III state (Fig. 1) [18]. In the g = 2 
redox isomer, Mn1 is Mn(III) while Mn4 is Mn(IV). However, the two S2 
spin states can interconvert [17–19]. 

Recent computational studies proposed different models for the S2 
spin states, which differ in either the protonation states of W1 and W2 of 
Mn4 or the protonation states of the oxygen bridges mainly O4 [20–22]. 
An open question is: Which spin and protonation states of the S2 state are 
oxidized to the S3 state? Different mechanisms have been proposed. For 
instance, experimental studies [16] including temperature dependence 
kinetics experiments and computational studies including those using 
DFT and continuum electrostatics based methods [23–25] have pro
posed that conversion of the S2 g = 2 open cubane to the g = 4.1 closed 
cubane occurs before OEC oxidation to the S3 state. The model used for 
both g = 2 and g = 4.1 spin isomers involves a deprotonated oxygen 
bridge O4. Another DFT study proposed the transition from a high spin 
open cubane S2 state with O4 deprotonated to the S3 state [26]. Recent 
studies using broken symmetry DFT and spin ladder calculations show 
that the g = 4.8/4.9 form observed at high pH corresponds to the high 
spin S = 7/2 species involved in the advancement to S3. This model of 
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the S2 state proposes a proton shift where O4 is protonated and the water 
bound Mn4 W1 is a hydroxide [21,22]. Other studies involving time- 
resolved photothermal beam deflection measurements suggest that a 
proton is released from the OEC or surroundings when the nearby Tyr, 
YZ, is oxidized before Mn oxidation in the S2-S3 transition [27,28]. 

Based on our earlier classical electrostatic calculations and DFT 
study [23], we proposed that the S2-S3 transition starts with the tran
sition from the g = 2 to g = 4.1 state followed by deprotonation of the 
W3 Ca2+ ligand [29]. This is coupled to the protonation of HIS190 upon 
the oxidation of the secondary donor Yz*. The deprotonated W3 moves 
toward Mn4 adding the sixth ligand to its coordination shell to facilitate 
its oxidation to the IV state. Similar mechanisms have been proposed by 
previous theoretical [30–33] and experimental [10] studies. 

Here, we compare the energies of a proton shift between OEC cluster 
in the S2 g = 4.1 state and His190 in both Mn4O5Ca2+ and Mn4O5Sr2+

clusters. In structure A HIS190 and W3 are neutral (Fig. 1A) and in B 
HIS190+ is protonated and W3 is a OH− bridge between Mn4 and Ca2+

(Fig. 1B). The structures were optimized at the DFT level using the 
B3LYP functional and 6-31G(d) basis sets for N, O, C and H atoms, while 
SDD basis sets are used for Mn, Ca and Sr. All the Mn ions are in the high 
spin state. Furthermore, the energies are compared using different levels 
of theory; B3LYP/6-31G+(d) and B97D/6-31G+(d) [34,35]. 

The energy differences between the A and B states (ΔG(B-A)) at 

different levels of theory are shown in Table 1. In general, the B state 
(protonated HIS190 and hydroxyl on W3) is always more favorable for 
the Mn4O5Ca2+ than the Mn4O5Sr2+ cluster. The large energy difference 
obtained for the Mn4O5Sr2+ cluster using the B3LYP/6-31G(d) level of 
theory indicates the importance of including diffuse functions in the 
basis sets when modeling large ions. These diffuse functions provide a 
flexible representation to the tail part of the atomic orbitals further from 
the nucleus [34,35]. 

Sr2+ is larger than Ca2+ by 0.1 Å, which elongates the interatomic 
distances between the Sr2+ and the rest of the atoms in the Mn cluster. 
This is seen in the optimized structures of the A and B states with Ca2+

and Sr2+ clusters (Table 2). In addition, the dispersion interaction be
tween the metal and the water ligand is expected to push the water away 
in case of Sr2+, which will result in smaller electrostatic interactions and 
a higher pKa. This is found for aqua-Ca2+ and aqua-Sr2+ compounds, 
where the water bound to Sr2+ has a higher pKa than those bound to 
Ca2+. Thus, the Sr2+ structure is more stable with neutral W3 (Fig. 1A). 
However, with Ca2+, W3 deprotonates forming a hydroxide that moves 
to bridge Mn4 and Ca2+ (Fig. 1B). 

The optimized DFT structures show that Mn-Sr2+ distances are in 
general longer than Mn-Ca2+. In the A state the Sr2+-W3(HOH) distance 
is 0.1 Å longer than Ca2+-W3(HOH). In the B state the Sr2+-W3(OH)−

distance is 0.2 Å longer because Ca2+ moves significantly toward Mn4 
after the deprotonation of W3. To further compare the Mn4O5Ca2+ the 
Mn4O5Sr2+clusters, we calculated the pKa of W3 in the A state with 
HIS190 protonated for both clusters using Monte Carlo sampling with 
continuum electrostatics and molecular mechanics energies [36,37]. 
MCCE (Multi-Conformer Continuum Electrostatics) [37] is used to 
calculate the pKa starting with the DFT optimized structure by calcu
lating the difference in the free energies ΔΔG of the protonated and 
deprotonated conformers. The ΔΔG includes the electrostatics and the 
desolvation energies calculated using DELPHI [38] (see supporting in
formation). The surroundings of the isolated DFT structure are given a 
dielectric constant of 80. Thus, the model removes long-range in
teractions from the protein.  The high dielectric solvent around the 
isolated cluster decreases the pairwise electrostatic interactions within 
the cluster, which can be balanced by the solvent stabilizing the cluster 
charges. 

W3 has a pKa of 6.5 in the Mn4O5Ca2+ and 10.3 in the Mn4O5Sr2+

clusters. Because the Sr2+ has a larger ionic radius than Ca2+, the opti
mized structures show that the W3 water ligand is closer to Ca2+, Mn4 
(III) and Mn1(IV) (Table 2), which explains the difference in proton 
affinity with Ca2+ or Sr2+ in the cluster. This is supported by the DFT 
calculations, which show that with Ca2+ B has a lower energy than A 
indicating an easier deprotonation of W3. The calculated pKa of W3 is 
significantly lower than 14, the value obtained by Saito et al. [39,40]. 
However, the pKa of W3 is expected to be lower than the aqua Ca2+ pKa 
(~12) due to the positively charged Mn cluster. In addition, the nearby 
positively charged HIS190+, favors the hydroxide conformer and re
duces the pKa of W3. 

An open question is: what is the source of the proton which is 
released after Yz is oxidized but before the OEC advances to the S3 state 
[3,41]. As there are no protons bound to the bridging oxygens in the S2 
state, the donors are likely to be terminal water ligands bound to Mn4 
[42,43] or to Ca2+ [44]. Previous studies have shown the Mn4-bound 
water W1 is deprotonated upon formation of the tyrosyl radical, how
ever the proton is trapped by the nearby acceptor D61 in the S2 state 

Fig. 1. A represents the S2 state with HIS190 neutral. B represents the S2 state 
with HIS190+ protonated. M is Ca2+ or Sr2+. Mn1, Mn2, Mn3 are in the IV 
oxidation state. Mn4 is III. The complete description of the model is included in 
the supplementary information. 

Table 1 
The ΔG(B-A) DFT energies.   

B3LYP/6-31G(d) B3LYP/6-31G+(d) B97D/6-31G+(d) 

Mn4O5Ca2+ − 2.3 − 8.7 − 6.8 
Mn4O5Sr2+ 13.0 − 8.0 − 6.4 

Energy differences are expressed in Kcal/mol. The transition from A to B state is 
more favorable in the Mn4O5Ca2+ cluster than the Mn4O5Sr2+
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[14,25,45–47]. 
The present study utilizes the S2 g = 4.1 models for Ca2+ and Sr2+

containing PSII to understand the nature of deprotonation event. Our 
DFT calculations support the deprotonation of W3 in the S2 to S3 tran
sition, which is also supported by the XFEL structures comparing the S1, 
S2 and S3 states [48]. In conclusion, the above calculation shows that the 
S2-S3 transition occurs upon the loss of a proton from Ca-ligated W3 in 
the presence of HIS190+ maintaining the hydrogen bonding network 
necessary for the proton transfer. In the Sr2+-substituted structure, the 
energy barrier for deprotonating W3 is higher due to the weaker elec
trostatic interactions that enhance proton affinity. 
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