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Before embarking on a new animal study, researchers must 
decide how many animals per group are needed to optimize 
the chance of detecting a real effect rather than a chance 

finding. When performing a statistical power calculation, power 
is commonly set a priori at 80% (prospective power); that is, the 
expectation is that 80 of 100 studies investigating a real effect will 
correctly conclude that the effect exists (true positive), while 20 
will not (false negative). As power decreases, the rate of false posi-
tive results as well as that of false negative results will increase1. 
Prospective study power therefore directly affects the reliability of 
the subsequent research findings.

However, a landmark paper by Button et al.2 estimated, based on 
48 meta-analyses of neuroscience studies, that the median power, 
in reality, is around 21%, in agreement with previous reports in 
psychology3. Although Button’s report was based mainly on studies 
in humans, a similar discrepancy between prospective and actual 
power likely exists in animal studies. If so, this would contribute 
substantially to the reproducibility crisis4 in animal research5–8, as 
single, underpowered studies have a low likelihood of detecting a 
real effect1, although they can still be informative when included in 
meta-analyses9,10.

To improve reproducibility, previous reports suggested using 
systemic heterogenization7,11, multiple batches12 or prospective 
multicenter studies8,13, alongside changes in research practice 
and education8. These suggestions involve substantial logistical 
issues and resources; for the foreseeable future, it is likely that the 
majority of animal experiments will remain single laboratory. In a 
single-laboratory setting, an obvious solution to enhancing statisti-
cal power would be to increase the number of animals per experi-
ment. For example, for a common effect size of Hedge’s g = 0.5  
(Welch’s independent samples t-test, α = 0.05), ten animals per 
group would correspond to a statistical power of 18%, 30 animals 
per group to 48% power and 65 animals per group to 81% power. 
Clearly, this is not a feasible solution, not only in terms of the space 
requirements and financial costs but also in light of continuing 
efforts to reduce the number of animals used in research.

How can one ensure that a study has sufficient power with-
out increasing the number of animals per group to unrealistically 
high levels? An appealing approach would be to recycle data from 
past experiments, as implemented both in human and animal 
research14,15. In research practice, new studies often build on ear-
lier ones, performed in one’s own lab or elsewhere. Here, we focus 
on the specific example of studies using the same experimental 
endpoint. The data from similar previous studies can be incorpo-
rated into new experiments by using Bayesian priors, that is, dis-
tributions that describe the mean and variance of an experimental 
outcome from previous studies. This incorporation can occur 
already when planning an experiment in the power calculation or 
exclusively when analyzing the collected data (although this would  
require preregistration). Transforming information from previous 
studies in a mathematical function is not trivial, and it was sug-
gested to be one of the most difficult aspects of Bayesian analysis16.  
Priors can be developed by incorporating data from multiple 
sources (for example, one’s own and others’ experiments or expert 
knowledge) and through various methodologies (reviewed in 
ref. 16). Bayesian priors are used in the clinical literature and have 
already been applied to decrease sample sizes in new experiments 
(for example, refs. 17,18). Yet, they have been adopted in very few  
animal studies (for example, ref. 19; reviewed in ref. 14), which, 
although remarkable, received limited attention. As a consequence, 
the powerful message of using historical controls in new experi-
ments has not reached yet the end beneficiary: researchers perform-
ing animal experiments.

In this study, we first evaluate the extent of the power problem 
in animal research by examining a much larger sample of animal 
studies than previously reported2. Next, we show how historical data 
can be used to limit the number of animals used in a study by tailor-
ing the Bayesian prior approach to animal experiments. We validate 
the method and provide an example of how this approach can be 
applied in daily research practice. We then estimate the impact of 
the approach on the statistical power of future animal experiments. 
Lastly, we present RePAIR (Reduction by Prior Animal Informed 
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Low statistical power reduces the reliability of animal research; yet, increasing sample sizes to increase statistical power is 
problematic for both ethical and practical reasons. We present an alternative solution using Bayesian priors based on histori-
cal control data, which capitalizes on the observation that control groups in general are expected to be similar to each other. 
In a simulation study, we show that including data from control groups of previous studies could halve the minimum sample 
size required to reach the canonical 80% power or increase power when using the same number of animals. We validated the 
approach on a dataset based on seven independent rodent studies on the cognitive effects of early-life adversity. We present 
an open-source tool, RePAIR, that can be widely used to apply this approach and increase statistical power, thereby improving 
the reliability of animal experiments.
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Research), a user interface optimized for easy use, to facilitate the 
implementation of the methodology.

Results
Many animal experiments are severely underpowered. A com-
mon approach to estimate the extent of the power problem in 
animal research is to calculate statistical power from published  
literature. Through a systematic search (Supplementary Notes 1  
and 2), we identified a large sample of animal studies in the  
areas of ‘neuroscience’ and ‘metabolism’ (nstudy = 1,935) that were 
previously included in meta-analyses (nma = 69). These animal stud-
ies had an overall median statistical power of 18% (Fig. 1a), which 
was roughly equal in the two fields (neuroscience, 15%; metabo-
lism, 22%).

Although this approach closely replicated the results of previ-
ous reports2,3, it has major limitations20. An alternative approach 
is to estimate a reasonable prospective power to describe a plau-
sible scenario for new experiments. Because real effect sizes are 
unknown, we estimated a common range by selecting the medians 
and quantiles of the distribution identified from published animal 
studies (neffect size = 2,738). These corresponded to Hedge’s g values 
of 0.2, 0.5 and 0.9 (Fig. 1b), which is almost identical to Cohen’s d 
rule of thumb for small, medium and large effect sizes21. Prospective 
study power was then calculated for this range of effect sizes directly 
derived from published studies. For large effect sizes, prospective 
power was sufficient (above 80%) only in 12.5% of studies. This 
percentage dramatically decreased if smaller effect sizes were con-
sidered (Fig. 1c).
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Fig. 1 | Many animal experiments are severely underpowered. a, Power of identified experiments (two-tailed Welch’s t-test, effect sizes as reported 
in published papers, ‘data B’ in Supplementary Fig. 1). Dashed line indicates median, equal to 18%. b, Range of common effect sizes in animal literature 
(‘data B’ in Supplementary Fig. 1). Dashed lines indicate percentiles. The related quantities (Hedge’s g values of 0.2, 0.5, 0.9) were defined as ‘small’, 
‘medium’ and ‘large’ effect sizes, respectively. c, Prospective powers of studies when considering a range of common effect sizes (b) and assuming at 
least one sufficiently powered experiment per publication (‘data B’ in Supplementary Fig. 1). The highest peaks in the histograms are due to a non-uniform 
distribution of animals used, as shown in d. Histograms and density plots of the same data are overlapping. Left: power ≤50%; right: power ≥80%.  
d, Animals per study when considering the two largest independent groups (‘data A’ and ‘data B’ in Supplementary Fig. 1). Dashed line indicates median, 
equal to 20 animals (~10 animals per group).
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Bayesian priors can increase statistical power while limiting 
sample size. Actual study power is much lower than is commonly 
assumed (Fig. 1c). The most obvious solution would be to increase 
sample sizes. Currently, a common sample size used is ten animals 
per group (Fig. 1d). When considering this common sample size 
and a Welch’s independent samples t-test (α = 0.05), one would need 
to assume an effect size of Hedge’s g = 1.4 to reach a power of 80%. 
Such an expected effect size is far larger than what is commonly 
observed in rodent literature (Fig. 1b). If more realistic effect sizes 
are used, for example, Hedge’s g = 0.2 or 0.9, the required sample 
size increases to 394 and 21 animals per group, respectively.

An alternative solution is to use data from past experiments in the 
form of Bayesian priors. We implement this here as a specific appli-
cation of power priors22, while adapting an equal-but-discounted16 
approach. Importantly, we applied priors only to the control group 
and not to the experimental group, as control animals can be more 
reasonably assumed to belong to the same population (Methods).

We first performed a simulation study to estimate how the use 
of Bayesian priors influences sample size and power (Fig. 2a). The 
simulation study was based on the formula

ncon ¼ nexp � nprior ´ index

where the number of animals in the control group (ncon) can be 
reduced by the number of control animals from prior studies (nprior) 
multiplied by a weight (index, value between 0 and 1) that describes 
the similarity between control and prior groups. The experimental 
group (nexp) remains the same. Based on this formula, the number 
of animals needed in the control group is effectively diminished 
(discounted) by the weighted prior. Conversely, if the number of 
animals remains the same, a further increase in nprior can still be ben-
eficial, as power could be enhanced up to its highest boundary, that 
is, approaching 100% with large effect sizes (Fig. 2a).

Validation in a case study. To test the validity of the proposed 
method in a real-life scenario, we performed a case study involving 
experiments assessing the effect of early-life adversity (ELA23) on 
spatial learning in adult male mice. The experimental dataset was 
gathered by aggregating data from single experiments that, in prin-
ciple, shared the same design but individually had low power, from 
several laboratories in the RELACS (Rodent Early Life Adversity 
Consortium on Stress) consortium. Overall, information from 275 
animals (ncon = 132, nELA = 143) was collected, which was more than 
required by our prospective power calculation (ncon + ELA = 200). 
Spatial learning was operationalized as a discrimination ratio mea-
sured in the object-in-location test. In the RELACS dataset, the 
discrimination ratio was significantly lower in animals that experi-
enced ELA than in control mice (t272.99 = 3, P = 0.003).

We then mimicked a prospective experiment by reducing the 
number of control animals from the RELACS dataset to one-third 
of the animals that experienced ELA. The new sample sizes would 
then be ncon = 49 and nELA = 143. This hypothetical experiment is 
underpowered, because the difference distribution (ELA distribu-
tion – control distribution) contains the value 0 in its 95% confi-
dence interval (Fig. 2b). Normally, one would argue that the two 
groups are not different from each other. To ‘rescue’ the interpre-
tation while still conducting a per se underpowered experiment 
with 49 control animals and 143 animals that experienced ELA, a 
Bayesian prior was used. A prior was specified based on relevant 
yet unrelated (non-ELA) published studies of spatial learning using 
the object-in-location test. This prior had a cumulative adjusted 
sample size of nprior = 50.9, as measured by the equation described 
in the previous section. The analysis therefore contained the sample  
size of ~51 animals for the prior of the control group, 49 control ani-
mals and 143 animals that experienced ELA. Although the experi-
ment now hypothesized is still underpowered, the prior rescues the 
interpretation: the value 0 is outside of the 95% confidence interval 

of the difference distribution (Fig. 2b), and one would conclude that 
there is evidence that the two groups are different from each other. 
In other words, this example shows that the same experiment could 
be conducted with 83 fewer animals (from the 132 control animals 
from the RELACS dataset to the subgroup of 49 animals for the 
hypothetical experiment) while maintaining a power >80%.

When specifying the prior, every effort was made to reduce sub-
jectivity in selecting literature and defining the related indices. Yet, 
other experimenters might have selected different papers with the 
same task or assigned different weights. Although it is not possible 
to exclude this possibility, it is unlikely that it would have had major 
effects on the results. The distribution of the prior was very similar 
to the one from the control animals in the RELACS dataset (Fig. 3a), 
which suggests a certain consistency in the measurement values of 
the experimental endpoint across sources of data.

Nonetheless, the issue of subjectivity may arise when consider-
ing other experimental endpoints. We evaluated this concern by 
performing a sensitivity simulation study to mimic variation arising 
from different selections of literature (Fig. 3b,c). Here, we randomly 
sampled control experiments from an available pool, containing 
non-ELA literature studies as well as the control studies from the 
RELACS dataset. This analytical approach to estimate variation 
has limitations, as researchers would rightfully follow pre-specified 
criteria to select previous experiments, rather than picking them 
at random. With the estimated variation, we calculated how ran-
dom control study selection would relate to study power (Fig. 3d). 
Overall, the prospective power when using a prior was always larger 
than the currently estimated 18% (Fig. 1a), despite the variations.

Bayesian priors can substantially improve statistical power. 
Whether Bayesian priors can be applied to new studies depends on 
the presence of suitable available data from previously performed, 
similar studies. Although it is difficult to estimate how much suit-
able data (for a particular experiment) exists in the literature, one 
could argue that if publications are similar enough to be included in 
a meta-analysis, they should also be sufficiently similar to be used 
to calculate a prior.

We recalculated the prospective power displayed in Fig. 1c for 
studies identified by our systematic literature search (Supplementary 
Fig. 1). This time, controls from other studies within the same 
meta-analysis were used to calculate the prior. New experiments 
were simulated with the same total number of animals (ntotal) as the 
published studies but different distributions to the experimental 
and control groups. As the control group can be aided by the prior, 
more animals were allocated to the experimental group, according 
to the rule of thumb nexp = 2 × ncon (Fig. 2c).

For Hedge’s g = 0.9, application of Bayesian priors increased 
the percentage of sufficiently powered studies from 12.5% to 69%. 
These calculations were performed with an index of 0.3, which is 
quite conservative; using an index of 1 would yield similar results, 
with prospective power increasing to 72.5% for large effect sizes.

RePAIR can facilitate implementation. To facilitate the use of 
Bayesian priors in animal experiments, we created RePAIR, an 
open-source web-based tool (https://osf.io/wvs7m/) that enables 
anyone designing future experiments to improve the quality of the 
study design. With a user-friendly interface, one can calculate (mul-
tiple) prior parameters from summary statistics of existing data, 
perform sample size calculations and execute analyses.

RePAIR can also be used to visualize the (potential) heteroge-
neity between one’s own previously acquired control data and con-
trol data from other labs; if one’s own data differ substantially from 
those obtained earlier in other laboratories, one could decide to use 
only one’s own existing control data to calculate the prior or to not 
use historical controls at all and instead perform a fully powered 
experiment.
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Fig. 2 | Historical controls can decrease the number of animals required for sufficiently powered research. a, Simulation study on the relationship 
between prior (index = 1), sample size and power. An nprior value equal to 0 corresponds to a standard sample size estimation (two-tailed Welch’s t-test, 
α = 0.05, effect sizes as in Fig. 1b,c, power = 80%). The black diamond indicates the current median sample size. An increase in color intensity signifies 
an increase in power. As nprior increases, ntotal decreases until a plateau is reached. Subsequent increases in nprior will result in increased prospective 
power. b, Application of historical controls to the experimental dataset RELACS. Posterior distributions of each group and of their mean differences. 
The test is significant if 0 (continuous line) is outside of the 95% confidence interval (dashed lines) of the means’ difference distribution. From the top 
(Supplementary Table 1), analysis without prior provides the same result as Welch’s t-test (top); if ncon is decreased, the study becomes underpowered 
(middle); but this can be rescued if a prior from (unrelated) published literature is introduced (bottom). c, Prospective power when using historical 
controls with index = 0.3 (weighted at 30% in the analysis, that is, nprior = 0.3 × ncon of other studies within the same meta-analysis (‘data A’ from 
Supplementary Fig. 1) but maintaining current resources (ntotal kept the same; ncon = ntotal × 3−1 as recommended rule of thumb) shown as a histogram.  
Gray density plots represent the current prospective power as in Fig. 1c.
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Sensitivity analyses are essential16 when priors are specified.  
To facilitate such analyses, we included the option to perform two 
types of sensitivity analyses in RePAIR: (1) the leave-one-out sen-
sitivity analysis, to check whether any prior study has substantial 
influence on the final result and (2) a sensitivity analysis on the 
indices by selecting lower or higher indices than those chosen for 
the analysis. Using the ‘leave-one-out’ sensitivity, one can assess 
the impact of each specific experiment on the final analysis. Here, 

prior parameters are calculated k times for each k − 1 experiment 
added; if three prior experiments (A, B, C) were added, three sen-
sitivity analyses will be conducted (A and B, B and C, C and A). 
To perform the indices’ sensitivity analysis, users have to specify 
the index as a range. The average of the range is used for the main 
analysis, whereas the lower and higher boundaries of the range are 
used for the sensitivity analyses. In RePAIR, parameters for sensitiv-
ity analyses are automatically calculated when specifying the prior.  
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The resulting file can then be re-uploaded when analyzing data 
from the new experiment, and sensitivity analyses will be automati-
cally conducted.

Discussion
There is a growing awareness of the reproducibility issue in animal 
experiments. Study preregistration and the introduction of more 
rigorous guidelines (for example, PREPARE for planning of animal 
experiments and ARRIVE24 for their reporting) can only partially 
address this issue. We here describe the (lack of) statistical power 
in animal studies and explain how the use of Bayesian priors can 
provide a potential solution. As previously suggested by others (for 
example, refs. 14,17–19), this statistical method uses historical data to 
limit the number of animals necessary to perform well-powered 
research or to reach higher statistical power with the same num-
ber of animals as currently used in experiments. We delineated 
how to best apply Bayesian priors in the context of animal research 
and created RePAIR, a user interface to ease the implementation 
of this approach. This approach can substantially increase prospec-
tive power without increasing the total number of animals used. It 
can be an extremely powerful tool, if correctly implemented and 
interpreted.

Animal experiments have low statistical power. The statisti-
cal power of animal experiments is much lower than commonly 
assumed a priori. Although our approach was not conservative, 
we estimated that, at best, 12.5% of a large sample of rodent stud-
ies were sufficiently powered (that is, prospective power was larger 
than 80%). This estimate is a best-case scenario, as it is not yet 
adjusted for any subsequent multiple testing, experimental bias, P 
hacking and/or fishing, selective reporting, etc.

One may wonder why our estimate of sufficiently powered 
experiments is so low. A technical limitation of our approach is that 
it considers a range of effect sizes found in literature and not a mini-
mum effect size of ‘biological significance’. Although valuable, the 
minimum effect size criterion is seldom used in power calculations. 
We therefore consider our estimate reliable. Besides this technical 
limitation, several observations can explain why prospective study 
power is much lower than the commonly assumed 80%. One expla-
nation is that effect sizes are often estimated optimistically in power 
calculations, as they are based on earlier findings that are liable to 
(publication) bias25. A second explanation is that rodent experi-
ments are frequently exploratory in nature26, and many scientists 
opt to use a debatable ‘standard’ of six to ten animals per group. 
Indeed, the effect size frequently assumed in rodent literature 
(Hedge’s g = 1.4) is much larger than the range of effect sizes that is 
commonly observed (Hedge’s g = (0.2, 0.9)). Effect sizes in certain 
subfields may be more toward the lower (for example, behavioral 
phenotyping9) or higher (for example, molecular studies20) end 
of this distribution. Still, this discrepancy between assumed and 
observed effect sizes contributes to the power problem and repro-
ducibility crisis in animal research in a major way.

Limitations and recommendations for the reuse of historical 
data. The use of historical control data as here proposed requires 
the researcher to select experiments and to specify weights via the 
index. This selection is naturally subjective and thus can be criticized 
as introducing bias into an experiment27. In the next paragraphs, we 
discuss how subjectivity might impact an experiment using histori-
cal controls, and how these limitations are pragmatically addressed 
in our methodology. Next, we discuss why using historical controls 
is a valid approach, despite its subjectivity. Finally, we provide prac-
tical recommendations for the reuse of historical control data in 
new experiments.

When selecting previous experiments, a possible risk is that  
their cumulative distribution is very different from that of the new 

experiment’s control group (prior-data conflict)18. The prior distri-
bution may then push the control group more toward the experi-
mental group (causing a decrease in power) or further away from 
it (causing an increase in power); in other words, it can introduce a 
bias in the posterior distribution, that is, the distribution obtained 
from combining prior and new (control) data. The posterior dis-
tribution of the control group may then not be a good estimate 
of the control population, thereby directly impacting (negatively 
or positively) the power of the study. Previous reports suggested 
several ways to mitigate this problem. Some suggested disregard-
ing the prior altogether, although this would cause a reduction in 
study power. Others suggested redistributing the weights of the 
prior studies based on their relative discrepancies18,28. However, we 
argue that prior-data conflict cannot be adequately addressed in this 
way. Thus, these solutions are based on the assumption of a correct 
evaluation of prior-data conflict. This means that a new experiment 
was planned with a prior control group and that the data of the new 
experiment was already collected. The evaluation of prior-data con-
flict then consists of judging whether the prior control and the new 
control actually belong to the same population. As the approach 
presented in this paper is aimed at reducing the number of animals 
in the new control group as much as possible, the new control group 
will not be sufficiently large to correctly estimate the new control 
population and therefore cannot be compared to the prior control 
population. In other words, we cannot disregard a wealth of previ-
ous information based on data from a handful of new animals.

Although we cannot adequately check whether the prior control 
group is reasonable (that is, there is no prior-data conflict) after 
we conduct the new experiment, we can evaluate whether prior 
control groups are potentially incompatible while we plan the new 
experiment. Prior controls can be from one’s own lab, from other 
labs or a combination of the two. Using information from multiple 
laboratories can be beneficial. If each laboratory is a single popula-
tion7, the overall population can be addressed as a population of 
populations. As a consequence, results based on information from 
multiple laboratories should be more generalizable. However, using 
information from multiple laboratories can also be a major source 
of variation in the prior distribution, because variation within a 
laboratory is likely smaller than variations between laboratories5,13. 
An experimenter can check whether one’s own prior control data 
differ largely from prior control data selected from literature or 
whether a particular experiment stands out. This evaluation must 
occur on a case-to-case basis with careful assessment and justifica-
tion, ideally while planning the experiment. When building a prior, 
the experimenter can visually compare the distributions of datas-
ets from the selected previous experiments of their own or others 
and assess (for example) whether their own prior control data is too 
different from that of others or whether there is an ‘odd-one-out’ 
dataset that drives the prior control distribution. The experimenter 
can then choose to exclude the odd-one-out dataset or to not use 
prior control data from other laboratories at all if they are too dif-
ferent from their own prior control data. In both circumstances, the 
experimenter may nonetheless wish to review the potential origin 
of the differences, for example, by comparing experimental design 
between studies. To facilitate the process of assessing the compat-
ibility of prior control data, the RePAIR app provides a visualization 
tool; this will aid the experimenter in the process of selecting prior 
experiments and determining their index.

Besides selecting previous experiments subjectively, in our meth-
odology, the experimenter also specifies their weight (index) subjec-
tively. To avoid subjectivity, one may wonder whether it is necessary 
to use weights or whether they could be derived from a calculation.  
The use of weights is in agreement with the common view that 
past information needs to be somewhat downweighed because  
experiments are rarely identical17. Several methods (for example, 
refs. 17,18,28,29) were developed to overcome subjectivity in defining 
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the weights by analytically deriving them based on the discrepancy 
between historical and new data. These methods are appealing and 
definitely pragmatic for clinical sciences. However, we argue that 
these methods are not appropriate for animal studies. The argu-
ment is similar to the one used in the previous paragraphs to dep-
recate the assessment prior-data conflict in animal experiments: if 
prior controls are used to reduce sample size as much as possible in 
the new control group, it cannot be assumed that the new control  
group (likely based on a small number of animals) will provide a 
good estimation of the new control population. A correct estima-
tion of the new control population is necessary to evaluate the  
discrepancy between prior and new control groups. As a conse-
quence, methodologies that analytically derive weights based on this 
discrepancy cannot be used in the context of animal experiments, 
where the goal is to reduce sample size as much as possible. Therefore, 
weights are necessary and need to be specified by the experimenter. 
In our methodology, we use the ‘equal-but-discounted’ method 
based on power priors, as suggested by Ibrahim and Chen22. Briefly, 
by setting a certain discount or weight (for example, index = 0.5), 
the sample size is reduced (for example, from ten to five). Scientists 
themselves (by expert elicitation, an accepted practice in Bayesian 
statistics30) can therefore decide to what extent they value earlier 
data. Although subjective, even conservative (low) indices can be 
beneficial.

One could argue that the subjective selection of previous experi-
ments and related indices is susceptible to gaming and offers yet 
another ‘degree of freedom’ when performing analyses. This con-
cern is valid, especially for research fields for which little ‘past 
evidence’ exists. Until optimal population parameters are known, 
specification of a prior is subject to variation. At the same time, it is 
impossible to pre-define how many high-quality studies are neces-
sary for estimating an optimal parameter. We recommend preregis-
tering prior experiments and their indices on suitable platforms such 
the Open Science Framework (https://osf.io/), https://preclinicaltri-
als.eu/31 or the Experimental Design Assistant32. During preregis-
tration, scientists should define the prior experiments and related 
indices and should also describe the rationale behind the choice of 
experiments and planned sensitivity analyses. Furthermore, scien-
tific societies can facilitate the process of defining reliable priors, 
for example, by establishing expert panels. This could eventually 
result in an ‘atlas’ of common control priors in animal research. As 
the number and quality of experiments increases, more precise esti-
mates of the parameters of the control population can be obtained, 
and, consequently, the subjectivity in selecting experiments and 
indices will decrease.

Despite the above-mentioned limitations, the use of historical 
controls is desirable and valid. It is desirable because it offers the 
possibility of increasing statistical power, thereby improving the 
reliability of animal research. It is valid because it is a translation 
in statistical terms of assumptions already used in daily research 
practice. New experiments are usually planned based on informa-
tion obtained in previous studies. Even though variations between 
strains and labs clearly exist7,12,33,34, researchers have similar expec-
tations about how a control group ‘should respond’. Indeed, if this 
expectation is not met, a researcher would likely not trust the data 
and conclude that the experiment ‘did not work’ or ‘needs to be 
better optimized’. In this context, an advantage of rodent studies is 
that they are relatively well controlled and often employ ‘standard’ 
tests used in many labs. For example, if the plasma concentration of 
a hormone normally varies from 60 to 100 µg ml−1 in control ani-
mals, an experimenter would rightfully question the validity of data 
from control animals that show a range between 5 and 10 µg ml−1. 
Translating the above into statistical terms, researchers assume that 
control animals always belong to the same overall population. This 
warrants the formal statistical use of priors to supplement control 
group data.

The choices involved in building the prior distribution must 
be considered when interpreting the results, for which sensitivity 
analysis remains essential16. Choosing prior studies and the related 
indices is similar to selecting literature for a new experiment. We 
recommend considering the quality of the study as well as design 
variations that likely impacted the results. For example, researchers 
may select previous experimental data obtained from only a spe-
cific sex (for example, females) if the outcome is sex specific (for 
example, ovulation) or from both sexes if it is not expected to be 
sex specific35. Similarly, blinding and randomization may be cho-
sen as inclusion and exclusion criteria or might be used to define 
the index. The index is specified for each study separately. As a rule 
of thumb, previous reports attributed a large weight value (0.9) to 
studies that belonged to the same meta-analysis and lower weight 
values (0.7–0.8) to studies that did not18. We suggest a more con-
servative stand: large weight values (0.8–1) could be applied to 
repeated experiments from the same lab (for example, different 
batches), medium weight values (0.4–0.8) to experiments that 
(could) belong to the same meta-analysis and small weight values 
(0.1–0.4) to experiments from other sources. We also recommend 
specifying a range for the index and conducting sensitivity analyses. 
RePAIR has in-built features to support each step of the process, 
from visualization of distribution of prior experiments to automatic 
sensitivity analyses.

If sufficient prior information is available, it is theoretically pos-
sible to decrease ncon to as low as two (to still be able to calculate 
a standard deviation). However, this is not advisable, because ran-
domization would be difficult. As a rule of thumb, we recommend 
that control animals comprise at least one-third of the total number 
of animals in a new experiment. Even though sample size can be no 
longer reduced, prior information can still be beneficial because it 
will increase statistical power above 80%.

Finally, if sufficient prior information is not available, priors 
should not be used; in this case, the researcher should perform an 
appropriately powered experiment, even if this means that a sample 
size of (well) over 20 animals per group is required.

Concluding remarks. The reuse of historical control data in animal 
experiments can be an extremely powerful tool to increase statistical 
power and the reliability of animal studies, if correctly implemented 
and interpreted. Although here discussed in relation to t-tests, the 
same approach can be used in more complex experimental designs 
(for example, 2 × 2 ANOVAs), in which multiple groups could 
then be considered as ‘controls’. It is a feasible solution to reduce 
and replace animal use for those research questions for which good 
alternatives to animal testing are not yet available.
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Methods
General information. Every effort was made to minimize bias; for example, data 
gathering and analysis were performed blindly, multiple experts were consulted for 
sensitive information (inclusion and exclusion criteria), and studies’ characteristics 
were prospectively defined. This study was developed after a preliminary analysis 
of study power and estimation of sample sizes, conducted on a meta-analytic 
dataset developed previously by our own lab36. Part of this data was also used in 
this publication. Although no ex-ante protocol was preregistered, each component 
of this study was thoroughly planned in advance, unless otherwise stated in each 
individual section. For data, code and other information about the project, see 
https://osf.io/wvs7m/. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Statistics. To compare control and experimental groups, we used two-tailed 
Welch’s independent samples t-test (α = 0.05). We chose Welch’s test instead of 
Student’s t-test, because Welch’s test does not assume equal variances between 
groups. Data distribution was assumed to be normal, but this was not formally 
tested. Given the small sample sizes of animal experiments, it is also likely that 
normality tests were underpowered. Bayesian analyses are explained in detail in the 
following sections.

Evaluation of studies for the systematic review was performed in a random 
order. Briefly, each study was given a pseudo-random number generated in  
R. This number was then used for the ordering and assessment of publications. 
For the case study, presence of randomization was an inclusion criteria. However, 
we do not have information on how randomization was conducted by the single 
independent laboratories.

Throughout the study, every effort was made to limit selection and 
confirmation biases. Inclusion and exclusion criteria for the systematic review 
were defined before starting the review. The choices of distributions and ranges 
throughout the analysis (for example, estimation of effect sizes, sensitivity variation 
range) were performed once the data were already collected but before any data 
visualization. For the definition of prior information and the definition of inclusion 
and exclusion criteria for the case study, the researcher (V.B.) did not have access 
to the effect sizes but did have access to meta information from the study (for 
example, characteristics of the ELA model).

All analyses were conducted with R (version 4.0.0) in the RStudio environment 
on a macOS Mojave (version 10.14.6). The following R packages were central to 
this study: (1) tidyverse37 (version 1.3.0) for general data handling, (2) shiny38 
(version 1.5.0) for the RePAIR web-based tool and (3) MESS39 (version 0.5.6) for 
power calculations. The case study power calculation was also confirmed with 
G*Power40 (version 3.1.9.2).

Estimation of study power. Because real effect sizes are not known, estimating 
statistical power of animal research is equivocal. A common approach is to 
calculate achieved statistical power from meta-analyses identified with a systematic 
literature search (Supplementary Notes 1 and 2 and Supplementary Table 2).

The achieved power is the probability of rejecting the null hypothesis 
(that is, no difference between the control and experimental group) with the 
observed sample sizes. Here, this was retrospectively calculated for each set of 
summary statistics extracted from the systematic literature search (‘data B’ from 
Supplementary Fig. 1). Although data may have come from complex experimental 
designs, we assumed it always belonged to two independent groups (two-tailed 
Welch’s t-test, α = 0.05, sample size and Hedge’s g of ‘data B’ from Supplementary 
Fig. 1). This retrospective power calculation is a biased estimation of prospective 
study power, because the larger the P value observed in a study, the smaller its 
achieved power41. We replicated previous reports2,3 that used meta-analysis to 
estimate real effect sizes. This retrospective power calculation was not part of the 
original study protocol and was subsequently added.

An alternative approach is to estimate a common prospective study power, 
thereby partially overcoming the limitations of achieved power calculations. As 
an experimental design, we assumed two independent groups (two-tailed Welch’s 
t-test, α = 0.05), while sample sizes were gathered from our systematic search (‘data 
A’ from Supplementary Fig. 1). Importantly, only the two largest groups reported 
in each paper were extracted, assuming that at least the comparison of these two 
groups was sufficiently powered, while all other experiments may have been 
control experiments. For effect sizes, we aimed to estimate a plausible range, rather 
than a single value, to mimic scenarios of researchers initiating a new study.

To estimate a plausible range of effect sizes in preclinical literature, we 
calculated the 25th, 50th and 75th percentiles of absolute values of Hedge’s g and 
defined them as small, medium and large effect sizes, respectively (based on  
‘data B’ from Supplementary Fig. 1). Blinded to the results, we chose the 25–75% 
interval instead of the 95% confidence interval, to avoid extreme values. Extremely 
small effect sizes may not be biologically relevant and are confounded by null 
effects, while extremely large values may lead to interpretation issues and are 
confounded by overestimations due to biases. We confirmed (see code at https://
osf.io/wvs7m/) that these values were replicable by applying the same methodology 
to a separate dataset2,20.

Within this framework, prospective power is the probability of rejecting 
the null hypothesis if the effect size is equal to a small, medium or large value. 

A simple experimental design was assumed (t-test), while sample sizes and 
effect sizes were estimated from literature. As a consequence, this approach for 
calculating prospective power portrays a plausible scenario that a new researcher 
may expect.

Simulation study on the relationship between prior information, sample size and  
statistical power. The mathematical derivation of the algorithm for prior distribu
tions42 is described in detail in the Supplementary Note 3. In our study, priors were  
built based on conjugate distributions, meaning distributions that, when 
multiplied by the likelihood function, would create a posterior distribution, which 
summarizes information from previous and current studies with respect to the 
mean of the control group. The posterior distribution was from the same family 
as the prior distribution. We therefore chose the prior distribution for the mean 
in the control and experimental groups to be normal and for the variance to have 
an inverse χ2 distribution. Although modern computing power is reducing the 
need for conjugacy16, we preferred this method because of its solid mathematical 
foundation, and the assumption of normality seemed appropriate, as it is frequently 
used in preclinical sciences.

Of note, informative priors (namely, priors based on previous experiments) 
were applied only to the control group. The mean and the variance of the 
experimental group also have a prior and a posterior distribution. However, the 
prior distribution of the experimental group is ‘uninformative’, meaning that 
it will not have an impact on the results. Therefore, the posterior distributions 
that describe the mean and variance of the experimental group in our approach 
depended only on the information from the current experiment.

We performed a simulation study to evaluate the extent to which a prior 
could reduce the number of animals necessary and how this would influence 
study power. The more informative a prior was for the mean in the control group, 
the more influence it will have on the conclusions of the experiment. Mean and 
variance of data in the control group were kept identical in all conditions (μcon = 0, 
σ2con ¼ 1
I

); therefore, the influence of the prior was dependent only on its varying 
sample size, nprior. Supplementary Table 3 summarizes all factors varied in the 
simulation. For each combination of factors, 10,000 datasets were sampled from 
the corresponding population.

First, we calculated how many animals (ntotal = ncon + nexp) one would need to 
perform experiments with the determined characteristics, given a standard sample 
size calculation (nprior = 0). This was later confirmed by G*Power40. The calculation 
assumed a balanced design, meaning ncon = nexp. Second, ncon was decreased by 
adding nprior while keeping nexp the same. Because it would be illogical for ncon to 
become negative when nprior > ncon, ncon is minimally 2, which is the lowest  
possible sample size to compute a standard deviation. The total number of  
animals used is then

ntotal ¼ nexp þ ncon

ncon ¼ nexp � nprior

nprior ¼
Xp

p¼1

np ´ indexp

where the number of animals in the control group (ncon) is diminished by the 
effective number of prior animals (nprior), meaning the sum of the animals in each 
experiment used to define the prior (np), multiplied by the respective weight 
(indexp). The index is a value between 0 and 1. An index of 0.3 means that the 
information in the prior study at hand will only be weighted for 30% in the  
analysis. In the simulation, we set index = 1, and we assumed that the prior is a 
perfect estimation of the population, although this issue was further addressed  
with a sensitivity simulation study (Case study). For analyses, researchers may  
opt to vary this value, depending on the degree of similarity of the prior 
experiments to the current study. For more information about this topic, see  
‘expert elicitation’ in ref. 30.

Case study. For validation and as an example, we applied Bayesian priors, as 
described in the previous sections, to an experimental dataset. Here, the prior for 
the control group was specified from unrelated literature, while the prior for the 
experimental group was uninformative.

A well-powered dataset investigating a real and reproducible difference 
between two groups was required. We defined an effect as ‘real’ and 
‘reproducible’ as one that persists in a high-quality, well-powered meta-analysis. 
These criteria were met by the effects of ELA on memory after non-stressful 
learning, as identified by a recent meta-analysis of literature previously 
conducted by our own lab9. From this study, an effect size of Hedge’s g = 0.4 was 
estimated to describe the difference in performance on the object-in-location 
memory task between control animals and animals that experienced ELA with 
the limited bedding and nesting model23. Considering a Welch’s two-tailed 
independent means t-test and an α value of 0.05, 200 animals would be required 
to achieve a power of 80%.

Due to the paucity of power of animal studies, it is not surprising that we were 
unable to identify any study on this experimental outcome using (at least) 200 
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animals. Even though no single laboratory uses such sample sizes, the required 
power could be attained by combining data from multiple laboratories. To this 
end, we created RELACS, a unique rodent consortium constituted by several 
laboratories around the globe studying ELA.

We identified relevant authors from a recent systematic search by our lab9, 
as well as through our network (Supplementary Note 4). The consortium was 
prospectively founded and ultimately included seven independent experiments 
that met the specified criteria for this particular study. We calculated, for each 
experiment (that is, an independent set of animals), a measure of discrimination 
(discrimination ratio) as the ratio between the time spent in the novel location 
divided by the total exploration time, meaning the sum of the time spent in the 
novel and the familiar location (discrimination ratio ¼ timenovel

timenovelþtimefamiliar

I

). When 
analyzed independently, a P value <0.05 was reached in only two of seven 
experiments, which is in agreement with the low power of preclinical studies. 
By combining the seven experiments, we reached a sample size of 275 animals, 
distributed as ncon = 132 and nELA = 143. The effect size (Hedge’s g = 0.37) calculated 
in the RELACS dataset was similar to the one estimated from literature (Hedge’s 
g = 0.4). We concluded that this dataset meets the required criteria to validate 
RePAIR: it describes a reproducible effect as shown by the meta-analysis, and it is 
sufficiently powered, as the sample size was larger than the expected 200.

Of note, aggregating data from multiple laboratories in such a way would 
normally be unadvisable, as it does not meet the criteria of an individual 
participant data meta-analysis. However, we used this approach here because our 
intent was to ‘mimic’ a well-powered experiment, which was otherwise unavailable 
in the literature.

To specify a prior from unrelated studies, one of us (V.B.) selected relevant 
literature to mimic planning an experiment with the same characteristics 
(Supplementary Table 4) as the RELACS dataset, that is, investigating memory 
after non-stressful learning with the object-in-location task in adult (aged 9–41 
weeks; median, 18 weeks) male mice. The researcher was requested to select eight 
publications that she would use to set up her study, while focusing on the control 
and not the experimental group. The selected publications did not belong to the 
ELA field and were not used elsewhere in this manuscript. Furthermore, for each 
study, the researcher defined a similarity index, a number between 0 and 1 that 
would express how similar the control group from each literature study was to that 
in the experiment that she was planning to perform (1, identical or equal). Two 
publications reported the same outcome on two separate groups of animals. Both 
experiments were considered, albeit with a lower index. The process was overseen 
by a senior researcher (R.A.S.).

As the experimental dataset and prior specification were identified as described 
above, we had all the elements to validate that the Bayesian approach would reach, 
with fewer animals, the same conclusions as current practices. First, we performed 
a Welch’s independent samples t-test (two-tailed, α = 0.05) on the RELACS dataset 
to replicate the result that control and ELA groups differed in discrimination  
(P value <0.05) in the object-in-location task. We then performed the same test 
but with fewer animals in the control group and an informative prior. Several tests 
(Supplementary Table 1) were conducted as controls.

Although V.B. selected the prior while blinded to the results of the RELACS 
dataset, prior specification had some degree of subjectivity; that is, another 
researcher may choose different publications on which to base their study. To 
experimentally quantify relevant variation in article selection, we simulated many 
different priors by picking at random 10,000 × k experiments (k = 2–16) from the 
17 experiments identified in total (ten from V.B.’s literature selection and seven 
from the RELACS dataset). Variation in article selection for each k was calculated 
as the 2.5th and 97.5th percentiles to avoid extreme values. Changes in Hedge’s g 
between 0.1 and 0.5 could appropriately describe the variation across k, and ten 
articles were here sufficient for a stable estimation of the population parameters. 
Of note, the sampling occurred from a finite population, where 17 experiments 
represent the reference value of the estimated variations. As a consequence, the 
intervals may be underestimated.

With this experimentally derived estimation of population mean’s variation, 
we conducted a sensitivity simulation study to investigate how the variation of 
the prior control population mean affected prospective study power. Of note, this 
variation can act both in favor of or against the hypothesis under experimental 
investigation, depending on whether the prior control population mean moves 
toward or away from the population mean of the experimental group. Despite this 
limitation, we preferred this approach of experimentally deriving variation values 
over using a canonical variation of Hedge’s g = 0.1.

We preferred to use the number of animals rather than the number of 
experiments in the sensitivity simulation, to remain consistent with the first power 
simulation study. The relationship between the number of sampled experiments 
and the number of animals is not straightforward. For example, one can achieve 
nprior = 20 with just one experiment or two (for example, each with n = 10) or 
three (for example, n = 9, n = 6 and n = 5). To transform the variations due to 
experimental selection to the variations linked to sample sizes, we identified—
across the k × 10,000 sampled estimations of means—sample sizes of animals 
roughly equivalent to 20, 50, 100 and 200 (nprior in our sensitivity simulation). In 
these subgroups, we calculated the 2.5th and 97.5th percentiles and visually validated 
their consistency. These values were used in the sensitivity simulation study to 

vary prior control population means (between 0 and ±0.5 Hedge’s g, depending 
on nprior). All factors of the sensitivity simulation were kept identical to those of the 
previous simulation study (Supplementary Table 3).

Estimating how prior control information can impact statistical power with  
the current total number of animals used. We estimated the increase in 
prospective power if the Bayesian prior methodology would be used in new animal 
experiments with the resources currently available. We considered each study 
identified within each meta-analysis (‘data A’ from Supplementary Fig. 1) as a new 
experiment, for which ntotal was kept the same, but animals were redistributed in 
favor of the experimental group (nexp = 2 × ncon, according to our rule of thumb). 
The controls from all other studies within the same meta-analysis were then 
considered as priors. In other words, nprior was calculated from the cumulative 
ncon of all other papers included within the same meta-analysis. This cumulative 
nprior was then multiplied by the similarity index = 0.3, meaning that the degree of 
similarity from the control groups of studies included in the meta-analysis was 
valued at 30%. In this circumstance, the value of 0.3 is arbitrary. To evaluate how 
the similarity index affects power, we also calculated prospective power with a 
similarity index of 1.

Prospective power was calculated in the case of a two-tailed Welch’s 
independent means t-test, for the plausible range of effect sizes previously 
identified (Estimation of study power), when considering an α value of 0.05. 
Because we adopted the same methodology and the same data, the immediate 
potential impact can be assessed by comparing the prospective power of previously 
performed experiments without prior information to that of experiments with 
prior information.

Lastly, we created the web user interface RePAIR to facilitate the implementation 
of Bayesian prior methodology to improve statistical power in animal experimenta
tion. The supporting code is also freely available (https://osf.io/wvs7m/).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of the current study can be downloaded from 
https://osf.io/wvs7m/.

Code availability
All code used in this manuscript is available at https://osf.io/wvs7m/.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection The data used belonged to three categories: systematic review, simulation studies, and gathered primary data from other laboratories. 

Systematic review data was collected and is stored as two separate .csv files. The data of simulation studies was not stored, but can be 

retrieved by running the related code. Primary data gathered from other laboratories has been processed and stored in a unique .csv file. The 

data is available at https://osf.io/wvs7m/ . 

Data analysis All analysis is available at https://osf.io/wvs7m/. For the analysis, we used R (version 4.0.0) in the R studio environment on a macOS Mojave 

(version 10.14.6). The code for the RePAIR tool is available directly at the GitHub repository. We used the following R packages: tidyverse 

(version 1.3.0), shiny (version 1.5.0) and MESS (0.5.6). Part of the analysis (power calculations) were separately confirmed with G*Power 

(version 3.1.9.2).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The data that supports the findings of this study are openly available and can be downloaded at https://osf.io/wvs7m/ . By running the code, one can directly 

recreate the (unedited) images of this publication.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size This section is applicable only for the case study data. We performed a power calculation considering a Welch two sided independent means 

t-test, with an alpha level of 0.05. Based on a meta-analysis, we estimated the expected effect size to be Hedge's G = 0.4. When considering 

these parameters, a total of 200 animals is required to achieve a power of 80%. We gathered this number of animals by aggregating datasets 

of 7 laboratories. A total of 275 animals was included, 132 controls and 143 experimental (early life adversity as limited nesting and bedding 

model) animals. The sample size of the dataset was therefore sufficient according to our power calculation.

Data exclusions The data of the case study derives from a consortium, of which the purpose was larger than that of this specific case study. Blinded to the 

results, we specified a list of inclusion / exclusion criteria. For a full list of these criteria and the related explanations, please see 

Supplementary Table 4 in the Supplementary Information.

Replication In this study, no new experimental data was generated, therefore replication of experiments was not required. For simulation studies and 

Bayesian analysis, we used a 10000x sampling strategy, and we discuss the results in terms of distributions. 

Randomization Evaluation of studies for the systematic review was performed in a random order. Briefly, each study was given a pseudo random number 

generated in R. This number was then used for the ordering and assessment of publications. For the case-study, presence of randomization 

was an inclusion criteria. However, we do not have information on how randomization was conducted by the single independent laboratories.

Blinding Inclusion and exclusion criteria for the systematic review were defined before starting the review. The choice of distribution and ranges 

throughout the analysis (e.g. estimation of effect sizes, sensitivity variation range) was performed once the data was already collected, but 

prior to any data visualization. For the definition of prior information and the definition of inclusion/exclusion criteria for the case-study, the 

researcher (VB) did not have access to the effect sizes, but did have access to meta information of the study (e.g. characteristics of the ELA 

model).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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