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Abstract
Purpose  In Mokken scaling, the Crit index was proposed and is sometimes used as evidence (or lack thereof) of violations 
of some common model assumptions. The main goal of our study was twofold: To make the formulation of the Crit index 
explicit and accessible, and to investigate its distribution under various measurement conditions.
Methods  We conducted two simulation studies in the context of dichotomously scored item responses. We manipulated 
the type of assumption violation, the proportion of violating items, sample size, and quality. False positive rates and power 
to detect assumption violations were our main outcome variables. Furthermore, we used the Crit coefficient in a Mokken 
scale analysis to a set of responses to the General Health Questionnaire (GHQ-12), a self-administered questionnaire for 
assessing current mental health.
Results  We found that the false positive rates of Crit were close to the nominal rate in most conditions, and that power to 
detect misfit depended on the sample size, type of violation, and number of assumption-violating items. Overall, in small 
samples Crit lacked the power to detect misfit, and in larger samples power differed considerably depending on the type of 
violation and proportion of misfitting items. Furthermore, we also found in our empirical example that even in large samples 
the Crit index may fail to detect assumption violations.
Discussion  Even in large samples, the Crit coefficient showed limited usefulness for detecting moderate and severe violations 
of monotonicity. Our findings are relevant to researchers and practitioners who use Mokken scaling for scale and question-
naire construction and revision.

Keywords  Mokken scaling · MSA · Crit · Monotonicity · IIO · Item fit

Introduction

Mokken scale analysis (MSA; e.g., [9, 12, 19, 20, 22]) is a 
popular item response theory (IRT) approach for evaluating 
the psychometric quality of tests and questionnaires in vari-
ous fields such as psychology, education, health and quality-
of-life (QoL), or marketing (e.g. [7, 11, 16, 33, 34]). Notable 
models within Mokken scaling include the monotone homo-
geneity model (MHM) and the double monotonicity model 

(DMM) [12]. Sijtsma and Molenaar [19] and Meijer and 
Tendeiro [9] offer a gentle introduction to Mokken scaling 
to those unfamiliar with MSA.

In empirical studies, Loevinger’s H coefficient [5, 6, 13] 
is the most popular method to evaluate the quality of a Mok-
ken scale. However, there are other methods to check the 
assumptions of Mokken scaling (see e.g., [19, 30]). In this 
article, we focus on the so-called Crit coefficient [15] that 
summarizes information from the H coefficient and other 
statistics concerning the violation of model assumptions.

More than 20 years have passed since Crit was proposed 
[15]. Meanwhile, the coefficient has been mentioned in MSA 
tutorials and instructional modules as an overall critical 
value useful to assess violations of model assumptions (e.g., 
[21, 23, 30, 34]), and it is available in two software packages 
[15, 27, 28]. However, perhaps due to the general lack of 
insight around Crit, it is not routinely used in practical appli-
cations as an effect size for violations of the monotonicity 
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(M) assumption of the MHM and for violations of the item 
invariant ordering (IIO) assumption of the DMM (e.g., [33]). 
There are no theoretical or empirical studies that provide 
a good insight into the definition of Crit and the basis for 
the suggested rules-of-thumb. Molenaar and Sijtsma [15] 
provided some tentative rules of thumb to help researchers 
interpret the severity of a violation, but these rules of thumb 
were empirically (i.e., not theoretically) derived from a lim-
ited set of real datasets.

To fill this gap, and to investigate whether Crit can be 
advocated to be used in practical applications, in the pre-
sent study we first discuss the formulation of the Crit coef-
ficient in the context of Mokken scale analysis and some of 
its properties. As we will discuss, the Crit coefficient is an 
empirically driven formula, thus justifying our interest in 
further understanding its theoretical basis. To that extent, we 
present the results of two simulation studies that investigate 
the distribution of the Crit coefficient under several meas-
urement conditions. Furthermore, we present an empirical 
example concerning quality-of-life data, in order to link 
our simulations studies to empirical research and to show 
researchers how our findings may contribute to the inter-
pretation of MSA applications in the field of QoL research. 
Finally, we discuss the usefulness of the Crit coefficient and 
of the proposed rules of thumb as a measure of effect size 
for violations of Mokken scales.

The monotonicity assumption in MSA

In nonparametric IRT models, as in other item response the-
ory models, it is assumed that the item response functions 
(IRFs) are monotonically nondecreasing (the monotonicity 
assumption, M for short). In this study we restrict ourselves 
to dichotomous items scored 0 (e.g., “incorrect” or “disa-
gree”) or 1 (e.g., “correct” or “agree”). Then M means that 
the probability of a correct response (or the probability of 
endorsing the item) is a nondecreasing function of the latent 
trait or person characteristic that is measured (often denoted 
θ). In MSA, the so-called restscore (R−i), where R−i is the 

number-correct score over all items excluding item i, is used 
as a proxy for a person’s value on the person characteristic of 
interest [15]. When M holds then it applies that, apart from 
sampling fluctuations [3],

If this order does not hold in the sample, the item may 
violate the assumption of monotonicity.

Figure 1 shows the estimated IRFs of two items from a 
transitive reasoning test [32] (data available in the “Mokken” 
package [27, 28]). Item T09L has a monotonically nonde-
creasing IRF, while item T12P indicates a violation of the 
monotonicity assumption.

We can check the M assumption for item i by comparing 
the probabilities of a correct response or of endorsement 
between all restscore groups s and r (s > r) and counting the 
number of times Eq. 1 does not hold. Then, the Crit coef-
ficient for checking violations against monotonicity can be 
calculated as follows [15]:

In Eq. 2, Hi is the scalability coefficient of item i, #vi 
denotes the number of violations (the number of times Eq. 1 
does not hold), #ac denotes the total number of pairs of rest-
score groups that are being compared, maxvi is the size of 
the largest violation, sum denotes the sum of all violations, 
and, finally, zmax and #zsig refer to the normal deviates 
associated with each violation. An example of how to obtain 
all these quantities is available in the Online Resource.

Molenaar and Sijtsma [15] proposed the following rules 
of thumb for Crit:

1.	 A Crit coefficient larger than 80 casts serious doubt on 
the fit of the item to the model;

(1)
P
(
Xi = 1|R−i = s

)
≥ P

(
Xi = 1|R−i = r

)
, for all s > r.

(2)

Criti = 50 ×
�
0.30 − Hi

�
+
√
#vi + 100 × #vi∕#ac

+ 100 × maxvi + 10 ×
√
sum + 1000 × sum∕#ac

+ 5 × zmax + 10 ×
√
#zsig + 100 × #zsig∕#ac.

Fig. 1   Estimated IRFs of two 
transitive reasoning items. Item 
on the left (T09L) is monotoni-
cally non-decreasing, and item 
on the right (T12P) shows viola-
tions of monotonicity
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2.	 A Crit coefficient between 40 and 80 indicates that 
the evidence of a violation is unclear. However, some 
authors (e.g., [23]) interpret Crit ≥ 40 as evidence of a 
serious model violation;

3.	 Finally, a Crit coefficient lower than 40 indicates that 
there is no strong evidence in the data supporting the 
hypothesis of model misfit.

The IIO assumption in MSA

The DMM implies invariant item ordering (IIO) [18]. This 
assumption implies that the ordering of the items accord-
ing to the item difficulty or item proportion correct or item 
popularity is the same across all values of the person char-
acteristic. In other words, the IIO assumption means that 
the IRFs do not intersect. If items are ordered and numbered 
from the most difficult (least popular) to the least difficult 
(most popular), then IIO implies that, apart from sampling 
fluctuations:

where R−ij is the number-correct score over all items exclud-
ing items i and j. If Eq. 3 does not hold in the sample, then 
at least some items may violate the assumption of invariant 
item ordering.

To illustrate this, Fig. 2 shows the estimated IRFs of two 
pairs of dichotomized items from a questionnaire asking 
participants about their strategies of coping with industrial 
malodour [1] (data available within the “Mokken” package 
[27, 28]). Items 1 (“keep windows closed”) and 9 (“file com-
plaint with producer”) do not intersect, while items 1 and 3 
(“search source of malodor”) do. IIO is being violated here 
because the relative popularity of items 1 and 3 switches 
across the restscore groups.

Similarly as for checking monotonicity, for IIO the Crit 
coefficient can be calculated for each item, according to 
Eq. 2, and the same rules of thumb apply [15]. An example 

(3)P
(
Xi = 1|R−ij = r

)
≤ P

(
Xj = 1|R−ij = r

)
, for all r,

of how to obtain the quantities in Eq. 2 when evaluating IIO 
is available in the Online Resource.

Aim of the study

Clearly, Eq. 2 is a complex weighted sum of various features 
of the data. Importantly, the weights and the advised rules 
of thumb are very unclear. More than 20 years have passed 
since Crit was proposed and little attention has been given 
to understanding its functioning. Below we show the results 
of two simulation studies to further understand the Crit coef-
ficient. Study 1 addresses the following research questions: 
(RQ1A) How is the Crit coefficient for assessing M distrib-
uted under model-fitting data and to what extent is Crit sen-
sitive to scale quality and sample size? (RQ1B) How is the 
Crit coefficient for assessing M distributed under different 
types of M violations and to what extent is the distribution 
of Crit affected by the number of model-violating items and 
sample size? Study 2 addresses similar research questions as 
Study 1 but with a focus on IIO, that is: (RQ2A) How is the 
Crit coefficient for assessing IIO distributed under model-
fitting data and to what extent is Crit sensitive to scale qual-
ity and sample size? (RQ2B) How is Crit distributed when 
violations of IIO occur and to what extent is it affected by 
the number of model-violating items and sample size? Spe-
cifically, we were interested in the false positive and true 
positive (power) rates of the Crit coefficient when following 
the rules of thumb proposed by Molenaar and Sijtsma [15]. 
We also investigated how Crit compares to another, more 
conventional method of investigating violations of M and of 
IIO: checking whether there is one or more significant viola-
tions of M or of IIO. Furthermore, we re-analyzed a dataset 
from an empirical quality-of-life study and interpreted the 
results in light of the findings from our simulation studies.

Fig. 2   Estimated item response 
functions of two pairs of items. 
Items 1 and 9 (on the left) do 
not intersect, and items 1 and 3 
(on the right) intersect
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Simulation setup

The first study was aimed at determining the distribution of 
the Crit coefficient under (violations of) monotonicity, and 
the second study was aimed at determining the distribution 
of the Crit coefficient under (violations of) IIO. More spe-
cifically, in each study we generated both model-fitting and 
model-misfitting data. We then computed the Crit coefficient 
according to Eq. 2. For RQ1A we used a 3 (Scale quality) × 3 
(Sample size) fully crossed design, resulting in 3 × 3 = 9 con-
ditions. For RQ1B we simulated data according to a 3 (Type 
of M violation) × 3 (Number of misfitting items) × 3 (Sample 
size) fully crossed design, resulting in 3 × 3 × 3 = 27 condi-
tions. Together, the 36 conditions constitute the design of 
the first simulation study (Study 1).

Similarly, for Study 2, RQ2A we used a 3 (Scale qual-
ity) × 3 (Sample size) fully crossed design, resulting in 
3 × 3 = 9 conditions. For RQ2B we simulated data accord-
ing to a 2 (Type of IIO violation) × 3 (Number of misfitting 
items) × 3 (Sample size) fully crossed design, resulting in 
2 × 3 × 3 = 18 conditions. Together, the 27 conditions form 
the design of the second simulation study (Study 2).

Additionally, the number of significant violations 
(#zsig) of the M and the IIO assumptions was computed 
and the results were compared to those based on Crit 
[15]. In all conditions, we generated dichotomous item 
responses (coded 0/1) on I = 10 items. Many Mokken 
studies analyze relatively short scales; These scales are 
sometimes part of a larger test, survey, or inventory that 
has a more complex structure (e.g., see [8, 10] for such 
analyses using clinical and personality scales between 5 
and 13 items). For each condition we generated 1000 rep-
lications. Below we provide details about the independent 
and the outcome variables. For readers who are interested 
in replicating our results, we included detailed information 
on the data generating processes in the Online Resource.

Independent variables

We varied four factors in each of the two simulation stud-
ies: type of violation, number of assumption-violating items 
(Imisfit), scale quality, and sample size (N).

Type of violation

This factor was operationalized differently across studies. 
In Study 1, violations of M were introduced by generating 
reversed, unimodal, or quadratic IRFs, as described in the 
Online Resource and illustrated in Fig. 3. Reversed IRFs 

are seldom encountered in practice, as these items are either 
reverse-coded or removed in the early stages of scale con-
struction. Nevertheless, it is interesting to see how model-
fitting items are affected by the presence of items that have 
been, say, coded improperly. In Study 2, the Imisfit items were 
generated to intersect with the remaining I − Imisfit items by 
setting their slope either higher or lower than the common 
slope of all fitting items (see the Online Resource for details 
and Fig. 4 for an illustration).

Number of assumption‑violating items

We considered three values for Imisfit for both studies: 1, 3, 
and 5. Thus, either 10%, 30%, or 50% of the items in the 
scale were violating either the M or the IIO assumption.

Fig. 3   Examples of violations of monotonicity through reversed, 
quadratic, and unimodal IRFs



53Quality of Life Research (2022) 31:49–59	

1 3

Scale quality

We only manipulated this factor in the model-fitting condi-
tions of Study 1 and Study 2. In Study 1 we did this because 
when the IRFs have a different shape than monotone nonde-
creasing, it is not clear if the guidelines for scale quality pro-
posed by Mokken [12] still hold. In Study 2 we did this to be 
consistent. Through a process of trial-and-error, we obtained 
Mokken scales of varying quality as reflected by the H coef-
ficient for the entire scale [12]: Medium and strong scales 
(H ≥ 0.4), weak scales (0.3 ≤ H < 0.4), and scales where the 
H coefficient was smaller than 0.3, that is, where the items 
did not form a Mokken scale (unscalable). See Table C1 in 
the Online Resource for the parameters we used to obtain 
these Mokken scales.

Sample size

The statistical significance of violations is also part of the 
computation of Crit. The last three terms in Eq. 2 contain 
the normal deviates associated with each violation (zmax) 
and their probability of exceedance or statistical significance 
(#zsig). With very large sample sizes, even small deviations 
from the null model are statistically significant and thus con-
tribute to the Crit coefficient. Therefore, in both studies, 
we determined the distribution of Crit under three sample 
sizes: N = 100, 500, and 1000, representing small, medium, 
and large samples found in many empirical Mokken studies 
[14, 31].

Outcome variable

In each simulation study we computed the Crit coefficient 
for all items according to Eq. 2. We then plotted the distribu-
tion of the Crit coefficient separately for each type of misfit, 
N, and Imisfit, and we computed the false positive and true 
positive (power) rates. The false positive rate was defined as 
the percentage of cases in which an item was generated to 
comply with the model but was detected as misfitting (i.e., 
had a Crit ≥ 80). The true positive rate, or the power of Crit 
to detect misfit, was defined as the percentage of cases in 
which an item was correctly detected as misfitting, that is, 
the item was generated to violate the M or the IIO assump-
tion and had a Crit ≥ 80.

Fig. 4   Example of violations of IIO through intersecting IRFs. In this 
plot, the dotted IRF violates the IIO assumption by intersecting with 
the solid IRFs

Table 1   False positive rates and 
power for the Crit coefficient for 
violations of M

Values shown are percentages of Crit values at least equal to 80
a Values computed over the (I − Imisfit) items
b Values computed over the Imisfit items

Type of violation False positive ratesa True positive rates (power)b

Imisfit = 1 Imisfit = 3 Imisfit = 5 Imisfit = 1 Imisfit = 3 Imisfit = 5

Quadratic IRFs
 N = 100  < 0.1  < 0.1  < 0.1 1.2 0.7 0.5
 N = 500  < 0.1  < 0.1 0.1 12.1 9.8 6.5
 N = 1000  < 0.1  < 0.1  < 0.1 10.7 6.7 4.9

Unimodal IRFs
 N = 100  < 0.1  < 0.1 0.3 5.2 4.0 1.8
 N = 500  < 0.1 0.2 5.6 99.2 97.6 78.7
 N = 1000  < 0.1 0.1 5.4 99.5 99.6 91.3

Reversed IRFs
 N = 100  < 0.1  < 0.1 2.0 7.2 4.9 1.9
 N = 500  < 0.1 1.7 81.5 99.8 99.9 80.6
 N = 1,000  < 0.1 3.1 87.5 100.0 100.0 86.7
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We also calculated the number of significant violations 
of M or IIO (#zsig) for all items according to [15]. We then 
computed false positive and power rates for #zsig separately 
for each type of misfit, N, and Imisfit. The false positive rate 
was defined as the percentage of cases in which #zsig > 0 
even though the item was generated to comply with the 
model. Power was calculated as the percentage of cases in 
which #zsig > 0 and the item was generated to violate M or 
IIO. For the analyses we set minvi equal to 0.03 and minsize 
equal to N/10 for N ≥ 500 and to max(N∕3, 50) for N = 100.

Implementation

We implemented the simulation in R [17] and used the 
“Mokken” package [27, 28] to compute the Crit coefficient 
and the #zsig values for monotonicity and invariant item 
ordering. All R script files and generated output files are 
open and available at https://​osf.​io/​eh2my/.

Simulation results

Crit for violations of monotonicity

We first present the results concerning false positive rates 
and power for the Crit coefficient when evaluating the 
assumption of monotonicity, and how they relate to those 
of #zsig. Concerning RQ1A, we found that the overall false 
positive rates (i.e., calculated over all 10 items in the 9 
conditions with Imisfit = 0) were very low, with only 0.01% 
of the Crit values above 80. Moreover, the distribution of 
Crit, which had a median value of 0 and an interquartile 
range (IQR)1 of 0, was not affected by either scale quality 
or sample size. Crit values above 0 are most likely random 
fluctuations. Regarding the false positive rates of #zsig in 
the Imisfit = 0 conditions, we found that 0.09% of the values 
were larger than 0.

To answer RQ1B, Table 1 shows the power and the false 
positive rates of the Crit coefficient, and Fig. E1 in Online 
Resource depicts the distribution of Crit under the different 
types of M violation, separately for Imisfit and N.

We found that Crit for checking the monotonicity assump-
tion in MSA was affected to a large extent by sample size, 
the number of misfitting items, and the type of violation of 
monotonicity: For small samples (N = 100), Crit had very 
low power to detect violations of monotonicity, regardless of 
the type or amount of violation. In larger samples (N = 500, 
1,000), the power of Crit improved depending on the num-
ber of misfitting items and type of M violation, with the 

highest values for unimodal and reversed IRFs (between 80 
and 100%). For most conditions studied, false positive rates 
were relatively low, but they increased with number of mis-
fitting items and sample size. This is because the H value, 
which is a rescaled inter-item covariance [14, 19], is part 
of the computation of Crit, and because in large samples, 
even trivial violations can become statistically significant, 
contributing to the computation of Crit (Eq. 2).

We found a very similar pattern of results concerning 
the false positive and power rates of #zsig for violations of 
M (see Table D1 in Online Resource). A visual compari-
son of Table 1 and Table D1 reveals that the two methods, 
Crit and #zsig, performed similarly with respect to the false 
positive rates and power to detect violations of M in most 
simulation conditions. In large samples and with quadratic 
IRFs, the power of #zsig was slightly higher than for Crit, 
but remained very low nonetheless. When Imisfit = 5, #zsig 
had a substantially lower power than Crit for unimodal IRFs 
(N = 500, 1,000) and for reversed IRFs (N = 500).

Crit for violations of IIO

For violations of IIO, we also computed the false positive 
rates and power of Crit and #zsig, defined similarly as above. 
In Table 2 as well as in Fig. E2 of the Online Resource, 
we depicted the results pertaining to our research questions 
RQ2A and RQ2B. The findings were similar as for Study 
1. The nature of IIO violations, however, made it difficult 
to distinguish between fitting and misfitting items: When 
the Imisfit IRFs intersected with the IRFs of the (I − Imisfit) 
items, the latter were considered misfitting as well. This 
is because the Crit coefficient for item i is a summary of, 
among other quantities, how many times Eq. 3 does not hold 

Table 2   False positive rates (top panel) and power (lower panel) for 
the Crit coefficient for violations of IIO

Values shown are percentages of Crit values at least equal to 80
a Values computed over the I items in the Imisfit = 0 conditions (9 con-
ditions)
b Values computed over the Imisfit items in the Imisfit = 1, 3, 5 conditions 
(18 conditions)

N = 100 N = 500 N = 1,000

aFalse positive rates
 Scale quality
  Unscalable items 3.2 0.4 0.1
  Weak scales 2.0  < 0.1  < 0.1
  Medium-strong scales 1.7  < 0.1  < 0.1

bPower
 Number of violating items
  Imisfit = 1 6.0 20.9 29.3
  Imisfit = 3 5.4 16.2 22.3
  Imisfit = 5 4.6 10.3 15.0

1  Computed as the difference between the 75th and the 25th quan-
tiles, it is a measure of statistical dispersion.

https://osf.io/eh2my/
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in the sample for each pair formed by item i with the remain-
ing items. This led to high false positive rates for the fitting 
items in the misfit conditions. Consequently, it made little 
sense to interpret false positive rates for the fitting items in 
the misfit conditions. Therefore, we only interpreted the false 
positive rates in the conditions with Imisfit = 0 (RQ2A) and 
the power of Crit to detect misfit in the conditions in which 
Imisfit = 1, 3, 5 (RQ2B). We compared the false positive rates 
and power of Crit with the values we obtained for #zsig 
(Table D2 in the Online Resource).

We found that the Crit coefficient for assessing viola-
tions of IIO has lower false positive rates (RQ2A) and higher 
power (RQ2B) in larger samples compared to small samples. 
Regarding the power of Crit, we found the same effects of N 
and Imisfit as for violations of monotonicity, though the over-
all power for detecting violations of IIO was considerably 
lower (up to only 30%). Higher power was obtained in larger 
samples because violations became statistically significant, 
whereas a decrease in power with relatively many misfit-
ting items was due to lower inter-item correlations (and thus 
lower Hi values).

Regarding #zsig for violations of IIO (Table D2 in the 
Online Resource), we again found similar results as for Crit 
in terms of false positive rates and power. The power of #zsig 
to detect violations of IIO increased with N but, as opposed 
to Crit, it also increased with Imisfit. Consequently, for many 
misfitting items (Imisfit = 5) and large samples (N = 500, 
1,000), #zsig had considerably higher power to detect misfit 
compared to Crit. Nonetheless, the power of #zsig are still 
low (29.8% for N = 500 and 52.0% for N = 1,000).

Empirical example: mental health

To illustrate the findings above we analyzed data from the 
General Health Questionnaire (GHQ-12; [2]). GHQ-12 is a 
self-administered questionnaire consisting of 12 items, each 
measuring the severity of a mental problem over the past 
several weeks on a 4-point Likert scale. High scores indicate 
worse mental health. The data we used came from Wave 
10 of the Understanding Society study, also known as the 
United Kingdom Household Longitudinal Study (UKHLS; 
[26]), the largest longitudinal household panel study in the 
UK. The dataset we analyzed consisted of the responses of 
18,444 adult respondents to the GHQ-12.2 Records contain-
ing missing data on any of the GHQ-12 items were removed. 
The first column of Table 3 shows a short version of the 
GHQ-12 item content. We dichotomized the item responses: 
the scores “1” and “2” were recoded as “0” and the scores 
“3” and “4” were recoded as “1”. Also, to avoid issues due 
to nested data, we randomly sampled a single member from 
each household in our final dataset. Dichotomizing the item 
responses and selecting one member per household is an 
appropriate solution in this methodological context, where 
the aim was to illustrate some properties of the Crit coef-
ficient on non-clustered, binary data. From a substantive 
perspective this approach might not be ideal, as it causes 
loss of information. For researchers who wish to analyze 
such data using Mokken scale analysis, we refer to Koopman 
et al. [4], who proposed point estimates, standard errors, 
and test statistics for scalability coefficients for nested data. 
These authors incorporated their proposed methods into 
what they called a two-step, test-guided MSA procedure for 
scale construction.

Table 3   Results from the invariant item ordering checks for the GHQ-12 items

Item ItemH #ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig Crit

1. Able to concentrate 0.51 33 2 0.06 0.08 0.11 0.0034 6.86 2 65
2. Loss of sleep over worry 0.48 33 2 0.06 0.10 0.18 0.0053 8.74 2 81
3. Playing a useful role 0.51 33 2 0.06 0.08 0.12 0.0035 7.47 2 69
4. Capable of making decision 0.58 33 0 0.00 0.00 0.00 0.0000 0.00 0 0
5. Felt constantly under strain 0.60 33 1 0.03 0.05 0.05 0.0014 5.03 1 35
6. Couldn’t overcome difficulties 0.59 33 2 0.06 0.08 0.16 0.0048 7.47 2 67
7. Able to enjoy day-to-day activities 0.56 33 0 0.00 0.00 0.00 0.0000 0.00 0 0
8. Able to face problems 0.62 33 0 0.00 0.00 0.00 0.0000 0.00 0 0
9. Feeling unhappy and depressed 0.64 33 1 0.03 0.05 0.05 0.0014 5.03 1 33
10. Losing confidence 0.58 33 1 0.03 0.08 0.08 0.0023 6.86 1 49
11. Thinking of self as worthless 0.63 33 0 0.00 0.00 0.00 0.0000 0.00 0 0
12. Feeling reasonably happy 0.59 33 3 0.09 0.10 0.17 0.0052 8.74 3 85

2  The data can be obtained upon request from the UK Data Service 
(https://​ukdat​aserv​ice.​ac.​uk/).

https://ukdataservice.ac.uk/
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In order to ensure that higher (item) scores reflect more 
severe mental health issues, the item response functions 
should be monotonically non-decreasing across the entire 
range of mental health levels. One research question was to 
assess whether this assumption of monotonicity was sup-
ported by the data and, if not, to determine the severity of 
these violations. We also investigated whether the GHQ-12 
items had the same order with respect to endorsement pro-
portions across different values of the mental health symp-
tom severity. Thus, the research question here was whether 
this assumption of invariant item ordering was supported by 
the empirical data.

To investigate these questions, we conducted MSA 
on these data and we inspected the Crit coefficient for M 
and IIO. For minvi the default setting was used, that is 
minvi = 0.03 [27]. For minsize, the default setting when 
N ≥ 500 is N/10, thus minsize = 1844. Given these settings, 
the number of comparison groups was equal to 4 for both 
M and IIO.

There was no evidence that any of the items violated the 
M assumption – the Crit coefficient was equal to 0 for all 

items as there were no violations that were statistically sig-
nificant or larger than minvi. The estimated IRFs did not 
indicate any violations either (see Fig. 5 for an example).

Thus, to answer the research question pertaining to mono-
tonicity, the following can be concluded: Given the large 
sample size (N = 18,444), there is no strong evidence of 
GHQ-12 items that exhibit violation of the monotonicity 
assumption. In light of our simulation results, we are fairly 
confident that patterns such as unimodal or reversed IRFs 
are very unlikely. However, given the low power of Crit to 
detect quadratic IRFs, we could not draw a strong conclusion 
regarding this type of M violation.

With respect to violations of IIO, Table 3 shows that there 
were two items (items 2 and 12) with several statistically 
significant violations and with Crit coefficient larger than 80, 
indicating the presence of violations of IIO. A plot illustrat-
ing these violations is shown in Fig. 6.

Based on our simulation results for the combination of 
large sample size and high scale H coefficient, we expect the 
false positive rate for Crit to be very low (< 0.1%) and the 
power to be between 22.3 and 29.3%. Thus, there was strong 
evidence that the two items with large Crit values indeed 
exhibited violations of IIO. We further observed that after 
dropping items 12 and 2 one by one from the scale, the Crit 
values for the remaining items decreased below the thresh-
old 80. Thus, a researcher may combine this information 
from the Crit coefficient together with information from the 
estimated IRFs to conclude that items 2 and 12 violated IIO.

Discussion

In this study we discussed and investigated characteristics 
of the Crit coefficient, an ambiguously defined index of vio-
lations of common assumptions in Mokken scale analysis, 
which is sometimes used in applications of MSA in QoL 
research. We presented both the formulation of Crit and 
discussed several characteristics of the coefficient (see also 
Online Resource). We conducted two simulation studies 
using dichotomously scored item responses, in which we 
investigated the distribution of Crit under various measure-
ment conditions, its power, and false positive rates. For a 
thorough understanding of the usefulness of the Crit coef-
ficient, we compared its false positive and power rates with 
those of a more conventional method for assessing assump-
tions violations: whether or not there is one or more statis-
tically significant violations of M or IIO (#zsig). Finally, 
we discussed an application of the Crit coefficient on QoL 
empirical data.

With respect to the distribution of the Crit coefficient 
when estimated using model-fitting data we found nomi-
nal false positive rates (i.e., less than 5%) in all conditions, 
both for monotonicity and for nonintersection, which were 

Fig. 5   Estimated IRF, indicating no evidence of violations of the M 
assumption

Fig. 6   Item-pair estimated IRFs illustrating violations of IIO
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not affected by scale quality or sample size. When viola-
tions of monotonicity were introduced, we found consider-
ably larger false positive rates for reversed IRFs when Crit 
was estimated in large samples with many model-violating 
items. With respect to the power of Crit we found that in 
small samples the power was very low, for both monotonic-
ity and nonintersection. For unimodal and reversed IRFs 
and in larger samples power increased considerably, but it 
remained very low for detecting other types of violations of 
MSA assumptions.

Regarding the performance of Crit compared to more 
conventional methods, such as #zsig, our studies show that 
the latter did not consistently outperform the former in terms 
of false positive rates and power to detect misfit. Only in 
large samples and with many misfitting items, #zsig showed 
considerably higher power to detect violations of invariant 
item ordering.

A more detailed analysis of the results showed that the 
low power of Crit in small samples can be explained by the 
small number of restscore groups that met the minimum 
requirement in terms of size. Violations were masked by 
having too few restscore groups to take into account when 
calculating the response probabilities (Eqs. 1 and 3). In 
contrast, in larger samples (e.g., of size 500 or 1000) this 
became less of an issue. Finally, the low power of Crit to 
detect violations of nonintersection when half of the items 
were violating this assumption can be explained by the 
observation that, when relatively many items in a scale inter-
sect with each other, the overall order of the items accord-
ing to their probability of a correct response/endorsement 
becomes unclear and unstable.

Our simulation studies could be extended by considering 
different item formats (e.g., polytomous items or mixed-
format items) and other ways of simulating violations of 
assumptions. For example, violations of monotonicity could 
be introduced by fitting a polynomial extension of the two-
parameter logistic model (see [24, 25]).

Take‑home message

In light of the findings and of the conclusions outlined 
above, we have a number of practical suggestions when 
using the Crit coefficient. Practitioners of scale construc-
tion or scale revision should be cautious when using the Crit 
coefficient, as it has limited usefulness for detecting viola-
tions of monotonicity or invariant item ordering in practice. 
In general, Mokken scaling using small samples is not rec-
ommended [31]. This was also reflected in our simulation 
study. Violations of assumptions were masked by having too 
few restscore groups when calculating Crit. One solution 
may be to change the default settings used by most software 
packages (e.g., minsize), but then results become unstable 
due to too few observations per restscore group. Molenaar 

and Sijtsma [15] recommend conducting a sensitivity analy-
sis by running the MSA with different values for minsize 
and checking whether the results differ substantially. If they 
do, then one should not draw strong conclusions, due to the 
instability of the results. However, even in large samples, the 
Crit coefficient may fail to detect violations of monotonicity.

Regarding the Crit coefficient for violations of IIO, 
the index had low power and it did not discriminate well 
between fitting and misfitting items (at least when IIO is 
evaluated using the ‘restscore’ method). Perhaps this fea-
ture can be more rightfully ascribed to the very nature of 
the IIO problem instead of to Crit. Indeed, an intersection 
between two IRFs implies a mutual interplay between pairs 
of items, and pinpointing one of the two items as ‘misfitting’ 
is more difficult than identifying violations of monotonicity. 
One solution may be to start with the item(s) that cause(s) 
the most violations with other items, that is, the items with 
the highest Crit coefficient [15]. This approach was illus-
trated in our empirical example: Dropping the two items 
with the largest Crit, one by one, led to an improvement of 
the outcomes.

To conclude, we suggest that the estimation of Crit 
should always be accompanied by a visual inspection of the 
estimated IRFs (e.g., [29]) and, if necessary, assumption-
violating items should be removed one at a time, starting 
with the one that has the largest Crit [15], as we showed 
in our empirical example. We defend using a combination 
of approaches to data analysis as it is safer than overreli-
ance on one single statistic, be it Crit or any other. Also, 
it is important to bear in mind that Crit performs best with 
large sample sizes. Nevertheless, this study offers a deeper 
understanding of the Crit coefficient and how it can be used 
in practice. It is our hope that practitioners feel now bet-
ter equipped to utilize this particular tool in Mokken scale 
analysis.
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