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A B S T R A C T   

Background and aims: Coronary artery disease (CAD) is a complex disease with a strong genetic basis. While 
previous studies have combined common single-nucleotide polymorphisms (SNPs) into a polygenic risk score 
(PRS) to predict CAD risk, this association is poorly characterised. We performed a meta-analysis to estimate the 
effect of PRS on the risk of CAD. 
Methods: Online databases were searched for studies reporting PRS and CAD. PRS computation was based on log- 
odds (PRSLN), pruning or clumping and thresholding (PRSP/C + T), Lassosum regression (PRSLassosum), LDpred 
(PRSLDpred), or metaGRS (PRSmetaGRS). The reported odds ratio (OR), hazard ratio (HR), C-indexes and their 
corresponding 95% confidence interval (95% CI) were pooled in a random-effects meta-analysis. 
Results: Forty-nine studies were included (979,286 individuals). There was a significant association between 1- 
standard deviation [SD] increment in PRS and adjusted risks of both incident and prevalent CAD (OR [95% 
CI]: 1.67 [1.57–1.77] for PRSmetaGRS, 1.46 [1.26–1.68] for PRSLDpred). The risk of incident CAD was highest for 
PRSP/C + T (HR [95% CI]: 1.49 [1.26–1.78]), PRSmetaGRS (1.37 [1.27–1.47]), and PRSLDpred (1.36 [1.31–1.42]). 
Analysis of model performance demonstrated that PRS predicted incident CAD with C-index of up to 0.71. 
Importantly, addition of PRS to clinical risk scores resulted in modest but statistically significant improvements 
in CAD risk prediction, with 1.5% observed for PRSP/C + T (p < 0.001) and 1.6% for PRSLDpred (p < 0.001). 
Conclusions: Polygenic risk score is strongly associated with increased risks of CAD. Future prospective studies 
should explore the usefulness of polygenic risk scores for identifying individuals at a high risk of developing CAD.   

1. Introduction 

Coronary artery disease (CAD) remains the leading global cause of 
multi-morbidity and mortality [1,2]. Thus, strategies for accurate 
identification of individuals at high-risk of developing CAD are para-
mount for individualized primary prevention. Current clinical risk 
scores, incorporating several traditional risk factors, have been shown to 
predict CAD risk. However, the increased susceptibility to CAD in 
younger and healthier patients underscores a contribution of factors 
beyond the traditional risk factors. Indeed, data from large prospective 

cohorts [3] and registries [4] have demonstrated that parental history of 
premature CAD is an independent predictor of future CAD in offspring. 
Consequently, familial aggregation of CAD risk is reported to explain up 
to 60% variation in the heritability of CAD [5]. 

The genetic basis of CAD can roughly be divided into its monogenic 
and polygenic components. The monogenic component, namely, high- 
impact genetic mutations that follow a classical Mendelian pattern, is 
best exemplified by as familial hypercholesterolemia (FH) [6–8]. While 
important for carriers and their families, FH has low prevalence in the 
general population (~1 in 200–400), and thus can only explain a small 
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proportion of CAD risk in the population [8–10]. A far larger proportion 
of CAD risk is explained by genetic susceptibility conferred by polygenic 
risk: the aggregate contributions of many common (minor allele fre-
quency (MAF) ≥1% or so), low-impact genetic variants [11]. Over 1,790 
of such CAD loci have been identified to date by large-scale genome--
wide association studies (GWAS) [12,13]. However, the use of genetic 
information for CAD risk stratification remains challenging. Recent data 
suggests that aggregation of these common variants into a risk score, 
termed genetic risk score or polygenic risk score (PRS), can improve 
CAD risk prediction and stratification [14,15]. 

Herein, we conducted a systematic review and meta-analysis to 
provide a comprehensive evaluation of available data from validation 
and replication studies associating PRS of GWAS-derived SNPs and CAD 
risk. Our objectives were to provide a comparative assessment of the 
associations between PRS and CAD risks. We also aimed to evaluate the 
various methodologies for deriving PRS and their impact on PRS and 
CAD relationship. 

2. Materials and methods 

This meta-analysis was conducted in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines and the HuGENet™ HuGE Review Handbook for systematic 
reviews and meta-analyses of genetic association studies. The protocol 
was registered on PROSPERO (ID: CRD42020190305). 

2.1. Search strategy 

Relevant studies were identified by database searches performed on 
PubMed, EMBASE, Web of Science Core Collection, and Ovid MEDLINE 
from inception through 12 December 2020, using a combination of 
terms related to: genetic risk score, polygenic risk score, genome-wide 
association study, and coronary artery disease. The full search strate-
gies are available in the supplement (Supplementary Method 1). The 
reference list of eligible articles and relevant reviews were also scruti-
nized to identify additional sources of information. 

2.2. Study selection criteria 

Initial screening of retrieved references was conducted by two in-
vestigators (TAA and JJN) independently, at the titles and abstracts 
stages. Then, the full texts of all potentially eligible articles were ob-
tained and further assessed for final inclusion. Disagreements regarding 
study inclusion were resolved by consensus. Studies were included if 
they fulfilled the following criteria: (1), were published in English; (2), 
participants were aged 18 years or older; (3), reported on CAD as pre- 
existing or endpoint outcomes; (4), calculated PRS containing SNPs 
from ≥2 loci. Studies were excluded, if they: (1), reported only mono-
genic associations; (2), were of critically poor design; (3), had limited 
power (sample size ≤100 individuals); (3) twin or linkage studies; (4), 
were abstracts not yet published as full manuscripts, reviews, editorials, 
case reports, and letters to the editor. 

2.3. Data extraction and outcomes 

Data extraction was done independently by two investigators (TAA 
and EPMM), using a priori data abstraction form. Disagreements were 
resolved by consensus. The following data were extracted: first author’s 
name, publication year, recruitment period, country of primary cohort, 
study design, number of participants, mean or median age, proportion of 
males, CAD risk factors, follow-up time, incidence/prevalence/recur-
rence of any CAD, genotype information, number of SNPs and modality 
for PRS computation, risk estimates (odds ratio [OR] or hazard ratio 

[HR]), and their 95% confidence intervals (95% CI). For details on PRS 
calculation, see Supplementary Method 2. Briefly, PRS was presented as 
a simple count, additive sum (uwPRS), or weighted score. Weighted 
methods were by effect size (natural log odds, PRSLN), PRSLN rescaled by 
number of SNPs (PRSLN-rescaled), linkage disequilibrium (LD) pruning/ 
clumping and/or thresholding (PRSP/C + T), genome-wide LD clumping 
(metaGRS: PRSmetaGRS), penalised regression (i.e., Lassosum: PRSLasso-

sum), and the Bayesian "Linkage Disequilibrium prediction" (LDpred: 
PRSLDpred) models. 

Composite endpoints were defined as the diagnosis of fatal or 
nonfatal MI, coronary interventions, ischaemic stroke, and/or cardio-
vascular death. CAD was defined as any diagnosis of myocardial 
infarction (MI), coronary intervention, and/or CAD/MI-related death. 
CAD was further defined as early onset (EOCAD), if it occurred before 55 
years of age; late onset (LOCAD), if it occurred >65 years of age; or any 
type (AnyCAD), if it occurred at any age. 

Details on the clinical risk scores (CRS) used in the current analyses 
are described and reported in Supplementary Methods 3 and Supple-
mentary Table S1. 

2.4. Risk of bias assessment 

Risk of bias was assessed using the Quality of Genetic Studies (Q- 
Genie) tool. Studies reporting on prediction models of PRS for CAD were 
further assessed for potential bias in this domain and applicability by the 
Prediction model Risk Of Bias ASsessment Tool (PROBAST). Disagree-
ments were resolved by consensus. 

2.5. Data analysis 

Analyses were based on multivariate estimates. We performed 
random-effects meta-analysis using the inverse method (DerSimonian- 
Laird estimator), expressing them as OR or HR and 95% CI. Where CAD 
risk was presented per categories of PRS, these were converted to risk 
per standard deviation in PRS (provided there were ≥3 categories), with 
covariance approximated using the method of Greenland and Long-
necker [16]. The degree of heterogeneity in the comparisons was 
assessed by examination of forest plots and by the Higgins’ I [2]-statistic, 
and small-study effect by funnel plots. We also pooled area under the 
receiver operating characteristic curve (AUC) or C-index and corre-
sponding standard error to evaluate the discriminative ability of PRS 
models, and improvement of clinical risk scores (CRS) in a combined 
PRS plus CRS (PRS + CRS) model. Data were pooled separately for each 
PRS algorithm. We identified statistical significance using a two-tailed p 
value of ≤0.05. Analyses were performed in R version 3.6.2 (R Core 
Team for Statistical Computing, Vienna, Austria). 

3. Results 

3.1. Synthesis of literature search and study characteristics 

A total of 1,679 articles were retrieved from electronic databases and 
supplementary searches. Of these, 214 were available for full text re-
view, of which 49 studies were included (Fig. 1). Included studies 
contributed to a total of 977,716 participants from 110 cohorts. Par-
ticipants were recruited between 1971 and 2016, mostly from Europe 
(53.1%) and North America (24.5%), and studies were published be-
tween 2007 and 2021 (Supplementary Tables S2–S5). Overall, the 
quality of the included studies was good. Using the Q-Genie tool, most 
studies (n = 30) were rated at low risk of bias (32.7%) or moderate 
(53.1%) risk of bias (Supplementary Table S6). 
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3.2. Meta-analysis: PRS and CAD 

Results of the association between PRS and risks of combined incident 
and prevalent CAD are presented in Fig. 2. Data were available for 
PRSmetaGRS and PRSLDpred and were pooled in a meta-analysis. The best 
association was seen with PRSmetaGRS, at 67% higher odds of any CAD 
(OR: 1.67 [1.57–1.77]). PRSLDpred was also highly associated with CAD 
(OR: 1.46 [1.26–1.68]). 

Results of the associations for incident CAD risks are shown in Fig. 3, 
Table 1, and Supplementary Table S8. PRS significantly predicted CAD 
incidence, ranging from 8% to 49% risks. The best result was noted for 
PRSP/C + T (HR: 1.49 [1.26–1.78]), though the analysis had high het-
erogeneity (I [2] 95%). PRSmetaGRS and PRSLDpred were also highly pre-
dictive of incident CAD (HR: 1.37 [1.27–1.47]; HR: 1.36 [1.31–1.42]). 
Compared to unweighted PRS based on SNPs previously associated CAD, 
weighted PRS had 10%–41% higher risks of CAD. We performed analysis 

Fig. 1. PRISMA flowchart of literature search strategy.  

Fig. 2. Association between PRS and all coronary artery disease (CAD). 
Forest plot showing pooled risk estimate associating PRS with the risk of incident and prevalent CAD. The summarised results were pooled using unadjusted estimates 
from the included studies. Data were pooled separately for each PRS algorithm and summarised on the same figure, without combining them. OR, odds ratio; 95% CI, 
95% confidence interval. 
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by the ancestry of the primary GWAS of the SNPs used for deriving PRS; 
PRSLN from European GWAS predicted a 28% higher risk of incident CAD 
compared 24% of trans-ethnic GWAS. However, for PRSLDpred, PRS 
derived from either European or trans-ethnic lower than the overall 
pooled analysis but was still significant. When we evaluated the influence 
of the testing cohort ancestry, no difference was noted for PRSLDpred. 
Compared to non-European cohorts, PRSmetaGRS tested in European co-
horts demonstrated a 5% higher incident CAD risk. 

We tested PRS as prognostic marker in patients who have had CAD in 
past and present the results in Table 1 and Supplementary S2. Both 
PRSmetaGRS and PRSLDpred significantly predicted elevated risks of 

recurrent coronary events. However, the predicted risks were much less 
(HR: 1.17 [1.08–1.25] for PRSmetaGRS; HR: 1.13 [1.05–1.22] for PRSLDpred) 
than for incident events in previously undiagnosed individuals. 

We tested PRS as diagnostic marker in case-control datasets and 
present the results in Supplementary Tables S7–S8 and Supplementary 
S3. PRS was significantly associated with prevalent CAD, ranging from 
24% to 69% odds of CAD presence. The best result was noted for 
PRSmetaGRS (OR: 1.69 [1.58–1.81]). In subgroup analyses, PRS were 
more strongly associated with CAD if they were computed using SNPs 
from European and trans-ethnic GWAS and tested in European and 
younger populations. Moreover, PRS demonstrated the strongest 

Fig. 3. Association between weighted PRS and incident CAD. 
Forest plot showing pooled risk estimate associating 1-SD increment in PRS with the risk of CAD using estimates from fully adjusted models. Estimates are grouped by 
the weighting of GRS. CAD, coronary artery disease; PRS, genetic risk score; PRSLN, PRS weighted by natural log-odds of the effect size; PRSLDpred, PRS computed by 
LDpred; PRSmetaGRS, PRS computed by metaGRS. 

Table 1 
Summary association of weighted polygenic risk score and incident CAD.  

Subgroup Studies (N) Participants SNP (Range) Associated risk Heterogeneity Egger’s test (p-value) 

HR 95% CI (LL–UL) I2 p-value 

PRSLN 

Overall 7 378,518 9–858 1.26 1.12–1.41 96.9% <.001 0.518 
European GWAS 4 42,744 9–858 1.28 1.12–1.45 93.9% <.001 0.265 
Trans-ethnic GWAS 2 330,875 30–169 1.24 0.90–1.72 96.8% <.001 ND 
Cohort study design 6 376,679 13–858 1.27 1.11–1.44 97.4% <.001 0.542 

PRSLN-rescaled (
∑

n) 

Overall 2 28,508 70–257 1.18 1.12–1.24 0.0% 1.000 ND 
PRSLDpred 

Overall 11 554,919 5.6–6.6 million 1.36 1.30–1.42 78.3% <.001 0.022 
European GWAS 3 55,735 6.6 million 1.27 1.05–1.53 88.9% <.001 0.218 
Trans-ethnic GWAS 5 148,134 5.6–6.6 million 1.29 1.17–1.43 82.2% <.001 0.069 
European testing cohorts 8 857,745 5.6–6.6 million 1.36 1.30–1.43 78.5% <.001 0.022 
Non-European testing cohorts 3 53,733 6.6 million 1.37 1.16–1.62 85.0% 0.001 0.666 

PRSmetaGRS 
Overall 6 543,623 1.7 million 1.37 1.27–1.47 79.7% <.001 0.066 

European testing cohorts 4 533,533 1.7 million 1.39 1.29–1.50 82.4% <.001 0.100 
Non-European testing cohorts 2 10,090 1.7 million 1.34 1.13–1.59 52.5% 0.147 ND 

CAD, coronary artery disease; PRS, polygenic risk score; PRSLN, polygenic risk score weighted by natural log-odds of the effect size; PRSLDpred, polygenic risk score 
computed by LDpred; PRSmetaGRS, polygenic risk score computed by genome-wide linkage disequilibrium pruning; GWAS, genome-wide association study; HR, hazard 
ratio; ND, not determined; CI: confidence interval; RCT, randomised clinical trial; SNP, single-nucleotide polymorphism. 
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association with EOCAD compared to AnyCAD or LOCAD (PRSLN p < 
0.001, uwPRS p 0.006). 

3.3. Performance of genetic prediction models for CAD 

Results of the performance of GRS-based prediction models are pre-
sented in Table 2, Fig. 4, and Supplementary Figs. S5–S10. PRS predicted 
incident CAD with AUC ranging from 0.55 to 0.71, with the highest C- 
index seen for PRSLDpred. Almost all PRS modestly but significantly 
improved prediction models for incident CAD when included in the 

models containing clinical risk scores (CRS). The pooled improvements in 
the combined PRS plus CRS models were: 0.9% for PRSLN (p < 0.001), 
1.5% for PRSP/C + T (p < 0.001), 1.6% for PRSLDpred (p < 0.001), 1.1% for 
and PRSmetaGRS (p 0.005), respectively, Supplementary Tables S9–S10. For 
specific CRS, we noted the biggest improvement of 1.7% for PRSLDpred 
added to ACC/AHA pooled cohort equation (PCE, p < 0.001). 

Results of the reclassification of CAD risk by PRS are presented in 
Supplementary Table S11. As shown, the pooled NRI was significant for 
PRSLN and PRSP/C + T, with the greatest NRI of 10.3% seen with PRSP/C +

T compared to PCE (p < 0.001). 

Fig. 4. Summarised performances of CAD risk prediction models.  

Fig. 5. Summarised analyses of the association between polygenic risk score and coronary artery disease.  
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3.4. Meta-analysis: PRS and composite endpoints 

Results for studies reporting a composite endpoint of incident CAD, 
stroke, or CV death are shown in Supplementary Fig. S4. PRSLN was 
significantly associated with a 14% increased risk (HR 1.14, p < 0.01) of 
incident composite outcomes compared to 11% by uwPRS. In the two 
studies reporting composite endpoints as prevalence of CAD, stroke, 
and/or CV death, the pooled adjusted estimate was 23% higher odds per 
unit allele increment in uwPRS (OR 1.23, p < 0.01). 

4. Discussion 

Despite the increasing detection of CAD-associated SNPs in large- 
scale GWAS, their incorporation into risk prediction models remains 
challenging. Herein, we summarised all the reported associations be-
tween PRS and CAD in a literature meta-analysis. Using data from 
977,716 individuals, we demonstrate that weighted PRS (Fig. 5): inde-
pendently predicted a greater risk of incident CAD; with more stringent 
weighting modalities, such as LDpred and metaGRS, showing the 
strongest associations with CAD risk. Moreover, PRS demonstrated the 
stronger association with EOCAD compared to AnyCAD or LOCAD 
Incorporation of PRS to clinical models modestly but significantly 
increased CAD risk prediction, with the best performance seen with PRS 
by lassosum, LDpred, and metaGRS. 

Our findings highlight the importance of using weighted methods as 
opposed to unweighted methods for polygenic scoring and polygenic 
predictions of CAD. As a simple count score, the unweighted PRS sums 
all CAD-associated variants from discovery GWAS into an allele score. 
One major limitation with the uwPRS is the assumption of equal con-
tributions from the risk variants included in the score. Consequently, 
uwPRS models have demonstrated poorer performance in several com-
plex traits compared to wPRS models. In the present analysis, uwPRS 
predicted an 8% increased risk of incident CAD compared to 26%–49% 
for weighted PRS. 

Additionally, our analysis demonstrated more rigorous weighting 
methodologies are needed for optimal performance of PRS. Earlier 
methods for polygenic scoring (i.e., PRSLN) used strict p value thresholds 
and effect size estimates of few risk variants from discovery GWAS. 
These methods suffered from several limitations, among which included 
failure to account for smaller effect SNPs and the oversimplification of 
genetic heritability [17,18]. More recently, polygenic models using 
expanded PRS have achieved improved prediction of complex disorders 
[17,19]. Consistent with this, the current meta-analysis demonstrated 
the strongest associations with LDpred and metaGRS for incident and 
prevalent CAD. More complex methods, such as metaGRS and Bayesian 
regression by LDpred, owe their high performance to their ability to 
account for correlations between risk variants (via LD adjustments) [20, 
21] and do not suffer from model overfitting [22]. 

Furthermore, an important consideration for polygenic CAD risk 
prediction is the question of transethnic portability of PRS. Like most 
genetic studies, primary GWAS are predominantly performed in people 

of European ancestry. Thus, the derivation and validation of current PRS 
models reflect this dilemma, with non-European validation of PRS also 
performed using SNPs derived from European GWAS [23]. This has 
two-fold implications. First, it fails to account for the variable genetic 
aetiologies across multiple ethnicities [24]. Second, it grossly un-
derestimates the differences in CAD incidence and mortality noted in 
contemporary observations. In a recent trans-ethnic meta-analysis of 
GWAS of Japanese and European populations, eight of the seventy-four 
identified SNPs were significantly different between two ethnicities 
[25]. In the first decade of PRS studies, 67% included European in-
dividuals and 19% East Asians, with only 3.8% using African, Hispanic, 
or Indigenous populations [26]. Consequently, the predictive perfor-
mance was lower in non-European cohorts compared to European co-
horts, with the least performance seen in African ancestry cohorts [26]. 
In the current analysis, association of PRS with CAD was greatest in 
European and mixed ancestry testing cohorts. Moreover, PRS from 
trans-ethnic and European GWAS demonstrated the greatest associations 
with CAD. These results underscore the need to diversify GWAS and PRS 
studies. It is expected that newer studies, such as the ongoing 
Multi-Ethnic New Zealand Study of Acute Coronary Syndromes (MEN-
ZACs) [27], would help clarify the transethnic translation of polygenic 
CAD risk prediction. 

Current risk stratification systems, which are purely dependent on 
CRS such as the FRS or ACC/AHA PCE risk score, have a limited ability in 
identifying low-risk patients, [28,29], especially in non-European pop-
ulations [30]. The recommendation for combined polygenic-clinical 
prediction models should rely on the evidence of a significant incre-
ment in prediction performance from clinical scores alone to combined 
genetic and clinical scores. Based on the results presented in the present 
analysis, we believe integrating PRS along with clinical risk scores in CAD 
risk prediction can improve performance. This will have far-reaching 
benefits, including early identification of patients at risk, early initia-
tion of primary prevention, and better monitoring. Finally, the feasibility 
of using a combined prediction model should warrant further prospective 
investigations in future studies. These studies should focus on subgroups 
whose CAD risks are either underestimated or overestimated by con-
ventional clinical risk scores, such as women, younger populations, 
lower-risk groups, and minority communities [31–34]. For instance, in a 
multi-ethnic cohort, the combination of polygenic and clinical prediction 
models had the best discrimination for incident CAD in the younger 
participants (AUC 0.80 < 55 years versus AUC 0.74 ≥ 55 years) and 
women (AUC 0.76 versus AUC 0.71 in males) [35]. Additionally, there 
should be consideration for better phenotyping of control patients to 
avoid potential inclusion of subclinical atherosclerosis in both GWAS and 
PRS analyses; and triage for benefits in predicting CAD outcomes, iden-
tifying patients for plaque imaging, and guiding CAD treatment. 
Furthermore, to have utility in daily clinical practice, there would need to 
be increased availability, accessibility, and affordability of genomics and 
computational technology for routine care. 

The present meta-analysis has several strengths and merits. The large 
number of patients provides a strong power for very robust CAD risk 

Table 2 
Summary of C-indices of weighted polygenic risk score and incident CAD.  

PRSLN PRSP/C + T 

PRS CRS PRS + CRS CRS PRS + CRS 

Any FRS ACRS Any FRS ACRS 

Pooled studies (N) 2 7 3 2 7 3 2 2 2 
Participants (N) 358,402 104,932 58,231 10,881 104,932 58,231 10,881 32,164 32,164 
C-index (95% CI) 0.551  

(0.496–0.605) 
0.713  
(0.675–0.749) 

0.710  
(0.622–0.785) 

0.739  
(0.664–0.802) 

0.720  
(0.688–0.750) 

0.719  
(0.631–0.793) 

0.747  
(0.653–0.823) 

0.798  
(0.668–0.886) 

0.813  
(0.671–0.902) 

ACRS, Atherosclerosis Risk in Community (ARIC) coronary heart disease (CHD) risk score; CRS, clinical risk score; FRS, Framingham Risk Score; PCE, pooled cohort 
equation. For other abbreviations, see Table 1. 
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estimation. The novelty in the present data is worth highlighting. We 
used studies with good methodological qualities and generally low risk 
of bias for our analyses. We highlight the importance of using stringent 
weighting methods and larger PRS. We have also shown that the use-
fulness of PRS is particularly noteworthy in patients with EOCAD than 
any CAD or late-onset CAD. However, these results should be interpreted 
with caution. First, the SNPs used for deriving PRS were from GWAS of 
individuals of European ancestry. Second, the PRS used herein is limited 
by the available GWAS studies, which may not have captured all CAD 
risk variants. Third, the lack of individual patient data is another limi-
tation of the present study. Noteworthy, individual-patient data meta- 
analysis is shown to be superior in risk stratifications compared to 
aggregate analysis. 

4.1. Conclusions 

In conclusion, our results provide robust evidence associating ge-
netic risk scores with CAD. PRS independently predicts increased risks of 
incident, prevalent, and recurrent CAD. Weighted scores are better 
associated with CAD risks compared to non-weighted polygenic scores, 
with the strongest associations seen with early-onset CAD. More 
importantly, CAD risk predictions were most robustly noted for scores 
with larger SNPs and complex weighting, such as metaGRS and LDpred- 
derived PRS. Future prospective studies should investigate the benefits 
of incorporating PRS for better prediction of CAD outcomes, identifying 
patients for plaque imaging, and guiding CAD treatment. 
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