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Arnold Hagens 1,* , Ahmet Çağkan İnkaya 2 , Kasirga Yildirak 3, Mesut Sancar 4, Jurjen van der Schans 1,5,
Aylin Acar Sancar 6, Serhat Ünal 2, Maarten Postma 1,5,7,8,† and Selen Yeğenoğlu 9,†
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Abstract: As of March 2021, COVID-19 has claimed the lives of more than 2.7 million people
worldwide. Vaccination has started in most countries around the world. In this study, we estimated
the cost-effectiveness of strategies for COVID-19 vaccination for Turkey compared to a baseline in the
absence of vaccination and imposed measures by using an enhanced SIRD (Susceptible, Infectious,
Recovered, Death) model and various scenarios for the first year after vaccination. The results showed
that vaccination is cost-effective from a health care perspective, with an incremental cost-effectiveness
ratio (ICER) of 511 USD/QALY and 1045 USD/QALY if vaccine effectiveness on transmission is equal
or reduced to only 50% of effectiveness on disease, respectively, at the 90% baseline effectiveness
of the vaccine. From a societal perspective, cost savings were estimated for both scenarios. Other
results further showed that the minimum required vaccine uptake to be cost-effective would be at
least 30%. Sensitivity and scenario analyses, as well as the iso-ICER curves, showed that the results
were quite robust and that major changes in cost-effectiveness outcomes cannot be expected. We can
conclude that COVID-19 vaccination in Turkey is highly cost-effective or even cost-saving.

Keywords: COVID-19; cost-effectiveness; vaccination; Turkey; dynamic modeling

1. Introduction

The first novel coronavirus infection (SARS-CoV-2) was diagnosed in December
2019, and the World Health Organization (WHO) defined the outbreak as a pandemic on
11 March 2020. Since then, COVID-19 has deeply affected health-care services and claimed
the lives of almost 2.7 million people worldwide [1]. The pandemic has overwhelmed
health care systems and led to global social, health, and economic crises. The workforce
and production rate have decreased due to mitigating measures like social distancing,
working from home, quarantine, lockdowns, the closure of schools, and outdoor restric-
tions [2]. To date, there is no established effective medication available against coronavirus
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infection besides repurposed drugs that are used without definite evidence supporting
their effectiveness and safety [3]. Therapeutic monoclonal antibody options are available
through emergency-use authorizations against COVID-19, and, though promising, they
are still costly and complex in application [4]. Controlling the spread of infection and
getting into a normalized post-pandemic situation can only be achieved if immunity rises,
either naturally or via vaccines [5]. Consequently, vaccines seem to be the only short-term
route to combat the pandemic, and they should be distributed rapidly, efficiently, and
equally. Therefore, the best way to rapidly embark on the most efficient and appropriate
way to alleviate the current global crisis is to develop and apply safe and effective vaccines
to control COVID-19 and its clinical and socio-economic impacts on a global scale [5,6].
For a few months, various vaccines have been applied globally, and further ones are in
development, having reached stages of marketing application or advanced in phase 2 and
3 clinical trials.

As the genetic code of SARS-CoV-2 was unraveled in early 2020, a dense global
R&D movement with an unprecedented pace was kicked off to develop vaccines against
COVID-19 [7]. Based on the preliminary results of the ongoing clinical trials and real-world
data of the (candidate) vaccines, it appears that the vaccines are generally well-tolerated,
induce an adequate immune response, protect against (serious) symptomatic disease, and
potentially protect against asymptomatic infection and subsequent transmission [8–10].
The COVID-19-inactivated vaccine CoronaVac (Sinovac, Beijing, China) has been applied
in Turkey. Over 10 million people have been given the first dose of the vaccine so far, and
4.5 million have also received the second dose as well [11], the highest numbers so far in
the whole Mediterranean region. Most of those vaccinated are healthcare workers and
populations of older adults [12].

COVID-19 vaccine development, licensure, and implementation have taken shape
under enormous clinical, political, and economical pressure. Despite the desperate need
for superfast tracks, the Food and Drug Administration (FDA) decided not to authorize
vaccines that would not meet its standards [13]. Relaxing safety regulations for authorizing
any new vaccine potentially threatens the trust in global vaccination programs that has
been built-up during the last 75 years [14]. Therefore, in recent months, COVID-19 vaccines
have undergone careful assessments for registration and implementation [15], and these
will continue to apply to newcomers in 2021. Additionally, the stringent monitoring and
continuous evaluation of real-world data apply to vaccines being used in daily practice all
over the globe.

Experiences from previous vaccination programs have indicated that immediate
planning for vaccination is a prerequisite, with specific attention to all stakeholders such as
local communities and healthcare providers [5]. Early planning is even more imperative
for a COVID-19 vaccine due to the urgent needs. However, financial sustainability should
not be forgotten and should be one of the aspects to consider upfront. Thus, anticipating
a continued uptake of COVID-19 vaccines, health technology assessment (HTA) bodies
should already be conducted integrated analyses of allocative efficiency, affordability, and
sustainability. Therefore, the accurate estimation of COVID-19 vaccination program costs,
savings on health-care costs, potential broader impacts, and health impact assessments
are needed in the context of HTA cost-effectiveness analyses and the strategic planning
of allocating potentially scarce stocks of vaccines [16]. Additionally, when aiming for a
fair distribution of vaccines with affordable pricing, individual countries should develop
country-specific immunization programs and guidelines for its citizens while relying on
solid data, preferably originating both from the countries themselves as well as from
integrated global databases [17].

Evaluating the population-level impact of COVID-19 vaccines by mathematical mod-
eling is a critical component of vaccines’ HTA decision making and implementation pro-
cesses. Country-specific National Immunization Technical Advisory Groups (NITAGs)
have varying sets of criteria for advising on vaccines, including safety, efficacy, priority,
and increasingly containing cost-effectiveness analysis. Modeling studies in various stages
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during vaccine development provide crucial information to governments, decision-makers,
and manufacturers to anticipate, enable, and monitor an efficient implementation [18].
The WHO Strategic Advisory Group of Experts (SAGE) Working Group on COVID-19
Vaccines encourages modeling studies that are suitable for existing epidemiologic and/or
economic data or can be validated with such [19]. Therefore, in this study, we aimed to
estimate the cost-effectiveness of strategies for COVID-19 vaccinations for Turkey by using
mathematical modelling in various potential scenarios.

2. Materials and Methods
2.1. Overview

An age-structured deterministic dynamic compartmental model was used to estimate
the cost-effectiveness of initial vaccination scenarios, e.g., concerning assumptions on
transmission effectiveness. Vaccination scenarios were compared to a base scenario without
vaccination (as well as stringent lockdowns) for the entire population of Turkey. The time
horizon was limited to the first year after the start of vaccination because of uncertainty
on waning vaccine effectiveness, the emergence of new variants, and the desire to be
conservative on the benefits of vaccination.

Mathematically, the model was based on a modified SIRD (Susceptible, Infectious,
Recovered, Death) compartmental epidemiological model. In such a model, individuals
transfer from one compartment to another depending on their health state. In addition to
the original SIRD health states, we added a progression of illness states that was subdivided
over each location of care for patients before the shift to recovered or death, e.g., home,
hospital, and intensive care units. Notably, these locations are critical in relation to the
health care costs and health impacts assumed in the model. Figure 1 shows a schematic
overview of the used model.
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Figure 1. Schematic view of the used compartmental model.

For the base scenario, we assumed a situation in the absence of vaccination and im-
posed stringent measures, such as lockdowns. Within each vaccination scenario, we varied
the uptake level and the effectiveness level of the vaccine. We considered the uptake as the
willingness and ability of people to be vaccinated. Effectiveness was considered in terms
of effectiveness against disease as well as against transmission, with the latter potentially
lower than the former. QALYs (quality-adjusted life years) gained were used as effective-
ness indicators, related to healthcare costs, vaccination costs, and productivity losses in
the incremental cost-effectiveness ratio (ICER). It can be expected that severe COVID-19
infections may potentially lead to a long-term reduced quality of life, but the extent and
duration are highly uncertain. Conservatively, we assumed no long-term impacts beyond
the first year of vaccination, except for life-years lost due to COVID deaths, but we did
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explicitly include QALY impacts in the sensitivity analysis. The willingness-to-pay (WTP)
or cost-effectiveness threshold was set at one gross domestic product (GDP) per capita,
which can be interpreted as a very cost-effective threshold [20] when using the GDP of
2019 for Turkey: 9127 USD per capita [21]. Additionally, three-times GDP per capita and
cost-saving levels were investigated.

2.2. Dynamic Transmission Model

The core concept within the dynamic model is the contact matrix reflecting social
interactions between age groups underlying potential transmissions within the population.
In particular, an age-group specific contact matrix was constructed by using social contact
data from a study by Prem et al. [22]. This study estimated the contacts between age
groups for 152 countries, including Turkey. Notably, the matrix reflected the number of
physical and nonphysical contacts a person has with another person in a specific location
(home, work, school, and other locations). However, since this study did not purposely
limit contacts at certain location, the overall consolidated contact matrix, which sums the
contacts of the different locations, was used. Thus, the differential equation for newly
infected and infectious persons per age group (Ii) is as follows:

dIi
dt

= βSi ∑
j

Cij Ij/Nj − γIi (1)

where Cij is the contact matrix over the age classes i with j, γ represents the reciprocal of the
infectious period, Nj represents the population of age group j, and β is the infection rate as
defined by the probability of transmission of infection if a contact takes place. Subsequently,
the infected persons were distributed over three specific substates, reflecting progression of
illness in terms of care locations, i.e., home, hospital, and intensive care unit (ICU). In the
model, any still-implemented mild measures (mask-wearing, social distancing, etc.) to
control the transmission of COVID-19 were assumed to be uniform over the age groups,
compartments, and substates, with vaccination prioritized by age group. An overview of
the demographical and epidemiological parameters used can be found in Appendix A.

As COVID-19 does not have a homogenous distribution of the case fatalities over
different age groups, the population was divided in four age groups—0–19, 20–39, 40–59,
and 60 years and older—aligned with heterogeneity in risk of death from COVID. Specific
data of COVID deaths for Turkey were used [23]. Reported case-fatality rates (CFRs) in
Turkey only reflect detected COVID-19 deaths and infections, and it could be assumed
that these numbers reflect an underreporting of the real infections and deaths. Therefore,
the CFRs for each individual age group were estimated using the reported deaths per
age group, corrected for excess deaths reported in Turkey in 2020 [23–25]. Additionally,
the estimated numbers of infections and deaths were calibrated to match the authors’
expert opinions on the likely number of actually infected persons and plausible CFRs.
The resulting CFRs appeared similar to estimates by Levin et al. [26].

Quality-adjusted life years lost were estimated by using quality of life data from
Turkey [27] (interpolated to fit the modelled age groups) and adjusting the years of life
lost according to the 2020 Turkish life tables [28]. Averted QALYs lost were considered as
QALYs gained.

2.3. Scenarios

Since the number of susceptible and infectious persons at the start of the vaccination
was unknown, a run-in period of 360 days prior to the start of vaccination was simulated
to estimate these. However, since this estimate is highly uncertain, we subjected these
numbers to a thorough sensitivity analysis. Vaccination was assumed to start at day
360 and to coincide with January 2021. A realistic priority in vaccination was assumed,
starting with the 60 years and older age group and followed by the younger age groups,
with a 60-days interval in between (Turkish Ministry of Health). No distinction between
susceptible, infectious, or recovered persons was made for the likelihood to be vaccinated.
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Additionally, it was assumed that at day 480 (when vaccination is roughly halfway), the
social-distancing measures will slowly be reduced in the following 120 days, resulting
in a linear increase in the basic reproduction rate R from 1.08 to 2.8, which is the natural
reproduction rate in the absence of measures [29]. This assumption was made because
populations and governments likely will change behavior and measures after knowing
people are vaccinated and the risks of infection declines. Once vaccination is completed
on day 600 in the model, the R was linearly increased to 2.8. Vaccination was modelled as
an immediate shift of persons from susceptible (S) to recovered (R). For the vaccination
period, the following differential equations were used.

dSi
dt

=

(
−βSi ∑

j
Cij Ij/Nj

)
− Vi (2)

dRi

dt
= fi(FHmi (Hmi) + FIci (Ici) + FHsi(Hsi)) + Vi (3)

where Vi is the number of people vaccinated; FHm, Fic, and FHs reflect the reciprocals of
the durations of stay at home, the ICU, and hospital if ill, respectively; Hm, Ic, and Hs
reflect numbers of ill persons at home, in the ICU, and hospital, respectively; and f is the
recovery rate.

To calculate the ICER, a baseline was established where no vaccination was performed,
and no lockdown measures were imposed as a comparator. The R0 for the baseline was
set at 1.8, assuming that individuals will still act differently with the danger of being
infected because they will be psychologically and physically influenced by still-occurring
social-distancing. This could refer to physical distancing, face masks, using sanitizers, or
other (no- or low-cost) careful behavioral actions. Confronting this baseline, two types of
vaccination scenarios were compared. The first scenario assumed that vaccine effectiveness
on transmission equals effectiveness on disease. The second scenario assumed that vaccine
transmission effectiveness is only 50% of effectiveness on disease. Disease effectiveness
was defined as the reduced risk a person becoming symptomatically ill and potentially
dying. Notably, data on this type of effectiveness are known from clinical trials [10,30].
Transmission effectiveness was defined as the reduced probability that a vaccinated person
can still transmit the infection, a subject for which data from RCTs are still scarce and
only preliminary real-world data exist [10]. Additionally, data on re-infection after natural
infection and infection after vaccination are still scarce. A study concerning COVID-19
re-infections estimated the probability at 0.01% [31]. In the simulations, it was assumed
that people once infected with COVID-19 will not be reinfected and are considered immune
to COVID-19 for at least the one-year period of our analysis.

Clinical trials of several vaccines showed around 90% vaccine effectiveness on dis-
ease [32–36], a figure that was used in this study. Because an average of around 30% of the
Turkish population were found to be unsure of getting the vaccine [37], a 70% uptake was
used as the base for the vaccination scenarios and numerical comparisons. For the analyses,
ICERs for various vaccine effectiveness and uptake combinations, ranging from 30% to 90%,
were simulated. These were then tagged as being cost-effective or not. For presentation,
iso-ICER curves were constructed to analyze the cut-off points between non cost-effective
and cost-effective combinations.

2.4. Costs

Costs were split into direct costs and indirect costs. Direct costs included the health
care costs of hospitalization, the ICU stay, and pharmacotheraphy at home and vaccination.
Indirect costs included production losses due to sickness leave and premature death.

To calculate the direct healthcare costs, unit cost estimates were linked to estimated
numbers of persons staying at home, the hospital, or the ICU. In the absence of specific
Turkish data, the duration of illness was estimated from international published data at
7.4 days for standard hospitalizations and 17.7 days for the ICU [38,39]. These data were
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validated with a modest number of hospitalizations in the Hacettepe University Hospital
that were available for analysis, suggesting that these estimates were in line. As many
persons may have very mild symptoms, in the sheer absence of data, it was conservatively
assumed that home recovery involved a period of one day only on average. Subsequently,
the healthcare costs per day were used to calculate the total healthcare costs.

To calculate the production losses, the recovery period was marked up from the
above-mentioned durations to reach the non-productive period. For recovering at home,
10 days of production losses were assumed based on the quarantine period required
in Turkey [23]. This was corrected for the 25% (assumed) working from home during
quarantine to 7.5 days. For persons recovering in hospital, the non-productive period was
assumed to be 12.35 days. This number included 7.4 days in hospital and an assumed
6.6 days recovering at home. Correcting for the last 25% working from home resulted in a
nonproductive period of (7.4 + 6.6 × 0.75 =) 12.35 days. For individuals recovering in the
ICU, the non-productive period was set at 28 non-productive days, assuming that persons
still would need home recovery afterwards and would not be able to work from home at
all. The friction cost approach was used for the valuation of production loss of premature
death with the assumption that companies in Turkey will be able to find human resource
replacement within the employed or unemployed pool of labor [40]. In the absence of
Turkish data but aligned with data from Greece, a 0.27 year period was used for the friction
period, [41]. Furthermore, the GDP per person for the corresponding age group was used
to monetarize these durations. Notably, the GDP per person per age group was calculated
using the number of working people and total wages in each age group (Appendix B).
This resulted in 886 USD for 0–19; 13,745 for 20–39; 16,706 for 40–59; and 5649 for 60 years
and older. The health care costs for staying at home were assumed to be 1 USD per day
for various medications, 110 USD per day for standard hospitalization, and 171 USD per
day of ICU stay [42]. The vaccine cost was set at 20 USD/person for two doses in the first
year [43,44]. Costs and health outcomes were discounted at a rate of 3% per year to correct
for time preference.

2.5. Sensitivity Analysis

Sensitivity analysis was carried out by assuming +/−10% change in vaccine costs,
QALYs lost, ICU cost, hospitalization cost, percentage population being susceptible, friction
period, nonproductive period, and CFRs. An additional sensitivity analysis on the discount
rate applied rates of 0% and 5%, compared to the base of 3%. An extensive sensitivity
analysis was performed on the effectiveness (base at 90%) and final uptake (70%), resulting
in the aforementioned iso-ICER curves. Finally, next to the societal perspective applied as
our base with both direct and indirect costs being included, the healthcare perspective was
investigated in sensitivity analysis but limited to direct healthcare costs only.

All the simulations were carried out in R Studio 1.3.959 by implementing the four
age-group compartmental model using the Runge–Kutta 4 method to approximate the
solutions of the differential equations (Appendix C). Additional analyses were done using
Microsoft Access and Microsoft Excel.

3. Results
3.1. Initial Situation

Following our 360-days run-in period, Table 1 shows the estimated epidemiological
situation at vaccination start with approximately 86.8% of the population still susceptible to
COVID-19, almost 13.0% recovered (immune), and 0.1% infectious and ill. COVID-19 was
used as the only cause of death. The share of susceptible persons was found to be critical
because it affects the progress of the epidemic and the effectiveness of the vaccination.
Additionally, the number of infectious persons was found to play a critical role because
it rules the spread of transmissions during the period in which the vaccination is taken
up and the pandemic is still causing infections and deaths within the susceptible Turkish
population.
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Table 1. Estimated epidemiological situation at vaccination start.

Compartment Persons (n) %

Susceptibles 72,410,075 86.8%
Infectious and ill 98,217 0.1%

Recovered (Immune) 10,874,915 13.0%
Deaths 46,409 0.1%

Total population 83,429,615 100.0%
Note: Numbers were simulated based on a run-in period of 360 after the first case occurred in Turkey with a total
simulated population of 83,429,615, of which 46,409 have been estimated to have so far died due to COVID-19.

3.2. Equal Effectiveness on Transmission and Disease
3.2.1. Cost-Effectiveness Analysis

Figure 2 shows the cost-effectiveness results of the various vaccine effectiveness
and uptake combinations for the societal perspective, including direct and indirect costs,
assuming similar effectiveness on disease and transmission. Three iso-ICER lines are
shown: one GDP/capita, three-times GDP/capita, and (if achieving them) cost savings.
For example, the figure shows that the 40% effectiveness and 40% uptake combination was
not found to be cost-effective because it is located left of the one GDP/capita iso-ICER line.
It can also be seen that a vaccine that is over 80% effective was found to be cost-saving at
any uptake over 30%. At lower vaccine effectiveness, a higher vaccine uptake would be
required to achieve cost-effective or cost-saving situations.
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Figure 3 shows a heatmap of the deaths still occurring in the first year after the vacci-
nation started for different vaccine uptake and effectiveness combinations. As there were
still infectious people at the moment vaccination starts and not everybody is vaccinated at
once, even a 90% vaccine effectiveness and uptake would still cause 2114 deaths, reflecting
the minimum in the heatmap. Central in the heatmap is, e.g., a 60% vaccine effectiveness
and uptake causing 130,990 deaths. The maximum number of deaths in the heatmap is
343,078 deaths at a 30% uptake and effectiveness.



Vaccines 2021, 9, 399 8 of 19

Vaccines 2021, 9, x FOR PEER REVIEW  8  of  19 
 

 

Figure 3 shows a heatmap of the deaths still occurring in the first year after the vac‐

cination  started  for different vaccine uptake  and  effectiveness  combinations. As  there 

were still infectious people at the moment vaccination starts and not everybody is vac‐

cinated at once, even a 90% vaccine effectiveness and uptake would still cause 2114 deaths, 

reflecting  the minimum  in  the heatmap. Central  in  the heatmap  is, e.g., a 60% vaccine 

effectiveness and uptake causing 130,990 deaths. The maximum number of deaths in the 

heatmap is 343,078 deaths at a 30% uptake and effectiveness. 

 

Figure 3. Heatmap of the number of COVID‐19 deaths occurring after vaccination. 

Additionally, we varied the vaccination costs. Figure 4a shows that if we assumed a 

vaccine effectiveness of 90%, the minimum required uptake to be cost‐effective was found 

to be only 25%, 26%, and 27% for vaccine costs of 10, 20, and 30 USD, respectively. 

   
(a)  (b) 

Figure 4. (a) Iso‐ICER cost‐effectiveness curves at one GDP/capita for 10, 20 (baseline), and 30 USD costs of vaccination. 

(b) Iso‐ICER cost‐effectiveness curves at one GDP/capita for 74%, 87% (baseline), and 100% susceptibility. 

Figure 4b shows that if the share of susceptible persons at vaccination start reduces, 

more cost‐effective combinations of vaccine effectiveness and uptake become available. 

Using a vaccine effectiveness of 90%, the minimum required uptake to be cost‐effective 

was found to be 37%, 26%, and 9% for 100%, 87%, and 74% susceptible shares, respec‐

tively. 

90% Deaths

85%

80%

75%

70%

65%

60%

55%

50%

45%

40%

35%

30%

30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

Effectiveness

2,114 deaths (top right)

343,078 deaths (low left)

130,990 deaths (center)

U
pt
ak
e

Figure 3. Heatmap of the number of COVID-19 deaths occurring after vaccination.

Additionally, we varied the vaccination costs. Figure 4a shows that if we assumed a
vaccine effectiveness of 90%, the minimum required uptake to be cost-effective was found
to be only 25%, 26%, and 27% for vaccine costs of 10, 20, and 30 USD, respectively.
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Figure 4. (a) Iso-ICER cost-effectiveness curves at one GDP/capita for 10, 20 (baseline), and 30 USD costs of vaccination.
(b) Iso-ICER cost-effectiveness curves at one GDP/capita for 74%, 87% (baseline), and 100% susceptibility.

Figure 4b shows that if the share of susceptible persons at vaccination start reduces,
more cost-effective combinations of vaccine effectiveness and uptake become available.
Using a vaccine effectiveness of 90%, the minimum required uptake to be cost-effective
was found to be 37%, 26%, and 9% for 100%, 87%, and 74% susceptible shares, respectively.

3.2.2. Sensitivity Analysis

Sensitivity analysis was done with a 90% vaccine effectiveness, a 70% uptake with a
vaccine price of 20 USD, and an 87% susceptible population as base. Figure 5 shows the
results of the sensitivity analysis.
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The number of susceptible persons in the population was found to be the most
influential parameter. Vaccination cost was found to affect the ICER with a 2% increase or
decrease if price changes by 10%. The other parameters showed even less sensitivity to the
results, illustrating its robustness.

3.3. Limited Effectiveness on Transmission
3.3.1. Cost-Effectiveness Analysis

Figure 6 shows the cost-effectiveness results of vaccine effectiveness and uptake
combinations with a limited effectiveness on transmission assumed at 50% of that assumed
for disease. Iso-ICER curves are shown at one GDP/capita, three-times GDP/capita,
and achieving cost savings.
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Figure 7 shows a heatmap of the deaths still occurring in the first year after the
vaccination started for limited transmission effectiveness. For the scenario with a 90%
uptake and disease effectiveness, 32,145 deaths were still estimated to occur—far more
than the 2114 for equal transmission and disease effectiveness in Figure 4. Additionally,
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60% disease effectiveness and uptake (center) and 30% disease effectiveness and uptake
(low left) were found to cause more deaths (210,675 and 362,117, respectively).
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Figure 7. Heatmap of the number of COVID-19 deaths occurring after vaccination starts.

3.3.2. Sensitivity Analysis

A sensitivity analysis for the scenario with limited transmission effectiveness was
done using a 90% vaccine disease effectiveness and a 45% transmission effectiveness, a 70%
uptake, a vaccine price of 20 USD, and an 87% susceptible population as a baseline. Figure 8
shows the results for the sensitivity analysis.
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Figure 8. ICER sensitivity analysis (+/−10%; except for discount rate QALYs lost at 0% and 5%) for a limited transmission
effectiveness.

The discount rate used for the QALYs lost was now found to be the most influential
parameter. A 10% change of the non-productive period showed a change of the ICER of
+/−8.7%.

3.4. Comparison of Scenarios

Tables 2 and 3 show the summarizing consolidated results for the one-year vaccination
period. Together, they comprise a comparison of the two main scenarios: equal effectiveness
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on transmission and disease and limited effectiveness on transmission. For comparison,
the 70% uptake and 90% vaccine disease effectiveness levels, combined with a 20 USD
vaccination cost, were used. Table 2 shows that without measures, the number of deaths
could reach 211,415, direct health care costs could reach 407,011,036 USD, and indirect
cost of production losses could reach up to 6,417,051,139 USD. Both vaccination scenarios
obviously improved these numbers.

Table 2. Overview of scenario results from the healthcare and societal perspectives (all costs are in USD, and a discount rate
of 3% is used for the QALYs).

Main Scenario Health Outcomes Direct Costs Indirect Costs

Deaths QALYs Lost Health Care Vaccination Sickness Leave Premature Death

Baseline without
vaccination or imposed

measures
211,415 1,538,105 407,011,036 - 6,417,051,139 433,671,346

Equal effectiveness on
disease and transmission

(90% effectiveness)
3994 31,604 9,302,328 1,168,014,610 183,562,183 8,806,634

Limited effectiveness on
transmission (90% disease

and 45% transmission
effectiveness)

88,865 645,570 171,275,569 1,168,014,610 2,676,371,116 182,019,930

Table 3. Incremental health outcomes, costs and resulting ICERs for the two vaccination scenarios against the baseline from
the healthcare and societal perspectives (all costs are in USD, and a discount rate of 3% was used for the QALYs).

Incremental Health Outcomes
Incremental
Direct Costs

Incremental
Indirect Cost

Savings

Total
Incremental
Cost Savings

ICERs

Scenario Lives Saved QALYs
Gained

Health
Perspective

Societal
Perspective

Equal effectiveness
on transmission and

disease (90%)
207,421 1,506,501 770,305,902 6,658,353,668 5,888,047,767 511 Cost saving

Limited effectiveness
on transmission (90%
on disease and 45%

on transmission)

122,550 892,536 932,279,143 3,992,331,439 3,060,052,296 1045 Cost saving

For equal effectiveness on transmission and disease, 207,421 lives were found to be
saved, corresponding to 1,506,501 QALYs gained. To reach this, a direct health care cost
of 770,305,902 USD is needed, leading to an ICER from the health care perspective of
511 USD/QALY. Including the indirect cost savings, those were found to lead to overall
cost savings. For limited effectiveness on transmission, 122,550 lives, which was equivalent
645,570 QALYs gained, were found to be saved. To reach this, a direct health care cost
of 932,279,143 USD is needed, leading to an ICER from the health care perspective of
1045 USD/QALY. Including the indirect cost savings would lead to overall cost savings.

Figure 9 combines the iso-ICER curves for both vaccination scenarios with similar
and limited transmission effectiveness. When we assumed a disease effectiveness of 90%,
the minimum required vaccine uptake changed from 27% to 40% if the transmission
effectiveness was found to reduce from 100% to 50% of disease effectiveness.
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Figure 9. Iso-ICER cost-effectiveness curves at various thresholds for vaccine transmission effectiveness equal to 50% of
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Figure 10 shows the total number of deaths for the first year after vaccination start in
the two scenarios for varying uptake rates. For a 90% equal effectiveness on transmission
and disease, a clear turning point around 60–65% uptake is shown. This was fully in line
with the estimated herd immunity threshold at an R0 of 2.8, which can be estimated at 64%
by using the standard formula of (R0 − 1)/R0 [45]. Indeed at 90% effectiveness, 60–65%
were found to correspond to 54–59% immune through vaccination—totaling approximately
60–65% again if adding those naturally immune, but not vaccinated—at around 5% at the
start of vaccination (40% of 13% immune persons), and approximately 1% of the population
were found to be infected during the vaccination. After this turning point, the number
of deaths was found to not decrease strongly anymore. This was not the case when we
assumed a limited effectiveness on transmission, which led to a linear trend and a similar
number of deaths averted with any step taken in uptake increment. Indeed, for this
situation, the herd immunity threshold translated into a 100% uptake.
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4. Discussion

This study analyzed the cost-effectiveness of COVID-19 vaccination in Turkey with a
one-year time horizon after the start of vaccination from both the healthcare and societal
perspectives. We showed that vaccination with a plausibly assumed effectiveness on
disease and transmission of 90% and an uptake of 70% would be cost-effective in Turkey
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with and an ICER of 511 USD/QALY from the health perspective and even cost saving
from the societal perspective. Assuming a halved 45% effectiveness on transmission and
still 90% on disease, we found an ICER of 1045 USD/QALY from the health perspective
and, again, cost savings from a societal perspective. Therefore, at plausible assumptions
for effectiveness and uptake of COVID-19 vaccines in Turkey, vaccination is estimated to
be cost-effective or even cost-saving.

Given the various uncertainties, an extensive sensitivity analysis was performed.
For example, since our analyses were done in a situation where the vaccination started
during an ongoing epidemic, a sensitivity analysis of the level of susceptible persons
at vaccination start was performed. It appeared that this parameter was crucial for the
model outcomes, and lower levels of susceptible persons at vaccination start lowered the
uptake required to achieve a favorable cost-effectiveness. Therefore, increased levels of past
natural infections already at vaccination start were found to improve cost-effectiveness.
In particular, assuming a 90% vaccine effectiveness led to a reduction of the percentage of
susceptible individuals from 87% to 74% and a reduction of the minimum uptake required
to be the cost-effective from 26% to 9%.

The real costs of vaccination in the future may change, so a sensitivity analysis of the
vaccination cost was performed. Assuming a 90% vaccine effectiveness, the minimum
uptake required to be cost-effective was found to barely change from 25% to 27% when
the cost of vaccination shifts were varied over a range from 10 to 30 USD. Though the
costs/QALY gained increased, this result showed that even an increase of the vaccination
costs still justifies vaccination with a relatively low uptake. Obviously, a higher uptake
was found to further increase cost-effectiveness up to the herd immunity threshold of
around 64%. For limited transmission effectiveness, this changes: the herd immunity
threshold at 100% which cannot be achieved in the real world, justifying a vaccination
uptake as-high-as-possible.

To adequately present the results of our cost-effectiveness analysis with various
varying parameters, the novel concept of iso-ICER curves was introduced. These curves
show isolines where the ICER equals a specific value, i.e., one GDP/capita, three-times
GDP/capita, and achieving cost savings. The use of iso-ICER curves allowed us to display
large numbers of simulation results in a coherent way.

Our results were in line with a study in the USA that found cost savings when
prioritizing 65-years-and-older individuals for vaccination from a health care perspec-
tive [46]. Economic analyses on vaccination are currently scarce, but there have been some
further economic analyses on COVID-19 treatment. Notably, one study performed the
cost-effectiveness analysis of Remdesivir for non-ventilated patients and dexamethasone
for ventilated patients, ultimately showing cost savings and deaths prevented [47] and
therefore supporting favorable economic profiles of these drugs in the treatment of COVID-
19. Therefore, treatment likely remains a complementary and potentially cost-effective
or cost-saving intervention next to vaccinations. If further treatments that further reduce
the fatality rates of infections are developed, the ICERs of vaccination will likely increase.
However, because our results were quite robust over large ranges of assumptions and
parameter values in scenario and sensitivity analyses, we do not expect that the economic
profile of vaccination would drastically worsen.

Our modelling framework integrated international data, e.g., on effectiveness, with
country-specific economic, social, and demographic data—in this case, for Turkey. Our
model followed the general design of SIRD models and could therefore be seen as concep-
tually representative for other countries as well. With local data on demography, social
contact structures, healthcare costs, GDP, productivity, and wages, our model could also be
applied to other countries relatively easily. Indeed, we are currently working on model
application for countries in Western Europe, South America, Africa, and Southeast Asia.
Methodologically, we want to further develop our model to, e.g., allow for reinfection
within the context of newly emerging strains. This might additionally be linked to ex-
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tending the model’s time horizon and considering waning immunity within a potentially
extended time frame.

This study had some limitations. Notably, any model reflects a simplification of reality,
and ours specifically assumed various aspects to be homogeneous over all age groups,
such as the R0, as well as homogeneous mixing between vaccinated and non-vaccinated
persons. Additionally, with age-specific contact matrices being the engine of our model,
some targeted groups in the population, such as health care workers, could not be specified.
Health care workers likely face higher infection rates and potential fatalities and in reality,
reflecting a priority group for vaccination [15]. Our model design did not allow for the
specific analysis of this vaccination strategy. Additionally, no administration costs related
to the vaccination were included, and since recent studies showed antibodies presence six
months after vaccination [48], we found it plausible to not include the waning efficacy of
immunity (natural and vaccination) in the first year. Both aspects might have worsened
cost-effectiveness but could be assumed to be limited and thus have modest influence
on the ICER in this study. Conservatively, as we took a time horizon of one year after
vaccination start, the impact of QALYs gained due to averted long-term complications of
COVID-19, beyond the one-year period, were not included.

A few further assumptions had to be made for the model. In particular, as infections
and deaths were likely to be underreported in Turkey, the case fatality per age group was
estimated using a modelled number of infections in combination with excess death rates
reported in Turkey [25]. These estimates turned out to be slightly lower than reported case
fatalities, but they fitted the model logic better. It was estimated that 46,409 persons have
so far died in Turkey due to COVID-19. This roughly fit when we applied reported the
excess death ratios between 1 and 4 [24,49] in other countries to the reported 28,138 deaths
in Turkey [41]. Concerning behavior, it was assumed that people will behave differently if
vaccinated, likely mirroring pre-COVID-19 social behaviors. Information on the accuracy
of this assumption is absent. We assumed an R0 of 1.8 in the absence of vaccination and im-
posed measures. Though COVID-19 has a natural R0 of 2.8 without any restrictions, it was
assumed that people will behave differently with continued social distancing measures
continuing at low, economically-negligible costs.

In this study, we compared the two vaccination scenarios with a baseline in the absence
of vaccinations and imposed measures. However, if we could make a comparison with lock-
down impacts included in the alternative baseline, the cost savings of vaccinations would
likely further increase. The cost of the lockdown relieve package in Turkey was estimated
to cost 4.5% of the GDP [50] or 34.2 billion. Major parts of these costs could be averted with
vaccinations. Lockdowns have proven necessary, but they have potentially not been cost-
effective. Notably, if we assumed that approximately 160,000 persons’ lives were saved and
assumed 7.5 QALYs lost per death (the average from this study), the resulting ICER for lock-
downs were found to be 28,500 USD/QALY (=34,200,000,000/(160,000×7.5). Obviously,
real-life numbers will be higher than our cost-effectiveness estimates for vaccination.

5. Conclusions

We can conclude that COVID-19 vaccination in Turkey is highly cost-effective or even
cost-saving compared to a baseline in the absence of vaccination and imposed measures
but assuming self-imposed social distancing measures. Our results were found to be robust
in an extensive sensitivity and scenario analysis. Finally, if the macro-economic impact of
potential lockdowns in the absence of vaccination is considered, the health-economic profile
of COVID-19 vaccination in Turkey probably further improves and likely outperforms the
economic profile of the lockdowns themselves.
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Appendix A. Model Parameters

Table A1. Overview of the parameters used in the simulations.

Parameter Age Classes
0–19 20–39 40–59 ≥60 General References

1. General
1.1 Total Population 83,429,615 [51]
1.2 Share of total population (fraction) 0.325 0.310 0.238 0.127 [52]
1.3 Case-fatality rate (deaths/case) 0.000030 0.000282 0.004858 0.087421 Estimated
Recovery rate 0.999970 0.999718 0.995142 0.912579
1.4 Years of expected life left 64.34 44.92 26.71 8.75 [28]
1.5 Quality-adjusted years of life left 3% DR 26.54 21.94 14.88 5.40 [27]
1.6 Quality-adjusted years of life left 0% DR 57.33 38.62 21.02 6.09 [27]
1.7 Quality-adjusted years of life left 5% DR 18.47 16.34 12.22 5.00 [27]

2. Recovery location fractions after infection
2.1 At home 0.999356 0.998336 0.992295 0.875283 [38,39,53] + model
2.2 Normal hospitalization 0.000628 0.001453 0.005931 0.101664 [38,39,53] + model
2.3 Intensive care 0.000016 0.000211 0.001774 0.023053 [38,39,53] + model

3. Duration of recovery (days)
3.1 At home 1 [38,39]
3.2 Normal hospitalization 7.4 [38,39]
3.3 Intensive care 17.7 [38,39]

4. Health care costs per day (USD)
4.1 At home 1 Assumption
4.2 Normal hospitalization 110 [42]
4.3 Intensive care 171 [42]

5. Productivity costs (USD)
5.1 Productivity loss due to premature death 239.30 3711.20 4510.65 1525.29 Calculated
5.2 Productivity loss due to sickness per day 2.43 37.66 45.77 15.48 Calculated
5.3 Nonproductive days
5.3.1 Home 10 Assumption
5.3.2 Normal Hospitalization 12.35 Assumption
5.3.3 Intensive care 28 Assumption
5.4 Home working share 0.25 Assumption
5.5 Friction period (year) 0.27 [41]
5.6 GDP per year per capita 886 13,745 16,706 5649 Appendix B

6. Infectious period 8 [54–57]
7. Basic reproduction number (R0) 2.8 [29]

7.1 R0 in natural measures mode 1.8 Assumption
7.2 R0 in enforced long measures mode 1.08 Assumption

8. Contact matrix—fixed
0–19 3.02155 0.91557 0.55907 0.13828 [22]
20–39 0.95991 1.93832 0.69595 0.12841 [22]
40–59 0.76151 0.90416 0.72299 0.14798 [22]
≥60 0.35273 0.31242 0.27712 0.22518 [22]
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Appendix B. GDP per Capita by Age Group

Table A2. GDP/capita calculation per age group in Turkey estimated by using the share of the total wage to redivide the
GDP by age group.

Age Group # Persons in
Group [52]

# of People
Working

(2018) [58]

Average
Annual Wage

(TRY 2018) [58]

Total Wage
(TRY) Share

GDP per
Age Group

(USD)

GDP/Capita
(USD)

0–19 27,087,441 1,580,000 28,117.33 44,425,373,634.55 3% 24,007,496,131 886
20–39 25,836,161 14,066,000 46,718.91 657,148,242,209.70 46% 355,123,268,339 13,745
40–59 19,886,588 11,041,000 55,681.63 614,780,864,598.12 43% 332,227,914,381 16,706
≥60 10,619,425 1,830,000 60,662.68 111,012,695,467.37 8% 59,991,321,150 5649

Total 83,429,615 28,517,000 1,427,367,175,909.73 771,350,000,000 9246

Appendix C. Differential Equations

Main equations:

Ni = Si + Ii + Ri + Hsi + Ici + Hmi + Di (A1)

dSi
dt

=

(
−βSi ∑

j
Cij Ij/Nj

)
− Vi (A2)

dIi
dt

= βSi ∑
j

Cij Ij/Nj − γIi (A3)

dRi
dt

= fi(FHmi (Hmi) + FIci (Ici) + FHsi(Hsi)) + Vi (A4)

dDi
dt

= (1 − fi)(FHmi (Hmi) + FIci (Ici) + FHsi(Hsi)) (A5)

Progression of illness state locations:

dHmi
dt

= QHmi(Ii)γ − Hmi (FHmi) (A6)

dIci
dt

= QIci(Ii)γ − Ici (FIci) (A7)

dHsi
dt

= QHsi(Ii)γ − Hsi (FHsi) (A8)

Health care costs (excluding vaccination costs):

dCoi
dt

= Hmi(CHm) + Ici(CIc) + Hsi(CHs) (A9)

Quality-adjusted years of life left:

dQYLLi
dt

=
dDi
dt

QLexpi (A10)

Productivity loss (due to premature death and sickness days:

dPLDi
dt

=
dDi
dt

CPLdi (A11)

dPLi
dt

= Hmi
PLHm
FtHmi

CPLri + Hsi
PLHs
FtHsi

CPLri + Ici
PLic
Ftici

CPLri (A12)

where:
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f = recovery rate
S = susceptible, I = infectious, R = recovered, D = death
C = contact matrix adjusted for non-reciprocity
Nj = total population in group j
R0 = basic reproduction number
β = R0 γ/(MaxEigenvalue)
γ = 1/infectious period
FHmi, FIci, and FHsi =

1
recovering period

Hmi = number of people recovering Home
Ici = number of people recovering Intensive Care
Hsi = number of people recovering in Hospital
CHmi, CIci, and FHsi = cos ts per day per location per group
CPLdi and CPLri = cos ts productivity loss in of death (d) and recovered (d)
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