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this second position paper was chosen unanimously, and specific parts were drafted by authors’ subgroups. The first draft was compiled by first and corresponding authors and discussed in 
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1  | INTRODUC TION

Alterations in immune tolerance toward proteins of either self or for-
eign infectious and noninfectious origin are critical in the pathogen-
esis of autoimmune and allergic diseases, respectively, through an 
imbalance between antigen (Ag)-triggered activating signals and the 
ensuing suppressive responses. Diverse alterations in the number or 
function of regulatory T cells (Tregs) have been documented in these 
conditions. This T-cell subpopulation suppresses other T cells and 
immune cells using both soluble molecules and contact-dependent 
mechanisms, in order to maintain self-tolerance and regulate effec-
tor responses during immunity.1-4

The mechanistic complexity of autoimmune and allergic diseases 
is reflected by their heterogeneous clinical presentations and dis-
ease courses and by the challenges in developing therapeutic strat-
egies beyond the first-line broad immunosuppressive approach. 
Building upon the use of small-molecule drug (SMD)—compounds 
obtained by chemical synthesis such as synthetic glucocorticoids, 
beta-agonists, and leukotriene receptor antagonists—the advent 

of biologicals has ushered in the application of targeted therapies, 
which are increasingly successful due to improved understanding 
of disease phenotypes and endotypes.5,6 Yet, with the exception 
of allergen immunotherapy for some IgE-mediated responses, dis-
ease-modifying strategies remain to be identified for most severe 
allergic and/or immune-driven chronic diseases such as food allergy, 
atopic dermatitis, severe asthma, and severe chronic obstructive 
pulmonary disease (COPD) and for autoimmune diseases such as 
systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). 
Cell-based immunotherapies, aided by cell engineering, have been 
described as the “third pillar” of therapeutics, the other two being 
SMD and biologicals,7 and represent the only pillar with the potential 
for curative therapy for these diseases.

Oncology has seen dramatical improvement of clinical out-
comes with adoptive cell therapies (ACT) using T cells engineered 
to express either Ag-specific T-cell receptors (TCRs) or chimeric Ag 
receptors (CARs) targeting specific tumor antigens that redirect 
T cells toward killing cancerous cells with high selectivity. CAR-T 
cell–based treatments recently received FDA/EMA approval for 
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the treatment of acute lymphoblastic leukemias and advanced lym-
phomas, while clinical trials for other hematologic and solid can-
cers are underway. Preclinical models have also demonstrated the 
efficacy of CAR-T/TCR-transferred cells in autoimmune settings 
in “killing” specific pathogenetic players such as B cells producing 
auto-Abs.

Besides targeted cell elimination, ACT in non-neoplastic diseases 
can be used to regain appropriate and stable Treg function against 
inflammatory responses while preserving protection against infec-
tion. Using different strategies, Treg-based ACT have been pursued 
for the treatment of autoimmune diabetes (type 1 diabetes, T1D) 
and for pathologic immune responses toward alloantigens as in 
graft-versus-host disease (GVHD) and transplant rejection preven-
tion or protein replacement therapies, such as factor VIII in hemo-
philia.8-11 Clinical trials of Treg-based ACT in SLE, discussed in the 
following paragraphs, indicate that this approach should be effica-
cious in other complex immune diseases where the causative Ag is 
unknown by re-establishing a tolerogenic microenvironment,1,4,12-17 
also taking advantage of the ability of Tregs to traffic to tissues and 
exert local immunoregulatory activities.15

This EAACI position paper of the Task Force of Immunopharmacology 
(TIPCO) reviews the various T cell–based strategies, their current ap-
plication in preclinical and clinical autoimmunity settings, and the lim-
itations encountered along with the strategies applied to overcome 
them. On these premises, it brings then the focus on studies currently 
supporting or testing the application of T cell–based approaches, es-
pecially Treg-based, in severe IgE-mediated responses and in severe 
phenotypes of asthma and COPD, providing up-to-date tables of pre-
clinical and clinical studies. By framing the potential of ACT through 
critical revision of current challenges and unmet needs, this review 
aims at underscoring the groundbreaking potential of cell-based ther-
apies, as a curative approach is still missing in most allergic and im-
mune-based chronic inflammatory disorders.

2  | TREG CELL S IN AC T: RECRUITING 
THE LONG -TERM ARM OF IMMUNE 
REGUL ATION IN THE THER APEUTIC 
BAT TLEGROUND

Tregs constitute a subpopulation of T cells (Figure 1) that regulate the 
function of T cells and other immune cells using both soluble factors 
and contact-dependent mechanisms during immune responses.1,2 
Alterations in Treg numbers and/or function are critical determi-
nants in the pathogenesis of allergic, autoimmune, and chronic in-
flammatory disorders, as well as in reactions to allotransplants.15 
Due to their potent suppressive capacity, even at very low Treg-to-T 
effector cell ratios,18 the potential of Tregs as therapeutic tools in 
restoring immunological tolerance has been actively pursued.19 To 
this end, studies uncovering the complex dynamics of Treg differen-
tiation and interplay with T cells, as well as the mechanisms of their 
immunosuppressive function have been of utmost importance in the 
design of Treg-based ACTs.

Tregs constitute about 1%-3% of circulating CD4+T cells, and 
they are usually characterized by high expression of the interleukin 
(IL)-2 receptor (IL-2R) α chain (IL-2Rα) and forkhead box P3 (FoxP3), 
the master transcription factor for Treg differentiation. They are 
further characterized by their site of differentiation, namely thy-
mus-derived Tregs (tTregs) and peripherally induced Tregs (pTregs), 
alongside their in vitro counterparts, commonly referred to as iTregs 
(Table 1). A phenotypic distinction between tTregs and pTregs has 
not been fully established, and various surface and intracellular 
markers define Tregs based on their functional characteristics and 
plasticity (Table 1).20,21 In the context of allergic diseases, generation 
of pTregs is favored under suboptimal activation of Ag-presenting 
cells (APCs), high Ag doses, and a pro-tolerogenic environment rich 
in IL-10, transforming growth factor (TGF)-β, and retinoic acid.22,23

When activated by their cognate Ag through TCR interaction, 
Tregs can implement their immunoregulatory function by multiple 
molecular mechanisms (Figure 2). When residing outside of lym-
phoid organs, Tregs play a key role in tissue homeostasis and repair 
through the release of the growth factor amphiregulin.24-28

However, Treg phenotypes in vivo go beyond this dichotomous 
classification, as their specific immunosuppressive functions are 
determined by a complex interplay between the genetic back-
ground and the contextual cellular/molecular milieu in which they 
reside.13 Human Tregs in fact display phenotypic plasticity and as-
sume functional heterogeneity by expressing, along with FoxP3, 
other transcription factors—such as T-bet, GATA3, and RORγt—and 
chemokine receptors in analogy to associated effector subsets—for 
example, Th1, Th2, and Th17. This shift results in enhanced sup-
pression of local, specific responses 29-37 and possibly limits det-
rimental bystander suppression.38 However, the stability of Treg 
functions can be undermined within an inflammatory environment, 
where TCR-mediated stimulation skews them toward effector 
phenotypes with loss of FOXP3 and the production of pathogenic 
cytokines, such as interferon (IFN)-γ and IL-17.39,40 These dynamic 
features (Figures 1 and 2) underscore the importance of phenotype 
stability and plasticity as limiting factors currently under intense 
scrutiny for the successful development of Treg-based therapies 41-

44 (see paragraph 5).

3  | T CELL–BA SED THER APIES IN 
IMMUNE-DRIVEN DISE A SES:  AC T 
PATHFINDERS IN NON-NEOPL A STIC 
DISORDERS

3.1 | The basics: multiple strategies for T cell–based 
therapies

Different approaches exist to redirect altered immune responses by 
restoration of Treg function: either indirectly boosting Treg expan-
sion in vivo, or isolating Tregs from peripheral blood and subsequent 
reinfusion as ACT, without or following ex vivo expansion. In the lat-
ter case, isolated T cells are expanded ex vivo to high purity either as 
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polyclonal pool or as an Ag-specific population: this cellular pool can 
be generated by Ag-driven clonal expansion or by different types 
of cell engineering 45 (Figure 3). Initial therapeutic applications of 
Treg ACT were performed in the field of transplantation that pre-
vented GVHD after allogeneic stem cell transplantation 46-48 and 
solid organ (kidney and liver) transplant rejection.49,50 Cells are then 
re-administered to the patient and the entire procedure is imple-
mented through standardized, good manufacturing practice (GMP)-
compliant procedures 45,51-55 (Figure 4A). The use of polyclonal 
Treg activation through the TCR was the initial strategy for ACT in 
immune-driven diseases and the one currently most established in 
clinical use, employing enrichment of CD25+ cells by magnetic beads 
followed by expansion of Tregs with anti–CD3/CD28-coated beads 
or antigen-presenting cells in the presence of IL-2.51,56,57 To achieve 
targeted suppression using a smaller number of Tregs, the admin-
istration of ex vivo-expanded allo-Ag-specific Tregs was pursued. 
This approach is also based on findings in humanized mouse models 
showing that Ag-specific Tregs were more potent than polyclonal 
Tregs in controlling local inflammation and that they inhibit the prim-
ing of T cells in secondary lymphoid tissues.36 This method has been 
used or planned in clinical trials for hematopoietic and solid organ 
transplantation and GvHD treatment/prophylaxis, while pursued in 
autoimmune diseases for juvenile and adult T1D.58 The procedures 
to isolate low-frequency, Ag-specific cells are complex and expen-
sive, with estimation of optimal dose for efficacy being a complex 
feature including considerations on the Treg/effector T cell ratio,59 

but also on Treg trafficking and retention in tissues [discussed in 58]. 
Antigen-specific T cells are also evaluated in preventing viral infec-
tion in primary immunodeficiency disorders using conventional T 
cells.60 The use of CD8+cytotoxic T cells bearing Ag-specific TCR 
or CAR, designed to redirect cancer patient's T cells to specifically 
target tumor cells, is the main ACT strategy exploited for cancer 
therapy.61,62

The use of engineering Ag-specific TCRs or CARs provides 
also for Tregs efficient gene-transfer platforms in order to reliably 
produce Tregs of defined Ag specificity and sufficient number 24 
(Figure 4B and C). Structurally, CARs are recombinant receptors tar-
geting specific surface antigens, featuring an Ag-binding single-chain 
variable fragment (scFv) with a hinge region and a transmembrane 
domain,63,64 capable of redirecting the specificity and function of 
the CAR-bearing T cells.9 This MHC-independent strategy to pro-
duce Ag-specific T cells has resulted in four different generations of 
CAR-T cells (Figure 4D): (1) CAR containing only the CD3ζ activating 
domain; (2) CAR containing an additional costimulatory domain (ei-
ther CD28 or CD137); (3) CAR combining both CD28 and CD137 co-
stimulatory domains; and (4) the so-called universal CAR (UniCAR), 
which is engineered to link the hinge region to a P1 domain (a pep-
tide or protein) that binds to another peptide or protein P2 fused 
to an scFv recognizing a surface molecule on target cells. Recently, 
CARs were developed that carried Ag domains for targeting B cells 
with specific surface Ig receptors (BCR) that secrete pathogenic 
antibodies: either auto-antibodies (chimeric auto-Ag receptor T or 

F I G U R E  1   Interplay among Tregs and other CD4+ T cells. Upon contextual stimulation, naïve CD4+ T cells can differentiate into several T 
helper (Th) and different suppressive T cell subsets, for example, Treg expressing FoxP3 constitutively (Treg) or not expressing FoxP3, such 
as Tr1 and Th3 cells (colored circles), all exerting relatively distinct roles. These differentiation programs are controlled by different cytokines 
(in red) and each CD4+ T-cell subset can be identified by lineage-specific transcription factors (in blue, italic) that support their function (as 
listed) and cytokine secretion pattern (in black: those with immunosuppressive functions are in bold). Importantly, T-cell lineages harbor a 
certain plasticity that allows lineage shifts across the different subsets (double-headed arrows)
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TA B L E  1   Major human T regulatory phenotypes

Human regulatory T cells References

Generally defined as CD4 + CD25+CD127-, expressing FoxP3+ 175

tTregs CD4 + cells expressing FoxP3 + constitutively, derived from the thymus, with Treg-
specific demethylated regions (TSDRs)

176,177

Site: Lymphoid organ, peripheral blood, tissues

tTreg subsets

CD4+FoxP3loCD45RA+ Naive, resting Treg 175,178,179

CD4+FoxP3hiCD45RA- Activated T cells or activated Treg, subsets with markers, such as HLA-DR, GITR, TIGIT, 
LAG3, or CD39, with superior suppressive functions

175,176,180

pTregs CD4+FoxP3-, inducible FoxP3 expression upon activation with, for example, IL-2, TGF-β, 
retinoic acid

175,178,179,181

Site: Peripheral tissues

iTregs In vitro-generated, inducible FoxP3 expression, similar to pTreg 176

Markers of CD3 + CD4+functional Tregs

Markers discriminating between tTregs and pTregs

HELIOS Suitable but not perfect marker to separate tTregs (HELIOS+) from pTregs (HELIOS-) 176

TIGIT T-cell immunoreceptor with Ig and ITIM domain, surface marker 182

Markers Ligand Function References

Surface

CD25 IL-2 Promotes Treg differentiation, survival, expansion, and function (1) 74,183

CCR6 CCL20 Memory Tregs and IL-17–producing suppressive Tregs 175

CD39 Hydrolyzes ATP and ADP equally well to AMP; expression by >60% of FoxP3+ cells (1) 183

CD73 Degrades AMP to adenosine (1)

CTLA4 (CD152) CD80/CD86 Constitutively/preferentially intracellular; inhibits T-cell activation through competition 
for costimulation with CD28

175,178,183

GARP TGF-β Also defined as LLRC32 binds latent TGF-β complex, not detectable on freshly isolated 
Tregs, expressed upon in vitro activation

178-1

GITR (CD357) GITR-L Promotes Treg differentiation and expansion, highly expressed in effector Tregs; 
inhibition of Treg activity in short term

184-186

HLA-DR TCR Expressed on one third of effector Tregs in peripheral blood; subset with superior 
suppressive function

175

ICOS ICOS-L Costimulatory receptor of TCR, expressed by memory-like Tregs, stimulates IL-10 
synthesis

175,178,179

LAG-3 (CD223) FGL-1, MHC II Binds MHC class II, identifies activated and terminally differentiated Treg, negatively 
regulates T cells proliferation and activation

175,187

LAP TGF-β TGF-β binding forms an inactive latent LAP-TGF-β complex; late-stage Treg activation 
marker, expressed upon in vitro activation

175,176,180

PD-1 (CD279) PD-L1/2 Anti-apoptotic on Tregs, expressed in Treg subsets 178

TNFR2 (CD120b) Constitutively and preferentially expressed by all human thymic Tregs and approx. 70% 
of pTregs

175,178,179

Intracellular

FoxP3 Master regulator, essential for Treg generation, function, and survival 20

HELIOS Ikaros zinc finger transcription factor 176

Note: (1) It mediates Tregs’ immunosuppressive activity (see Figure 2).

Abbreviations: ADP, adenosine diphosphate; AMP, adenosine monophosphate; ATP, adenosine triphosphate; CCL20, chemokine ligand 20; CCR6, 
chemokine receptor 6; CD, cluster of differentiation; CTLA4, cytotoxic T lymphocyte–associated protein 4; GARP, glycoprotein A repetitions 
predominant; GITR, glucocorticoid-induced TNFR-related protein; GITR-L, GITR-ligand; HELIOS, Ikaros zinc finger transcription factor; HLA-DR, 
human leukocyte Ag-DR isotype; ICOS, inducible T-cell COStimulator; ICOS-L, ICOS ligand; IFN, interferon; IL interleukin: iTreg, in vitro-generated, 
induced Treg; LAG-3, lymphocyte-activation gene 3; LAP, latency-associated peptide; LRRC32, leucine-rich repeat-containing protein 32; MHC, 
major histocompatibility complex; PD1, programmed cell death protein 1 receptor; PD-L, programmed death ligand; pTreg, peripheral Treg; TCR, 
T-cell receptor; TGF-β, transforming growth factor beta; TIGIT, T-cell immunoreceptor with Ig and ITIM domains; TNFR2, tumor necrosis factor 
receptor 2; tTreg, thymus-derived Treg.
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CAAR) or anti-drug antibodies developed during replacement ther-
apies (as for factor VIII in hemophilia, termed B cell–targeting Ab 
receptors or BAR).8,17,65

Engineered Tregs were employed in immune disease models 
initially using TCR-transduced cells 9,66,67; CAR-Treg technology has 
been tested more recently, in models of colitis and autoimmune 
encephalomyelitis.10,63,65,68

There are important structural and functional features distinguish-
ing CAR-Tregs versus synthetic TCR-Tregs, which expand, rather than 
duplicate, the application of antigen-specific targeting strategies. 
These can function as relative strengths or limitations, guiding their 
application for best clinical efficacy.69 Overall, both approaches repre-
sent a step forward compared to polyclonal Tregs expanded in vitro in 
terms of specificity and potency, while they significantly increased cell 
yield compared to in vitro expansion of Ag-specific Tregs derived from 
patients. In particular, some studies on CAR effector T cells indicated 
that their efficacy is dependent upon high Ag density on cell target, 
while low Ag levels are sufficient to activate TCR-mediated stimula-
tion.1-3 To this end, Ags overexpressed on diseased cells could be bet-
ter targeted by CAR-Tregs while cells bearing recombinant TCRs could 
efficiently target systemic, low-level antigens. Moreover, CAR-Tregs 
have the following characteristics over TCR-Tregs 29: (1) They are non–
MHC-restricted and less dependent on IL-2; (2) besides Ag-specific 
function, they exploit Tregs function of dominant “bystander” sup-
pression, which is the ability to suppress effector T cells with different 
Ag specificities 69,70; and (3) they maintain all Treg features including 
high surface expression of CTLA-4, latency-associated peptide (LAP) 
and the inactive precursor of TGF-β. Second-generation CAR-Tregs 
include a CD28 costimulatory domain.71 The CD28 domain affects 

F I G U R E  2   Molecular mechanisms of Treg Immunomodulatory functions on T cells. Tregs can suppress effector immune responses 
by several means: (1) deprivation of microenvironment from essential cytokines (ie, IL-2); (2) metabolic disruption, by degrading ATP to 
immunosuppressive adenosine; (3) inhibition of NFAT and IL-2 production by ICER (inducible cAMP early repressor) (207); (4) secretion 
of inhibitory cytokines such as IL-10, IL-35, and TGF-β; (5) kynurenine-mediated apoptosis by the tryptophan-catabolizing enzyme IDO; 
(6) modulation of Ag-presenting cell (APC) maturation toward a tolerogenic phenotype, through binding to MHC class II via LAG3 and by 
engagement/expression of the costimulatory molecules CTLA-4 and PD1; and (7) death of T cells by cytolysis mediated by perforin and 
granzyme B

F I G U R E  3   Overview of Treg-based therapeutics. Current 
preclinical studies and clinical trials of Treg-based therapies are 
based on two major approaches: in vivo boosting of Treg number 
and function via a series of Treg-promoting interventions (see 
Section 3.2.1), or adoptive transfer of purified, GMP-compliant 
Tregs previously modified ex vivo (see Section 3.1). In the latter 
case, cells are reinfused either following expansion with polyclonal 
or Ag-specific stimulation or after engineering with Ag-specific T 
cell receptors (TCR, MHC-restricted) or chimeric T-cell receptors 
(non–MHC-restricted) of different types [chimeric Ag receptor 
(CAR), chimeric auto-Ag receptor (CAAR), or B-cell Ab receptor 
(BAR) (see Section 3.1)]
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CAR-Treg surface phenotype and functions and only CAR-Tregs with 
CD28 signaling domains induced significant suppression of T cell–me-
diated graft rejection in vivo.72 Therefore, careful selection of chimeric 
receptors is needed to enable prolonged immunomodulatory effects 
of primary human cells to increase the chances for translation into 
human therapies.73 In general, another potentially problematic aspect 
of recognition of specific molecules on target tissues by engineered 
Tregs could be ascribed to the Ag-specific suppression exerted by 
Tregs via cytotoxic activity, through secretion of granzyme and perfo-
rin (see Figure 2).6 Although cytotoxicity has not been so far reported 
in preclinical settings, CAR-Treg cells have shown cytotoxic activity in 
vitro.4,5 The impact of this mechanism needs to be investigated, to 
identify the disease settings in which may occur preferentially over 
other suppressive mechanisms.

3.2 | Current applications: T cell–based approaches 
in preclinical and clinical studies

Predominantly Treg-based cell therapies (Figure 3) have been tested 
in preclinical models (Table 2), and clinical trials are expanding their 

evaluation to a growing number of immune-mediated diseases 
(Table 3) using various in vivo and ex vivo T-cell expansion/engineer-
ing methodologies.

3.2.1 | In vivo induction and expansion of Tregs

Several protocols have been assessed that promote in vivo the ex-
pansion of Tregs or depletion of effector cells, thus increasing the 
Treg-to-T cell ratio. These include administration of IL-2, the mam-
malian target of rapamycin (mTOR) inhibitor rapamycin/sirolimus, 
certain anti-CD3 monoclonal antibodies [reviewed in 20], and die-
tary or microbe-derived pro-tolerogenic stimulations (Tables 2.1 and 
3.1). Stimulation with IL-2 is crucial for Treg function and homeosta-
sis.74 Tregs recognize IL-2 via the trimeric IL-2R composed of IL-2Rα 
(CD25), IL-2Rβ (CD122), and IL-2Rγ (CD132). Improved IL-2 thera-
pies, such as CD25-biased IL-2/anti-IL-2 Ab complexes (briefly, IL-2 
complexes), are able to selectively and potently stimulate Tregs.75 An 
immune cell-specific bias is achieved in IL-2 complexes by temporal 
interference with the IL-2R epitope, thus favoring either preferen-
tial activation of Tregs or CD8+ T cells and natural killer cells.76,77 

F I G U R E  4   Adoptive Cell Therapies: overview of procedures, T cell types, and constructs. A, Peripheral blood from a patient is collected, 
white blood cells are enriched by leukapheresis, and CD8+ cytotoxic T cells or Tregs are isolated to undergo either viral transduction with 
Ag-specific T cell receptors of different types (B, C. III - IV.), or stimulation and subsequent reinfusion as polyclonal/Ag-specific Tregs (C.I-II). 
Cells are then expanded in vitro with specialized culture conditions, sorted, tested to meet stringent GMP standards, and subsequently 
infused back into the patient [Modified with permission from (16)]. D, Schematic structures of successive CAR generations. See Section 3.1 
for description. [Modified with permission from (63)]

(I)

(A)

(B) (C)

(D)

(I) (II) (III) (IV)
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TA B L E  2   Treg-based adoptive therapies in preclinical models of inflammatory disease

Part 1. In vivo-expanded Tregs

Disease models and Treatment Biological effect References

Airway inflammation

Ovalbumin/allergen-induced

All-trans-retinoic acid, o.g. CD4+CD25+ FoxP3+ Tregs induction dampened allergic inflammation; administration of 
retinoic acid with allergen reduced airway inflammation

82

B cell–induced Tregs i.v. B cell–induced CTLA4+OX40+PD1+TNFR2+IL-10+ producing Tregs, suppressed Th2 
cytokine production and eosinophilic infiltration

188

CTLA4-Ig i.p. Bone marrow–derived macrophages/Tregs induction; CTLA4-Igs block T-cell activation via 
NO/Treg/TGF-β-dependent pathways

189

IL-2/anti-IL-2 Ab complexes Expansion of FoxP3+ Tregs leads to suppression of murine airway inflammation induced by 
chicken egg ovalbumin or Schistosoma mansoni egg Ag

75,190

IVIG Ag-specific pTregs CD4+CD25+ Tregs, inhibition of airway hyperresponsiveness and inflammation 191

IVIG Ag-specific pTregs expansion, as IVIG induces tolerogenic DCs 192

Luteolin i.p. Promotion of luteolin-induced CD4+CD25+ Tregs leads to reduction of airway 
hyperresponsiveness, airway eosinophilia, lower IgE and Th2 cytokines

87

Maresin-1 i.v. CD4+FoxP3+ Tregs/Type 2-innate lymphoid cells de novo generation, restrained allergic 
lung inflammation

88

Streptococcus pneumoniae cell wall 
components i.t.

S.pneumoniae-induced CD4+CD25+ Tregs reduce airway inflammation that blocked NK 
T-cell activity

90

Bacterial/viral-induced

DNA methylation inhibitor 5-aza-
2’deoxycytidine (DAC) i.t.

DAC-induced lung CD4+CD25+ FoxP3+ Tregs reduced ongoing lung inflammation 193

135

Food Allergy

Ovalbumin/allergen-induced

OVA-Treg+ Insulin-like growth 
factor 2 (IGFR2)-induced i.p.

Enhances TGF-β–producing Tregs, reduces food allergy symptoms 194

Cow milk allergy

Allergen with nondigestible 
oligosaccharides (NDO) o.g.

CD4+CD25+ Tregs induction, NDO improves whey-induced OIT 85

Hydrolyzed whey protein CD4+CD25+ FoxP3+ Tregs induction by whey specific OIT prevents allergic symptoms to 
cow’s milk

84

Type 1 Diabetes (T1D)

T1 Diabetes (NOD mouse)

D-Mannose oral FoxP3+ Tregs induction; suppression of autoimmune diabetes 86

DNA vaccine GAD65 fragment 
and IL-10, im

CD4+CD25+ FoxP3+ Tregs induction, delayed diabetes onset, anti-CD25 abolished 
protective effect

195

IL-2/anti-IL-2 Ab complexes Expansion of FoxP3+ Tregs results in significant delay of disease onset in NOD mice 75,196

IL-13Rα1 gene knockout TGF-β+FoxP3+ Tregs induction; delay in rise of blood glucose levels and development of 
T1D

197

Inflammatory bowel disease (IBD)

TNBS-induced IBD

Lactobacillus o.g. Tregs (iTregs) induction; suppression of TNFα and IL-17A and disease development 91

TNBS o.g./TNCB epicutaneous CD4+CD25+ FoxP3+ Tregs induction; abrogation of intestinal inflammation 198

DSS-induced IBD

Galectin-3, o.g. Tregs induction and inhibition of intestinal inflammation 199

Multiple sclerosis

MOG-induced experimental autoimmune encephalomyelitis, EAE

Adiponectin i.p. Adiponectin induces FoxP3+TGF-β+Treg expansion and reduction of EAE symptoms 200

Chloroquine treatment i.p. Expands Tregs and decreases DCs resulting in suppression of inflammation and EAE 
development

201

154

(Continues)



98  |     ROTH-WALTER ET AL.

Part 1. In vivo-expanded Tregs

Disease models and Treatment Biological effect References

IL-2/anti-IL-2 Ab complexes Expansion of FoxP3+ Tregs before EAE induction results in significant delay of disease onset 75,202

Probiotic strains, o.g. Promoted Tregs; adoptive transfer of probiotic-induced Tregs reduced EAE development by 
IL-10 increase and by decrease of Th1 and Th17 cytokines

92

Violacein i.p. CD4+FoxP3+ Tregs induction; milder EAE symptoms 89

Zymosan i.p or zymosan-primed 
CD4 T cells iv

Promoted Tregs and prevented or reversed clinical development of EAE 203

Rheumatoid arthritis (RA)

Collagen-induced arthritis

M tuberculosis HSP65 peptide 
1 i.n.

FoxP3 Tregs induction; Peptide 1 or adoptive transfer of CD4+ cells protected against RA 204

IL-2/anti-IL-2 Ab complexes Expansion of FoxP3+ Tregs dampens disease severity 75,205

rIL-35 s.c. Regulatory Treg CD25+CD39+FoxP3+/CD25-CD39+ CD4+FoxP3+ induction; dampened 
arthritis development

206

Part 2. In vitro expanded Tregs

Disease models and Treatment Biological effect References

Pulmonary arterial hypertension

CD4+CD25+ Tregs iv Reduced hypoxia-induced pulmonary hypertension and pro-inflammatory cytokines, 
increased IL-10

207

LPS-induced lung injury

CD4+CD25+ Tregs iv Reduced lung inflammation in neonatal mice 208

Ovalbumin/allergen-induced airway inflammation

CEA-specific CAR-Tregs iv Reduced severity of asthma by homing to CEA-expressing airways 102

Food allergy

Cow milk/house dust mite/peanut/ovalbumin allergy

CD5+CD19+CX3CR1+ B cells iv Induced Tregs and suppressed food allergy 209

EPIT- CD4+CD25+ Tregs iv Milk-specific EPIT Tregs prevent sensitization to HDM and peanut 210

Cerebral inflammation

Intracerebral hemorrhage

CD4+CD25+ Tregs iv Reduction pro-inflammatory cytokines, neuroprotection 211

Subarachnoid hemorrhage

CD4+CD25+ Tregs iv Reduction of cerebral inflammation by suppression of TLR4/NF-κB pathway 212

LPS-induced inflammation

CD4+CD25+ Tregs iv Reduced perinatal brain inflammation after maternal LPS exposure 213

Diabetes (T1D)

T1 Diabetes (NOD mouse)

MHC class II peptide-specific 
CAR-Tregs i.v.

CAR-Tregs homed to pancreatic lymph nodes and delay (not prevent) development of T1 
diabetes

214

Inflammatory bowel disease (IBD)

T cell–induced colitis

CEA-CAR-Tregs i.v. CEA-specific CAR-Tregs home to CEA-expressing colon and reduce severity of colitis 99

FoxP3+Tregs i.v. Expression of ubiquitinase USP7 is important for Treg capacity to resolve inflammation 215

RA treated Thy1.1+Tregs i.v. RA-Tregs suppress acute intestinal inflammation, but not an established chronic 
inflammation

83

Tregs or B cells i.v. IL-10–independent Tregs prevented colitis development 216

Necrotizing enterocolitis model

Tregs i.v. Transfer of wild-type Tregs decreased enterocolitis severity in HO-1 heterozygous pups 217

TNBS colitis

Chimeric receptor Tregs i.v. Significant amelioration of hapten-specific colitis and improved survival 98

TA B L E  2   (Continued)
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Part 2. In vitro expanded Tregs

Disease models and Treatment Biological effect References

Multiple sclerosis

MOG-induced experimental autoimmune encephalomyelitis, EAE

Minocycline-generated DC i.v. Increased CD4+CD25+FoxP3+cells, suppressed EAE development 218

MOG-specific CAR-Tregs i.n. 
or i.p.

Intranasal injection of CAR-Tregs suppressed ongoing encephalomyelitis 101

siRNA-silenced lymph node cells Increased IL-10+ CD4cells and CD4+CD25+FoxP3+cells suppressed EAE development 219

MBP-induced experimental autoimmune encephalomyelitis, EAE

FoxA1+ Tregs i.v. Induced CD4+FoxA1+CD47+CD69+PD-L1(hi)FoxP3-(neg) Treg; FoxA1 Tregs kill activated 
T cells via PDL1. Adoptive transfer inhibited EAE

220

MBP-specific Tr17 i.v. RORγt+ Treg (Tr17) cells induction, inhibition of CNS inflammation 221

Psoriasis

TNFα-induced psoriasis in TNFα transgenic mice

FoxP3+cells i.v. Inhibition of pro-inflammatory phenotype macrophages and reduced psoriasis symptoms 222

Rheumatoid arthritis (RA)

Collagen-induced arthritis

B cell–induced iTregs i.v. Induction of LAG3+ Tregs (IL-4+, IL-10+, TGF-β+), reduced osteolysis in hind footpads 223

Collagen-specific Tregs i.v. Tr1 Tregs (IL-10+, IL-4-, GITR+, CD39+, granzyme B+) induction, reduced clinical symptoms 
in preventive and curative setting

224

Collagen-specific Tregs i.v. Reversed collagen-induced arthritis progression and TNFα production 225

iPSC-Tregs transduced with TCR 
and FoxP3 genes i.v.

Suppression of joint inflammation, osteoclast activity, and Th17 production 226

Mesenchymal stem cells plus Tr1 
cells i.v.

Collagen-specific CD4+CD25+FoxP3+ Tregs induction, superior prevention of clinical 
disease development compared to MSC or Tr1 only

227

Other diseases

Experimental autoimmune cholangitis

Tregs i.v. Transfer of control Tregs, but not of TGF-β RII-negative mice reduced inflammatory 
responses by IL-10 production

228

Autoimmune thyroiditis

Ag-specific Tregs i.v. Tregs from B cell–deficient animals have a stronger suppressive function 229

Autoimmune hepatitis

Tregs cocultured with hepatic 
stellate cells i.v.

Reduced liver injury and inflammation 230

Autoimmune neuritis

Induced Tregs i.v. Reduction of infiltration in sciatic nerve 231

Note: Abbreviations: CAR: chimeric Ag receptor; CEA: carcinoembryonic Ag; CTLA4: T lymphocyte–associated protein 4; DAC: 5-aza-
2’deoxycytidine; DC: dendritic cell; DSS: dextran sulfate sodium; EAE: experimental autoimmune encephalomyelitis; EPIT: epicutaneous 
immunotherapy; GAD65: glutamate decarboxylase 65; GITR: glucocorticoid-induced TNFR family related gene; HDM: house dust mite; HO-1: 
heme oxygenase-1; HSP65: heat shock protein 65; i.p.: intraperitoneal; i.t.: intratracheal; i.v.: intravenous; IBD: inflammatory bowel disease; IGFR2: 
insulin-like growth factor 2; ihTNF: inducible human tumor necrosis factor; iPSC-Treg: induced pluripotent stem cell regulatory T cell; iTreg: inducible 
regulatory T cell; IVIG: intravenous immunoglobulin; LAG3: lymphocyte-activation gene 3; LPS: lipopolysaccharide; MBP: myelin basic protein; MOG: 
myelin oligodendrocyte glycoprotein; MSC: mesenchymal stem cells; NDO: nondigestible oligosaccharides; NK T cell: natural killer T cell; NO: nitric 
oxide; NOD: nonobese diabetic; o.g.: oral gavage; OIT: oral immunotherapy; OX40: tumor necrosis factor receptor superfamily member 4, CD134; 
PD1: programmed cell death protein 1; PDL1: program death ligand 1; pTreg: peripherally induced regulatory T cell; RA: rheumatoid arthritis; s.c.: 
subcutaneous; siRNA: small interfering RNA; T1D: type 1 diabetes; TGF-β: transforming growth factor β; TGF-βRII: TGF-β receptor II: Thy-1: CD90; 
TLR4: toll-like receptor 4; TNBS: trinitrobenzene sulfonic acid; TNCB: trinitrochlorobenzene; TNF: tumor necrosis factor; TNFR2: tumor necrosis 
factor receptor 2; Tr1: regulatory T-cell type 1; USP7: ubiquitinase 7.

TA B L E  2   (Continued)
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TA B L E  3   Clinical trials of Treg cell–based therapies in immune and inflammatory diseases

Part 1. In vivo-expanded Tregs

Disease models and Treatment Biological effect References/ID

Graft-versus-host disease (GVHD): prophylaxis

Polyclonal tTregs, CD4+CD25+sorted Combining donor Tregs and Tcons in this first clinical trial prevented 
GVHD and enhanced immune recovery. At a median follow-up 
of 12 mo (range, 9-21), 12 of 26 (46.1%) patients were alive and 
disease free

46

Polyclonal tTregs, CD4+CD25+sorted 95% of patients achieved full-donor type engraftment and 15% 
developed ≥ grade 2 acute GVHD.

47

Acute GVHD

Polyclonal tTregs,
CD4+CD25+FoxP3+

Suspended (logistics) NCT02526329

Polyclonal tTregs Withdrawn NCT02118311

Chronic GVHD

Polyclonal tTregs,
CD4+CD25+FoxP3+

Recruiting; estimated study completion date: February 2022 NCT01903473

Polyclonal tTregs,
CD4+CD25high sorted

Recruiting; estimated study completion date: August 2019 NCT03683498

Polyclonal tTregs,
CD4+CD25+ CD127low/-

Recruiting; estimated study completion date: March 2022 NCT02749084

Steroid-refractory chronic GVHD

Polyclonal tTregs, CD4+CD25+sorted Unknown; estimated study completion date: July 2016 NCT01911039

Polyclonal tTregs, CD4+CD25+sorted Recruiting; estimated study completion date: December 2019 NCT02385019

Polyclonal tTregs, CD4+CD25+sorted Active, not recruiting; estimated study completion date: November 
2020

NCT01937468

Polyclonal tTregs Ongoing EudraCT2012-000301-71

Transplantation

Liver

Polyclonal tTregs Completed, expanded with anti-CD3/anti-CD28 mAbs + IL-2; 3 of 
17 patients consented pre–liver transplantation; 6 of 6 patients 
consented post-transplantation for ACT. Treg transfer was safe, 
transiently increased circulating Tregs and reduced anti-donor 
T-cell responses

NCT02166177 95,232

Type 1 diabetes

Polyclonal tTregs Direct infusion, unknown; estimated study completion date: 
December 2020, enrolling by invitation

NCT03162237

Part 2. In vitro expanded Tregs

Disease models and Treatment Biological effect References/ID

GVHD prophylaxis

Polyclonal tTregs, CD4+CD25+ Expanded with anti-CD3/anti-CD28 mAbs + IL-2; the incidence 
of grade II to IV acute GVHD was reduced (43% vs 61%). No 
deleterious effect on the risks of infection, relapse, or early 
mortality was observed.

56 INCT00602693

iTregs (IL10-DLI) PBMC, expanded with host-derived cells + IL-10; fast immune 
reconstitution in 5 of 12 patients. In 4 of these 5 patients, 
complete remission was observed; they remained free of 
immunosuppression for 7.2 y after haplo hematopoietic stem cell 
transplantation. Transient GVHD was observed.

93

ALT-TEN

Allo-Ag-reactive Tregs Expansion with recipient DCs, estimated study completion date: 
December 2020, recruiting

NCT01795573

Polyclonal tTregs, CD4+CD25+ Ongoing EudraCT 2012-002685-12

(Continues)
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Part 2. In vitro expanded Tregs

Disease models and Treatment Biological effect References/ID

Chronic GVHD

Polyclonal tTregs, CD4+CD25+ CD127- Expanded with anti-CD3/anti-CD28 mAbs + IL-2; In the 2 treated 
patients, alleviation of symptoms and reduction of pharmacologic 
immunosuppression were observed; completed

57 NKEBN/458-310/2008

Polyclonal tTregs, CD4+CD25high Expanded with anti-CD3/anti-CD28 mAbs + IL-2; 2/5 patients 
showed improvement of chronic GVHD, the other showed stable 
chronic GVHD symptoms for up to 21 mo. Immunosuppressive 
treatment could be reduced.

One patient developed a malignant melanoma and another had 
Bowen skin cancer 4 mo and 11 mo after Treg transfusion, 
respectively; completed

94 EK206082008

Steroid-refractory chronic GVHD

Polyclonal t Tregs Ongoing EudraCT 2016-003947-12

Transplantation

Liver

darTregs, CD4+CD25+ CD127low/- Expansion via anti-CD3/anti-CD28 mAbs + IL-2 + TGF-β
Estimated study completion date: December 2015

NCT01624077

darTregs, CD4+CD25+ CD127low/- Estimated study completion date: April 2020, recruiting 57 NCT02474199

darTregs, CD4+CD25+ CD127low/- Estimated study completion date: January 2022, recruiting 57

NCT02188719

iTregs Expansion of recipient lymphocytes with irradiated donor cells in 
the presence of anti-CD80/86; 7 of 10 patients were successfully 
weaned off treatment and immunosuppressive therapy was 
discontinued. The other 3 patients developed mild rejection during 
weaning, after which conventional low-dose immunotherapy was 
resumed.

50

darTregs, CD4+CD25+ CD127low/- Estimated study completion date: February 2025, not-yet recruiting NCT03654040

darTregs, CD4+CD25+ CD127low/- Estimated study completion date: February 2025, recruiting NCT03577431

Kidney

Polyclonal expanded Tregs, CD4+CD25+ Completed; awaiting results 233 NCT0212988

Polyclonal tTregs,
CD4+CD25+ CD127low/-

Recruiting; estimated study completion date: November 2014 NCT01446484

Polyclonal tTregs,
CD4+CD25+ FoxP3+

Recruiting; estimated study completion date: April 2017, no results 
posted

233 NCT02371434; 
EudraCT 
2013-001294-24

Drug-conditioned iTregs Expansion with kidney donor PBMC + belatacept, active-not 
recruiting; estimated study completion date: May 2018

233 NCT02091232

Polyclonal tTregs Recruiting; estimated study completion date: December 2019 NCT03284242

Polyclonal expanded Tregs, CD4+CD25+ Expansion with MACS GMP Exp-ACT 
beads + IL-2 + TGF-β + Sirolimus; safe at all tested Treg doses, 
with no adverse infusion-related side effects, infections or 
rejection events up to 2 y post-transplant; estimated completion 
date: December 2021, active-not recruiting

49 NCT02145325

Polyclonal tTregs, CD4+CD25+FoxP3+ Active-not recruiting EudraCT 2017-001421-41

Subclinical rejection in kidney transplantation

Polyclonal tTregs, 
CD4+CD25+CD127- sorted

Estimated study completion date: December 2016 57 NCT02088931

Polyclonal tTregs (phase I) and Donor-allo-
Ag-reactive Tregs (darTregs), (phase II)

Estimated study completion date: October 2021, recruiting NCT02711826

TA B L E  3   (Continued)
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Part 2. In vitro expanded Tregs

Disease models and Treatment Biological effect References/ID

Type 1 diabetes

Polyclonal tTregs; CD3+ CD4+CD25+ 
CD127-

Expansion via anti-CD3/anti-CD28 mAbs + IL-2, completed; half a 
year after diabetes onset (4-5 mo after Treg infusion), 8 out of 10 
patients still required 0.5 UI/kg/day of insulin (2 patients with out 
insulin)

97 ISRCTN06128462

Polyclonal tTregs; CD4+CD25+ 
CD127low/-

Expansion via anti-CD3/anti-CD28 mAbs + IL-2, completed; no 
infusion reactions or cell therapy-related high-grade adverse 
events were observed. C-peptide levels persisted up to 2 + y after 
transfer in more than 50% of the patients; completed

96 NCT01210664

Polyclonal tTregs Estimated study completion date: November 2020, recruiting NCT02932826

Polyclonal tTregs; CD4+CD25+ 
CD127low/-

Estimated study completion date: March 2021, recruiting NCT03444064

Polyclonal tTregs; CD4+CD25+ 
CD127low/-

Expansion via anti-CD3/anti-CD28 mAbs + IL-2, estimated study 
completion date: December 2021, suspended

NCT02772679

Inflammatory bowel disease

Crohn’s disease

Polyclonal tTregs Estimated study completion date: September 2021, not-yet 
recruiting

NCT03185000

Autologous Ag-specific Tr1 (Ova-Treg) Terminated; TxCell ended trial on October 11, 2016, due to 
challenges in Ovasave manufacturing (with suspension of the 
manufacturing site and transfer to a new manufacturing site)

NCT02327221/
EudraCT 2014-001295-65

Refractory Crohn’s disease

Autologous Ag-specific Tr1 (Ova-Treg) PBMC expansion via anti-CD3/anti-CD28 
mAbs + IL-2 + IL-4 + ovalbumin, completed; 5 wk posttreatment, 
clinically improvement in 6 of 8 patients who received 10 Mio 
cells. The clinical effect was maximal 5 wk after treatment and 
subsequently reduced progressively.

234

EudraCT2006-004712-44

Systemic lupus erythematosus, SLE

Polyclonal tTregs; CD4+CD25+ 
CD127low/- 

Estimated study completion date: August 2021, active-not 
recruiting

NCT02428309

Anti-CD19 CAR-T cells Unknown status, no results posted NCT03030976

Other diseases

Multiple sclerosis

Polyclonal tTregs; CD4+CD25+CD127- Data not available VAC2.0;
EudraCT 

2014-004320-22

Uveitis

Polyclonal tTregs; CD4+CD25+FoxP3+ Estimated study completion date: December 2017, suspended NCT02494492

Amyotrophic lateral sclerosis

Polyclonal tTregs; CD4+CD25+ Estimated study completion date: March 2018, active, not 
recruiting

NCT03241784

Autoimmune hepatitis

Polyclonal tTregs; CD4+CD25+ CD127- Unknown status, Expansion via anti-CD3/anti-CD28 
mAbs + IL-2 + retinoic acid; no results posted

NCT02704338

Pemphigus

Polyclonal tTregs; 
CD4+CD25+CD127low/-

Estimated study completion date: September 2020, recruiting NCT03239470

Neuromyelitis optica

CAR-T cells (tanCART19/20) Estimated study completion date: August 2020, not-yet recruiting NCT03605238
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Treg-specific IL-2 complexes target cells expressing very high levels 
of CD25, such as thymus-derived Tregs. In humans, low-dose IL-2 
immunotherapy has been effectively used in SLE, hepatitis C virus-
induced cryoglobulinemic vasculitis, and chronic GVHD 77,78 as well 
as tested in RA, ankylosing spondylitis, psoriasis, Behcet's disease, 
granulomatosis with polyangiitis, Takayasu arteritis, Crohn's disease, 
ulcerative colitis, autoimmune hepatitis, and sclerosing cholangitis.79 
Alternative approaches to modulate IL-2–IL-2R engagement to mod-
ulate Treg functions and favor tolerogenic responses consist in mu-
tated IL-2 molecules, also called “muteins”,75,80 or modified IL-2Rs.81

Also administrations of natural dietary compounds such as ret-
inoic acid,82,83 hydrolyzed whey proteins,84 nondigestible oligosac-
charides,85 D-mannose,86 the flavonoid luteolin,87 ω-3 fatty acids 
maresin-1,88 and microbiota-based approaches using bacterial pig-
ments such as violacein,89 cell wall components of S pneumoniae,90 
or whole probiotic strains 91,92 have been successfully employed to 
expand the Treg population in vivo.

3.2.2 | Ex vivo-expanded/selected Tregs

Treg infusion has been particularly effective in transplantation trials. In 
the initial therapeutic applications of ACT, blood-derived Tregs were 
followed by infusion of conventional T cells, prevented GVHD, and 
favored immunologic reconstitution in 26 out 28 patients with high-
risk hematologic malignancies who underwent HLA-haploidentical 
hematopoietic stem cell transplantation.46 Also, ACT treatment using 
ex vivo-expanded Tregs alone reduced and prevented acute GVHD 
46,47,56,93 and chronic GVHD,57 94 with several trials still being ongoing 
(Table 3.2) Similarly, Treg ACT were successfully employed in several 
phase I studies to prevent solid organ (liver, kidney) rejection, with sev-
eral phase 2 trials ongoing or in planning.60,78,79,95

Adoptive Treg therapy was also pioneered in autoimmune diseases 
for patients affected by T1D. Ex vivo-expanded Tregs can both prevent 
and reverse T1D in mice,36 and phase 1 clinical trials in T1D determined 
that a subset of the transferred Tregs were long-lived and survived for 
at least 1 year.96 Two published clinical trials of ACT with autologous 
polyclonal Tregs in T1D have been reported: one in children within two 
months of diabetes onset 97 and one in adults.96 ACT was well tolerated 
with evidence of efficacy despite limited power to infer definitive con-
clusions. Similarly, evidence in animal models 12 has supported clinical 
trials of Treg ACT in SLE (NCT02428309) 20 and in a growing list of other 
autoimmune and autoinflammatory diseases. As for Ag-specific Tregs, 
donor-allo-Ag-reactive Tregs (darTregs) are currently in clinical trials for 
liver and kidney transplantation and autologous Ag-specific induced type 
1 Tregs (iTr1) for refractory Crohn's disease (part 2 in Tables 2 and 3).

3.2.3 | Ag-specific CAR-Tregs

Although there are no phase 2 clinical trials yet ongoing, several 
preclinical studies (Table 2, part 2) describe successful application 
of Ag-specific Treg technology in murine models 8 of experimental 

colitis,98-100 experimental autoimmune encephalomyelitis (EAE),101 
T1D,67 and allergic airway inflammation.102 In preclinical models, the 
use of human Tregs engineered against known pathogenic antigens 
promoted suppression in vitro and in vivo, as with BAR-T cells tar-
geting factor VIII A2 or C2 domains 8,65 and CAR-Tregs recognizing 
the HLA molecule A*02 103-106 indicate the feasibility of develop-
ing human Ag-specific CAR-Tregs. The lack of identified targeted 
protein(s) in many immune-driven diseases may be overcome by 
the bystander effect of Tregs through local suppression of T cells 
with different Ag specificity.65,66,98,100,103,107 Specificity could also 
be achieved by engineering CAR for a tissue-specific Ag in order to 
direct recruitment of CAR-Tregs to the affected tissue.108,109

3.2.4 | CAR-T cells to kill B cells producing 
autoantibodies: pemphigus as an example

Pemphigus vulgaris (PV) is a life-threatening blistering skin disease 
caused by IgG autoantibodies directed to the keratinocyte adhesion 
protein desmoglein 3 (Dsg3).110 Temporary clinical improvement is 
seen with the anti-CD20 monoclonal Ab rituximab 111,112 associated 
with depletion of CD20+ memory B cells.113 Thus, specific elimina-
tion of anti-Dsg3 memory B cells has the potential to cure the dis-
ease without the risk of general immunosuppression.111,112 Recently, 
human cytotoxic CAAR-T cells have been engineered to express 
Dsg3 fused to components of the intracellular domains of the TCR 
activation complex (CD137-CD3).17 This auto-Ag–based CAR di-
rected cytotoxic T cells to kill autoreactive B cells (expressing Dsg3-
specific BCR) without affecting B cells with other specificities. The 
circulating anti-Dsg3 IgG in PV patients 110,113 promoted CAAR-T 
cell survival through CD137 signaling.17 In human skin-xenografted 
mice, CAAR-T cells did not exhibit cytotoxicity against tissues ex-
pressing biological ligands of Dsg3, such as desmosome compo-
nents,17,114 indicating a good safety profile. Moreover, CAAR-T cells 
did not react in vivo with cells expressing FcγR (including monocytes 
and neutrophils) which could potentially carry anti-Dsg3 IgG, or with 
immature bone marrow B cells displaying a polyreactive BCR rep-
ertoire.17 Development of CAAR-T cells thus expands the range of 
targeted approaches to treat autoantibody-mediated diseases with 
well-identified autoantigens and points at more applications of this 
approach for autoimmune diseases with similar biology.

4  | TARGETING SE VERE PHENOT YPES OF 
ALLERGY, A STHMA , AND COPD: A STEP 
AHE AD FOR AC T IN IMMUNE-DRIVEN 
DISE A SES

4.1 | Targeting IgE-mediated responses and complex 
atopic disorders

Treg dysfunction is implicated in the failed tolerance toward foreign 
proteins in most allergic diseases of the skin, airways, and gut.3,115-119 
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The potential use of Tregs in the prevention of allergic diseases 
would be particularly relevant in high-risk atopic children. As sug-
gested by preclinical studies (Table 2b), an antigen-specific Treg 
population against the most common antigens could be developed 
ex vivo that could protect against the clinical manifestations associ-
ated with allergen contact. Severe forms of food allergy could be po-
tentially treated with Ag-specific ACT since the allergens are largely 
identifiable.15,117 Clinical responses to oral immunotherapy (OIT) for 
severe food allergy are paralleled by restoration of Treg numbers 
and function, though long-term tolerance has not been consistently 
achieved so far. Notwithstanding, in recent studies pretreatment 
with omalizumab facilitated rapid oral desensitization to peanut and 
restored Treg function.120 Murine models have suggested that com-
bining OIT with low-dose IL-2 may aid tolerance.121 While no clinical 
study with Treg ACT have been reported for food allergy to date, 
preclinical studies clearly show that increased tolerogenic responses 
are involved in preventing allergen sensitization and suppressing Ag-
driven inflammatory responses in the gut (Table 2, part 2).

A cure for severe allergies could be envisioned through ACT by 
targeting long-lived IgE-producing memory B and plasma cells with 
CAR-T cells. This approach was tested using CAR-T cells carrying 
the α chain of the high-affinity IgE receptor, FCεRI, recognizing the 
transmembrane form of IgE (mIgE) present only on the B-cell lineage 
and using FCεRI α mutants with low affinity to IgE. FCεRIα mutant-
CAR-Tregs did not activate other cells carrying surface-bound IgE or 
trigger degranulation of LAD2 mast cells, while they exerted potent 
and specific T-cell responses on mIgE+ murine B cells.122

The CAAR-T and BAR-Treg approach is conceptually applicable 
to IgE-mediated food allergy where a small number of allergen-spe-
cific memory B cells maintain the clinical reactivity to food allergens 
throughout life, exposing patients potentially to life-threatening ana-
phylaxis even after minimal Ag exposure. Memory B cells, rather than 
long-lived IgE+ plasma cells (PC), appear to be responsible for this life-
long reactivity.123 Tregs could be engineered with BARs with the ex-
tracellular domain displaying the allergenic molecular determinant, to 
directly bind to Ag-specific memory B cells causing their permanent 
anergy or elimination and permanent loss of specific IgE-mediated re-
sponses. However, off-target effects on basophils and mast cells must 
be avoided, possibly by concomitant use of biologicals targeting IgE.

Along the same lines, also severe forms of atopic dermatitis (AD) 
may be amenable to ACT, as AD arises from the combination of an 
altered skin barrier and dysregulated immune reactions mainly driven 
by T-cell dysfunction.124 AD patients display drastically increased 
numbers of circulating IgE of varied specificity and affinity 125 and 
a significant proportion of AD subjects (23%-91%) display IgE anti-
bodies against skin proteins (autoallergens).126 Some studies found 
also a correlation between disease severity and the occurrence of 
autoallergy.127,128 Chronic tissue damage would expose otherwise 
hidden intracellular antigens, thus facilitating IgE-sensitization.129 
Low-avidity but potentially autoreactive T-cell clones might escape 
negative selection in the thymus 130,131 and could be activated by the 
strong inflammatory milieu in AD lesions, ultimately accounting for 
the generation of autoreactive IgE.129 In this regard, autoallergy might 

also arise from IgE-sensitization against fungal antigens, as atopic skin 
is often colonized by a variety of fungi and bacteria 124 and cross-re-
activity between skin and fungal proteins has been demonstrated in 
vitro.132,133 Although the clinical relevance of autoallergy has been 
questioned,129 skin autoallergens were able to induce T-cell prolifer-
ation in AD patients.134 Taken together, these data raise the potential 
of ACT with Tregs or CAR–T and B cells for restoring self-tolerance in 
recalcitrant AD.13,135 Moreover, CAR-directed Tregs might contribute 
to repair of the skin barrier, with subsequent decrease in the local 
availability of autoallergens.26 Also, the use of other regulatory cells, 
such as Bregs and myeloid-derived suppressor cells, may be investi-
gated for future cell-based approaches against autoimmunity, aller-
gic, and chronic inflammatory diseases, either alone or in combination 
with Tregs.

4.2 | Targeting lung inflammation, tissue 
damage, and autoantibodies in severe 
asthma and COPD

Transfer of polyclonal, ex vivo-expanded CD4+CD25+ Tregs can sup-
press Ag-driven responses and prevent tissue remodeling in lung 
disease models,136,137 with Ag-specific Tregs being 10 times more 
potent than polyclonal Tregs.138 Skuljec and colleagues 102 have pro-
vided a proof-of-concept study for CAR-T cell therapy in experimen-
tal asthma.139 Adoptive transfer of CAR-Treg cells directed against 
the carcinoembryonic Ag (CEA) transgenically expressed in airway 
epithelial cells led to preferential CAR-Treg localization in the airway 
mucosa and draining lymph nodes. This was associated with sup-
pression of eosinophilic inflammation, mucus production, airway hy-
perresponsiveness, T-cell proliferation, Th2 cytokine secretion, and 
reduced specific IgE levels.

Therapeutic targeting of airway remodeling is a major unmet 
need both in asthma and COPD.135 Epithelium-driven fibrosis is 
pathogenically relevant, and ACT could address airway remodeling. 
Adoptive transfer of CAR-T cells against fibroblast activation pro-
tein, a fibroblast- and disease-specific gene, in a mouse model of car-
diac fibrosis resulted in significantly reduced fibrosis and restoration 
of function after injury.140 Similarly, CAR-Tregs may repair bronchial 
epithelia damaged by amphiregulin release.27

Local tertiary lymphoid tissue formation, developing in the air-
way mucosa during chronic inflammatory responses, may enable 
the generation of autoantibodies toward immunogenic compo-
nents released upon tissue damage by degranulating eosinophils. 
Autoantibodies against nuclear antigens and tissue components/
cell types (airway epithelium, endothelium, extracellular matrix, 
cell junction proteins) have been reported in asthma 141 and in a 
subset of patients with severe eosinophilic asthma.142 This raises 
the potential of using directed CAR-Treg ACT in severe and ther-
apy-refractory asthmatics. Cellular and Ab-mediated autoimmunity 
is also found in stable COPD,143 with oligoclonal B cells found in 
bronchus-associated lymphoid follicles suggesting a role in local Ag-
specific autoimmunity.143 Severe emphysema has been associated 
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with lung oligoclonal CD4+ and CD8+ T cells in man 144 and in murine 
disease models 145,146 with cytotoxicity against the bronchial epithe-
lium.144 Serum and/or lung autoantibodies are often found in both 
“healthy” smokers and COPD patients 143,147 and the serum IgG1 Ab 
titer against carbonyl-modified self-proteins correlates with disease 
severity. High levels of autoimmune IgA are evident in severe COPD 
148 although the driver of lymphoid follicle development and IgA pro-
duction requires elucidation.149 This will enable the production of 
distinct types of regulatory and other CAR–T and B cells that could 
be disease-modifying.14

4.3 | Integrating ACT with ongoing therapies in 
chronic lung inflammatory diseases: opportunities for 
patients with severe disease phenotypes

Patients with chronic inflammatory diseases are often on complex 
drug treatments, which may impact the clinical efficacy of CAR-T 
cells. Such action may be positive, but also negative, which altogether 
should be considered when initiating personalized therapy for se-
vere asthmatics and COPD patients.150,151 As an example of poten-
tial positive synergy, CAR-T cells directed against IgE-producing B 
cells 122 may be used in patients with severe asthma where repeated 
dosing of expensive biologicals, as the anti-IgE-specific monoclonal 
Ab omalizumab, is currently required. The development of BAR-
Tregs, originally designed to suppress B cells producing anti-factor 
VIII antibodies, indicate that CAR technology is suitable to target 
soluble antigens and both T cell- and Ab-mediated responses. Thus, 
this approach could suppress the production of anti-IgE auto-Abs in 
severe asthmatics 141 that decrease the effectiveness of omalizumab 
in severe prednisone-dependent asthmatics.141,152 Raising the issue 
of a possible negative influence, metformin, a treatment for diabe-
tes mellitus that acts through AMP-activated protein kinase (AMPK), 
can suppress the ability of CD19-CAR–T cells to induce cytotoxicity 
of tumor cells.150 Future studies will determine whether the efficacy 
of CAR-T cells in cancers and in severe chronic inflammatory dis-
eases, which often co-exists with metabolic syndrome, will be en-
hanced by metformin in combination therapies.45

5  | TREG CELL THER APIES IN SE VERE 
ALLERGIC AND CHRONIC INFL AMMATORY 
LUNG DISE A SES:  LIMITATIONS AND 
CHALLENGES

Clinical trials for Treg ACTs in immune-related diseases (Table 3)45,153 
increasingly indicate the technical feasibility and good efficacy of 
these approaches. Along with evidence on CAR-Tregs in preclinical 
stage (Table 2), these studies are also providing important insights 
on current limitations and challenges facing their application. The 
main issues currently confronted refer to managing the stability and 
plasticity of Tregs, to directing their homing to the desired sites, and 
to safety concerns.

Concerning the latter, the adverse events observed following 
Treg-based ACT are overall milder and are qualitatively different 
from those occurring when conventional CAR-T cells are used, re-
flecting their different immunomodulatory strategies. Adverse ef-
fects using CD8+ cytotoxic CAR-T cells may be severe and consist in 
over-activation of the immune system [cytokine release syndrome 
(CRS) and CAR–T cell–related encephalopathy syndrome (CRES), he-
mophagocytic lymphohistiocytosis], sudden tumor lysis (tumor lysis 
syndrome), and on-target/off-tumor recognition (B-cell aplasia and 
acute respiratory distress syndrome).154-156 Major trials indicated an 
incidence of CRS of 77% in patients treated for acute lymphoblastic 
leukemia,157 while for non-Hodgkin lymphoma patients the reported 
incidence with two different CAR-T cell products was 57% 158 and 
93%.159

The occurrence of CRS for future treatments using CAR-Tregs 
is yet to be assessed but is deemed unlikely. However, in case of 
a phenotype shift of infused Tregs to conventional T cells possibly 
caused by a strong pro-inflammatory microenvironment in the re-
cruitment sites, safety strategies for their rapid elimination exploit-
ing “suicide cassettes,” initially developed from conventional CAR-T 
cell, are in place [reviewed in 69]. A suicide system tested in Treg 
ACT for GVHD entails the retroviral transduction in donor T cells of 
an inducible “suicide” proapoptotic gene construct. When exposed 
to a drug, an inducible caspase 9 (iCasp9) gene is activated, trigger-
ing rapid and specific death of the transduced CAR-T cells.160 CAR-
Treg share with conventional CAR-T cell-based ACT the potential 
risk of viral vector-specific toxicity for transgene insertion (related 
to the potential of viral vectors to replicate) 161; the standardization 
of CRISPR-Cas9 genome editing methods represent a major step 
ahead in development of new synthetic CAR/TCR-T cell therapy not 
only for improving safety, but also to increase the stability of Treg 
phenotype.

The most expected adverse events for Treg-based ACT are 
rather linked to generalized immunosuppression, possibly favoring 
infectious diseases and tumors.60,96 Patient data analysis following 
ACT with nTregs for GVHD treatment in hematopoietic transplanta-
tion indicated an increased risk of viral reactivations (mainly human 
herpesvirus 6 or cytomegalovirus) only at short term postinfusion 
(30 days), while Tregs were detectable.162 No opportunistic infections 
were observed after Treg ACT in pediatric patients newly diagnosed 
for T1D followed for 4 months 97 nor malignancies or infections in 
adults patients with T1D followed up to five years.96 The use of en-
gineered Tregs and expanded Ag-specific Tregs might reduce these 
risks,8,29 but severe immunosuppression toward pathogens carrying 
specific antigens may be observed in the case of unpredicted anti-
genic specificity (eg, cross-reactivity). Large studies with long-term 
follow-up constitute an important unmet need to measure the ac-
tual risk of generalized or pathogen-specific immunosuppression—as 
well as malignancies—associated with Treg-based ACT.

Another potential risk specific for this approach is the worsen-
ing, rather than improvement, of the targeted disease. This negative 
outcome was initially attributed mainly to the use of Tregs contam-
inated by other T cells due to errors in the purification procedure 
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or the incorrect choice of cell selection marker, for example, CD25, 
which is also transiently upregulated on activated T cells in some 
autoimmune diseases.13,74,163 Isolation and manufacturing cells for 
ACT is a major procedural endeavor that has evolved in the last de-
cade into well-standardized, GMP-compliant protocols.58 Untoward 
effects and risks of Treg-based ACT are now mostly related to issues 
regarding phenotype stability and persistence of the infused Tregs.

Despite the stability of epigenetic processes in several Treg 
subsets 157 and some positive evidence for maintenance of Treg 
phenotypes,95 ensuring the persistence and stability of the 

suppressive phenotype of infused Tregs is a critical issue for the 
success of current and future ACT applications.1,13,42,60,96,153,158-161 
Loss of FOXP3 expression is associated with Treg conversion to 
conventional phenotypes in human disease and in animal models, 
driven by high levels of pro-inflammatory cytokines and low IL-2 
164,165; therefore, sustaining FOXP3 levels represent a key strat-
egy to maintain Treg phenotype and related suppressive functions. 
Stabilization of Tregs can be obtained In vitro by many drugs, from 
immunosuppressive small molecules (eg, glucocorticoids, rapa-
mycin, fingolimod) to epigenetic drugs (eg, HDAC inhibitors and 

TA B L E  4   Molecule- vs cell-based therapies: synopsis

Feature
Small-molecule drugs and 
biologicals

Adoptive Treg cell therapy
(engineered-Treg cells and Ag-specific Treg cells)

Dose Controlled at time of administration Controlled by cell decision-making based on proliferation, 
activation, and death

Distribution Diffusion and transport
Controlled PK/PD

- Ag-dependent migration tissue-targeting approach
- Bystander effect in the tissue expressing the Ag

Main activity Singular, determined by the 
targeted molecule/pathway

Multiple, determined by cell activity:
- immunosuppression/immunomodulation
- cell killing of autoreactive cells
- tissue repair properties (independent from immunomodulation 

activity)

Therapeutic effect on disease Control of the disease/ disease-
modifying effect

Disease-modifying effect/potential cure of the disease

Duration of therapeutic effect Usually determined by 
pharmacokinetics (few hours-
some wk)

Dependent on cell biology features (mo/y):
- survival
- proliferation
- phenotype plasticity
- phenotype stability

Numbers of treatment Several One/few

Adverse effects From nonserious to fatal Potentially few and non-serious

Titration/change of strategies Easily implementable Not immediate (setup of salvage strategies are under 
development)

Type of treatment Universal or phenotype/
endotype-driven

Prepared for each patient (until validation of universal CAR 
technique)

Cost Low/high dependent on type and 
approval time

Very high dependent on the procedure needed to prepare Treg 
cells (until setup of universal Treg cells)

Main strength of Treg ACT -  
- Cure of the disease (change of the immune balance toward 

homeostasis)
- Multiple effects, determined by cell activity

Main weaknesses of Treg ACT - - Risks dependent on cell purification/ preparation, including 
contamination and vector-related effects

- Organ-centered immunosuppression
- Cell phenotype instability

Main unmet needs for 
implementation of Treg cell therapy 
in chronic inflammatory and allergic 
diseases

- - Definition of most suited Treg subset to be used
- Ways to implement Treg phenotype stability
- Ways to favor survival/expansion of infused Treg cells
- Longitudinal studies of safety and tolerability
- Definition of disease-specific molecular targets when feasible
- Definition of severe chronic inflammatory disease patient 

subsets likely to have favorable cost/benefit profile for ACT 
adoption

- Synergy with SMD/biologicals
- Effect on patients with major comorbidities
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hypomethylating agents), TGF-β, trans-retinoic acid and vitamin 
D or even biologicals that favor Treg expansion, for example, the 
anti-CD3 antibody.11,166-168 Therefore, the association of Treg ther-
apy with such treatments could be an effective strategy to be in-
vestigated. Several strategies to take advantage of IL-2 function to 
sustain Treg persistence and stability are also currently considered 
(Section 3.2.1, Table 2.1).

In addition, if CAR-Tregs recruited in inflammatory microenvi-
ronments convert into other T cell phenotypes they may not only 
lose efficacy, but they may even become pathogenic. Relevant to 
allergic diseases, in a food allergy mouse model with enhanced T cell 
IL4R signaling, allergen-specific pTregs were found in lower number 
and with inferior suppression function in OVA-sensitized mice com-
pared to cells in WT controls. These cells exhibited a marked STAT6-
dependent, Th2-like phenotype with high expression of GATA-3 and 
IL-4 that was responsible of clinical anaphylaxis upon Ag rechallenge, 
as deletion of IL-4 and IL-13 in Treg cells fully abrogated this clinical 
response. Importantly, this Th2-like reprogramming was also found 
in Ag-specific Treg cells of food allergic pediatric patients.169 These 
data suggest that tTregs may be a more stable population to em-
ploy in ACT, as they there are selected on the basis of their strong 
Ag affinity.162 The use of CRISPR technology could enable the engi-
neering of Treg populations with a blunted reprogramming ability, 
by removing for example IL-4, IFN-γ, and IL-17 genes, or by making 
them resistant to inflammatory signals known to destabilize Tregs, 
such as IL-6, by deleting the IL-6 receptor gene. The effect of this lat-
ter modification needs to be tested in specific disease models, given 
the pleiotropic effects of IL-6.170 Conversely, CAR-Tregs could be 
engineered to stably express IL-10 and/or TGF-β.24 Furthermore, to 
improve T-cell homing and limit off-target activity, studies in tumor 
models indicate that CAR-T cell homing can be better directed to 
the targeted site by ectopic co-expression of chemokine receptors 
whose ligands are locally overexpressed [reviewed in 69,153].

Several technical aspects also limit ACT with Tregs, such as the 
scarcity of reagents and instruments specifically designed for Treg 
manufacturing and the difficulty in obtaining a sufficient number 
of Tregs.15,29 The development of Ag-specific CAR or TCR Tregs is 
expected to provide higher cell yields. Further research is needed 
to better characterize important therapeutic determinants, such 
as the most appropriate Treg subset to be engineered, the optimal 
doses and, ultimately, the immune-driven diseases and phenotypes 
in which the ACT could be most impactful, given its current very 
high cost.15,29,58

6  | CONCLUSIONS

Therapeutic approaches for allergic and chronic inflammatory lung 
diseases have evolved from general immunosuppression, delivered 
through glucocorticoids and some SMDs, to more targeted therapies 
with newer SMDs, including LTRA and PDE4 inhibitors, and the in-
troduction of biologicals. Improved integration and addressing com-
mon unmet needs for SMD and biologicals—such as definition of 

adequate biomarkers predicting therapeutic response 5,6—will hope-
fully render these strategies even more effective in facing the global 
increase in the social and economic burden of these diseases.171,172 In 
this setting, T cell–based therapeutics take a further step and pursue 
the ambitious and so far elusive goal of disease-modifying strategy, 
by addressing the breaks in immune tolerance originally preventing 
overexpressed inflammatory responses and tissue damage. Basic 
immunological questions, potential clinical scenarios, manufactur-
ing issues, and cost effectiveness are all critical aspects of ACT ap-
proaches currently under intense scrutiny in therapeutic research 
and development.7,15,16 The painstaking evidence generated in the 
last two decades clearly shows that engineering Tregs with specific 
TCR or CAR could yield therapeutic tools able to expand beyond dis-
ease control the treatment goal for autoimmune, allergic, and chronic 
lung inflammatory diseases 24,173 while the next generation of im-
mune cell–based therapies is already advancing, exploiting gene-
editing techniques.174 To this end, a necessary research endeavor 
will be to identify disease-specific antigens that can be effectively 
targeted without incurring in critical off-target effects.

Disease control by SMD and biologicals and disease modification 
by cell-based therapies are strategies with specific pharmacological 
qualities, scopes, and challenges 7 (Table 4). A common key need is 
the identification of disease biomarkers to assist in the critical aspect 
of patient selection.5 The overarching goal of all three approaches 
is providing precision therapy when is most needed, balancing effi-
cacy and economical sustainability. Rational integration of the three 
pillars—SMD, biologicals, and cell-based therapies—may be an effec-
tive way to approach this goal.
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