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Iterative reconstruct
ion and deep learning algorithms for
enabling low-dose computed tomography in midfacial

trauma

Romke Rozema, MD,a Herbert T. Kruitbosch, MSc,b Baucke van Minnen, MD, DMD, PhD,a

Bart Dorgelo, MD,c,d Joep Kraeima, MSc, PhD,a and Peter M.A. van Ooijen, MSc, PhD, CPHITe
Objectives. The objective of this study was to quantitatively assess the image quality of Advanced Modeled Iterative Reconstruction

(ADMIRE) and the PixelShine (PS) deep learning algorithm for the optimization of low-dose computed tomography protocols in mid-

facial trauma.

Study Design. Six fresh frozen human cadaver head specimens were scanned by computed tomography using both standard and low-

dose scan protocols. Three iterative reconstruction strengths were applied to reconstruct bone and soft tissue data sets and these were

subsequently applied to the PS algorithm. Signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) were calculated for each

data set by using the image noise measurements of 10 consecutive image slices from a standardized region of interest template.

Results. The low-dose scan protocol resulted in a 61.7% decrease in the radiation dose. Radiation dose reduction significantly

reduced, and iterative reconstruction and the deep learning algorithm significantly improved, the CNR for bone and soft tissue

data sets. The algorithms improved image quality after substantial dose reduction. The greatest improvement in SNRs and CNRs

was found using the iterative reconstruction algorithm.

Conclusion. Both the ADMIRE and PS algorithms significantly improved image quality after substantial radiation dose reduction.

(Oral Surg Oral Med Oral Pathol Oral Radiol 2021;132:247�254)
Computed tomography (CT) has evolved as the

imaging modality of choice for the assessment of max-

illofacial injury. In recent years, particular attention

has been directed toward the effects of radiation expo-

sure within this population of patients. Novel recon-

struction algorithms have been proposed to optimize

and reduce the radiation dose of these CT protocols.

In recent years, iterative reconstruction algorithms

and a new deep learning algorithm have emerged to

provide substantial image noise reduction in CT data

sets.1 First, the iterative reconstruction (IR) algorithm

was introduced as an alternative to the standard filtered

back projection (FBP) reconstruction. CT vendors have

released different generations of the IR algorithm.2

First-generation algorithms were based on the image

domain only, whereas second-generation or sinogram-

affirmed iterative reconstruction uses both backward
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and forward projections to compute the differences and

compare them with the actual measured CT. The new-

est generation, called full or Advanced Modeled Itera-

tive Reconstruction (ADMIRE; Siemens Healthcare

AG, Erlangen, Germany), is a more complex algorithm

that also removes geometric imperfections and has sys-

tem and noise modeling to further decrease the image

noise, reduce artifacts, and improve spatial and contrast

resolution.3

Second, a deep learning�based procedure was initi-

ated as a postprocessing denoising algorithm. The Pix-

elShine (PS) algorithm is a software technology

developed and based on an artificial neural network,

which is a deep machine learning technique (AlgoMed-

ica Inc., Sunnyvale, CA). The algorithm is proprietary.

Typical deep learning techniques for medical imaging

often include convolutional neural networks, such as

U-Net17 or V-Net16, which are used for medical

image segmentation.4,5 The network classifies each

voxel as part of a region of interest (ROI) or back-

ground. The network is trained at the pixel level and

detects voxel patterns at different resolutions to deter-

mine whether a pattern is noise or a relevant structure.

Research suggests that the algorithm denoises datasets
Statement of Clinical Relevance

The introduction of the Advanced Modeled Iterative

Reconstruction and deep learning algorithms can

substantially improve image quality of clinical com-

puted tomography protocols in midfacial trauma.

The algorithms provide potential to maintain image

quality after substantial radiation dose reduction.
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substantially.6,7 This deep learning type of algorithm

initiates a completely new concept regarding image

quality optimization and should be further explored.

Adequate radiation exposure is needed to produce

acceptable image quality. This is a prerequisite for the

visualization of fractures in midfacial trauma CT, as

well as for the assessment of soft tissue injury and sub-

sequent treatment management. Yet, the patient radia-

tion dose should be kept as low as reasonably possible.

The IR and PS algorithms potentially improve the

image quality of CT data sets, but there is not much

research on this topic. The purpose of this study was to

quantitatively assess the image quality of the ADMIRE

and PS algorithms for CT protocols in midfacial trauma

imaging after substantially reducing the radiation dose.

MATERIAL AND METHODS
The workflow of the material and method section of

this study is summarized in Figure 1.

Study subjects
Six fresh frozen human cadaver heads were obtained

from the anatomy section of the Department of Neuro-

sciences at University Medical Center Groningen. The

specimens were obtained according to the local legal

and ethical guidelines as described in a previous study

by our research group.8

Data acquisition
All specimens were scanned using a third-generation

SOMATOM Force scanner (Siemens Healthcare AG).

Each specimen was situated in a fixed position and

scanned using a multitude of standardized scans of the

midfacial region. The scan range was set from the

upper border of the frontal sinus to the complete max-

illa. Scans were produced in both the standard (refer-

ence 50 mAs) and radiation reduced (reference 20

mAs) scan protocol. Details of the scan parameters are

provided in Table I.

Data reconstruction
All raw data sets were reconstructed using the

ADMIRE algorithm set at strengths 1, 3, and 5.

ADMIRE has up to 5 strength levels that result in less

noise and reflect how aggressively the algorithm uses

IR over FBP during raw data reconstruction. All data

were reconstructed using both bone (Hr59d) and soft

tissue (Hr32d) convolution kernels.

Post-processing
All reconstructed data sets were submitted to the deep

learning PS algorithm (version 1.2.57 AlgoMedica

Inc., Sunnyvale, CA) for additional image quality opti-

mization. Both the postprocessed and original data sets

were included for data analysis. All data sets were
exported in a Digital Imaging and Communications in

Medicine (DICOM) standard.

Image noise measurements
Image noise was assessed as Hounsfield units (HU) and

standard deviation. ROI measurements were performed

using a standardized template for each specimen and

scan protocol using the Python software application

(Python Software Foundation, Wilmington, DE). The

standardized template consisted of 2 homogenous cir-

cular ROIs within each image slice as performed in a

previous study.9 The first ROI of 10.0 cm2 was posi-

tioned in the posterior fossa of the cerebrum and the

second ROI of 2.5 cm2, the background reference, was

positioned in the lateral airspace. These measurements

were performed for 10 consecutive image slices.

Image quality calculations
Signal-to-noise ratios (SNRs) and contrast-to-noise

ratios (CNRs) were calculated using image noise meas-

urements.9,10 SNR is a common way to quantify image

noise, and CNR reflects how noise affects the ability to

see an object in an image. The SNR was defined as the

mean attenuation of the cerebrum ROI divided by its

standard deviation. The CNR was defined as the differ-

ence in the mean attenuation of the cerebrum ROI and

the lateral airspace ROI divided by the square root of

the sum of their variances:

SNR ¼ Mean HUcerebrum

SD HUcerebrum

CNR ¼ Mean HUcerebrum � Mean HUairffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDcerebrum

2þ SDair
2

2

q

Radiation dose estimations
An estimation of radiation dose was calculated by

extracting the radiation exposure parameters from the

DICOM header for each data set. The computed

tomography dose index and scan range for each speci-

men were used to calculate the dose length products to

compare the radiation dose outcomes.

Statistical analysis
The data were analyzed with the Statistical Package for

the Social Sciences version 23.0 (IBM, Armonk, NY).

Box plots were used to visualize the SNR and CNR

outcomes. SNR and CNR normalities were examined

via the Kolmogorov-Smirnov test and Q-Q plots. Lin-

ear mixed models were used to predict the fixed effects

of radiation dose reduction, IR strength, and the use of

the PS algorithm on image quality outcomes while

accounting for repeated measures within each unique

data set. The reference categories of the analyses were



Fig. 1. Workflow of the material and methods.
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low-dose reference 20 mAs scan protocol, ADMIRE

strength 1, and no use of PS. The significance level

was set at 5%.
RESULTS
In total, 24 unique datasets were reconstructed for each

specimen. Repeated image noise measurements were

taken from a total of 1440 image slices.
The radiation doses for the 2 scan protocols and the

means and standard deviations of the noise, SNR, and

CNR outcomes are presented in Table II. Dose reduc-

tion, IR strength, and the PS algorithm influenced the

Hounsfield units (HU). The SNR and CNR outcomes

of the soft tissue data sets were superior to those of the

bone data sets. Overall, a radiation dose reduction from

the reference 50 mAs to the reference 20 mAs protocol

resulted in decreased SNR and CNR outcomes. The



Table I. CT protocol and reconstruction parameters.

CT protocol Reconstruction parameters

Tube voltage 80 kV

Tube current modulation CARE Dose4 D

Quality reference mAs 50 and 20

ADMIRE strength 1, 3, and 5

Field of view 220.0 mm

Collimation 192 £ 0.6 mm

Average scan length 118 mm

Slice thickness 0.6 mm

Position increment 0.4 mm

Grayscale depth 12 bit

Pitch 0.6

Rotation time 0.5 s

Exposure time 0.5 s

Scan time 3.4 s

Matrix 512 £ 512

Reconstruction kernels Bone Hr59 d and soft tissue Hr32 d

Postprocessing PixelShine deep learning processing

CT, computed tomography; ADMIRE, Advanced Modeled Iterative

Reconstruction.
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SNR of the bone data sets tended to increase slightly.

The reduced radiation dose was equivalent to a

61.7% decrease in the dose length product

(Table II). Increasing the IR strength improved the

SNR and CNR outcomes of all data sets, especially

the soft tissue data sets. The use of the PS algorithm

further increased the SNR and CNR of all data sets

(Figure 2). These effects are clearly illustrated in
Table II. Radiation dose, noise, SNR, and CNR outcomes fo

Radiation dose, noise, SNR, and CNR outcomes for all CT data sets

Reference mAs 50

Average effective mAs 116.00 § 10.30

Average CTDIvol (mGy) 5.26 § 0.48

Average DLP (mGy*cm) 54.22 § 5.30

ADMIRE strength 1 3 5

Bone

Conventional processing

Noise (HU) 31.84 § 110.87 39.60 § 89.10 42.00

SNR 0.289 § 0.040 0.446 § 0.057 0.743

CNR 11.89 § 0.32 15.17 § 0.55 23.93

PS deep learning processing

Noise (HU) 39.54 § 90.18 42.12 § 69.14 42.14

SNR 0.441 § 0.070 0.612 § 0.082 0.956

CNR 15.71 § 0.74 20.68 § 1.28 32.15

Soft tissue

Conventional processing

Noise (HU) 40.67 § 22.93 40.99 § 20.58 41.76

SNR 1.798 § 0.252 2.024 § 0.297 2.347

CNR 59.33 § 5.91 66.39 § 7.26 75.67

PS deep learning processing

Noise (HU) 39.54 § 90.18 42.12 § 69.14 42.14

SNR 2.006 § 0.314 2.224 § 0.362 2.516

CNR 68.31 § 8.20 75.06 § 9.80 83.16

SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio; CT, computed to

length product; ADMIRE, Advanced Modeled Iterative Reconstruction; HU,
Figure 3 by the box plots of the comparison of the

SNR and CNR for each scan protocol. The

ADMIRE strength 5 reconstructed data sets and the

additional use of the PS algorithm yielded the best

SNR and CNR outcomes. The IR and PS algorithm

improved the SNR and CNR to an extent that the

outcomes for the reduced radiation protocol were

well in the range of the standard protocol.

The results of the linear mixed model analyses are

presented in Table III. A radiation dose reduction from

the standard to the low-dose protocol did not decrease

the SNR of the bone data sets significantly, but it

decreased the CNR significantly. Raising the

ADMIRE strength from 1 to 3 and from 1 to 5 was sig-

nificantly associated with both the SNR and CNR of

the bone data sets. In addition, the use of the PS algo-

rithm was significantly associated with both the SNR

and CNR bone data set outcomes. Based on the esti-

mates, the effects of IR strength and use of PS far

exceeded the effects of radiation dose on SNR and

CNR outcomes.

For the soft tissue data sets, there was a significant

association between both SNR and CNR and radiation

dose reduction, higher ADMIRE strength, and the use

of the PS algorithm. Based on the estimates, the effects

of these predictors were substantially larger for the soft

tissue data sets than for the bone data sets. The highest

estimates were found on raising the ADMIRE strength

from 1 to 5.
r all CT data sets.

20

36.00 § 2.87

1.65 § 0.13

20.79 § 1.46

1 3 5

§ 56.66 32.10 § 109.42 39.47 § 87.69 41.43 § 56.59

§ 0.094 0.294 § 0.044 0.451 § 0.058 0.733 § 0.094

§ 1.10 11.43 § 0.36 14.73 § 0.46 22.94 § 0.71

§ 44.31 40.55 § 83.58 41.96 § 63.00 42.14 § 44.31

§ 0.130 0.487 § 0.071 0.669 § 0.088 1.019 § 0.124

§ 2.01 16.46 § 0.91 21.99 § 1.26 33.62 § 1.65

§ 18.17 40.52 § 27.13 40.83 § 24.33 41.44 § 21.59

§ 0.366 1.505 § 0.172 1.692 § 0.200 1.940 § 0.239

§ 9.33 48.41 § 2.98 54.02 § 3.71 61.03 § 4.71

§ 44.31 40.55 § 83.58 41.96 § 62.99 41.57 § 40.89

§ 0.425 1.696 § 0.223 1.878 § 0.251 2.095 § 0.277

§ 11.89 56.44 § 4.64 61.79 § 5.54 67.53 § 6.17

mography; CTDIvol, computed tomography dose index; DLP, dose

Hounsfield units; PS, PixelShine deep learning algorithm.



Fig. 2. Visual presentation of Advanced Modeled Iterative Reconstruction (ADMIRE) and PixelShine deep learning algorithms

for (A) bone and (B) soft tissue reconstructed data sets.
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DISCUSSION
This is the first study to assess the use of ADMIRE and

PS algorithms to improve image quality after substan-

tial radiation dose reduction for CT protocols to assess

midfacial trauma. This study demonstrated that radia-

tion dose reduction, increasing the IR strength, and the

use of the PS algorithm were all significantly associ-

ated with SNR and CNR outcomes. Most important,

the decrease in SNR and CNR due to radiation dose

reduction was substantially improved using the

ADMIRE and PS algorithms.

The diagnostic quality and increased availability of

CT within the emergency department has led to an
increased number of CT examinations. As a result,

there is an expanding concern regarding the associated

radiation exposure to patients.11 In this study, the esti-

mated radiation dose of the low-dose CT protocols was

comparable to that in another human cadaver study in

which a variety of scan protocols for maxillofacial

fractures were assessed.12

We analyzed both data sets that were reconstructed

using bone and soft tissue kernels. Bone data sets fea-

ture higher image noise because the slices are thinner

and have a high spatial resolution. Such a sharp charac-

teristic is required to depict fractures as small bony dis-

continuities. In this study, ADMIRE and PS improved



Fig. 3. Box plots showing comparison of contrast-to-noise ratio and signal-to-noise ratio outcomes. ADMIRE, Advanced Mod-

eled Iterative Reconstruction.
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the SNR and CNR after a large reduction in radiation

dose. These findings are in line with previous research

in which a substantial improvement in CNR was found

using an adaptive statistical and model-based IR for

bone kernel reconstructed data sets.13 Image noise

improvement is favorable for fracture diagnosis, and

previous cadaver, phantom, and modulation transfer

function studies by other IR manufacturers also

revealed that spatial resolution is maintained after radi-

ation dose reduction.9,14,15 A known disadvantage of

iterative reconstructed bone data sets is the longer
reconstruction time. In addition, interpretation can be

complicated by the waxy or pixelated image appear-

ance,16 but this was not found when using the PS algo-

rithm. Against expectations, this study obtained only

higher SNR and CNR outcomes for the bone data sets

on comparing the reduced radiation protocol with the

standard protocol. This finding suggests that the

denoising capabilities of this algorithm are stronger for

data sets with high image noise. Because the exact

architecture of the PS algorithm is largely unknown, no

clear explanation could be found for this outcome.



Table III. Results of the linear mixed model analyses.

Reconstruction type Bone Soft tissue

Parameter B SE 95% CI P value B SE 95% CI P value

SNR

Intercept 0.291 0.010 0.272-0.310 .000 1.804 0.032 1.741-1.868 <.001

Radiation dose Ref. 50 mAs

Ref. 20 mAs �0.001 0.012 �0.025 to 0.023 .914 �0.293 0.041 �0.373 to �0.212 <.001

ADMIRE strength 1

3 0.155 0.013 0.129-0.180 .000 0.228 0.043 0.142-0.313 <.001

5 0.447 0.013 0.421-0.472 .000 0.559 0.043 0.473-0.644 <.001

PS deep learning processing No

Yes 0.145 0.012 0.121-0.169 .000 0.210 0.041 0.129-0.290 <.001

CNR

Intercept 12.03 0.12 11.79-12.27 .000 59.48 0.77 57.96-61.00 <.001

Radiation dose Ref. 50 mAs

Ref. 20 mAs �0.75 0.16 �1.05 to �0.45 .000 �11.00 0.98 �12.93 to �9.08 <.001

ADMIRE strength 1

3 3.15 0.16 2.82-3.47 .000 7.10 1.04 5.06-9.14 <.001

5 11.72 0.16 11.39-12.04 .000 16.79 1.04 14.75-18.83 <.001

PS deep learning processing No

Yes 3.54 0.16 3.23-3.84 .000 9.15 0.98 7.23-11.07 <.001

Linear mixed model analyses were performed for both bone and soft tissue separately using SNR and CNR as outcomes. Radiation dose, IR

strength, and use of PS deep learning processing were added as fixed effects. The reference 20 mAs protocol, ADMIRE strength 1, and no use of

PS deep learning processing were used as the reference category.

CI, confidence interval; SNR, signal-to-noise ratio; ADMIRE, Advanced Modeled Iterative Reconstruction; PS, PixelShine deep learning algo-

rithm; CNR, contrast-to-noise ratio.
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Soft tissue data sets are appreciated for the ability to

visualize the intraorbital contents of midfacial trauma.

Midfacial fractures are associated with soft tissue�re-

lated injuries, such as entrapment of the rectus muscles.

The low contrast detectability of the soft tissue data

sets is necessary to differentiate the closely related den-

sities of the intraorbital anatomy. This study discovered

that there was also a significant association between

radiation dose reduction, IR strength, and PS algorithm

and both SNR and CNR for the soft tissue data sets.

These data sets were more prone to a decrease in SNR

and CNR following a decrease in radiation dose com-

pared to the bone data sets. The decrease in SNR and

CNR appeared to be maintained with the standalone

use of ADMIRE, raising the strength from 1 to 5, after

radiation dose reduction. A prior study also found that

both adaptive statistical IR and model-based IR pro-

duced a significantly better CNR than that obtained

with FBP for the optic nerve and inferior rectus mus-

cle.17 Other studies provided a potential for radiation

dose reduction using an IR algorithm for soft tissue

data sets of cranial CTs.18,19 Although in this investiga-

tion the PS algorithm significantly improved the soft

tissue data sets, the standalone use did not seem to

maintain image quality after radiation dose reduction.

Nevertheless, it provided important evidence that this

novel deep learning�based technology was able to

substantially denoise both bone and soft tissue kernel

reconstructed data sets.
This study had limitations. Human cadaver speci-

mens were used as representations of patient cases.

The postmortem status of the fresh frozen specimens

could have skewed the interpretability of the data sets

and the radiation dose outcomes could have been

underestimated. Nevertheless, this approach allows a

reliable comparison of image quality outcome. Another

limitation is that SNR and CNR were the only parame-

ters measured as an outcome of image quality.

Although these outcomes are widely accepted when

assessing noise-related image quality, no direct

assumptions can be made regarding the effects on diag-

nostic outcome. Therefore, future research should

focus on how these algorithms affect lesion detectabil-

ity. A priori knowledge of the algorithm capabilities is

needed to optimize the radiation dose of CT protocols

in relation to midfacial trauma. Future research should

also focus on the use of these algorithms for low-dose

CT protocols in pediatrics, orthodontics, and artifact

reduction.

CONCLUSION
Both advanced model-based ADMIRE and PS algo-

rithms significantly improved SNRs and CNRs of

bone and soft tissue data sets for CT protocols used for

midfacial trauma. Improvements in SNR and CNR

were particularly found for the soft tissue data sets.

The algorithms provide potential to maintain image

quality after substantial radiation dose reduction.
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