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ABSTRACT
Regression analysis makes up a large part of supervised machine learning, and
consists of the prediction of a continuous independent target from a set of other
predictor variables. The difference between binary classification and regression is in
the target range: in binary classification, the target can have only two values (usually
encoded as 0 and 1), while in regression the target can have multiple values. Even if
regression analysis has been employed in a huge number of machine learning studies,
no consensus has been reached on a single, unified, standard metric to assess the
results of the regression itself. Many studies employ the mean square error (MSE)
and its rooted variant (RMSE), or the mean absolute error (MAE) and its percentage
variant (MAPE). Although useful, these rates share a common drawback: since their
values can range between zero and +infinity, a single value of them does not say
much about the performance of the regression with respect to the distribution of the
ground truth elements. In this study, we focus on two rates that actually generate a
high score only if the majority of the elements of a ground truth group has been
correctly predicted: the coefficient of determination (also known as R-squared or R2)
and the symmetric mean absolute percentage error (SMAPE). After showing their
mathematical properties, we report a comparison between R2 and SMAPE in several
use cases and in two real medical scenarios. Our results demonstrate that the
coefficient of determination (R-squared) is more informative and truthful than
SMAPE, and does not have the interpretability limitations of MSE, RMSE, MAE and
MAPE. We therefore suggest the usage of R-squared as standard metric to evaluate
regression analyses in any scientific domain.

Subjects Data Mining and Machine Learning, Data Science, Artificial Intelligence
Keywords Regression, Regression evaluation, Regression evaluation rates, Coefficient of
determination, Mean square error, Mean absolute error, Regression analysis

INTRODUCTION
The role played by regression analysis in data science cannot be overemphasised:
predicting a continuous target is a pervasive task not only in practical terms, but also at a
conceptual level. Regression is deeply investigated even nowadays, to the point of still
being worth of considerations in top journals (Jaqaman & Danuser, 2006; Altman &
Krzywinski, 2015; Krzywinski & Altman, 2015), and widespread used also in the current
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scientific war against COVID-19 (Chan et al., 2021; Raji & Lakshmi, 2020; Senapati et al.,
2020; Gambhir et al., 2020). The theoretical basis of regression encompasses several
aspects revealing hidden connections in the data and alternative perspectives even up to
broadly speculative view: for instance, interpreting the whole statistical learning as a
particular kind of regression (Berk, 2020), or framing deep neural networks as recursive
generalised regressors (Wüthrich, 2020), or even provocatively pushing such
considerations to the limit of setting the whole of statistics under the regression framework
(Hannay, 2020). The relevancy of the topic is clearly reflected in the wide and
heterogeneous literature covering the different aspects and insights of the regression
analysis, from general overviews (Golberg & Cho, 2004; Freund, Wilson & Sa, 2006;
Montgomery, Peck & Vining, 2021), to more technical studies (Sykes, 1993; Lane, 2002) or
articles outlining practical applications (Draper & Smith, 1998; Rawlings, Pantula &
Dickey, 2001; Chatterjee & Hadi, 2015), including handbooks (Chatterjee & Simonoff,
2013) or works covering specific key subtopics (Seber & Lee, 2012). However, the reference
landscape is far wider: the aforementioned considerations stimulated a steady flow of
studies investigating more philosophically oriented arguments (Allen, 2004; Berk, 2004), or
deeper analysis of implications related to learning (Bartlett et al., 2020). Given the
aforementioned overall considerations, it comes as no surprise that, similarly to what
happened for binary classification, a plethora of performance metrics have been defined
and are currently in use for evaluating the quality of a regression model (Shcherbakov et al.,
2013;Hyndman & Koehler, 2006; Botchkarev, 2018b, Botchkarev, 2018a, Botchkarev, 2019).
The parallel with classification goes even further: in the scientific community, a shared
consensus on a preferential metric is indeed far from being reached, concurring to making
comparison of methods and results a daunting task.

The present study provides a contribute towards the detection of critical factors in the
choice of a suitable performance metric in regression analysis, through a comparative
overview of two measures of current widespread use, namely the coefficient of
determination and the symmetric mean absolute percentage error.

Indeed, despite the lack of a concerted standard, a set of well established and preferred
metrics does exist and we believe that, as primus inter pares, the coefficient of
determination R-squared deserves a major role. The coefficient of determination is also
known as R-squared or R2 in the scientific literature. For consistency, we will use all these
three names interchangeably in this study.

Introduced by Wright (1921) and generally indicated by R2, its original formulation
quantifies how much the dependent variable is determined by the independent variables,
in terms of proportion of variance. Again, given the age and diffusion of R2, a wealth of
studies about it has populated the scientific literature of the last century, from general
references detailing definition and characteristics (Di Bucchianico, 2008; Barrett, 2000;
Brown, 2009; Barrett, 1974), to more refined interpretative works (Saunders, Russell &
Crabb, 2012; Hahn, 1973; Nagelkerke, 1991; Ozer, 1985; Cornell & Berger, 1987; Quinino,
Reis & Bessegato, 2013); efforts have been dedicated to the treatment of particular cases
(Allen, 1997; Blomquist, 1980; Piepho, 2019; Srivastava, Srivastava & Ullah, 1995;
Dougherty, Kim & Chen, 2000; Cox &Wermuth, 1992; Zhang, 2017; Nakagawa, Johnson &
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Schielzeth, 2017; Menard, 2000) and to the proposal of ad-hoc variations (Young, 2000;
Renaud & Victoria-Feser, 2010; Lee et al., 2012).

Parallel to the model explanation expressed as the variance, another widely adopted
family of measures evaluate the quality of fit in terms of distance of the regressor to the
actual training points. The two basic members of such family are the mean average
error (MAE) (Sammut & Webb, 2010a) and the mean squared error (MSE) (Sammut &
Webb, 2010b), whose difference lies in the evaluating metric, respectively linear L1 or
quadratic L2. Once more, the available references are numerous, related to both theoretical
(David & Sukhatme, 1974; Rao, 1980; So et al., 2013) and applicative aspects (Allen, 1971;
Farebrother, 1976; Gilroy, Hirsch & Cohn, 1990; Imbens, Newey & Ridder, 2005; Köksoy,
2006; Sarbishei & Radecka, 2011). As a natural derivation, the square root of mean square
error (RMSE) has been widely adopted (Nevitt & Hancock, 2000; Hancock & Freeman,
2001; Applegate et al., 2003; Kelley & Lai, 2011) to standardize the units of measures of
MSE . The different type of regularization imposed by the intrinsic metrics reflects on the
relative effectiveness of the measure according to the data structure. In particular, as a
rule of thumb, MSE is more sensitive to outliers than MAE; in addition to this general note,
several further considerations helping researchers in choosing the more suitable metric for
evaluating a regression model given the available data and the target task can be drawn
(Chai & Draxler, 2014; Willmott & Matsuura, 2005; Wang & Lu, 2018). Within the same
family of measures, the mean absolute percentage error (MAPE) (De Myttenaere et al.,
2016) focuses on the percentage error, being thus the elective metric when relative
variations have a higher impact on the regression task rather than the absolute values.
However, MAPE is heavily biased towards low forecasts, making it unsuitable for
evaluating tasks where large errors are expected (Armstrong & Collopy, 1992; Ren &
Glasure, 2009; De Myttenaere et al., 2015). Last but not least, the symmetric mean absolute
percentage error (SMAPE) (Armstrong, 1985; Flores, 1986; Makridakis, 1993) is a recent
metric originally proposed to solve some of the issues related to MAPE. Despite the yet
not reached agreement on its optimal mathematical expression (Makridakis & Hibon,
2000; Hyndman & Koehler, 2006; Hyndman, 2014; Chen, Twycross & Garibaldi, 2017),
SMAPE is progressively gaining momentum in the machine learning community due to its
interesting properties (Maiseli, 2019; Kreinovich, Nguyen & Ouncharoen, 2014; Goodwin &
Lawton, 1999),

An interesting discrimination among the aforementioned metrics can be formulated in
terms of their output range. The coefficient of determination is upper bounded by the value
1, attained for perfect fit; while R2 is not lower bounded, the value 0 corresponds to
(small perturbations of) the trivial fit provided by the horizontal line y = K for K the mean
of the target value of all the training points. Since all negative values for R2 indicate a
worse fit than the average line, nothing is lost by considering the unit interval as the
meaningful range for R2. As a consequence, the coefficient of determination is invariant for
linear transformations of the independent variables’ distribution, and an output value close
to one yields a good prediction regardless of the scale on which such variables are
measured (Reeves, 2021). Similarly, also SMAPE values are bounded, with the lower bound
0% implying a perfect fit, and the upper bound 200% reached when all the predictions
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and the actual target values are of opposite sign. Conversely, MAE, MSE, RMSE and
MAPE output spans the whole positive branch of the real line, with lower limit zero
implying a perfect fit, and values progressively and infinitely growing for worse performing
models. By definition, these values are heavily dependent on the describing variables’
ranges, making them incomparable both mutually and within the same metric: a given
output value for a metric has no interpretable relation with a similar value for a different
measure, and even the same value for the same metric can reflect deeply different
model performance for two distinct tasks (Reeves, 2021). Such property cannot be changed
even if projecting the output into a bounded range through a suitable transformation (for
example, arctangent or rational function). Given these interpretability issues, here we
concentrate our comparative analysis on R2 and SMAPE, both providing a high score only
if the majority of the ground truth training points has been correctly predicted by the
regressor. Showing the behaviour of these two metrics in several use cases and in two
biomedical scenarios on two datasets made of electronic health records, the coefficient of
determination is demonstrated to be superior to SMAPE in terms of effectiveness and
informativeness, thus being the recommended general performance measure to be used in
evaluating regression analyses.

The manuscript organization proceeds as follows. After this Introduction, in the
Methods section we introduce the cited metrics, with their mathematical definition and
their main properties, and we provide a more detailed description of R2 and SMAPE and
their extreme values (“Methods”). In the following section Results and Discussion, we
present the experimental part (“Results and Discussion”). First, we describe five synthetic
use cases, then we introduce and detail the Lichtinghagen dataset and the Palechor dataset
of electronic health records, together with the different applied regression models and
the corresponding results. We complete that section with a discussion of the implication of
all the obtained outcomes. In the Conclusions section, we draw some final considerations
and future developments (“Conclusions”).

METHODS
In this section, we first introduce the mathematical background of the analyzed rates
(“Mathematical Background”), then report some relevant information about the
coefficient of determination and SMAPE (“R-squared and SMAPE”).

Mathematical background
In the following formulas, Xi is the predicted ith value, and the Yi element is the actual ith

value. The regression method predicts the Xi element for the corresponding Yi element of
the ground truth dataset. Define two constants: the mean of the true values

�Y ¼ 1
m

Xm
i¼1

Yi (1)

and the mean total sum of squares
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MST ¼ 1
m

Xm
i¼1

ðYi � �YÞ2 (2)

Coefficient of determination (R2 or R-squared)

R2 ¼ 1�
Pm
i¼1

ðXi � YiÞ2

Pm
i¼1

ð�Y � YiÞ2
(3)

(worst value = −∞; best value = +1)
The coefficient of determination (Wright, 1921) can be interpreted as the proportion of

the variance in the dependent variable that is predictable from the independent variables.
Mean square error (MSE)

MSE ¼ 1
m

Xm
i¼1

ðXi � YiÞ2 (4)

(best value = 0; worst value = +∞)
MSE can be used if there are outliers that need to be detected. In fact, MSE is great for

attributing larger weights to such points, thanks to the L2 norm: clearly, if the model
eventually outputs a single very bad prediction, the squaring part of the function magnifies
the error.

Since R2 ¼ 1� MSE
MST and since MST is fixed for the data at hand, R2 is monotonically

related to MSE (a negative monotonic relationship), which implies that an ordering of
regression models based on R2 will be identical (although in reverse order) to an ordering
of models based on MSE or RMSE.

Root mean square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

ðXi � YiÞ2
s

(5)

(best value = 0; worst value = +∞)
The two quantities MSE and RMSE are monotonically related (through the square root).

An ordering of regression models based on MSE will be identical to an ordering of models
based on RMSE.

Mean absolute error (MAE)

MAE ¼ 1
m

Xm
i¼1

jXi � Yij (6)

(best value = 0; worst value = +∞)
MAE can be used if outliers represent corrupted parts of the data. In fact, MAE is not

penalizing too much the training outliers (the L1 norm somehow smooths out all the
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errors of possible outliers), thus providing a generic and bounded performance measure
for the model. On the other hand, if the test set also has many outliers, the model
performance will be mediocre.

Mean absolute percentage error (MAPE)

MAPE ¼ 1
m

Xm
i¼1

����Yi � Xi

Yi

���� (7)

(best value = 0; worst value = +∞)
MAPE is another performance metric for regression models, having a very intuitive

interpretation in terms of relative error: due to its definition, its use is recommended in
tasks where it is more important being sensitive to relative variations than to absolute
variations (De Myttenaere et al., 2016). However, its has a number of drawbacks, too, the
most critical ones being the restriction of its use to strictly positive data by definition and
being biased towards low forecasts, which makes it unsuitable for predictive models
where large errors are expected (Armstrong & Collopy, 1992).

Symmetric mean absolute percentage error (SMAPE)

SMAPE ¼ 100%
m

Xm
i¼1

jXi � Yij
ðjXij þ jYijÞ=2 (8)

(best value = 0; worst value = 2)
Initially defined by Armstrong (1985), and then refined in its current version by Flores

(1986) and Makridakis (1993), SMAPE was proposed to amend the drawbacks of the
MAPE metric. However, there is little consensus on a definitive formula for SMAPE, and
different authors keep using slightly different versions (Hyndman, 2014). The original
SMAPE formula defines the maximum value as 200%, which is computationally equivalent
to 2. In this manuscript, we are going to use the first value for formal passages, and the
second value for numeric calculations.

Informativeness
The rates RMSE, MAE, MSE and SMAPE have value 0 if the linear regression model fits

the data perfectly, and positive value if the fit is less than perfect. Furthermore, the
coefficient of determination has value 1 if the linear regression model fits the data perfectly
(that means if MSE = 0), value 0 if MSE = MST, and negative value if the mean squared
error, MSE, is greater than mean total sum of squares, MST.

Even without digging into the mathematical properties of the aforementioned statistical
rates, it is clear that it is difficult to interpret sole values of MSE, RMSE, MAE and MAPE,
since they have +∞ as upper bound. An MSE = 0.7, for example, does not say much
about the overall quality of a regression model : the value could mean both an excellent
regression model and a poor regression model . We cannot know it unless the maximum
MSE value for the regression task is provided or unless the distribution of all the
ground truth values is known. The same concept is valid for the other rates having +∞ as
upper bound, such as RMSE, MAE and MAPE.
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The only two regression scores that have strict real values are the non-negative
R-squared and SMAPE. R-squared can have negative values, which mean that the regression
performed poorly. R-squared can have value 0 when the regression model explains none of
the variability of the response data around its mean (Minitab Blog Editor, 2013).

The positive values of the coefficient of determination range in the [0, 1] interval, with 1
meaning perfect prediction. On the other side, the values of SMAPE range in the [0, 2],
with 0 meaning perfect prediction and 2 meaning worst prediction possible.

This is the main advantage of the coefficient of determination and SMAPE over RMSE,
MSE, MAE, and MAPE: values like R2 = 0.8 and SMAPE = 0.1, for example, clearly
indicate a very good regression model performance, regardless of the ranges of the ground
truth values and their distributions. A value of RMSE, MSE, MAE, or MAPE equal to 0.7,
instead, fails to inform us about the quality of the regression performed.

This property of R-squared and SMAPE can be useful in particular when one needs to
compare the predictive performance of a regression on two different datasets having
different value scales. For example, suppose we have a mental health study describing a
predictive model where the outcome is a depression scale ranging from 0 to 100, and
another study using a different depression scale, ranging from 0 to 10 (Reeves, 2021). Using
R-squared or SMAPE we could compare the predictive performance of the two studies
without making additional transformations. The same comparison would be impossible
with RMSE, MSE, MAE, or MAPE.

Given the better robustness of R-squared and SMAPE over the other four rates, we focus
the rest of this article on the comparison between these two statistics.

R-squared and SMAPE
R-squared

The coefficient of determination can take values in the range (−∞, 1] according to the
mutual relation between the ground truth and the prediction model. Hereafter we report a
brief overview of the principal cases.

R2 ≥ 0: With linear regression with no constraints, R2 is non-negative and corresponds
to the square of the multiple correlation coefficient.

R2 = 0: The fitted line (or hyperplane) is horizontal. With two numerical variables this is
the case if the variables are independent, that is, are uncorrelated. Since R2 ¼ 1� MSE

MST, the
relation R2 = 0 is equivalent to MSE = MST, or, equivalently, to:

Xm
i¼1

ðYi � �YÞ2 ¼
Xm
i¼1

ðYi � XiÞ2 (9)

Now, Eq. 9 has the obvious solution Xi = �Y for 1 ≤ i ≤ m, but, being just one quadratic
equation with m unknowns Xi, it has infinite solutions, where Xi = �Y ± ɛi for a small ɛi, as
shown in the following example:

� {Yi 1 ≤ i ≤ 10} = {90.317571, 40.336481, 5.619065,44.529437, 71.192687, 32.036909,
6.977097, 66.425010, 95.971166, 5.756337}
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� �Y= 45.91618

� {Xi 1 ≤ i ≤ 10} = {45.02545, 43.75556, 41.18064, 42.09511, 44.85773, 44.09390, 41.58419,
43.25487, 44.27568, 49.75250}

� MSE = MST = 1051.511

� R2 ≈ 10−8 .

R2 < 0: This case is only possible with linear regression when either the intercept or the
slope are constrained so that the "best-fit" line (given the constraint) fits worse than a
horizontal line, for instance if the regression line (hyperplane) does not follow the data
(CrossValidated, 2011b). With nonlinear regression, the R-squared can be negative
whenever the best-fit model (given the chosen equation, and its constraints, if any) fits the
data worse than a horizontal line. Finally, negative R2 might also occur when omitting
a constant from the equation, that is, forcing the regression line to go through the
point (0,0).

A final note. The behavior of the coefficient of determination is rather independent
from the linearity of the regression fitting model: R2 can be very low even for completely
linear model, and vice versa, a high R2 can occur even when the model is noticeably non-
linear. In particular, a good global R2 can be split in several local models with low R2

(CrossValidated, 2011a).
SMAPE
By definition, SMAPE values range between 0% and 200%, where the following holds in

the two extreme cases:
SMAPE = 0: The best case occurs when SMAPE vanishes, that is when

100%
m

Xm
i¼1

jXi � Yij
ðjXij þ jYijÞ=2 ¼ 0

equivalent to

Xm
i¼1

jXi � Yij
ðjXij þ jYijÞ=2 ¼ 0

and, since the m components are all positive, equivalent to

jXi � Yij
jXij þ jYij ¼ 0 8 1 � i � m

and thus Xi = Yi, that is, perfect regression.
SMAPE = 2: The worst case SMAPE = 200% occurs instead when

100%
m

Xm
i¼1

jXi � Yij
ðjXij þ jYijÞ=2 ¼ 2

equivalent to
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Xm
i¼1

jXi � Yij
jXij þ jYij ¼ m

By the triangle inequality |a + c| ≤ |a| + | c| computed for b = −c, we have that |a – b| ≤ |a|
+ |b| and thus fja�bj

jajþjbj�1. This yields that SMAPE = 2 if jXi�Yij
jXijþjYij ¼ 1 for all i = 1,…,m. Thus we

reduced to compute when nða; bÞ ¼ ja�bj
jajþjbj ¼ 1: we analyse now all possible cases, also

considering the symmetry of the relation with respect to a and b, ξ(a,b) = ξ(b,a).
If a = 0, nð0; bÞ ¼ j0�bj

j0jþjbj ¼ 1 if b = 0.
Now suppose that a,b > 0: ξ(a,a) = 0, so we can suppose a > b, thus a = b + ε, with a,b,ε > 0.

Then nða; bÞ ¼ nðbþ e; eÞ ¼ e
2bþe < 1. Same happens when a,b < 0: thus, if ground truth

points and the prediction points have the same sign, SMAPEwill never reach itsmaximumvalue.
Finally, suppose that a and b have opposite sign, for instance a > 0 and b < 0. Then

b = −c, for c > 0 and thus nða; bÞ ¼ nða;�cÞ ¼ jaþcj
jajþjcj ¼ aþc

aþc ¼ 1.
Summarising, SMAPE reaches its worst value 200% if

� Xi = 0 and Yi = 0 for all i = 1,…,m

� Xi = 0 and Yi = 0 for all i = 1,…,m

� Xi· Yi<0 for all i = 1,…,m, that is, ground truth and prediction always have opposite sign,
regardless of their values.

For instance, if the ground truth points are (1, −2, 3, −4, 5, −6, 7, −8, 9, −10) , any prediction
vector with all opposite signs (for example, (−307.18, 636.16, −469.99, 671.53, −180.55,
838.23, −979.18 , 455.16, −8.32, 366.80) ) will result in a SMAPE metric reaching 200%.

Explained the extreme cases of R-squared and SMAPE, in the next section we illustrate
some significant, informative use cases where these two rates generate discordant outcomes.

RESULTS AND DISCUSSION
In this section, we first report some particular use cases where we compare the results of
R-squared and SMAPE (“Use Cases”), and then we describe a real biomedical scenario
where the analyzed regression rates generate different rankings for the methods involved
(“Medical Scenarios”).

As mentioned earlier, we exclude MAE, MSE, RMSE and MAPE from the selection of
the best performing regression rate. These statistics range in the [0, +∞) interval, with 0
meaning perfect regression, and their values alone therefore fail to communicate the
quality of the regression performance, both on good cases and in bad cases. We know for
example that a negative coefficient of determination and a SMAPE equal to 1.9 clearly
correspond to a regression which performed poorly, but we do not have a specific value for
MAE, MSE, RMSE and MAPE that indicates this outcome. Moreover, as mentioned
earlier, each value of MAE, MSE, RMSE and MAPE communicates the quality of the
regression only relatively to other regression performances, and not in an absolute manner,
like R-squared and SMAPE do. For these reasons, we focus on the coefficient of
determination and SMAPE for the rest of our study.
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Use cases
We list hereafter a number of example use cases where the coefficient of determination and
SMAPE produce divergent outcomes, showing that R2 is more robust and reliable than
SMAPE, especially on bad poor quality regressions. To simplify comparison between the
two measures, define the complementary normalized SMAPE as:

cnSMAPE ¼ 1� SMAPE
200%

(10)

(worst value = 0; best value = 1)
UC1 use case
Consider the ground truth set REAL ¼ fri ¼ ði; iÞ 2 R2; i 2 N; 1 � i � 100g

collecting 100 points with positive integer coordinates on the straight line y = x. Define
then the set PREDj = {pi} as

pi ¼
ri if i 6�1ðmod5Þ
r5kþ1 for k � j
0 for i ¼ 5kþ 1 ; 0 � k < j

8<
: (11)

so that REAL and PREDj coincides apart from the first j points 1, 6, 11,… congruent
to 1 modulo 5 that are set to 0. Then, for each 5 ≤ j ≤ 20, compute R2 and cnSMAPE (Table 1).

Both measures decrease with the increasing number of non-matching points p5k + 1 = 0,
but cnSMAPE decreases linearly, while R2 goes down much faster, better showing the
growing unreliability of the predicted regression. At the end of the process, j = 20 points
out of 100 are wrong, but still cnSMAPE is as high as 0.80, while R2 is 0.236, correctly
declaring PRED20 a very weak prediction set.

UC2 use case
In a second example, consider again the same REAL dataset and define the three

predicting sets

PREDstart ¼ fpsi : 1 � i � 100g

psi ¼ ri for i � 10
0 for i, 10

�
PREDmiddle ¼ fpmi : 1 � i � 100g

pmi ¼ ri for i � 50 and i � 61
0 for 51 � i � 60

�
PREDend ¼ fpei : 1 � i � 100g

pei ¼ ri for i � 90
0 for i � 91

�

In all the three cases start, middle, end the predicting set coincides with REAL up to 10
points that are set to zero, at the beginning, in the middle and at the end of the prediction,
respectively. Interestingly, cnSMAPE is 0.9 in all the three cases, showing that SMAPE
is sensible only to the number of non-matching points, and not to the magnitude of the
predicting error. R2 instead correctly decreases when the zeroed sequence of points is
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further away in the prediction and thus farthest away from the actual values: R2 is 0.995 for
PREDstart, 0.6293 for PREDmiddle and −0.0955 for PREDend.

UC3 use case
Consider now the as the ground truth the line y = x, and sample the set T including

twenty positive integer points T = {ti = (xi,y
T
i) = (i,i) 1 ≤ i ≤ 20} on the line. Define REAL =

{ri = (xi,y
R
i) = (i,i + N(i)) 1 ≤ i ≤ 20} as the same points of T with a small amount of noise N

(i) on the y axes, so that ri are close but not lying on the y = x straight line. Consider now
two predicting regression models:

� The set PREDc = T representing the correct model;

� The set PREDw representing the (wrong) model with points defined as pwi = f(xi), for f
the 10-th degree polynomial exactly passing through the points ri for 1 ≤ i ≤ 10.

Clearly, pwi coincides with ri for 1 ≤ i ≤ 10, but ||pwi − ri|| becomes very large for i ≥ 11.
On the other hand ti ≠ ri for all i’s, but ||ti − ri|| is always very small. Compute now the two
measures R2 and cnSMAPE on the first N points i = 1, …, N for 2 ≤ N ≤ 20 of the two
different regression models c and w with respect to the ground truth set REAL (Table 2).

For the correct regression model, both measures are correctly showing good results. For
the wrong model, both measures are optimal for the first 10 points, where the prediction
exactly matches the actual values; after that, R2 rapidly decreases supporting the
inconsistency of the model, while cnSMAPE is not affected that much, arriving for N = 20
to a value 1/2 as a minimum, even if the model is clearly very bad in prediction.

Table 1 UC1 use case.

j R2 cnSMAPE

5 0.9897 0.9500

6 0.9816 0.9400

7 0.9701 0.9300

8 0.9545 0.9200

9 0.9344 0.9100

10 0.9090 0.9000

11 0.8778 0.8900

12 0.8401 0.8800

13 0.7955 0.8700

14 0.7432 0.8600

15 0.6827 0.8500

16 0.6134 0.8400

17 0.5346 0.8300

18 0.4459 0.8200

19 0.3465 0.8100

20 0.2359 0.8000

Note:
Values generated through Eq. (11). R2, coefficient of determination (Eq. (3)). cnSMAPE, complementary normalized
SMAPE (Eq. (10)).
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UC4 use case
Consider the following example: the seven actual values are (1, 1, 1, 1, 1, 2, 3) , and

the predicted values are (1, 1, 1, 1, 1, 1, 1) . From the predicted values, it is clear
that the regression method worked very poorly: it predicted 1 for all the seven values.

If we compute the coefficient of determination and SMAPE here, we obtain R-squared =
−0.346 and SMAPE = 0.238. The coefficient of determination illustrates that something
is completely off, by having a negative value. On the contrary, SMAPE has a very good
score, that corresponds to 88.1% correctness in the cnSMAPE scale.

In this use case, if a inexperienced practitioner decided to check only the value of
SMAPE to evaluate her/his regression, she/he would be misled and would wrongly believe
that the regression went 88.1% correct. If, instead, the practitioner decided to verify the
value of R-squared, she/he would be alerted about the poor quality of the regression.
As we saw earlier, the regression method predicted 1 for all the seven ground truth
elements, so it clearly performed poorly.

UC5 use case
Let us consider now a vector of 5 integer elements having values (1, 2, 3, 4, 5) , and a

regression prediction made by the variables (a, b, c, d, e) . Each of these variables can
assume all the integer values between 1 and 5, included. We compute the coefficient of
determination and cnSMAPE for each of the predictions with respect to the actual values.

Table 2 UC3 use case.

Correct model Wrong model
N R2 cnSMAPE R2 cnSMAPE

2 −16.1555357 0.3419595 1 1

3 −0.1752271 0.5177952 1 1

4 0.7189524 0.6118408 1 1

5 0.7968514 0.6640983 1 1

6 0.8439391 0.7162407 1 1

7 0.8711581 0.7537107 1 1

8 0.8777521 0.7772273 1 1

9 0.9069923 0.7962306 1 1

10 0.9196087 0.8101526 1 1

11 0.9226216 0.8230926 −2.149735 × 102 0.9090909

12 0.9379797 0.8362582 −1.309188 × 104 0.8333333

13 0.9439415 0.8447007 −2.493881 × 105 0.7692308

14 0.9475888 0.8518829 −2.752456 × 106 0.7142857

15 0.9551004 0.8613108 −2.276742 × 107 0.6666667

16 0.9600758 0.8679611 −1.391877 × 108 0.6250000

17 0.9622725 0.8740207 −7.457966 × 108 0.5882353

18 0.9607997 0.8784127 −3.425546 × 109 0.5555556

19 0.9659541 0.8837482 −1.275171 × 1010 0.5263158

20 0.9635534 0.8870441 −4.583919 × 1010 0.5000000

Note:
We define N, correct model, and wrong model in the UC3 Use case paragraph. R2, coefficient of determination (Eq. (3)).
cnSMAPE, complementary normalized SMAPE (Eq. (10)).
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To compare the values of the coefficient of determination and cnSMAPE in the same
range, we consider only the cases when R-squared is greater or equal to zero, and we call it
non-negative R-squared. We reported the results in Fig. 1.

As clearly observable in the plot Fig. 1, there are a number of points where cnSMAPE
has a high value (between 0.6 and 1) but R-squared had value 0: in these cases, the
coefficient of determination and cnSMAPE give discordant outcomes. One of these
cases, for example, is the regression where the predicted values have values (1, 2, 3, 5, 2) ,
R2 = 0, and cnSMAPE = 0.89.

In this example, cnSMAPE has a very high value, meaning that the prediction is 89%
correct, while R2 is equal to zero. The regression correctly predicts the first three points
(1, 2, 3) , but fails to classify the forth element (4 is wrongly predicted as 5), and the
fifth element (5 is mistakenly labeled as 2). The coefficient of determination assigns a bad
outcome to this regression because it fails to correctly classify the only members of the
4 and 5 classes. Diversely, SMAPE assigns a good outcome to this prediction because the
variance between the actual values and the predicted values is low, in proportion to the
overall mean of the values.

Faced with this situation, we consider the outcome of the coefficient of determination
more reliable and trustworthy: similarly to the Matthews correlation coefficient (MCC)

Figure 1 UC5 Use case: R-squared versus cnSMAPE. Representation plot of the values of cnSMAPE
(Eq. (10)) on the y axis and non-negative R-squared (Eq. (3)) on the x axis, obtained in the UC5 Use case.
Blue line: regression line generated with the loess smooth method.

Full-size DOI: 10.7717/peerj-cs.623/fig-1
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(Matthews, 1975) in binary classification (Chicco & Jurman, 2020; Chicco, Tötsch &
Jurman, 2021; Tötsch & Hoffmann, 2021; Chicco, Starovoitov & Jurman, 2021; Chicco,
Warrens & Jurman, 2021), R-squared generates a high score only if the regression is able to
correctly classify most of the elements of each class. In this example, the regression fails to
classify all the elements of the 4 class and of the 5 class, so we believe a good metric
would communicate this key-message.

Medical scenarios
To further investigate the behavior of R-squared, MAE, MAPE, MSE, RMSE and SMAPE,
we employed these rates to a regression analysis applied to two real biomedical
applications.

Hepatitis dataset
We trained and applied several machine learning regression methods on the

Lichtinghagen dataset (Lichtinghagen et al., 2013;Hoffmann et al., 2018), which consists of
electronic health records of 615 individuals including healthy controls and patients
diagnosed with cirrhosis, fibrosis, and hepatitis. This dataset has 13 features, including a
numerical variable stating the diagnosis of the patient, and is publicly available in the
University of California Irvine Machine Learning Repository (2020). There are 540 healthy
controls (87.8%) and 75 patients diagnosed with hepatitis C (12.2%). Among the 75
patients diagnosed with hepatitis C, there are: 24 with only hepatitis C (3.9%); 21 with
hepatitis C and liver fibrosis (3.41%); and 30 with hepatitis C, liver fibrosis, and cirrhosis
(4.88%).

Obesity dataset
To further verify the effect of the regression rates, we applied the data mining methods

to another medical dataset made of electronic health records of young patients with obesity
(Palechor & De-La-Hoz-Manotas, 2019, De-La-Hoz-Correa et al., 2019). This dataset is
publicly available in the University of California Irvine Machine Learning Repository (2019)
too, and contains data of 2,111 individuals, with 17 variables for each of them. A variable
called NObeyesdad indicates the obesity level of each subject, and can be employed as a
regression target. In this dataset, there are 272 children with insufficient weight (12.88%),
287 children with normal weight (13.6%), 351 children with obesity type I (16.63%),
297 children with obesity type II (14.07%), 324 children with obesity type III (15.35%),
290 children with overweight level I (13.74%), and 290 children with overweight
level II (13.74%). The original curators synthetically generated part of this dataset
(Palechor & De-La-Hoz-Manotas, 2019, De-La-Hoz-Correa et al., 2019).

Methods
For the regression analysis, we employed the same machine learning methods two of us

authors used in a previous analysis (Chicco & Jurman, 2021): Linear Regression (Montgomery,
Peck & Vining, 2021), Decision Trees (Rokach & Maimon, 2005), and Random Forests
(Breiman, 2001), all implemented and executed in the R programming language (Ihaka &
Gentleman, 1996). For each method execution, we first shuffled the patients data, and then we
randomly selected 80% of the data elements for the training set and used the remaining
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20% for the test set. We trained each method model on the training set, applied the trained
model to the test set, and saved the regression results measured through R-squared, MAE,
MAPE, MSE, RMSE, and SMAPE. For the hepatitis dataset , we imputed the missing data
with the Predictive Mean Matching (PMM) approach through the Multiple Imputation
by Chained Equations (MICE) method (Buuren & Groothuis-Oudshoorn, 2010). We ran 100
executions and reported the results means and the rankings based on the different rates in
Table 3 (hepatitis dataset) and in Table 4 (obesity dataset).

Hepatitis dataset results: different rate, different ranking
We measured the results obtained by these regression models on the Lichtinghagen

hepatitis dataset with all the rates analyzed in our study: R2, MAE, MAPE, RMSE, MSE and
SMAPE (lower part of Table 3).

These rates generate 3 different rankings. R2, MSE and RMSE share the same ranking
(Random Forests, Linear Regression and Decision Tree). SMAPE and MAPE share the
same ranking (Decision Tree, Random Forests and Linear Regression). MAE has its own
ranking (Random Forests, Decision Tree and Linear Regression).

It is also interesting to notice that these six rates select different methods as top
performing method. R2, MAE, MSE and RMSE indicate Random Forests as top
performing regression model, while SMAPE and MAPE select Decision Tree for the first
position in their rankings. The position of Linear Regression changes, too: on the second
rank for R2, MSE and RMSE, while on the last rank for MAE, SMAPE and MAPE.

By comparing all these different standings, a machine learning practitioner could
wonder what is the most suitable rate to choose, to understand how the regression
experiments actually went and which method outperformed the others. As explained
earlier, we suggest the readers to focus on the ranking generated by the coefficient of
determination, because it is the only metric that considers the distribution of all the ground
truth values, and generates a high score only if the regression correctly predict most of the
values of each ground truth category. Additionally, the fact that the ranking indicated

Table 3 Regression results on the prediction of hepatitis, cirrhosis, and fibrosis from electronic
health records, and corresponding rankings based on rates.

R2 MAE MSE SMAPE RMSE MAPE

Random forests (RF) 0.756 0.149 0.133 1.808 0.361 0.092

Linear regression (LR) 0.535 0.283 0.260 1.840 0.498 0.197

Decision tree (DT) 0.423 0.157 0.311 0.073 0.546 0.080

Rankings:

1st RF RF RF DT RF DT

2nd LR DT LR RF LR RF

3rd DT LR DT LR DT LR

Note:
We performed the analysis on the Lichtinghagen dataset (Lichtinghagen et al., 2013; Hoffmann et al., 2018) with the
methods employed by Chicco & Jurman (2021). We report here the average values achieved by each method in 100
executions with 80% randomly chosen data elements used for the training set and the remaining 20% used for the test set.
R2 : worst value −∞ and best value +1. SMAPE: worst value 2 and best value 0. MAE, MAPE, MSE and RMSE: worst value
+∞ and best value 0. We reported the complete regression results including the standard deviations in Table S1. R2

formula: Eq. (3). MAE formula: Eq. (6). MAPE formula: Eq. (7). MSE formula: Eq. (4). RMSE formula: Eq. (5). SMAPE
formula: Eq. (8). We highlighted the values of the coefficient of determination in bold.
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by R-squared (Random Forests, Linear Regression and Decision Tree) was the same
standing generated by 3 rates out of 6 suggests that it is the most informative one (Table 3).

Hepatitis dataset results: R2 provides the most informative outcome
Another interesting aspect of these results on the hepatitis dataset regards the

comparison between coefficient of determination and SMAPE (Table 3). We do not
compare the standing of R-squared with MAE, MSE, RMSE, and MAPE because these four
rates can have infinite positive values and, as mentioned earlier, this aspect makes it
impossible to detect the quality of a regression from a single score of these rates.

R-squared indicates a very good result for Random Forests (R2 = 0.756), and good
results for Linear Regression (R2 = 0.535) and Decision Tree (R2 = 0.423). On the contrary,
SMAPE generates an excellent result for Decision Tree (SMAPE = 0.073), meaning almost
perfect prediction, and poor results for Random Forests (SMAPE = 1.808) and Linear
Regression (SMAPE = 1.840), very close to the upper bound (SMAPE = 2) representing the
worst possible regression.

These values mean that the coefficient of determination and SMAPE generate
discordant outcomes for these two methods: for R-squared, Random Forests made a very
good regression and Decision Tree made a good one; for SMAPE, instead, Random Forests
made a catastrophic regression and Decision Tree made an almost perfect one. At this
point, a practitioner could wonder which algorithm between Random Forests and
Decision Trees made the better regression. Checking the standings of the other rates, we
clearly see that Random Forests resulted being the top model for 4 rates out of 6, while
Decision Tree resulted being the worst model for 3 rates out of 6. This information
confirms that the ranking of R-squared is more reliable than the one of SMAPE (Table 3).

Obesity dataset results: agreement between rankings, except for SMAPE
Differently from the rankings generated on the hepatitis dataset, the rankings produced

on the obesity dataset are more concordant (Table 4). Actually, the ranking of the

Table 4 Regression results on the prediction of obesity level from electronic health records, and
corresponding rankings based on rates.

Method R2 MAE MSE SMAPE RMSE MAPE

Random forests (RF) 0.865 0.412 0.512 0.087 0.714 0.094

Decision tree (DT) 0.426 1.214 2.170 0.326 1.471 0.286

Linear regression (LR) 0.254 1.417 2.828 0.296 1.681 0.325

Rankings:

1st RF RF RF RF RF RF

2nd DT DT DT LR DT DT

3rd LR LR LR DT LR LR

Note:
Mean values and standard deviations out of 100 executions with 80% randomly chosen data elements used for the
training set and the remaining 20% used for the test set. We performed the analysis on the Palechor dataset (Palechor &
De-La-Hoz-Manotas, 2019; De-La-Hoz-Correa et al., 2019) with the methods Linear Regression, Decision Tree and
Random Forests. We report here the average values achieved by each method in 100 executions with 80% randomly
chosen data elements used for the training set and the remaining 20% used for the test set. R2 : worst value −∞ and best
value +1. SMAPE: worst value 2 and best value 0. MAE, MAPE, MSE, and RMSE: worst value +∞ and best value 0. We
reported the complete regression results including the standard deviations in Table S2. R2 formula: Eq. (3). MAE formula:
Eq. (6). MAPE formula: Eq. (7). MSE formula: Eq. (4). RMSE formula: Eq. (5). SMAPE formula: Eq. (8). We highlighted
the values of the coefficient of determination in bold.
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coefficient of determination, MSE, RMSE, MAE and MAPE are identical: Random Forests
on the first position, Decision Tree on the second position, and Linear Regression on the
third and last position. All the rates’ rankings indicate Random Forests as the top
performing method.

The only significant difference can be found in the SMAPE standing: differently
from the other rankings that all put Decision Tree as second best regressor and Linear
Regression as worst regressor, the SMAPE standing indicates Linear Regression as
runner-up and Decision Tree on the last position. SMAPE, in fact, swaps the positions
of these two methods, compared to R-squared and the other rates: SMAPE says Linear
Regression outperformed Decision Tree, while the other rates say that Decision Tree
outperformed Linear Regression.

Since five out of six rankings confirm that Decision Tree generated better results than
Linear Regression, and only one of six say vice versa, we believe that is clear that the
ranking indicated by the coefficient of determination is more informative and trustworthy
than the ranking generated by SMAPE.

CONCLUSIONS
Even if regression analysis makes a big chunk of the whole machine learning and
computational statistics domains, no consensus has been reached on a unified prefered rate
to evaluate regression analyses yet. In this study, we compared several statistical rates
commonly employed in the scientific literature for regression task evaluation, and
described the advantages of R-squared over SMAPE, MAPE, MAE, MSE and RMSE.

Despite the fact that MAPE, MAE, MSE and RMSE are commonly used in machine
learning studies , we showed that it is impossible to detect the quality of the performance of
a regression method by just looking at their singular values. An MAPE of 0.7 alone, for
example, fails to communicate if the regression algorithm performed mainly correctly
or poorly. This flaw left room only for R2 and SMAPE. The first one has negative values if
the regression performed poorly, and values between 0 and 1 (included) if the regression
was good. A positive value of R-squared can be considered similar to percentage of
correctness obtained by the regression. SMAPE, instead, has the value 0 as best value for
perfect regressions and has the value 2 as worst value for disastrous ones.

In our study, we showed with several use cases and examples that R2 is more truthful
and informative than SMAPE: R-squared, in fact, generates a high score only if the
regression correctly predicted most of the ground truth elements for each ground truth
group, considering their distribution. SMAPE, instead, focuses on the relative distance
between each predicted value and its corresponding ground truth element, without
considering their distribution. In the present study SMAPE turned out to perform bad in
identifying bad regression models.

A limitation of R2 arises in the negative space. When R-squared has negative values,
it indicates that the model performed poorly but it is impossible to know how bad a
model performed. For example, an R-squared equal to −0.5 alone does not say much about
the quality of the model, because the lower bound is −∞. Differently from SMAPE that
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has values between 0 and 2, the minus sign of the coefficient of determination would
however clearly inform the practitioner about the poor performance of the regression.

Although regression analysis can be applied to an infinite number of different datasets,
with infinite values, we had to limit the present to a selection of cases, for feasibility
purposes. The selection of use cases presented here are to some extent limited, since one
could consider infinite many other use cases that we could not analyze here. Nevertheless,
we did not find any use cases in which SMAPE turned out to be more informative
than R-squared. Based on the results of this study and our own experience, R-squared
seems to be the most informative rate in many cases, if compared to SMAPE, MAPE,
MAE, MSE and RMSE.We therefore suggest the employment of R-squared as the standard
statistical measure to evaluate regression analyses, in any scientific area.

In the future, we plan to compare R2 with other regression rates such as Huber metric
Hδ (Huber, 1992), LogCosh loss (Wang et al., 2020) and Quantile Qγ (Yue & Rue,
2011). We will also study some variants of the coefficient of determination, such as the
adjusted R-squared (Miles, 2014) and the coefficient of partial determination (Zhang,
2017). Moreover, we will consider the possibility to design a brand new metric for
regression analysis evaluation, that could be even more informative than R-squared.

LIST OF ABBREVIATIONS
COVID-19 Coronavirus disease 2019

DT Decision Trees

LR Linear Regression

MAE Mean absolute error

MAPE Mean absolute percentage error

MSE Mean square error

R2 R-squared, coefficient of determination

RF Random Forests

RMSE root mean square error

SMAPE symmetric mean absolute percentage error
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