
 

 

 University of Groningen

The ECM as a driver of fibroblast senescence and disrupted epithelial repair in IPF
Blokland, Kaj

DOI:
10.33612/diss.177953737

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Blokland, K. (2021). The ECM as a driver of fibroblast senescence and disrupted epithelial repair in IPF.
University of Groningen. https://doi.org/10.33612/diss.177953737

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.33612/diss.177953737
https://research.rug.nl/en/publications/ad83c78a-1d50-49a7-abc9-62207a1a24ea
https://doi.org/10.33612/diss.177953737


9

CHAPTER 1
General introduc�on



10

CHAPTER 1

Inters��al lung disease
Inters��al lung diseases (ILD) are a group of diffuse parenchymal lung disorders that are
characterised by inflamma�on and accumula�on of extracellular matrix (ECM) in the
lung parenchyma. The accumula�on of ECM leads to decreased gas exchange, shortness
of breath, reduced exercise capability and has a devasta�ng impact on the quality of life
[1]. There are several ILD subtypes iden�fied, including connec�ve-�ssue associated-ILD,
idiopathic non-specific inters��al pneumonia (NSIP), fibro�c hypersensi�vity
pneumoni�s, unclassifiable ILD and idiopathic pulmonary fibrosis (IPF), the la�er being
the most common [2]. IPF is a chronic and progressive disease of unknown ae�ology
with a mean survival of 3-5 years a�er diagnosis, which is worse than most types of
cancer [3]. IPF occurs primarily in the elderly and men are twice as likely to develop
fibrosis than women. The core characterisa�ons of IPF are architectural distor�on of
lung �ssue, including inters��al patchy areas with fibroblas�c foci and honeycombing.
Due to a global ageing popula�on and regular updates on the defini�on of IPF, the total
number of reported cases per year is on the rise. Globally the incidence of IPF is
es�mated to be up to 94 cases per 100,000 per year. However, data in North America
and Europe combined es�mates that the incidence is between 2.8 – 9.3 per 100,000 per
year [4]. Up un�l 2014 the only defini�ve treatment for IPF was a lung transplanta�on,
but with the approval of nintedanib and pirfenidone new treatment op�ons have
become available that are able to slow down disease progression, albeit at considerable
cost and with significant side effect [5, 6].

Prevalence and risk factors associated with IPF
IPF accounts for 20 – 30% of pa�ents with ILD, however, the prevalence of IPF varies
depending on the popula�on and defini�on used to iden�fy IPF. Although there are
guidelines available, the defini�on of IPF is not standardized [7]. Currently the gold
standard for IPF diagnosis is a mul�disciplinary team of clinicians, radiologists and
histopathologists reaching a consensus a�er discussion. In many cases a lung biopsy is
unavailable due to the procedure being too risky for pa�ents of high age with inters��al
changes being detected using high-resolu�on computed topography (HRCT) [8]. Despite
the available guidelines, there is a large spread in reported cases around the globe, for
example in the United States there are 14 to 27.9 cases per 100,000 people while
European countries es�mate the prevalence of IPF ranges between 1.25 to 23.4 per
100,000 people [9]. Differences in reported cases of IPF appear to be related to
geographical differences in risk factors for IPF [9]. However, all studies report that the
prevalence is the highest in older males of >65 years of age with no sex-related
associa�ons above 75 years of age. Interes�ngly, male sex is considered a risk factor.
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Studies using sex-stra�fica�on determined that men who have a history of smoking and
occupa�onal exposure were more at risk to develop IPF than women [10]. Furthermore,
male sex hormones have also been suggested to play a role in suscep�bility to IPF, which
is also observed in a mouse model of pulmonary fibrosis [11, 12].

Progression of IPF is different for each pa�ent, with some experiencing a decline in lung
func�on over several years while others declining much faster. To measure the
progression of IPF, several criteria are used including forced vital capacity (FVC) with a
decline of 5-10%, decrease in diffusing capacity of carbon monoxide (DLCO) of 10-15%
and a reduc�on of 50m or more in the 6-minute walk distance (6MWD). Other criteria
used are increased sleep dyspnoea and a reduc�on in the quality of life [5, 13, 14].
When symptoms worsen and lung func�on declines rapidly within 30 days, the pa�ent
is considered to have undergone an acute exacerba�on [15].

There is a cri�cal need for novel therapeu�c op�ons to treat IPF. However, IPF is a
heterogenous disease making the development of new therapies difficult. Iden�fica�on
of risk factors associated with fibrosis and how they contribute to disease pathology is a
good star�ng point. Several intrinsic risk factors have been iden�fied, which include
gene�cs, ageing, male gender and the composi�on of the lung microbiome [16].
Extrinsic risk factors include cigare�e smoke, metal and wood dust exposure, and air
pollu�on as well as comorbidi�es such as gastroesophageal reflux (GERD), diabetes and
obstruc�ve sleep apnoea [17]. Studies inves�ga�ng gene�c suscep�bility have iden�fied
four groups of genes based on their role in the pathogenesis of IPF (Table 1) [18].
Muta�ons in the first group of genes i.e., surfactant proteins (SFTP) A and C, and ATP-
binding casse�e transport of the A subfamily (ABCA3) affect alveolar stability, by
increasing endoplasmic re�culum stress and ac�va�on of the unfolded protein response
[19-21]. Muta�ons in the second group of genes i.e., desmoplakin (DSP) and dipep�dyl
pep�dase 9 (DPP9) leads to loss of cell-cell interac�ons and epithelial cell integrity [22].
Muta�ons in the third group i.e., a telomerase reverse transcriptase (TERT) and
telomerase RNA component (TERC) are associated with early senescence due to the
disrup�on of telomerase func�on of . The la�er leads to abnormally short telomeres
that specifically affect alveolar epithelial type II cells (AEC2) [23, 24]. The last group of
gene muta�ons in the gene encoding for mucin 5B (MUC5B) involves an altered host
defence and mucociliary clearance [25].
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Table 1 – Common gene muta�ons found in IPF.

Gene Gene func�on Reference

SFTPA2
Binds to phospholipids and contributes to lower surface tension at the air-liquid
interface.

[26-28]

SFTPC
Component of pulmonary surfactant promo�ng alveolar patency by lowering
surface tension at the air-liquid interface.

[26-28]

ABCA3 Transport of phospholipids across the membrane. [29-31]

DSP
Desmosomal protein cri�cal for cell-cell interac�ons and epithelial barrier
func�on.

[22, 32, 33]

DPP9 Unique serine protease, involved in cell-cell adhesions. [22, 32]

TERT Telomerase enzyme to maintain telomere integrity. [34-36]

TERC Telomerase RNA template. [35-37]

MUC5B Mucin that contributes to the viscoelas�c proper�es of mucous. [33, 34, 38]
SFTPA2 = Surfactant Protein A2; SFTPC = Surfactant Protein C; ABCA3 = ATP-binding casse�e transport of the
A subfamily 3; DSP = Desmoplakin; DPP9 = Dipep�dyl Pep�dase 9; TERT = Telomerase Reverse Transcriptase;
TERC = Telomerase RNA Component; MUC5B = Mucin 5B.

Popula�on studies have demonstrated that with age the prevalence of IPF increases
with most cases being diagnosed between 50 - 70 years old. While the exact underlying
mechanism(s) remains unclear, there is increasing evidence that accumula�on of gene�c
muta�ons, epigene�c changes and cellular senescence, a hallmark of ageing, are
implicated by their contribu�on to aberrant wound repair responses.

Tobacco smoking is a risk factor associated with the development of IPF. Up to 81% of
pa�ents diagnosed with IPF have a history of smoking [39]. Cigare�e smoking causes
injuries to the lungs that are thought to contribute to the development of IPF; but such
injuries also have a role in the pathogenesis of chronic obstruc�ve pulmonary disease
(COPD), cardiovascular disorders and cancer [40]. Occupa�onal and environmental
exposures are also linked to the development of IPF [41]. Studies in the UK, USA and
Japan have demonstrated a higher incidence of IPF in industrialised areas. Increased
risks are associated with those who are exposed to metal and wood dust or agricultural
par�culates such as from farming and livestock [42-44]. In addi�on, par�culate ma�er
in ambient air pollu�on leads to epithelial damage, airway inflamma�on and oxida�ve
stress, all of which are associated with higher incidences and progression of IPF [45].
Iden�fied intrinsic risk factors that contribute to IPF are gastroesophageal reflux and
lung microbiome dysbiosis [46-48]. All these risk factors have one thing in common, the
ability to damage lung �ssue indica�ng that chronic exposure is sufficient to ini�ate
aberrant cellular responses in suscep�ble pa�ents.
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Pathogenesis of IPF
The lungs are subject to micro-injuries from inhala�on of airborne par�culate ma�er,
noxious chemicals and pathogens but demonstrate a tremendous capacity to repair and
regenerate �ssue damaged from injury. However, it is theorised that IPF originates from
repeated and / or non-resolving injuries to the alveolar epithelium followed by an
abnormal repair response. The la�er ini�ates a wound healing cascade but instead of
wound resolu�on there is uncontrolled prolifera�on of myofibroblasts and accumula�on
of matrix leading to destruc�on of lung �ssue architecture (Figure 1). As ageing is a
major risk factor of IPF, the role of cellular senescence has been a major focus of IPF
research . Indeed, premature senescence in both epithelial cells and fibroblasts have
been increasingly implicated in IPF [49-51]. Cellular senescence is characterised by cells
undergoing irreversible cell-cycle arrest, an increasing resistance to apoptosis and the
development of a pro-inflammatory secretory profile known as the senescence-
associated secretory phenotype (SASP) [52].

In normal wound repair processes of the lung, loss of type I AECs leads to ac�va�on of
type II AECs; progenitor cells that regenerate the alveolar wall by differen�a�ng into
type I AECs. In IPF there are marked changes to the epithelium including the
enlargement and elonga�on of AECs, cuboidal cells and an increase in AEC apoptosis
that contributes to dysfunc�onal wound repair. Repe��ve injury not only results in the
deple�on of type II AECs, but irreversible altera�ons such as DNA damage could lead to
a permanent dysfunc�onal phenotype such as cellular senescence [53]. The injured
epithelium releases a myriad of factors such as platelet derived growth factor (PDGF),
transforming growth factor β1 (TGF-β1) and connec�ve �ssue growth factor (CTGF) that
have a strong impact on fibroblast func�on. In response to injury, fibroblasts ac�vate,
migrate and differen�ate into myofibroblasts and start the produc�on of several matrix
proteins including collagen, fibronec�n, elas�n and proteoglycans to restore
homeostasis [54, 55]. Once there is sufficient �ssue integrity, these myofibroblasts are
cleared from the lungs. However, in IPF these cells fail to undergo apoptosis and persist
at the site of injury leading to the crea�on of fibroblas�c foci, the ac�ve site of fibrosis.
It is postulated that the persistence of ac�vated fibroblasts is due to cellular senescence
contribu�ng to fibrosis [49, 56, 57]. The senescent phenotype encompasses several
changes including differen�al gene expression leading to the produc�on and release of
several pro-inflammatory and profibro�c cytokines, matrix metalloproteinases (MMPs)
and increased expression of several extracellular matrix (ECM) proteins [58].
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The ECM is a complex structure that surround cells to provide structure and support. In
recent years, our understanding of the ECM has increased markedly, especially with
respect to its func�on in providing biochemical and biomechanical cues in �ssue
homeostasis and injury. During normal homeostasis, cells such as fibroblasts are
quiescent and maintain the ECM. Using specialised cell surface receptors, such as
integrins, cells embedded within the matrix receive signals that poten�ally control
adhesion, migra�on, prolifera�on and differen�a�on (REF). Mechanical forces are
rapidly translated and ac�vate signalling pathways [59]. Fibroblasts are the major source
of ECM produc�on in IPF and ECM changes in ageing have been increasingly associated
with pathological condi�ons. Senescent cells display increased ECM produc�on,
indicated by increased expression of collagen type I and fibronec�n, and higher
expression of MMPs contribu�ng to dysregulated homeostasis [58]. In addi�on to
increased deposi�on, increased lung �ssue s�ffness leads to increased produc�on and
ac�va�on of TGF-β1 and the crosslinking enzyme family of lysyl oxidases (LOX); these
changes in turn ac�vate fibroblasts crea�ng a posi�ve feedback loop. These
observa�ons indicate the involvement of the ECM and the effects it may have on altering
fibroblast func�on favouring ongoing fibro�c processes.

Figure 1. IPF pathology. Panel A shows the intact alveolar wall with the inters��al matrix and
residing fibroblasts that maintain homeostasis. Panel B shows the proposed mechanism and the
role of senescent fibroblasts in IPF. The epithelium gets damaged upon damaged epithelial cells
release cytokines which leads to ac�va�on of fibroblasts into myofibroblast that produce and
deposit ECM. Normally these cells are cleared from the system once homeostasis is restored. In
IPF these cells remain ac�ve and con�nue to produce ECM which leads to fibrosis characterised by
fibroblas�c foci and destruc�on of the alveoli. The release of SASP factors by senescent fibroblasts
impacts on neighbouring cells and contributes to a feedback mechanism that perpetuates fibrosis
in IPF. Type I/II AEC = Type I/II alveolar epithelial cell; BS = Basement membrane; ECM =
Extracellular Matrix; SASP = Senescence-associated secretory phenotype (Created with
BioRender.com).
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Treatment op�ons for IPF
Treatment op�ons for IPF are limited and can only slow down, but not halt or reverse the
decline in lung func�on [60]. In addi�on to an�fibro�c drugs, pa�ents can receive
suppor�ve treatment such as oxygen therapy and medica�on to reduce symptoms such
as couching and heartburn. In 2014 two an�fibro�c drugs, nintedanib and pirfenidone,
were approved for the treatment of IPF [5, 6]. Once IPF has been diagnosed, a treatment
plan is devised for each individual pa�ent as there is no standard treatment plan
available. However, this remains difficult as each pa�ent is different and not everyone
reacts posi�ve to treatment. Nintedanib is a tyrosine-kinase receptor inhibitor that acts
by binding to the intracellular ATP binding pocket of platelet derived growth factor
receptors (PDGFRs), fibroblast growth factor receptors (FGFRs) and vascular endothelial
growth factor receptors (VEGFRs). By limi�ng the prolifera�on, migra�on and survival of
(myo)fibroblasts and angiogenesis by endothelial cells, pericytes and vascular smooth
muscle cells, nintedanib is able to slow down IPF progression [61, 62]. Analysis of data
from two large clinical trials demonstrated that nintedanib reduces lung func�on
decline, prolongs the �me un�l the first acute exacerba�on and increases the quality of
life [63] While the exact mechanism of ac�on of pirfenidone remains unclear, in vitro
studies demonstrated that it is able to inhibit fibroblast secre�on of SASP-related
inflammatory cytokines such as TNF-α, IFN-γ and IL-6, and abrogates TGF-β1-s�mulated
collagen produc�on [64]. Furthermore, pirfenidone has also been reported to have an�-
oxidant proper�es by ac�ng as a scavenger for hydroxyl and superoxide anions [65]. In
2018 a study was published that inves�gated the safety and tolerability of the
combina�on of both drugs for the treatment of IPF. Both drugs have different working
mechanisms, combining the two may result in addi�ve benefits to slow down disease
progression. They demonstrated that both drugs were tolerated without safety issues.
However, more studies are needed to determine if the combina�on of these two drugs
would provide advantages in slowing down disease progression for pa�ents compared
to either drug alone. The licensing of these two drugs have highlighted that IPF is a
treatable disease, but due to their modest potency and adverse side effects, more
research is needed into the pathogenesis to develop further novel therapeu�c op�ons.

The scope of this thesis
My central hypothesis is that in IPF, senescent lung fibroblasts influence the local
microenvironment by increasing ECM accumula�on and the secre�on of SASP cytokines,
which perpetuate fibroblast senescence and contribute to dysfunc�onal alveolar
epithelial cell regenera�on (figure 1). Therefore, the overall scope of this thesis is to
inves�gate the impact of fibroblast senescence on alveolar epithelial cell regenera�on
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and determine if the ECM contributes to pathological senescence by crea�ng a posi�ve
feedback loop that perpetuates disease progression.

Firstly, chapter 2 provides a general overview on the role of cellular senescence during
homeostasis, ageing and disease. We describe how the ECM can act as a modulator of
cell func�on and summarise the available evidence about how aberrant and
dysfunc�onal ECM can influence the senescence phenotype in chronic fibro�c diseases.
Furthermore, we explore the role of ECM damage-associated molecular pa�erns
(DAMPs), which are released during proteoly�c degrada�on or �ssue damage in IPF and
the poten�al for targe�ng ECM-senescence regulatory pathways for therapeu�c
poten�al in fibrosis.

In chapter 3 we inves�gate the impact of IPF-derived and senescent-induced primary
lung fibroblasts on A549 alveolar epithelial cell regenera�on. We inves�gate the
influence of secreted factors of the SASP by senescent fibroblasts on alveolar epithelial
cell prolifera�on allowing direct contact or by transfer of culture media. Lastly, we
measured the wound repair response of epithelial cells in a co-culture system a�er
mechanical injury and measured if there was altered cell-cycle inhibi�on in alveolar
epithelial cells.

In chapter 4 we used GelMA hydrogels to determine the impact of pathological s�ffness
as observed in IPF on the senescent phenotype of primary lung fibroblasts. We analysed
markers of senescence in fibroblasts cultured on GelMA hydrogels mimicking healthy
and fibro�c s�ffness and assessed fibrosis-associated gene expression. Addi�onally,
matrix proteins associated with senescence and fibrosis were also measured.

In the final experimental chapter (chapter 5) we inves�gated whether ECM deposi�on
by senescent-induced, profibro�c and IPF-derived fibroblasts had impact on the
senescent phenotype of primary lung fibroblasts. We measured several markers of
senescence, characterised SASP secre�on and assessed the expression of fibro�c
response associated genes.

Finally, chapter 6 summarises the findings of this thesis and discusses the relevance and
implica�ons of these findings, illustra�ng how the findings in this thesis contribute
further knowledge to the field.
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