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A B S T R A C T   

Background: Particulate matter (PM) air pollution exposure has been linked to lung function in adolescents, but 
little is known about the relevance of specific PM components and ultrafine particles (UFP). 
Objectives: To investigate the associations of long-term exposure to PM elemental composition and UFP with lung 
function at age 16 years. 
Methods: For 706 participants of a prospective Dutch birth cohort, we assessed associations of forced expiratory 
volume in 1 s (FEV1) and forced vital capacity (FVC) at age 16 with average exposure to eight elemental 
components (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc) in PM2.5 and PM10, as well as 
UFP during the preceding years (age 13–16 years) estimated by land-use regression models. After assessing 
associations for each pollutant individually using linear regression models with adjustment for potential con
founders, independence of associations with different pollutants was assessed in two-pollutant models with PM 
mass and NO2, for which associations with lung function have been reported previously. 
Results: We observed that for most PM elemental components higher exposure was associated with lower FEV1, 
especially PM10 sulfur [e.g. adjusted difference − 2.23% (95% confidence interval (CI) − 3.70 to − 0.74%) per 
interquartile range (IQR) increase in PM10 sulfur]. The association with PM10 sulfur remained after adjusting for 
PM10 mass. Negative associations of exposure to UFP with both FEV1 and FVC were observed [-1.06% (95% CI: 
− 2.08 to − 0.03%) and − 0.65% (95% CI: − 1.53 to 0.23%), respectively per IQR increase in UFP], but did not 
persist in two-pollutant models with NO2 or PM2.5. 
Conclusions: Long-term exposure to sulfur in PM10 may result in lower FEV1 at age 16. There is no evidence for an 
independent effect of UFP exposure.   

1. Introduction 

Reduced lung function in childhood and adolescence is associated 
with long-term cardio-respiratory morbidity and mortality later in life 
(Lange et al., 2015; Sin et al., 2005). There is a growing number of 
studies showing that long-term air pollution exposure adversely affects 
lung function in adolescence, although evidence is still inconsistent 
(Guo et al., 2019; He et al., 2019; Milanzi et al., 2018; Schultz et al., 
2017). While most previous studies focused on mass concentrations of 
particulate matter smaller than 2.5 µm (PM2.5) or smaller than 10 µm 

(PM10) as well as traffic-related pollutants such as nitrogen dioxide 
(NO2) and soot, it remains unclear whether these pollutants are pri
marily contributing to the observed negative associations as air pollu
tion is a heterogeneous mixture. 

Previous epidemiological studies suggested that the detrimental ef
fects of PM may be related to its elemental composition (Kelly and 
Fussell 2012). PM emitted from different sources is characterized by 
different elemental composition, e.g. road traffic non-tailpipe emissions 
including brake lines are characterized by copper (Cu), iron (Fe), and 
zinc (Zn); tire wear by Zn; industrial emissions by Fe and Zn; crustal 
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materials by silicon (Si) and potassium (K)); fossil fuel combustion by 
nickel (Ni), vanadium (V), and sulfur (S); and biomass burning by K 
(Viana et al., 2008). Thus, knowing more specifically which elements 
are responsible for the toxicity of PM could help preventing adverse 
health effects more effectively (Schwarze et al., 2006). Evidence is 
currently limited regarding associations between specific elements and 
lung function. Lung function was negatively associated with long term 
exposure to S and Ni in PM10 in a pooled analysis of 5 European birth 
cohorts (BAMSE (Sweden), GINIplus and LISAplus (Germany), MAAS 
(United Kingdom) and PIAMA (the Netherlands)) at age 8 (Eeftens et al., 
2014) and with Cu, Fe in PM2.5 at age 12 years in the PIAMA cohort 
(Gehring et al., 2015b), but whether these associations persist into 
adolescence is not clear. 

Ultrafine particles (UFP; particles with diameters less than 100 nm) 
can penetrate more deeply into airways and alveoli than larger particles 
and therefore may be more hazardous (HEI, 2013). Due to their small 
size, UFP contribute little to PM2.5 mass concentration and are thus not 
well-reflected by PM2.5 measurements. Previous epidemiological studies 
of the associations between UFP and respiratory health mostly focused 
on short-term exposure (i.e. hours to weeks) (Ohlwein et al., 2019). 
Studies on the associations between long-term exposure to UFP and lung 
function are lacking due to difficulties in exposure assessment. 

We previously assessed associations of exposure to NO2, PM2.5, PM10, 
PMcoarse, and “soot” during three periods (pre-school, primary school 
and secondary school) that match appropriate settings for prevention in 
the Netherlands with lung function at age 16 in the PIAMA (Prevention 
and Incidence of Asthma and Mite Allergy) birth cohort (Milanzi et al., 
2018) and found that higher exposure to all pollutants during all periods 
was associated with a significantly lower forced expiratory volume in 1 s 
(FEV1) at age 16. In the current study, we extended the previous study to 
a broader range of air pollutants (UFP, PM elemental composition) and 
assessed to what extent exposure to UFP and PM elemental compositions 
contributed to the observed associations of PM and NO2 with lung 
function. 

2. Material and methods 

2.1. Study design and population 

This study used data from the Dutch population-based PIAMA birth 
cohort study. The design of the PIAMA study has been described in detail 
elsewhere (Wijga et al., 2014). In brief, pregnant women were recruited 
in 1996–1997 from communities in the North, West, and Central regions 
of the Netherlands. Information on demographic factors, lifestyle, 
household and health characteristics has been collected during preg
nancy, at the participants’ ages of 3 months and 1 year and then 
annually till age 8 via questionnaires completed by the parents. At ages 
11, 14 and 16, both the parents and the participants themselves 
completed questionnaires. The present study included participants with 
air pollution exposure data and lung function measurements at age 16 
(n = 706). Ethical approval was obtained from the ethical review boards 
of participating institutes and written informed consent was obtained 
from participants as well as their parents/legal guardians. 

2.2. Lung function assessment 

Lung function including FEV1 and forced vital capacity (FVC) was 
measured by spirometry at age 16 as part of medical examinations in 
two centers with Jaeger Masterscreen pneumotachographs (CareFusion, 
Yoba Linda, CA, USA) and EasyOne spirometers (ndd Medical Tech
nologies Inc, Zurich, Switzerland), respectively. We corrected for sys
tematic differences between spirometers using equations as described 
elsewhere and in the supplement (Milanzi et al., 2019). All measure
ments were conducted by experienced technicians following the rec
ommendations of the American Thoracic Society (ATS)/European 
Respiratory Society (ERS) (Miller et al., 2005). All flow volume curves 

have been reviewed by highly experienced lung function analysts in the 
two research centers. In the current analysis, we included lung function 
measurements that fulfilled the ATS/ERS criteria (Miller et al., 2005) 
and measurements that did not meet these criteria (difference between 
the largest and next largest values for FEV1 and FVC ⩽150 mL), but were 
obtained from technically acceptable flow volume curves with the two 
largest FEV1 and FVC values within 200 mL as in our previous analysis 
(Milanzi et al., 2018). 

2.3. Air pollution exposure assessment 

Annual average concentrations of nitrogen dioxide (NO2), particu
late matter <2.5 µm (PM2.5) and <10 µm (PM10), and PM2.5 and PM10 
elemental composition at the participants’ residential addresses were 
estimated by land-use regression (LUR) models described elsewhere 
(Beelen et al., 2013; de Hoogh et al., 2013; Eeftens et al., 2012). In brief, 
three two-week air pollution monitoring campaigns were performed at 
80 sites for NO2 and 40 sites for PM2.5 and PM10 in the warm, cold, and 
intermediate seasons in 2008–2010. All PM2.5 and PM10 filters were 
analyzed for elemental composition using x-ray fluorescence (de Hoogh 
et al., 2013). For each site, results from the three measurements were 
averaged to estimate the annual average. Eight elements (Cu, Fe, K, Ni, 
S, Si, V and Zn) were selected a priori in the European Study of Cohorts 
for Air Pollution Effects (ESCAPE) to reflect different anthropogenic 
sources: road traffic non-tailpipe emissions including brake lines (Cu, Fe, 
Zn) and tire wear (Zn); industrial emissions (Fe, Zn); crustal materials 
(Si, K); fossil fuel combustion (Ni, V, S); and biomass burning (K) (de 
Hoogh et al., 2013). 

Annual average concentrations of UFP were estimated based on a 
recently developed Dutch-national spatial model which combines 
regional background measurements with measurements from a mobile 
platform (Kerckhoffs et al., 2021). In brief, regional background UFP 
data were derived from 20 regional background sites across the 
Netherlands that have been measured each three times for a period of 14 
days. Annual average regional background concentrations were esti
mated using a kriging method (van de Beek et al., 2021). For mobile 
monitoring, an electric car (REVA, Mahindra Reva Electric Vehicles Pvt. 
Ltd., Bangalore, India) was used to measure UFP concentrations at 
14,392 road segments over a 14-month period (June 2016-November 
2017). Measurements of UFP started after 9:15 AM and stopped before 
4:00 PM to avoid rush hour traffic and to increase comparability be
tween road segments (Kerckhoffs et al., 2016; van Nunen et al., 2017). 
All measurements were performed using a condensation particle counter 
(TSI, CPC 3007) installed in the back of an electric car. Routes were 
sampled between 1 and 3 times (average 2.2 times) and concentrations 
of UFP from repeated sampling were averaged per road segment. Road 
segments were on average 110 m long (SD: 68 m) and accumulated on 
average 43 s of UFP data (IQR: 9–44 s) over the study period. 

Land use predictors such as traffic intensity and population/house
hold density were derived from Geographic Information Systems (GIS) 
to explain the spatial variation in NO2, PM mass, PM elemental 
composition, and UFP concentrations and selected using a supervised 
stepwise linear regression. For UFP, we used estimates from the 
deconvolution method that was applied to segregate the average UFP 
concentrations into a local and a background signal and is thought to be 
more physically realistic. 

The performance of the LUR models for PM mass, NO2 and elemental 
compositions was assessed using leave-one-out cross-validation R2 and 
found to be good for NO2, PM10, PM2.5, Cu, Fe, Ni, V and Zn (R2 =

0.58–0.89), but poorer for K, S and Si (R2 = 0.25–0.45). The perfor
mance of the UFP model was evaluated by an external validation with 
3x24 h measurements at 42 sites in two major cities (Amsterdam and 
Utrecht), which resulted in an R2 value of 0.60 (Table S1). 

For the current analysis, we defined exposure as the average expo
sure at the participant’s home address during the secondary school 
period until the measurement of lung function at age 16 as in previous 
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analyses (Milanzi et al., 2018), that is exposure at age 13–16 years 
spanning the period of 2009–2013 and that coincides best with the air 
pollution measurement campaigns for the LUR models. Earlier time 
windows were not included in this analysis as evidence for the long-term 
validity of the PM elemental composition models is currently lacking. 
Average exposures for the time window of interest were calculated from 
the annual average estimates provided by the (purely spatial) LUR 
models without adjustment for temporal trends, taking into account 
changes in residential address and using occupancy as weights. 

2.4. Covariates 

We adjusted for the same potential confounders as in our previous 
analyses of the association between air pollution and lung function 
within the same population (Milanzi et al., 2018), namely age, sex, 
weight, height, parental education (maximum educational level attained 
by the mother or father, low/medium/high), maternal and paternal 
atopy, breastfeeding, Dutch nationality (both parents born in the 
Netherlands), maternal smoking during pregnancy, indoor tobacco 
smoke exposure, furry pets in the home, molds in the home and gas 
cooking, obtained from parent-completed questionnaires, and active 
smoking (defined as smoking at least once per week, yes/no), and res
piratory infections in the last 3 weeks before lung function measurement 
obtained from participant-completed questionnaires. We did not include 
variables that might be on the causal pathway between exposure and 
outcome to avoid over-adjustment. Time-varying covariates such as 
indoor tobacco smoke, furry pets, molds, and gas cooking were defined 
based on the questionnaires that coincided best with the time window of 
air pollution exposure. In addition, we adjusted for average NO2 and 
PM10 concentrations during the seven days preceding lung function 
measurements to account for potential short-term effects using daily 
average concentrations measured at the background monitoring site of 
the Dutch National Air Quality Monitoring Network that was closest to a 
participant’s home. 

2.5. Statistical analyses 

Categorical variables were presented as numbers (proportions) and 
continuous variables were presented as mean ± standard deviation. 
Pearson correlation coefficients were calculated between different air 
pollutants. Associations between air pollutants and lung function were 
assessed using linear regression models assuming a linear exposure- 
response relationship. Lung function was natural log-transformed in 
all models due to the strongly nonlinear relationships between lung 
function, age, height and weight (Dockery et al., 1983; Raizenne et al., 
1996). Associations with lung function were assessed with separate 
single pollutant models adjusting initially for sex, natural log- 
transformed age height and weight at the time of lung function mea
surements, and then in addition for all other potential confounders. 
Association estimates are presented as the percent change in absolute 
values of each lung function parameter for an interquartile range (IQR) 
increase in air pollution exposure and calculated from estimated 
regression coefficients β as (eβ×IQR− 1) × 100. Analyses were performed 
based on the participants with complete information on potential con
founders (N = 706 for initially adjusted and N = 667 for fully adjusted 
analyses). 

Two-pollutant models with elemental composition and UFP and 
additional adjustment for PM mass and NO2, respectively, were used to 
disentangle the independent effects of specific air pollutants. We per
formed stratified analyses by parental education level (High/Low or 
medium) to test the role of parental education as a modifier of the 
relationship between air pollution and lung function (Munoz-Pizza 
et al., 2020). Significance of interactions was tested by adding exposure- 
modifier interaction terms to the model. Stratified analyses by moving 
(defined as any change in address since birth) were also conducted. 
Sensitivity analyses were conducted excluding active smokers (n = 50) 

and excluding asthmatics (n = 58) at age 16. All analyses were per
formed using R software 3.6.1 with significance levels of 0.05. 

3. Results 

3.1. Population characteristics 

General characteristics and distributions of the lung function in
dicators for the study population are presented in Table 1. Among the 
706 participants included in the analyses, mean age was 16.4 ± 0.2 
years, and 334 (47.3%) were male. The mean body mass index (BMI) 
was 20.8 ± 2.7 kg/m2. Compared to the PIAMA cohort baseline popu
lation, the current study population had a higher percentage of partic
ipants with highly educated parents, a higher percentage of participants 
who received breastfeeding for more than 12 weeks, and lower per
centages of participants with exposure to maternal smoking during 
pregnancy and secondhand smoking during the postnatal life (Table S2). 

3.2. Air pollution exposure 

The distributions of the estimated average air pollution concentra
tions are presented in Table 2. Correlations between air pollutants are 
presented in Fig. S1. UFP had moderate correlations with NO2, PM10, 
and Fe (r = 0.68–0.79) and low correlations with Ni, S and V (r =
0.35–0.45). Elements representing similar sources generally had high 
correlations (e.g. r = 0.83–0.96 for Cu and Fe representing non-tailpipe 
traffic emission, r = 0.98–0.99 for Ni and V representing fossil fuel 
combustion). 

3.3. Air pollution and lung function 

Associations of long-term exposure to air pollutants with FEV1 at age 
16 are shown in Table 3. Minimally adjusted and fully adjusted associ
ation estimates were consistent with regard to the direction of the as
sociation, with associations generally tending to be somewhat stronger 
for fully adjusted models. However, differences between minimally and 
fully adjusted models were small suggesting that the included covariates 

Table 1 
Basic characteristics for the study population (N = 706).  

Characteristic#  

Boys, n/N (%) 334/706 (47.3) 
Age [years], mean ± std/N 16.4 ± 0.2/706 
Weight [kg], mean ± std/N 64.3 ± 10.2/706 
Height [cm], mean ± std/N 176.0 ± 8.7/706 
BMI [kg/m2], mean ± std/N 20.8 ± 2.7/706 
Parental atopy  

Atopic mother, n/N (%) 227/706 (32.2) 
Atopic father, n/N (%) 237/705 (33.6) 

Presence of pets at age 16, n/N (%) 440/678 (64.9) 
Presence of molds at age 16, n/N (%) 104/694 (15.0) 
Breastfeeding more than 12 weeks, n/N (%) 424/706 (60.1) 
Gas cooking at age 16, n/N (%) 554/678 (81.7) 
Maternal smoking during pregnancy, n/N (%) 91/700 (12.9) 
Indoor tobacco smoke exposure at age 16, n/N (%) 44/706 (6.2) 
Parental education, n/N (%)  

Low 52/706 (7.4) 
Intermediate 209/706 (29.6) 
High 445/706 (63.0) 

Dutch nationality, n/N (%) 672/692 (95.2) 
Asthma at age 16, n/N (%) 58/677 (8.6) 
Active smoker at age 16, n/N (%) 50/706 (7.1) 
Respiratory infections at age 16¶, n/N (%) 296/706 (41.9) 
Lung function  

FEV1 [L], mean ± std/N 3.95 ± 0.72/706 
FVC [L], mean ± std/N 4.71 ± 0.86/706  

# The value of N is smaller than indicated for some variables due to missing 
data. 
¶ Respiratory infections in the 3 weeks before lung function measurement. 
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were no strong confounders of the associations of interest. We observed 
that higher UFP exposure tended to be associated with lower FEV1, (e.g., 
mean percentage difference for an IQR increase in UFP exposure 
− 1.06% (95% CI: − 2.08, − 0.03)). Generally, levels of all elements in PM 
were negatively associated with FEV1. Association estimates were larger 
for Cu, Fe, K and Si in PM2.5 compared to PM10. Trends towards negative 
associations of UFP exposure with FVC were also observed (e.g. mean 
percentage difference − 0.65% (95% CI: − 1.53, 0.23) per IQR increase in 
UFP; Table 3). The associations between PM elemental composition and 
FVC were all close to zero and not statistically significant. 

In two-pollutant models, the association of UFP with FEV1 attenu
ated towards the null when additionally adjusted for NO2 or PM2.5 while 
the negative associations of NO2 and PM2.5 with FEV1 persisted (Fig. 1, 
see Fig. S2 for the two-pollutant models for FVC). The negative associ
ations of most elements (e.g. PM2.5 K, PM2.5 Zn, PM10 Cu, PM10 Si) with 
FEV1 disappeared after adjustment for PM mass or NO2 (Figs. S3 and S4) 
while the associations with PM mass or NO2 remained. Only the 

association between PM10 S and FEV1 remained (mean percentage dif
ference was − 1.90% (95% CI: − 3.45, − 0.32) and − 1.95% (95% CI: 
− 4.29, 0.44) after additional adjustment for PM10 and NO2, 
respectively. 

The associations of air pollution with FEV1 and FVC remained largely 
unchanged in sensitivity analyses excluding active smokers (n = 50) or 
asthmatics (n = 58) at age 16 (Figs. S5 and S6). The association esti
mates for participants with high and low/medium parental education 
were largely similar and interactions were not statistically significant 
(Fig. S7). Associations between air pollution exposure and lung function 
tended to be stronger for participants who did not change their address 
since birth compared to those who changed address at least once, but the 
differences in associations between movers and non-movers were not 
statistically significant (Fig. S8). 

Table 2 
Distribution of average air pollution exposure levels for the secondary school period (age 13–16 years).  

Air pollutant Min Median Mean ± Std 75th percentile Maximum IQR 

UFP, particles⋅cm− 3 8,614 10,146 10,359 ± 1,238.1 11,014 16,294  1,602 
PM10 Cu, ng⋅m− 3 6.6 10.6 11.0 ± 2.9 12.4 31.2  3.2 
PM10 Fe, ng⋅m− 3 183.0 320.5 333.2 ± 85.5 383.6 701.8  109.0 
PM10 K, ng⋅m− 3 172.7 204.7 200.8 ± 16.2 210.8 260.7  19.7 
PM10 Ni, ng⋅m− 3 1.0 1.8 1.7 ± 0.5 2.2 3.3  1.0 
PM10 S, ng⋅m− 3 927.0 998.2 976.7 ± 35.7 1,002.7 1,087.5  65.1 
PM10 Si, ng⋅m− 3 284.6 332.6 340.2 ± 48.8 365.6 605.8  64.6 
PM10 V, ng⋅m− 3 1.9 3.1 2.9 ± 0.7 3.5 5.3  1.5 
PM10 Zn, ng⋅m− 3 12.6 301.0 30.9 ± 11.1 35.8 77.0  12.8 
PM2.5 Cu, ng⋅m− 3 1.1 2.6 2.6 ± 0.8 3.2 5.3  1.4 
PM2.5 Fe, ng⋅m− 3 31.2 65.7 66.8 ± 20.1 82.2 160.2  31.9 
PM2.5 K, ng⋅m− 3 103.4 112.1 112.1 ± 5.6 114.8 135.6  6.7 
PM2.5 Ni, ng⋅m− 3 0.9 1.6 1.5 ± 0.4 1.8 2.8  0.9 
PM2.5 S, ng⋅m− 3 747.0 853.6 834.1 ± 55.5 883.9 979.8  107.9 
PM2.5Si, ng⋅m− 3 58.8 79.0 74.1 ± 11.8 81.0 183.9  18.6 
PM2.5 V, ng⋅m− 3 1.5 2.6 2.4 ± 0.6 2.9 4.4  1.3 
PM2.5 Zn, ng⋅m− 3 10.7 22.8 22.1 ± 7.0 25.6 57.6  8.8 
NO2, μg⋅m− 3 10.3 20.9 20.6 ± 5.3 24.4 44.4  8.0 
PM10, μg⋅m− 3 23.7 24.4 24.5 ± 0.7 24.8 27.7  0.8 
PM2.5, μg⋅m− 3 14.9 16.5 16.2 ± 0.7 16.7 18.7  1.2 

Std: Standard deviation; IQR: interquartile range; UFP: Ultrafine particles; NO2: nitrogen dioxide. 

Table 3 
Minimally and fully adjusted mean differences (%) in FEV1 and FVC at age 16 associated with average air pollutant concentrations during the secondary school period 
(age 13–16 years).  

Air pollutant  FEV1 FVC 

Incrementa Minimally adjusted(N = 706)b Fully adjusted(N = 667)c  Minimally adjusted(N = 706)b Fully adjusted(N = 667)c 

UFP 1,602 − 0.97 (− 1.98, 0.04) − 1.06 (− 2.08, − 0.03)  − 0.48 (− 1.34, 0.40) − 0.65 (− 1.53, 0.23) 
PM10 Cu 3.2 − 0.40 (− 1.27, 0.48) − 0.38 (− 1.26, 0.50)  0.04 (− 0.71, 0.80) − 0.02 (− 0.77, 0.75) 
PM2.5 Cu 1.4 − 1.84 (− 3.12, − 0.55) − 2.10 (− 3.40, − 0.79)  − 0.41 (− 1.53, 0.72) − 0.65 (− 1.79, 0.50) 
PM10 Fe 109.0 − 0.76 (− 1.76, 0.25) − 0.78 (− 1.80, 0.24)  − 0.11 (− 0.98, 0.77) − 0.26 (− 1.14, 0.62) 
PM2.5 Fe 31.9 − 1.67 (− 2.90, − 0.42) − 1.98 (− 3.24, − 0.70)  − 0.30 (− 1.38, 0.79) − 0.60 (− 1.71, 0.52) 
PM10 K 19.7 − 0.66 (− 1.61, 0.30) − 0.70 (− 1.66, 0.26)  − 0.26 (− 1.08, 0.57) − 0.39 (− 1.21, 0.45) 
PM2.5 K 6.7 − 0.92 (− 1.86, 0.03) − 0.95 (− 1.91, 0.01)  0.26 (− 0.56, 1.09) 0.18 (− 0.65, 1.02) 
PM10 S 65.1 − 1.99(− 3.44, − 0.53) − 2.23(− 3.70, − 0.74)  0.18 (− 1.09, 1.47) 0.00 (− 1.30, 1.32) 
PM2.5 S 107.9 − 2.28 (− 3.81, − 0.73) − 2.58 (− 4.13, − 1.00)  − 0.18 (− 1.53, 1.19) − 0.44 (− 1.82, 0.95) 
PM10 Si 64.6 − 0.81 (− 1.85, 0.24) − 0.91 (− 1.97, 0.15)  − 0.24 (− 1.14, 0.66) − 0.47 (− 1.38, 0.45) 
PM2.5Si 18.6 − 1.66 (− 2.89, − 0.42) − 1.84 (− 3.09, − 0.58)  0.03 (− 1.05, 1.12) − 0.12 (− 1.22, 0.99) 
PM10 Ni 1.0 − 1.68 (− 3.17, − 0.17) − 1.91 (− 3.41, − 0.38)  − 0.20 (− 1.5, 1.13) − 0.46 (− 1.78, 0.88) 
PM2.5 Ni 0.9 − 1.68 (− 3.28, − 0.06) − 1.93 (− 3.54, − 0.29)  − 0.15 (− 1.55, 1.27) − 0.38 (− 1.79, 1.06) 
PM10 V 1.5 − 1.64 (− 3.23, − 0.03) − 1.88 (− 3.49, − 0.25)  − 0.12 (− 1.52, 1.29) − 0.35 (− 1.75, 1.08) 
PM2.5 V 1.3 − 1.64 (− 3.23, − 0.03) − 1.88 (− 3.49, − 0.25)  − 0.12 (− 1.52, 1.29) − 0.35 (− 1.75, 1.08) 
PM10 Zn 12.8 − 0.97 (− 1.88, − 0.05) − 1.00 (− 1.92, − 0.06)  0.18 (− 0.62, 0.98) 0.09 (− 0.71, 0.91) 
PM2.5 Zn 8.8 − 0.93 (− 1.92, 0.06) − 0.98 (− 1.98, 0.03)  0.30 (− 0.56, 1.16) 0.23 (− 0.64, 1.11) 

bAdjusted for sex, age, log-transformed of weight and height. 
a Units of increment concentrations were particles⋅cm− 3 for UFP and ng⋅m− 3 for PM elemental compositions. 
c Adjusted for sex, age and log-transformations of weight and height, parental education, maternal atopy, paternal atopy, breastfeeding, respiratory infections in the 

previous 3 weeks, Dutch nationality, maternal smoking in pregnancy, indoor tobacco smoke exposure in the home at age 16, furry pets at age 16, mold in the home at 
age 16, gas cooking at age 16, and average PM10 and NO2 concentrations for the 7 days preceding the lung function measurement. 
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4. Discussion 

In the PIAMA cohort, we observed that higher exposure to various 
PM elemental constituents at age 13–16 years was associated with 
slightly lower FEV1 but not FVC at age 16. The negative association with 
PM10 S attenuated, but remained significant after adjustment for PM 
mass and NO2, suggesting a potentially independent effect. The associ
ations of UFP exposure with FEV1 and FVC were generally null when 
adjusting for PM2.5 or NO2. 

Epidemiological evidence on the associations between specific PM 
elemental constituents and respiratory morbidity is currently largely 
limited to acute effects (hours to weeks of exposure) (Cakmak et al., 
2014; Lippmann et al., 2013; Lippmann et al., 2000; Ng et al., 2019; 
Roemer et al., 2000; Wu et al., 2021). Evidence on long-term effects 
remains scarce. We previously reported significant associations of S and 
Ni in PM10 with lung function at age 6–8 years independent of PM10 
mass concentrations in five European birth cohorts including PIAMA 
(Eeftens et al., 2014). Also, at age 8–12 years in the PIAMA cohort, 
negative associations of S and Ni with lung function were observed 
(− 0.6% (95% CI: − 1.4 to 0.2%) for PM10 sulfur, − 0.6% (− 1.5 to 0.2%) 
for PM10 Ni per IQR increase), but these diminished after adjustment for 
PM10 (Gehring et al., 2015a). Based on the same standardized exposure 
assessment, we again found higher levels of S in PM10 to be associated 
with slightly lower FEV1 at age 16, indicating that the association is not 
limited to childhood. 

Suggestive associations of long-term UFP exposure with both FEV1 
and FVC were observed in the current study. These associations were 

essentially similar in sensitivity analyses excluding active smokers and 
asthmatics. However, these associations attenuated towards the null in 
two-pollutant models with NO2 and PM2.5 while the associations with 
NO2 and PM2.5 persisted. Differences in model performance may explain 
findings from two-pollutant models with NO2 and PM2.5. However, it is 
not possible to say whether the performance of the NO2 and PM2.5 
models was better than the performance of the UFP model as model 
performance has been assessed in different ways, namely by leave-one- 
out cross-validation (NO2 and PM2.5) and external validation (UFP). The 
R2 resulting from these validations are not directly comparable, but the 
leave-one out cross-validation R2 has been shown to be larger than R2 

from external (Wang et al., 2012). To date, only one cross-sectional 
study among 655 children in Australia studied associations between 
long-term exposure to UFP and lung function and found no association 
(Clifford et al., 2018). There are three studies reporting positive asso
ciations between long-term exposure to UFP and asthma development, 
two of them after adjustment for NO2 (Lavigne et al., 2019; LeMasters 
et al., 2015; Wright et al., 2021), suggesting an independent adverse 
effect of UFP on respiratory health. However, asthma is not the same as 
lung function. 

PM containing sulfur is emitted from the burning of residual oil (e.g. 
shipping, oil refineries) and industrial processes (Viana et al., 2008), 
which is consistent with the fact that port areas appear in the LUR 
models for these two elements (Table S1). Traffic is the other important 
predictor in the LUR model for sulfur. The independent associations with 
sulfur suggest, if confirmed in other studies, a role for air pollution from 
sources other than traffic in lung function. 

Fig. 1. Adjusted associations of average concentrations of ultrafine particles and elemental composition during the secondary school period (age 13–16 years) with 
FEV1 at age 16 years from two-pollutant models.* *Main pollutant stands for UFP or PM elemental composition while co-pollutant stands for NO2 or PM mass in the 
two-pollutant models. Concentrations during the secondary school time window were used for all air pollutants. The estimates were adjusted for sex, age and log- 
transformations of weight and height, parental education, maternal atopy, paternal atopy, breastfeeding, respiratory infections in the previous 3 weeks, Dutch 
nationality, maternal smoking in pregnancy, indoor tobacco smoke exposure in the home at age 16, furry pets at age 16, mold in the home at age 16, gas cooking at 
age 16, and average PM10 and NO2 concentrations for the 7 days preceding the lung function measurement. 
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The prospective study design and availability of the participants’ 
residential histories from birth are strengths of our study. Ultrafine 
particles are a mixture of particles formed by regional scale nucleation 
events and local primary emitted particles (HEI, 2013). A strength of the 
UFP model is the combination of mobile monitoring with targeted 
regional modelling taking into account that UFP concentrations do not 
only vary within cities due to contributions of local sources (e.g. nearby 
traffic), but we also observed substantial regional differences (van de 
Beek et al., 2021) that were about as large as the differences between 
traffic and urban background sites within a city (Kerckhoffs et al., 2021). 

However, this study also has several limitations. First, we acknowl
edge the limitation that our air pollution exposure models are purely 
spatial and do not account for temporal trends. Others developed 
spatial-temporal UFP models (Simon et al., 2020; Simon et al., 2018), 
but these models were limited to two cities and are less feasible for a 
larger study area such as an entire country. We used spatial LUR models 
based on an air pollution measurement campaigns performed in 
2008–2010 for all pollutants except UFP, for which we relied on data 
from a measurement campaign performed in 2016–2017, to assess air 
pollution exposure during 2009–2013 (exposures at age 13–16) under 
the assumption of constant spatial contrasts in air pollution levels. This 
assumption is supported by previous studies that reported that the 
spatial contrasts in measured and modeled annual average NO2 levels 
were stable over periods of 7–12 years (Cesaroni et al., 2012; Eeftens 
et al., 2011; Gulliver et al., 2013; Gulliver et al., 2011; Wang et al., 
2013). A previous study (Montagne et al., 2015) reported an R2 value of 
0.36 when using UFP models to predict UFP measurements collected 10 
years previously. The findings for NO2 and UFP may also apply to other 
traffic-related constituents such as Cu and Fe, but it is not clear whether 
it is also valid for elements related to sources other than traffic. 

Avoiding rush hour traffic might be another potential limitation, as it 
may have resulted in lower spatial contrast. However, we consider the 
comparability of measurements between sites to be more important than 
the loss of contrast. Moreover, we have previously demonstrated high 
correlations (R2 > 0.95) between UFP concentrations measured at 
different times of the day including rush hours, daytime non-rush hours 
and 24-hour averages, and reported small differences between the 24- 
hour average concentrations and the average of the period used for 
mobile monitoring (Downward et al., 2018). 

Another limitation is that the study population has more participants 
from highly educated parents compared to the baseline PIAMA popu
lation. However, as no significantly different associations were observed 
between participants with high and low parental education in our 
stratified analyses (Fig. S7) this selection likely does not limit the 
generalizability of our findings to the full PIAMA cohort and further to 
the general population. We lack statistical power with regard to analyses 
in subgroups that may be more vulnerable to the air pollution exposure. 
Larger cohorts and/or analyses within multiple cohorts are needed for 
this. 

In our analyses, we relied on residential exposure to air pollution, not 
taking into account exposure at other locations such as schools. How
ever, children and adolescents spend most of their time at home and 
correlations between exposures at home and school address during the 
secondary school period were high for most elements including sulfur 
with a few exceptions (e.g. copper, iron and potassium in PM10, 
Table S3). Therefore, measurement error from only including residential 
exposure is likely small. 

In conclusion, our study suggests that long-term exposure to Sulfur in 
PM10 may result in lower FEV1 at age 16. There is no evidence for an 
independent effect of UFP exposure. 
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