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Abstract
In this article, we propose two normal forms for nonlinear differential-algebraic
control systems (DACSs) under external feedback equivalence, using a notion
called maximal controlled invariant submanifold. The two normal forms sim-
plify the system structures and facilitate understanding the various roles of
variables for nonlinear DACSs. Moreover, we study when a given nonlinear
DACS is internally regularizable, that is, when there exists a state feedback trans-
forming the DACS into a differential-algebraic equation (DAE) with internal
regularity, the latter notion is closely related to the existence and uniqueness of
solutions of DAEs. We also revise a commonly used method in DAE solution
theory, called the geometric reduction method. We apply this method to DACSs
and formulate it as an algorithm, which is used to construct maximal controlled
invariant submanifolds and to find internal regularization feedbacks. Two exam-
ples of mechanical systems are used to illustrate the proposed normal forms and
to show how to internally regularize DACSs.

K E Y W O R D S

differential-algebraic equations, external feedback equivalence, internal regularization,
mechanical systems, nonlinear control systems, normal forms

1 INTRODUCTION

Consider a nonlinear differential-algebraic control system DACS of the form

Ξu ∶ E(x)ẋ = F(x) + G(x)u, (1)

where x ∈X is the generalized state, with X an n-dimensional differentiable manifold (or an open subset of Rn) and
u ∈ Rm is the control vector. For the differentiable manifold X , we denote by TX the tangent bundle of X and by TxX the
tangent space of X at x ∈X . The maps E ∶ TX → Rl, F ∶ X → Rl and G ∶ X → Rl×m are smooth and the word “smooth”
will always mean ∞-smooth throughout the article. For each x ∈X , we have E(x) ∶ TxX → Rl, which is the linear map
ẋ → E(x)ẋ. In particular, if X is an open subset of Rn, then for each x ∈X , we have E(x) ∶ Rn → Rl, that is, E(x) ∈ Rl×n. A
DACS of the form (1) will be denoted by Ξu

l,n,m = (E,F,G) or, simply, Ξu. A particular case of (1) is a linear DACS of the
form

Δu ∶ Eẋ = Hx + Lu, (2)
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where E ∈ Rl×n, H ∈ Rl×n, L ∈ Rl×m, denoted by Δu
l,n,m = (E,H,L). If G(x)= 0, that is, the control u is absent (L= 0 in the

case of (2)), then we will speak about differential-algebraic equations (DAEs). The DAEs/DACSs are also called implicit,
singular, generalized or descriptor systems. There are many practical applications of DAEs/DACSs, and as surveys and
books using DAEs/DACSs to model physical systems, the reader may consult, for example, References 1-3 and chapter 1
of Reference 4. In particular, DAEs/DACSs are suitable tools to describe constrained mechanics,1,5 electrical circuits,2,6

and chemical processes.7 The necessity of using DAEs/DACSs to model physical systems instead of ordinary differential
equations (ODEs) is justified by the presence of constraints (e.g., nonholonomic and holonomic constraints for mechani-
cal systems, see (3a)-(3c), and the algebraic constraints resulting from Kirchoff’s laws and characterizations of nonlinear
components for electric circuits). These constraints result in an implicit differential equation for which it is impossible to
explicitly express the derivative ẋ as a function of the state variables x, that is, as an ODE ẋ = f (x).

For a DACS of the form (1), the map E is not necessarily square (i.e., in general, l≠n) nor invertible (even if l=n)
and, as a consequence, some variables of the generalized state x play different roles for the system. More specifically, the
noninvertibility of E may imply the existence of algebraic constraints and some variables of x (also some u-variables) are
constrained by those algebraic constraints. On the other hand, because of the nonsquareness of E, some other variables of x
may enter into system statically (since there may not exist differential equations defining their evolutions) and we may call
them free variables. One of results of this article (see Theorem 1) will reveal (under a suitable coordinate transformation)
four different types of the generalized state-variables: the unconstrained state variables z1, the unconstrained free variable
z2, the constrained state variables z3 and the constrained free variables (or the algebraic variables) z4. Note that although
the free variables of x may perform “like” inputs of the system, throughout we will distinguish them from the original
control inputs u. The variables u are predefined control inputs, such as external forces, and we can change them in order to
act on the system. However, the free variables of x are predefined states which cannot be changed actively and arbitrarily.
Such free variables may come from unknown constraint forces or some redundancies of mathematical modeling. For the
behavioral approach to systems theory (see Reference 8), there is also a distinction between the latent/internal variable
(i.e., x) and the manifest/external variables (i.e., the inputs and outputs (u, y)).

A typical example to illustrate that the control variables u and the free variables of x are different is the following DACS
which represents the dynamics of a mechanical system under both nonholonomic and holonomic constraints (see, e.g.,
Reference 1 for the definitions of nonholonomic and holonomic constraints):

M(q)q̈ + V(q̇, q) = 𝜏 + HT(q)𝜆n + NT(q)𝜆h, (3a)

H(q)q̇ = 0, (3b)

C(q) = 0, (3c)

where q is the vector of position (configuration) variables, M(q) is a matrix-valued function which is associated with
masses (or inertia), and V(q̇, q) is a row vector function which characterizes the Coriolis, the centrifugal and the gravity
forces, 𝜏 is a vector of external torques, C(q) is a vector of scalar functions ci(q), i= 1, … , k and N(q) = 𝜕C(q)

𝜕q
, and H(q) is

matrix-valued function of appropriate size. Clearly, Equation (3b) defines nonholonomic constraints, which depend on
both velocities and positions, Equation (3c) defines holonomic constraints, which depend on positions only. The variables
𝜆n and 𝜆h are the Lagrange multipliers with respect to the nonholonomic and holonomic constraints, respectively. We
can regard system (3) as a DACS of the form (1), with the generalized state x = (q, q̇, 𝜆n, 𝜆h) and the control input u = 𝜏.
Observe that the variables 𝜆h and 𝜆n are free variables since there are no equations for 𝜆̇n and 𝜆̇h but they are not active
control inputs contrary to the external force 𝜏. The latter can be realized by some actuators (e.g., electric and hydraulic
motors) while 𝜆h and 𝜆n are variables related to unknown constrained forces and are sometimes called the constrained
input variables.9

One purpose of this article is to find normal forms under the external feedback equivalence (see Definition 3). We will
construct our normal form using a notion called maximal controlled invariant submanifold, which is, roughly speaking,
the locus where the solutions of the DACSs exist and is defined by the constraints which the system should respect (for the
precise definition, see Definition 2). For linear DACSs of the form (2), a canonical form, which consists of six independent
subsystems, was proposed in Reference 10. One can easily conclude the roles of the variables (e.g., which variables are
free and which are constrained) from the canonical structure of each subsystem. For nonlinear DACSs, although it is hard
to find a fully decoupled normal form, we intend to simplify the system structures utmost such that the above mentioned
various roles of variables can be explicitly and easily seen from our proposed form. The authors of Reference 11 offered a
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nonlinear generalization of the Kronecker canonical form using an algebraic inversion algorithm for differential-algebraic
equations DAEs of the general form F(ẋ, x, t) = 0, while we intend to find normal forms for nonlinear DACSs using geo-
metric methods. A zero dynamics form for DACSs with outputs was proposed in Reference 12 using the notion of maximal
output zeroing submanifold introduced in Reference 13. Note that our system Ξu is different in two ways from the DACSs
studied in References 12,13. First, in References 12,13, the distribution ker E(x) is assumed to be involutive while we con-
sider any E(x). Second, systems in References 12,13 are equipped with outputs. Calculating the zero dynamics of a DACS
Ξu with zero output y= h(x)= 0 can be seen as studying an extended DACS Ξu

ext ∶ E(x)ẋ = F(x) + G(x)u, 0 = h(x), because
the maximal output zeroing submanifold of Ξu (with the output y= h(x)) coincides with the maximal controlled invari-
ant submanifold of Ξu

ext. Some differences of our proposed normal forms and the zero dynamics form in Reference 12 are
explained in Remark 3(vii).

We also investigate the internal regularizability of DACSs, that is, given a DACS Ξu, when there exists a feedback
u = 𝛼(x) such that the resulting DAE E(x)ẋ = F(x) + G(x)𝛼(x) is internally regular. The latter notion characterizes the
existence and uniqueness of solutions of DAEs, its formal definition will be given in Definition 4. Regularization problems
of nonlinear DAEs and DACSs can be consulted in References 14-18, where both numerical and geometrical methods have
appeared. The second aim of our article is to give a geometric characterization of the internal regularizability of nonlinear
DACSs. For linear DACSs, some equivalent characterization of the internal regularizability are given in theorem 3.5 of
Reference 19 using a geometric notion named the augmented Wong sequences (see Remark 1(iv)). Note that the internal
regularizability is called autonomizability in Reference 19; the reason, for which we insist to use the word “internal”, is to
stress the difference between two cases. One case is to consider a DAE “internally” on its maximal invariant submanifold
(i.e., on the set where the solutions exist). Another is to consider a DAE “externally” on a whole neighborhood, even
although there exist no solutions for any initial point outside the maximal invariant submanifold, it is still meaningful
to study how to steer the initial point toward the constraints via, for example, jumps and impulses. The reader may
consultReferences 4,20-22 for the details of the differences between the internal and external analysis of DAEs.

The article is organized as follows. In Section 2, we recall the notion of maximal controlled invariant submanifold and
discuss its relations with the solutions of DACSs. In Section 3, we define the external feedback equivalence of two DACSs
and propose two normal forms. In Section 4, we discuss the internal regularization problem. In Section 5, we illustrate
our results of Sections 3 and 4 by two examples of mechanical systems. In Section 6, we give the conclusions of the article.
The Appendix contains an algorithm using which we can construct the maximal controlled invariant submanifold and
the feedback which we need to internally regularize a DACS. We use the following notations. We use Rn×m to denote the
set of real valued matrices with n rows and m columns, GL (n,R) to denote the group of nonsingular matrices of Rn×n

and In to denote the n×n-identity matrix. We denote by k the class of k-times differentiable functions. For a smooth
map f ∶ X → R, we denote its differential by df =

∑n
i=1

𝜕f
𝜕xi

dxi = [ 𝜕f
𝜕x1
, … ,

𝜕f
𝜕xn

] and for a vector-valued map f ∶ X → Rm,

where f = [f 1, … , f m]T , we denote its differential by Df =

[df1
⋮

dfm

]
. For two column vectors v1 ∈ Rm and v2 ∈ Rn, we write

(v1, v2) = [vT
1 , v

T
2 ]

T ∈ Rm+n. We assume the reader is familiar with some basic notions from differential geometry as smooth
manifolds, embedded submanifolds, tangent bundles, distributions; the reader may also consult, for example, the book23

for definitions of those notions.

2 PRELIMINARIES ON SOLUTIONS OF DIFFERENTIAL-ALGEBRAIC
CONTROL SYSTEMS

We define a solution of a DACS as follows.

Definition 1 (solution). For a DACS Ξu
l,n,m = (E,F,G), a curve (x,u) ∶ I → X × Rm defined on an open interval I ⊆ R

with x(⋅) ∈ 1(I) and u(⋅) ∈ 0(I) is called a solution of Ξu, if for all t ∈ I, E(x(t))ẋ(t) = F(x(t)) + G(x(t))u(t).

We call a point x0 ∈X an admissible point of Ξu if there exists at least one solution (x(⋅), u(⋅)) satisfying x(t0)= x0 for
a certain t0 ∈ I. We will denote admissible points by xa and the set of all admissible points by Sa. Note that for any DACS
Ξu, there may exist some free variables among the components of x. As a consequence, even for a fixed u(⋅) defined on R,
there is not a unique prolongation of a solution (x, u) defined on I to a maximal solution. For this reason, we will not use
the concept of maximal solutions (although they can be defined, see, e.g., Reference 12) except for Section 4, where we
can deal with maximal solutions due to an identification of free (algebraic) variables.
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Definition 2 (controlled invariant submanifold). Consider a DACS Ξu
l,n,m = (E,F,G). A smooth connected embedded

submanifold M is called a controlled invariant submanifold of Ξu if for any point x0 ∈M, there exists a solution (x,u) ∶
I → X × Rm such that x(t0)= x0 for a certain t0 ∈ I and x(t)∈M for all t ∈ I.

We fix a point xp ∈X , a smooth embedded submanifold M containing xp is locally controlled invariant (around xp) if
∃ a neighborhood U of xp in X such that M ∩U is controlled invariant (and thus, by definition, connected). Consider a
DACS Ξu

l,n,m = (E,F,G), let N ⊆X and fix a point xp ∈N; we introduce the following constant rank assumption:

(CR) there exists a neighborhood U in X of xp such that N ∩U is a smooth connected embedded submanifold, and such
that dim E(x)TxN = const. and dim(E(x)TxN + Im G(x)) = const. for x ∈N ∩U.

The following characterization of local controlled invariance, under the constant rank assumption (CR) satisfied
for M, was given as theorem 9 in Reference 13 for DACSs whose ker E(x) is an involutive distribution. The DACSs in
Reference 13 is of the form de(x(t))

dt
= f (x(t)) + g(x(t))u(t). Note that e(x), denoted by E(x) in Reference 13, is an Rl-valued

function, while E(x) of our article is a matrix-valued function, whose rows, in the case of de(x(t))
dt

of Reference 13, are
Ei(x) = dei(x) =

∑n
i=1

𝜕ei(x)
𝜕xj

dxj = [ 𝜕ei(x)
𝜕x1

, … ,
𝜕ei(x)
𝜕xn

], for 1≤ i≤ l, and thus are exact 1-forms. Hence the distributions defined
by ker E(x) in Reference 13 are involutive (by Frobenius theorem, see, e.g., Reference 23).

Proposition 1. Consider a DACS Ξu = (E,F,G) and let M be a smooth embedded submanifold. Assume that M satisfies the
above assumption (CR) around a point xp ∈M. Then M is a locally controlled invariant submanifold (around xp) of Ξu if
and only if there exists a neighborhood U of xp in X such that

F(x) ∈ E(x)TxM + Im G(x), ∀x ∈ M ∩ U. (4)

A locally controlled invariant submanifold M∗, around a point xp ∈M∗, is called locally maximal if there exists
a neighborhood U of xp such that for any other locally controlled invariant submanifold M containing xp, we have
M ∩U ⊆M∗ ∩U. The following procedure is a geometric method to construct the locally maximal controlled invariant
submanifold.

Consider a DACS Ξu
l,n,m = (E,F,G), fix a point xp ∈X and let U0 be an open connected subset of X containing xp.

Set M0 =X , Mc
0 = U0. Suppose that there exist an open neighborhood Uk−1 of xp and a sequence of smooth connected

embedded submanifolds Mc
k−1 ⊊ … ⊊ Mc

0 of Uk−1 for a certain k≥ 1, has been constructed. Define recursively

Mk ∶=
{

x ∈ Mc
k−1 | F(x) ∈ E(x)TxMc

k−1 + Im G(x)
}
. (5)

Then either xp ∉Mk or xp ∈Mk, and in the latter case, assume that there exists a neighborhood Uk of xp such that Mc
k =

Mk ∩ Uk is a smooth embedded submanifold (which can always be assumed connected by taking Uk sufficiently small).

Proposition 2. In the above recursive procedure, there always exists k∗ ≤n such that either k∗ is the smallest integer for which
xp ∉ Mk∗+1 (and then there is a neighborhood of xp in which there does not exist any controlled invariant submanifold) or k∗

is the smallest integer such that xp ∈ Mc
k∗+1 and Mc

k∗+1 ∩ Uk∗+1 = Mc
k∗ ∩ Uk∗+1. In the latter case, we assume that M∗ = Mc

k∗+1
satisfies the constant rank condition (CR) in a neighborhood U∗ ⊆ Uk∗+1 of xp in X and then

(i) xp is an admissible point and M∗ is a locally maximal controlled invariant submanifold on U∗ (by taking a smaller U∗,
if necessary);

(ii) M∗ coincides locally with the admissible set Sa, that is, M∗ ∩U∗ = Sa ∩U∗.

Proof. Let k be the largest integer such that Mc
0 ⊋ Mc

1 ⊋ … ⊋ Mc
k and xp ∈ Mc

k, where Mc
i , 0≤ i≤ k are connected embed-

ded submanifolds, and then either xp ∉Mk+1 or xp ∈Mk+1 and Mc
k+1 = Mk+1 ∩ Uk+1 is a submanifold (by the recursive

procedure assumptions) such that dim Mc
k = dim Mc

k+1. Then k∗ = k is the integer whose existence is indicated. The
condition k∗ ≤n follows from dim Mc

i−1 > dim Mc
i , 1≤ i≤ k∗.

Claim. If an admissible point xa ∈ Sa ∩ Uk∗ , then xa ∈ Mk∗+1.
To prove the Claim, notice that if xa is admissible, there exists a solution (x(t), u(t)) and t0 ∈ I such that x(t0)= xa. It

follows that for all t ∈ I,

E(x(t))ẋ(t) = F(x(t)) + G(x(t))u(t). (6)
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So F(x(t))∈ Im E(x(t))+ Im G(x(t)), ∀t ∈ I. Thus by Equation (5), we have x(t)∈M1, ∀t ∈ I. Suppose that for a certain i> 1,
we have x(t)∈Mi−1,∀t ∈ I. We then have that ẋ(t) ∈ Tx(t)Mi−1,∀t ∈ I (note that when restricted to Ui−1, the set Mi−1 is a sub-
manifold). Thus in Uk∗ ⊆ Ui, Equation (6) implies F(x(t)) ∈ E(x(t))Tx(t)Mc

i−1 + Im G(x(t)). It follows that x(t)∈Mi ∩Ui−1,
for any t ∈ I, due to (5). By an induction argument, we conclude that x(t) ∈ Mk∗+1 ∩ Uk∗ , and, in particular, we have
xa = x(t0) ∈ Mk∗+1 ∩ Uk∗ , which proves the Claim.

(i) If xp ∈ Mk∗+1, we have dim Mc
k∗+1 = dim Mc

k∗ and since Mc
k∗+1 ⊆ Mc

k∗ , it follows that there exists an open neighbor-
hood Uk∗+1 such that Mc

k∗+1 ∩ Uk∗+1 = Mc
k∗ ∩ Uk∗+1. By assumption, M∗ = Mc

k∗+1 ∩ U∗ satisfies (CR) in U∗ ⊆ Uk∗+1. So,
using Proposition 1, we conclude that M∗ is a locally invariant submanifold on U∗. To prove that M∗ is maximal in U∗, let
M′ be any controlled invariant submanifold, then any point x0 ∈ M′ ∩ U∗ is admissible, so x0 ∈ Sc ∩U∗ and thus by the
above Claim, x0 ∈ Mk∗+1 ∩ U∗ = M∗ ∩ U∗ showing that M∗ is maximal in U∗.

(ii) We now prove that M∗ coincides with the admissible set Sa on U∗. Since M∗ ∩U∗ is locally controlled invari-
ant, for any point x0 ∈M∗ ∩U∗, there exist at least one solution (x(⋅), u(⋅)) on I and t0 ∈ I such that x(t0)= x0 (by
Definition 2), which implies that x0 is admissible, that is, x0 ∈ Sa. It follows that M∗ ∩U∗ ⊆ Sa ∩U∗. Conversely, con-
sider any point x0 ∈ Sa ∩U∗, using again the above Claim, we conclude that x0 ∈ Mk∗+1 ∩ U∗ = M∗ ∩ U∗, which implies
Sa ∩U∗ ⊆M∗ ∩U∗. Therefore, M∗ ∩U∗ = Sa ∩U∗. ▪

Note that the proof of Proposition 2(i) can be performed in a similar way as that of theorem 12(ii) of Reference 13 for
proving that M∗ is a maximal output zeroing submanifold with output function taken as zero. However, in order to show
item (ii), we need the Claim that implies implicitly the maximality property in item (i), and therefore we provide a proof
of both (i) and (ii) of Proposition 2.

Remark 1.

(i) Proposition 2 is a geometric method to construct the locally maximal controlled invariant submanifold M∗. Such an
iterative way of identifying the admissible set of a DAE is called the geometric reduction method and has appeared
frequently in the geometric analysis of nonlinear DAEs (see, e.g., References 6,24-26 and the recent papers13,22). We
state a practical implementation of this geometric method as Algorithm 1 of the Appendix, where we also compare
our Algorithm 1 with an existing geometric reduction method of section 3.4 of Reference 6. A preliminary version
of Algorithm 1 for DAEs (without control u) can be consulted in Reference 27.

(ii) Item (ii) of Proposition 2 asserts that in the neighborhood U∗ of an admissible point xa = xp, the solutions of Ξu exist
on M∗ only, which implies that for any point x0 ∈U∗⧵M∗ there are no solutions passing through x0. For practical
systems, the initialization x0 of the state x could be any point of the state space X . If x0 ∈U∗⧵M∗ (i.e., x0 is not
admissible), we need an instantaneous change of x0, that is, a jump at t = t0, to steer the inadmissible point x0
into an admissible one. The jump of x0 at t = t0 will cause a distributional term, the Dirac impulse 𝛿, to be present
in ẋ. For linear DAEs/DACSs, the distributional solution theory of linear DAEs/DACSs has been established to
deal with the discontinuity caused by inadmissible initial points, see e.g., References 28,29. We will not discuss
distributional solutions of nonlinear DAEs/DACSs since the purpose of the present article is just to propose normal
forms to simplify system structures. Note, however, that the normal forms studied in Section 3 are external forms
that hold on a whole neighborhood (not just on M∗) of a nominal point xp. This is a useful tool for studying jumps
and distributional solutions of DAEs/DACSs and is an ongoing research, c.f. our recently submitted conference
contribution.30

(iii) If for a fixed xp, we drop the requirements that xp ∈Mk and that Mc
k are connected, then Proposition 2 allows to detect

all admissible points xa in U∗ that form the union
⋃

M∗
i of all locally maximal controlled invariant submanifolds in

U∗. Notice that, first, that union
⋃

M∗
i may have more than one connected components (each of them being a locally

maximal controlled invariant submanifold), second, xp may not be in
⋃

M∗
i (implying that xp is not admissible) and,

third,
⋃

M∗
i can be empty (implying that there are no admissible points in U∗).

(iv) The recursive procedure of Proposition 2 leads to the sequence of nested submanifolds

Mc
k∗+1 = Mc

k∗ ⊊ Mc
k∗−1 ⊊ … ⊊ Mc

0 = U0.

At each step, we construct a submanifold Mc
k+1 that is of a smaller dimension than Mc

k, except for the last step,
where Mk∗+1, defined by Equation (5), coincides with Mc

k∗ , although not on Uk∗ but on a smaller neighborhood
Uk∗+1 and Mc

k∗+1 is actually Mc
k∗ restricted to Uk∗+1. The need to take a smaller neighborhood Uk∗+1 ⊆ Uk∗ is a purely



CHEN et al. 6567

nonlinear phenomenon. Take, for example, the following nonlinear DACS: xẋ = f (x) defined on X = R for some
f ∶ X → R such that f (0)≠ 0. Fix a point xp > 0, we have Mc

0 = U0 = R and M1 =
{

x ∈ Mc
0 | f (x) ∈ Im x

}
, it follows

that U1 = {x ∈ R | x > 0} and Mc
1 = M1 ∩ U1 = U1, so it is clear that k∗ = 0 since dim Mc

0 = dim Mc
1. It is seen that

Mc
k∗+1 = Mc

1 coincides with Mc
k∗ = Mc

0 on U1 but not on U0. Note that in the linear case, ℳ∗ = M∗ = Mc
k∗ with ℳ∗

defined in item (v).
(v) If we apply the above procedure of constructing Mk to a linear DACS Δu = (E,H,L), then we get a sequence of

subspaces

𝒱0 = R
n, 𝒱k = H−1(E𝒱k−1 + Im L). (7)

The sequence 𝒱k is one of the augmented Wong sequences (see Reference 31), that play an important role in the
geometric analysis of linear DACSs (see, e.g., Reference 32). In particular, it is shown in References 10,19 that
the indices of the feedback canonical form of linear DACSs are closely related to these sequences. In the linear
case, the submanifold M∗ is the largest subspace such that HM∗ ⊆EM∗ + Im L, which we denote by ℳ∗. Clearly,
ℳ∗= 𝒱 ∗ = 𝒱k∗ , where k∗ is the smallest integer k such that 𝒱k = 𝒱k+1.

3 TWO NORMAL FORMS UNDER EXTERNAL FEEDBACK EQUIVALENCE

The canonical form of linear DACSs in Reference 10 is with respect to the equivalence relation:
(E, H, L)∼ (QEP−1, Q(H +LFu)P−1, QLT−1), where Q, P, T are invertible real matrices and Fu defines a static state
feedback. In the following definition, we generalize this equivalence relation to the nonlinear case.

Definition 3 (external feedback equivalence). Two DACSs Ξu
l,n,m = (E,F,G) and Ξ̃ũ

l,n,m = (Ẽ, F̃, G̃) defined on X and X̃ ,
respectively, are called external feedback equivalent, shortly ex-fb-equivalent, if there exists a diffeomorphism𝜓 ∶ X → X̃
and smooth functions Q ∶ X → GL(l,R), 𝛼 ∶ X → Rm, 𝛽 ∶ X → GL(m,R) such that

Ẽ(𝜓(x)) = Q(x)E(x)
(
𝜕𝜓(x)
𝜕x

)−1

,

F̃(𝜓(x)) = Q(x) (F(x) + G(x)𝛼(x)) ,

G̃(𝜓(x)) = Q(x)G(x)𝛽(x). (8)

The ex-fb-equivalence of two DACSs is denoted by Ξu ex−fb∼ Ξ̃ũ. If 𝜓 ∶ U → Ũ is a local diffeomorphism between
neighborhoods U of x0 and Ũ of x̃0, and Q(x), 𝛼(x), 𝛽(x) are defined on U, we will talk about local ex-fb-equivalence.

Remark 2. If two DACSs are ex-fb-equivalent, the diffeomorphism x̃ = 𝜓(x) and the feedback transformation u =
𝛼(x) + 𝛽(x)ũ establish a one-to-one correspondence of solutions (x(⋅), u(⋅)) and (x̃(⋅), ũ(⋅)) of the DACSs, that is, x̃(⋅) =
𝜓(x(⋅)) and u(⋅) = 𝛼(x(⋅)) + 𝛽(x(⋅))ũ(⋅). On the other hand, if the solutions of two DACSs correspond to each other
via a diffeomorphism and a feedback transformation, then the two DACSs are not necessarily ex-fb-equivalent (since
the diffeomorphism is defined on the whole neighborhood U but the solutions exist on the maximal controlled
invariant submanifold M∗ only), which is the main reason for us to distinguish the “external” and “internal” anal-
ysis of DACSs. As a simple example, we consider the following two DAEs Ξu

2,1,1 = (E,F,G) and Ξ̃ũ
2,1,1 = (Ẽ, F̃, G̃),

where

E(x) =

[
0
0

]
, F(x) =

[
(x − 1)2

−x2

]
, G(x) =

[
0
ex

]
, Ẽ(x̃) =

[
0
1

]
, F̃(x̃) =

[
x̃
0

]
, G̃(x̃) =

[
0
1

]
.

It is clear that (x, u)= (1, e−1) and (x̃, ũ) = (0, 0) are the unique solutions of the two DACSs and the diffeomorphism x̃ =
𝜓(x) = x − 1 and the feedback transformation ũ = −x2 + exu map (x, u) to (x̃, ũ). However, the two DACSs cannot be
ex-fb-equivalent since E and Ẽ are not of the same rank (two ex-fb-equivalent DACSs should have E-matrices of the same
pointwise rank).



6568 CHEN et al.

Theorem 1 (normal forms). Consider a DACS Ξu
l,n,m = (E,F,G) and fix a point xp ∈X. Let M∗ ⊆X be a smooth connected

embedded submanifold containing xp. Assume that M∗ is a locally maximal controlled invariant submanifold around xp
and that there exists a neighborhood V of xp such that

(A1) rank E(x)= const.= r and rank
[
E(x) G(x)

]
= const. = r + m2, ∀x ∈V .

(A2) The submanifold M∗ satisfies the constant rank assumption (CR), that is, dim E(x)TxM∗ = const. = r1 and
dim(E(x)TxM∗ + Im G(x)) = const. = r1 + m1 + m2, ∀x ∈M∗ ∩V .

Then there exist a neighborhood U ⊆V of xp such that Ξu is locally ex-fb-equivalent to a DACS represented in the following
normal form

(NF) ∶

⎡⎢⎢⎢⎢⎢⎣

Ir1 E2
1 (z) 0 E4

1 (z)
0 E2

2(z) Ir2 E4
2 (z)

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

ż1

ż2

ż3

ż4

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

F1 (z)
F2 (z)

0
F4 (z)

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

G1(z) 0
G2(z) 0

0 Im2

0 0

⎤⎥⎥⎥⎥⎥⎦
[

u1

u2

]
, (9)

where (z1, z2) are local coordinates on M∗ = {z | z3 = 0, z4 = 0} and z= (z1, z2, z3, z4), where E2
1, E4

1, E2
2, E4

2 are smooth
matrix-valued functions defined on U with values in Rr1×(n1−r1), Rr1×(n2−r2), Rr2×(n1−r1), Rr2×(n2−r2), respectively, where r = r1 + r2,
n1 = dim M∗, n=n1 +n2 and m≥m1 +m2. Moreover, for all z∈M∗, we have that E2

2(z) = 0, F4(z)= 0 and rank G2(z)=m1.
Furthermore, if the above (A2) is replaced by the condition that there exist a neighborhood V of xp and an involutive

distribution  such that (x) = TxM∗, ∀x ∈M∗ ∩V, satisfying

(A3) dim E(x)(x) = const. = r1 and dim (E(x)(x) + Im G(x)) = const. = r1 + m1 + m2, ∀x ∈V,

then there exists a neighborhood U ⊆V of xp such that Ξu is locally ex-fb-equivalent to Equation (9), for which,
additionally, E2

2(z) ≡ 0 and rank G2(z)=m1, ∀z∈U, which we call the special normal form

(SNF) ∶

⎡⎢⎢⎢⎢⎢⎣

Ir1 E2
1 (z) 0 E4

1 (z)
0 0 Ir2 E4

2 (z)
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

ż1

ż2

ż3

ż4

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

F1 (z)
F2 (z)

0
F4 (z)

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

G1(z) 0
G2(z) 0

0 Im2

0 0

⎤⎥⎥⎥⎥⎥⎦
[

u1

u2

]
. (10)

Proof. Since M∗ is a smooth connected embedded submanifold, there exist a neighborhood U1 of xp and local coordinates
(𝜁1, 𝜁2) in U1 such that M∗ ∩ U1 = {x ∈ U1 | 𝜁2(x) = 0}, where dim M∗ = n1 and 𝜁1 ∶ U1 → Rn1 , 𝜁2 ∶ U1 → Rn2 . In the
local (𝜁1, 𝜁2)-coordinates, defined by the local diffeomorphism 𝜁(x) = (𝜁1(x), 𝜁2(x)), the system Ξu is expressed as

[
Ẽ1(𝜁) Ẽ2(𝜁)

] [𝜁̇1

𝜁̇2

]
= F̃(𝜁) + G̃(𝜁)u,

where Ẽ1 ∶ U1 → Rl×n1 and Ẽ2 ∶ U1 → Rl×n2 , and where
[
Ẽ1(𝜁(x)) Ẽ2(𝜁(x))

]
= E(x)

(
𝜕𝜁(x)
𝜕x

)−1
, F̃(𝜁(x)) = F(x), G̃(𝜁(x)) =

G(x). Then, by assumption (A1), for all 𝜁 ∈ U2 = U1 ∩ V , we have

rank
[
Ẽ1(𝜁) Ẽ2(𝜁)

]
= const. = r, rank

[
Ẽ1(𝜁) Ẽ2(𝜁) G̃(𝜁)

]
= const. = r + m2.

Thus, by Dolezal’s theorem (see Reference 33), there exists a smooth map Q1 ∶ U2 → GL(l,R),

Q1(𝜁)
[
Ẽ1(𝜁) Ẽ2(𝜁) G̃(𝜁)

]
=
⎡⎢⎢⎢⎣
Ē1(𝜁) Ē2(𝜁) G1(𝜁)

0 0 G2(𝜁)
0 0 0

⎤⎥⎥⎥⎦ ,
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where Ē1 ∶ U2 → Rr×n1 , Ē2 ∶ U2 → Rr×n2 , and G2 ∶ U2 → Rm2×m, such that the matrices [Ē1(𝜁), Ē2(𝜁)] and G2(𝜁) above
are of full row rank.

By dim E(x)TxM∗ = const. = r1 of assumption (A2), it is immediate to see that rank Ē1(𝜁) = r1 for 𝜁 ∈ M∗. It follows
from the smoothness of Ē1(𝜁) that by taking a smaller U2, if necessary, there exist r1 columns of Ē1(𝜁) that are linearly
independent in U2. Now we write the matrix

[
Ē1(𝜁) Ē2(𝜁)

]
=

[
E1

1(𝜁) E2
1(𝜁) E1

2(𝜁) E2
2(𝜁)

E3
1(𝜁) E4

1(𝜁) E3
2(𝜁) E4

2(𝜁)

]
,

where E1
1 ∶ U2 → Rr1×r1 and E3

2 ∶ U2 → Rr2×r2 and where r2 = r − r1 (and other matrices are of suitable dimensions). We
can always permute the rows (by a constant Q-transformation) and the columns (by permuting the components of 𝜁1) of
the above matrix such that E1

1(𝜁) is invertible. Then by a suitable Q-transformation, [Ē1, Ē2] admits the form

[
Ē1(𝜁) Ē2(𝜁)

]
=

[
Ir1 E2

1(𝜁) E1
2(𝜁) E2

2(𝜁)
0 E4

1(𝜁) E3
2(𝜁) E4

2(𝜁)

]
.

Since rank E(x) = rank [Ē1(𝜁), Ē2(𝜁)] = r, the matrix [E4
1,E

3
2,E

4
2] is of full row rank r2 = r − r1. Notice that E4

1(𝜁) = 0 for
𝜁 ∈ M∗ (since rank Ē1(𝜁) = r1 for 𝜁 ∈ M∗), so rank [E3

2(𝜁),E
4
2(𝜁)] = r2 for 𝜁 ∈ M∗. By the smoothness of Ē2(𝜁), we have that

[E3
2(𝜁),E

4
2(𝜁)] is of full row rank r2 for 𝜁 ∈ U2. Then we can always permute the columns (by permuting the components

of 𝜁2) of Ē2 such that E3
2 is invertible. On the other hand, we write

⎡⎢⎢⎣
Ḡ1(𝜁)

Ḡ2(𝜁)

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
G1

1(𝜁) G2
1(𝜁)

G3
1(𝜁) G4

1(𝜁)

G1
2(𝜁) G2

2(𝜁)

⎤⎥⎥⎥⎥⎦
,

where G2
2(𝜁) is a m2 ×m2 matrix (and others are of suitable dimensions). Since G2(𝜁) is of full row rank m2 for 𝜁 ∈ U2,

we can permute the components of u (by a feedback transformation) such that G2
2(𝜁) is invertible. Since both E3

2(𝜁) and
G2

2(𝜁) are invertible, we can set

Q2(𝜁) =

⎡⎢⎢⎢⎢⎢⎢⎣

Ir1 Q2
1(𝜁) Q3

1(𝜁) 0

0 Q2
2(𝜁) Q3

2(𝜁) 0

0 0 Q3
3(𝜁) 0

0 0 0 Il−m−r

⎤⎥⎥⎥⎥⎥⎥⎦
,

where Q2
1 = −E1

2(E
3
2)

−1, Q3
1 = −(G2

1 − E1
2(E

3
2)

−1G4
1)(G

2
2)

−1, Q2
2 = (E3

2)
−1, Q3

2 = −(E3
2)

−1G4
1(G

2
2)

−1, Q3
3 = (G2

2)
−1, and then we

have

Q2(𝜁)Q1(𝜁)
[
Ẽ1(𝜁) Ẽ2(𝜁) G̃(𝜁)

]
=

⎡⎢⎢⎢⎢⎢⎣

Ir1 Ẽ2
1(𝜁) 0 Ẽ2

2(𝜁) G̃1
1(𝜁) 0

0 Ẽ4
1(𝜁) Ir2 Ẽ4

2(𝜁) G̃3
1(𝜁) 0

0 0 0 0 G̃1
2(𝜁) Im2

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
,

where Ẽ2
1 = E2

1 + Q2
1E4

1, Ẽ2
2 = E2

2 + Q2
1E4

2, G̃1
1 = G1

1 + Q2
1E4

1 + Q3
1G1

2, Ẽ4
1 = Q2

2E4
1, Ẽ4

2 = Q2
2E4

2, G̃3
1 = Q2

2G3
1 + Q3

2G1
2, G̃1

2 = Q3
3G1

2.
Denote Q2Q1F̃ = (F1,F2,F3,F4). Then by the feedback transformation[

0
F3(𝜁)

]
+

[
Im1 0

G̃1
2(𝜁) Im2

]
u =

[
ũ1

ũ2

]
,
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both G̃1
2 and F3 become zero. Rewrite z = 𝜁 , (z1, z2) = 𝜁1, (z3, z4) = 𝜁2, (u1,u2) = (ũ1, ũ2), E2

1 = Ẽ2
1, E2

2 = Ẽ4
1, E4

1 = Ẽ2
2, E4

2 =
Ẽ4

2, G1 = G̃1
1, G2 = G̃3

1, then it is straightforward to see that Ξu is locally ex-fb-eq on U =U2 to the normal form (NF), given
by (9).

Consider Equation (9), then the condition dim E(x)TxM∗ = rank

[
Ir1 E2

1(z)
0 E2

2(z)

]
= r1 for all z∈M∗, of assumption

(A2), implies E2
2(z) = 0, for all z∈M∗, and the condition dim(E(x)TxM∗ + Im G(x)) = rank

⎡⎢⎢⎢⎣
Ir1 E2

1(z) G1(z) 0
0 E2

2(z) G2(z) 0
0 0 0 Im2

⎤⎥⎥⎥⎦ =
r1 + m1 + m2 for all z∈M∗, of assumption(A2), implies rank G2(z)=m1, for all z∈M∗. Moreover, by the fact that M∗ is a
controlled invariant submanifold and due to condition (4) of Proposition 1, it follows that F4(z)= 0 for all z∈M∗.

Now we prove that under assumptions (A1) and (A3), Ξu is locally ex-fb-equivalent to the special normal form (SNF),
given by (10). The construction of the (SNF) is similar to the above construction of the (NF) given by (9) but we choose
coordinates 𝜁 = (𝜁1, 𝜁2) differently. By the involutivity of of assumption (A3) and Frobenius theorem (see, e.g., Reference
23), there exist a neighborhood U1 of x0 and two vector-valued functions 𝜁1 ∶ U1 → Rn1 and 𝜁2 ∶ U1 → Rn2 such that
span{d𝜁1

1 , … , d𝜁n1
1 } = ⟂, where ⟂ denotes the annihilator of the distribution , and the differentials d𝜁 i

1 and d𝜁 j
2

are linearly independent. Since (x) = TxM∗ locally for x ∈M∗, we still have M∗ ∩ U1 = {x | 𝜁2(x) = 0}. Observe that
assumption (A3) implies (A2), so we may transform Ξu into (NF), given by (9), using the construction described above.
But now by assumption (A3), we have

dim E(z)(z) = rank

[
Ir1 E2

1(z)
0 E2

2(z)

]
= r1,

dim (E(z)(z) + Im G(z)) = rank
⎡⎢⎢⎢⎣
Ir1 E2

1(z) G1(z) 0
0 E2

2(z) G2(z) 0
0 0 0 Im2

⎤⎥⎥⎥⎦ = r1 + m1 + m2,

for all z∈U2, which, respectively, implies E2
2(z) ≡ 0 and rank G2(z)=m1 on U2. Therefore, under assumptions (A1) and

(A3), the DACS Ξu is locally ex-fb-equivalent to the (SNF) given by (10). ▪

The following observations are crucial.

Remark 3.

(i) If the submanifold M∗ exists and Ξu satisfies the constant rank assumptions (A1) and (A2), which are regularity
assumptions, then Ξu is locally ex-fb-equivalent to the (NF), given by (9). If Ξu satisfies the constant rank and invo-
lutivity assumptions (A1) and (A3), then it is locally ex-fb-equivalent the (SNF), given by (10), in which, additionally
compared to (9), we have E2

2(z) ≡ 0 and rank G2(z)=m1 for all z∈U. Note that if M∗ is replaced by M being any
controlled invariant submanifold (not necessarily maximal) and satisfying (A1) and (A2), or (A1) and (A3), we may
still transform Ξ into form (9) or (10) since we do not use the maximality of M∗ to construct the two normal forms as
shown in the above of proof. However, if M∗ is not locally maximal, we can neither conclude that M∗ = {z|z3 = z4 = 0}
nor that (z1, z2) are the local coordinates on the admissible set Sa =M∗.

(ii) By a suitable feedback transformation introducing new controls (u1
1,u

2
1) (possibly also by a permutation of

z3-variables), the second equation
[
Ir2 E4

2(z)
] [ż3

ż4

]
= F2(z) + G2(z)u1 of (10) can be further simplified as

[
Ir2−m1 0 Ẽ4

2(z)
0 Im1 Ē4

2(z)

] ⎡⎢⎢⎢⎣
ż1

3

ż2
3

ż4

⎤⎥⎥⎥⎦ =
[

F2(z)
0

]
+

[
0 G2(z)
0 Im1

][
u1

1

u2
1

]
,

where u1
1 ∈ Rr2−m1 , u2

1 ∈ Rm1 and F2(z) = 0 for z∈M∗.
(iii) The forms (NF) and (SNF) are two normal forms under the external feedback equivalence, meaning that both hold

locally everywhere around xp, not just on the maximal controlled invariant manifold M∗ passing through xp. For



CHEN et al. 6571

any point x0 ∉M∗ around xp, the system does not have solutions passing through x0 (see item (ii) of Remark 1), but
the system admits the above normal forms, which can be useful if we want to steer x0 toward M∗.

(iv) Note that M∗ = {z | z3 = 0, z4 = 0}. If we consider Ξu “internally,” that is, locally on M∗, by setting z3 and z4 to be
zero, we get from Equation (9) the following system (we may do the same for Equation 10):[

Ir E2
1(z1, z2)

0 0

][
ż1

ż2

]
=

[
F1(z1, z2)
F2(z1, z2)

]
+

[
G1(z1, z2)
G2(z1, z2)

]
u1.

Since rank G2(z)=m1 for z∈M∗, via a suitable feedback transformation introducing new controls (u1
1,u

2
1), and

a Q(x)-transformation (defined on M∗ but it can be extended to U∗ that is open in X), the above DACS can be
transformed into

⎡⎢⎢⎢⎣
Ir E2

1(z1, z2)
0 0
0 0

⎤⎥⎥⎥⎦
[

ż1

ż2

]
=
⎡⎢⎢⎢⎣
F̃1(z1, z2)

0
0

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
G̃1

1(z1, z2) 0
0 0
0 Im1

⎤⎥⎥⎥⎦
[

u1
1

u2
1

]
,

for some maps F̃1 and G̃1
1. It can be seen from item (i) of Theorem 2 that Ξu has solutions isomorphic with those of

the first subsystem ż1 + E2
1(z1, z2)ż2 = F̃1(z1, z2) + G̃1

1(z1, z2)u1
1, which we denote by Ξu|M∗ and call the restriction of

Ξu to M∗; the latter can be regarded as an ODE control system with controls w = ż2 and u1
1:{

ż1 = F̃1(z1, z2) + G̃1
1(z1, z2)u1

1 − E2
1(z1, z2)w,

ż2 = w.

(This is a particular case of a general procedure proposed in Reference 22 under the name of (Q, w)-explicitation).
From the above analysis, it is seen that for a fixed control u, the original Ξu has a unique maximal solution (see the
definition of maximal solution in Section 4) if and only if n1 = r1 (since in this case, the z2-variables are absent).

(v) The above two normal forms (NF) and (SNF) facilitate understanding the actual roles of the variables in the nonlin-
ear DACSΞu. As a result, some generalized states, namely (z1, z3), behave like state variables of differential equations
and some generalized states, namely (z2, z4), are free variables since their derivatives (ż2, ż4) are not constrained and
can be seen as extra inputs which are different from u. Moreover, some generalized states, namely (z3, z4) are con-
strained and some controls, namely u2

1 and u2 are also not free to be chosen (since they are forced to be 0 by the
constraints) when the DACS is considered internally on M∗. The generalized state z2 and the control u1

1 are the truly
free variables and are not constrained.

(vi) It is worth to mention that the behavioral approach of system theory (see Reference 8) does not a priori distinguish
the roles of the variables (which is also the case of our variables x consisting of all components of the general-
ized state; we distinguish, however, the control u from the generalized state x) and only the analysis of the system
reveals the nature of those variables. The observations of item (v) above could be regarded as an instruction for
the reinterpretation of the meaning of those variables, the latter has already been addressed in Reference 14,19
for the regulation problems. For instance, the free generalized states z2 could be reinterpreted as a new input
(but they should be distinguished from the true controls u considering the physical meanings of the generalized
state variables, see Section 1) and the constrained generalized states z3 and z4 could be redefined as zeroing out-
puts of the system. Consider the DACS Ξ (which describes a 3-link manipulator with a free end-joint) and its
(SNF) of Example 1. It is seen that Ff (the friction force at the end joint) is a free generalized state, which, how-
ever, should be distinguished from the real active input u= (Fx, Fy) since the physical meaning of regarding Ff
as a new active control is that we add a motor/actuator to the free joint and consider instead a fully actuated
manipulator.

(vii) Our forms (NF) and (SNF) are different from the zero dynamics form (ZDF) proposed in Reference 12 in many
ways. First, the feedback transformations, which play important roles for our normal forms, are not used for the
(ZDF). Second, it is assumed for the (ZDF) that

dim E(x)TxM∗ + Im G(x) = dim M∗ + m, (11)
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while we only assume that dim E(x)TxM∗ + Im G(x) = const., which is more general since assumption (11) excludes
the existence of free generalized states and control inputs in the internal dynamics. Third, the utilization of the
involutive distribution , not present in (ZDF), shows a possibility to further simplify the structure of the matrix
E(x) in (SNF).

4 INTERNAL REGULARIZATION OF NONLINEAR DACSS

In this section, we first consider the uncontrolled case of (1), that is, nonlinear DAEs, which are of the form

Ξ ∶ E(x)ẋ = F(x),

and are denoted by Ξl,n = (E,F) or, equivalently, by Ξu
l,n,0 = (E,F, 0). If we apply Definition 2 to a DAE Ξ, then M∗ is

called a locally maximal invariant submanifold. It is well known (see, e.g., References 6,20,22,25,26) that the solutions
of a DAE Ξ exist locally on its maximal invariant submanifold M∗ only and that the uniqueness of solutions can be
characterized by the notion of local internal regularity, which is defined below. We will say that a solution x : I →M∗

satisfying x(t0)= x0, where t0 ∈ I and x0 ∈M∗, is maximal if for any solution x̃ ∶ Ĩ → M∗ such that t0 ∈ Ĩ, x̃(t0) = x0 and
x(t) = x̃(t) for all t ∈ I ∩ Ĩ, we have Ĩ ⊆ I.

Definition 4 (local internal regularity). Consider a DAE Ξl,n = (E,F) and let M∗ be a locally maximal invariant sub-
manifold around a point xp ∈M∗. Then Ξ is called locally internally regular (around xp) if there exists a neighborhood
U ⊆X of xp such that for any point x0 ∈M∗ ∩U, there exists only one maximal solution x : I →M∗ ∩U satisfying t0 ∈ I and
x(t0)= x0.

Remark 4. Consider a DAE Ξl,n = (E,F) and let M∗ be a locally maximal invariant submanifold around a point xp ∈M∗.
Assume that there exists a neighborhood U of xp such that dim E(x)TxM∗ = const., ∀x ∈M∗ ∩U. Then the following
conditions are equivalent (see theorem 4.3.14 of Reference 4 or 22):

(i) Ξ is internally regular around xp;
(ii) dim E(x)TxM∗ = dim M∗, ∀x ∈M∗ ∩U;

(iii) Via a Q-transformation defined on M∗ around xp, the systemΞ|M∗ can be transformed into an ODE ż∗ = f (z∗), where
z∗ are local coordinates on M∗, given by 𝜓 , and Ξ|M∗ denotes Ξ restricted to the submanifold M∗ (compare item (iv)
of Remark 3).

Definition 5 (local internal regularizability). A DACS Ξu = (E,F,G) is called locally internally regularizable (around
xp) if there exist a neighborhood U of xp and a smooth map 𝛾 ∶ U → Rm such that the DAE Ξl,n = (E,F + G𝛾) is internally
regular around xp.

Now we use Algorithm 1 in the appendix to study the problems of when is a DACS locally internally regularizable and
how to design internal regularization feedback laws. Note that Algorithm 1 is a practical implementation of the recursive
procedure of Proposition 2, see Remark 1(i), with additional Assumptions 1 and 2. At every step of Algorithm 1, we
construct a submanifold Mc

k and a local form, given by (A1), under the external feedback equivalence, based on which we
give an explicit expression of the restricted/reduced system defined by Equation (A2). Moreover, at every k-step, we show
in details how to construct the coordinate transformations 𝜓k and the feedback transformations (uk, ūk) = ak + bkuk−1,
which lead to the local form. In the statement of Theorem 2, we refer to the submanifold M∗ = Mc

k∗+1, and to the open
neighborhood U∗ = Uk∗+1 (in X) of Step k∗ + 1 of Algorithm 1.

Theorem 2. Consider a DACS Ξu
l,n,m = (E,F,G) and fix a point xp ∈X. Suppose that Assumptions 1 and 2 of Algorithm

1 are satisfied. Then Mc
k, for k= 0, … , k∗ + 1, of the recursive procedure given just before Proposition 2 are smooth

connected embedded submanifolds and M∗ = Mc
k∗+1 satisfies the constant rank condition (CR) in U∗ and thus by

that proposition, xp is an admissible point and M∗ is a locally maximal controlled invariant submanifold around xp,
given by

M∗ =
{

x | z1(x) = 0, … , zk∗ (x) = 0
}
.
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Moreover,

(i) locally, around xp there exist a diffeomorphism ẑ = Ψ(x) and an invertible feedback u = 𝛼(x) + 𝛽(x)û, where ẑ =
(z∗, z) = (z∗, z1, … , zk∗ ) and û = (u∗, ū) = (u∗, ū1, … , ūk∗+1), transforming the set of all solutions of Ξu

l,n,m into that of

Ξ̂û
l̂,n̂,m̂ = (Ê, F̂, Ĝ), where l̂ = r∗ + (n − n∗) + (m − m∗), n̂ = n, m̂ = m, and

Ê(ẑ) =

⎡⎢⎢⎢⎢⎣
E∗(z∗) 0

0 0

0 0

⎤⎥⎥⎥⎥⎦
, F̂(ẑ) =

⎡⎢⎢⎢⎢⎣
F∗(z∗)

z

0

⎤⎥⎥⎥⎥⎦
, Ĝ(ẑ) =

⎡⎢⎢⎢⎢⎣
G∗(z∗) 0

0 0

0 Im−m∗

⎤⎥⎥⎥⎥⎦
,

or, equivalently,

Ξ̂û ∶
⎧⎪⎨⎪⎩

E∗(z∗)ż∗ = F∗(z∗) + G∗(z∗)u∗,

z1 = 0, … , zk∗ = 0,
ū1 = 0, … , ūk∗ = 0, ūk∗+1 = 0,

(12)

where E∗ = Ek∗+1 ∶ M∗ → Rr∗×n∗ , F∗ = Fk∗+1 ∶ M∗ → Rr∗ , G∗ = Gk∗+1 ∶ M∗ → Rr∗×m∗ and n∗ = nk∗ = nk∗+1, r∗ =
rk∗+1, m∗ = mk∗+1 come from Step k∗ + 1 of Algorithm 1, and where z∗ are local coordinates on M∗, and rank E∗(z∗)= r∗,
∀z∗ ∈M∗, that is, E∗(z∗) is of full row rank.

(ii) The DACS Ξu is internally regularizable around xp if and only if r∗ + m ≥ n∗, where m = m − m∗ or, equivalently, for
any point x ∈M∗ ∩U, where U ⊆X is an open neighborhood of xp, we have

dim(E(x)TxM∗ + Im G(x)) ≥ dim M∗. (13)

(iii) Since E∗(z∗) of system (12) is of full row rank r∗, we assume that the first r∗ columns of E∗(z∗) are linearly indepen-

dent (if not, we can always permute the components of z∗). Rewrite E∗(z∗)ż∗ = [E∗
1(z

∗) E∗
2(z

∗)]

[
ż∗1
ż∗2

]
such that E∗

1(z
∗) is

invertible. If (13) holds, then define the following feedback law for (12):

û =

⎡⎢⎢⎢⎢⎢⎣

u∗

ū1

⋮

ūk∗+1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
𝛾∗(z∗1 , z

∗
2)

z∗2
0

⎤⎥⎥⎥⎦ = 𝛾̂(z∗). (14)

where u∗ = 𝛾∗(z∗1 , z
∗
2), z∗2 ∈ Rn∗−r∗ , and 𝛾∗ ∶ M∗ → Rm∗ is an arbitrary smooth map. Then the feedback law u = 𝛾(x) =

𝛼(x) + 𝛽(x)𝛾̂(𝜓(x)), where the diffeomorphism Ψ(x) = (z∗, z) and invertible feedback u = 𝛼(x) + 𝛽(x)û are those of item
(i) and 𝜓(x) = Ψ−1(z∗, 0), internally regularizes the original system Ξu.

Proof. (i) At the general Step k of Algorithm 1, consider the DACSs Ξ̃ũ
k = Ξu

k−1 = (Ek−1,Fk−1,Gk−1) and Ξ̂û
k = (Êk, F̂k, Ĝk),

the latter given by (A1). Then we show that the following items are equivalent.

(a) (zk−1(⋅), uk−1(⋅)), where zk−1(⋅) = 𝜓−1
k (zk(⋅), zk(⋅)) and uk−1(⋅) = 𝛼k(zk−1(⋅)) + 𝛽k((zk−1(⋅))(uk(⋅), ūk(⋅)), is a solution of

Ξu
k−1;

(b) (zk(⋅), zk(⋅),uk(⋅), ūk(⋅)) is a solution of Ξ̂û
k ;

(c) zk(⋅) = 0, ūk(⋅) = 0 and (zk(⋅), uk(⋅)) is a solution of

Ξu
k ∶ Ek(zk)żk = Fk(zk) + Gk(zk)uk,

where Ek = Ê1
k, Fk = F̂1

k, Gk = Ĝ1
k, and where Ê1

k, F̂1
k, Ĝ1

k are defined by formula (A2).
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Since Ξ̃ũ
k = Ξu

k−1 is locally ex-fb-equivalent to Ξ̂û
k via Qk, 𝜓k, 𝛼k and 𝛽k, we have that item (a) and item (b) above are

equivalent (see Remark 2). The equivalence of item (b) and item (c) follows from the fact that the solutions exist on Mk
only and should respect the constraints zk = 0 and ūk = 0.

Then by the equivalence of (c) and (a), we have at the first step of Algorithm 1 that (z1(⋅), 0, u1(⋅), 0) is a solu-
tion of E1(z1)ż1 = F1(z1) + G1(z1)u1, z1 = 0, ū1 = 0, if and only if (z0(⋅), u0(⋅)) is a solution of Ξu

0 = Ξu = (E,F,G), where
z0(⋅) = 𝜓−1

1 (z1(⋅), z1(⋅)) and u0(⋅) = 𝛼1(z0(⋅)) + 𝛽1(z0(⋅))(u1(⋅), ū1(⋅)). In general, by an induction argument, we can prove
that (zk(⋅), 0, … , 0, uk(⋅), 0, … , 0) is a solution of

Ek(zk)żk = Fk(zk) + Gk(zk)uk, z1 = 0, … , zk = 0, ū1 = 0, … , ūk = 0,

if and only if (x(⋅), u(⋅)) is a solution of Ξu, where x(⋅) and u(⋅) are given by the following iterative formula

x(⋅) = z0(⋅) = 𝜓−1
1 (z1(⋅), 0), z1(⋅) = 𝜓−1

2 (z2(⋅), 0), … , zk−1(⋅) = 𝜓−1
k (zk(⋅), 0) (15)

and

⎧⎪⎪⎨⎪⎪⎩

u(⋅) = 𝛼1(x(⋅)) + 𝛽1(x(⋅))(u1(⋅), 0),
u1(⋅) = 𝛼2(z1(⋅)) + 𝛽2(z1(⋅))(u2(⋅), 0),
⋮

uk−1(⋅) = 𝛼k(zk−1(⋅)) + 𝛽k(zk−1(⋅))(uk(⋅), 0).

(16)

Each diffeomorphism 𝜓k and feedback transformation (𝛼k, 𝛽k) are defined on W k, and to extend it to Uk, we put
Ψk = (𝜓k, zk, … , z1). Then we first extend (𝛼k, 𝛽k)(Ψ−1

k−1◦ · · · ◦Ψ
−1
1 ) arbitrarily to Uk (keeping their values on W k) and,

second, we enlarge the extended (𝛼k, 𝛽k) to a feedback transformation (Ak, Bk) acting on the whole control vec-
tor u = (uk−1, ūk−1, … , ū1) by acting on uk−1 via (𝛼k, 𝛽k) and keeping (ūk−1, … , ū1) unchanged. Now we define the
local diffeomorphism Ψ ∶= Ψk∗◦ · · · ◦Ψ2◦Ψ1 ∶ Uk∗+1 → Rn (note that Ψk∗+1 = Ψk∗) and the feedback transformation
(𝛼, 𝛽) as the composition of (A1,B1), (A2,B2), … , (Ak∗+1,Bk∗+1) with 𝛼 ∶ Uk∗+1 → Rm and 𝛽 ∶ Uk∗+1 → Rm×n. To show
that the local diffeomorphism ẑ = Ψ(x), where ẑ = (z∗, z), and the feedback transformation u = 𝛼(x) + 𝛽(x)û trans-
form solutions of Ξu into those of Ξ̂û, it is enough to observe that Ψ and u = 𝛼(x) + 𝛽(x)û satisfy (15) and (16),
for k= k∗ + 1.

Now we prove that E∗(z∗), for z∗ ∈M∗, is of full row rank. Consider Step k∗ + 1 of Algorithm 1, note that the
Qk∗+1-transformation ensures that Ẽ1

k∗+1(zk∗ ) is of full row rank. By Mc
k∗+1 =

{
zk∗ ∈ Mc

k∗ ∩ Uk∗+1 | F̃3
k∗+1(zk∗ ) = 0

}
and

the fact that dim Mc
k∗ = nk∗ = nk∗+1 = dim Mc

k∗+1, we have F̃3
k∗+1(zk∗ ) = 0, ∀zk∗ ∈ Mc

k∗ ∩ Uk∗+1. As a consequence, the
zk∗+1-coordinates are not present, so there is no equation zk∗+1 = 0 in (12). Moreover, we have Mc

k∗+1 = Mc
k∗ in Uk∗+1, imply-

ing that zk∗+1 = zk∗ . Finally, it is seen from E∗(z∗) = Ek∗+1(zk∗+1) = Ê1
k∗+1(zk∗ ) = Ẽ1

k∗+1(zk∗ ) that E∗(z∗) is of full row rank for
all z∗ = zk∗+1 ∈ M∗ = Mc

k∗+1.
(ii) To begin with, we prove thatΞu is internally regularizable if and only if Ξ̂û, given by (12), is internally regularizable.

Observe that Ξu is internally regularizable, that is, there exists a feedback u = 𝛾(x) such that Ξ = (E,F + G𝛾) is internally

regular if and only if the algebraic constraint 0 = u − 𝛾(x) is such that the DAEΞ𝛾 ∶
{

E(x)ẋ = F(x) + G(x)u
0 = u − 𝛾(x) has a unique

maximal solution (x(⋅), u(⋅)) satisfying x(t0)= x0 and u(t0) = 𝛾(x0) for any x0 ∈ M∗
𝛾 ∩ U, where M∗

𝛾 is a locally maximal
invariant submanifold of Ξ𝛾 and U is a neighborhood of xp. By item (i) of Theorem 2, there is a one-to-one correspon-
dence, given by a local diffeomorphism ẑ = Ψ(x) and a feedback transformation u = 𝛼(x) + 𝛽(x)û, between the solutions
of Ξu and those of Ξ̂û. As a consequence, Ξu is internally regularizable if and only if there exists 𝛾 ∶ M∗ → Rn such that
the DAE {

Ê(ẑ) ̇̂z = F̂(ẑ) + Ĝ(ẑ)û
0 = û − 𝛾̂(ẑ),

where 𝛾̂(ẑ) = 𝛽−1(𝛾(Ψ−1(ẑ)) − 𝛼(Ψ−1(ẑ))), has a unique maximal solution (ẑ(⋅),û(⋅)) satisfying ẑ(t0) = ẑ0, where ẑ0 = Ψ(x0),
and û(t0) = 𝛽−1(x0)(𝛾(x0) − 𝛼(x0)), for any x0 ∈ M∗

𝛾 ∩ U, that is, Ξ̂û is internally regularizable. Now we will show that
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Ξ̂û is internally regularizable if and only if (13) holds. Since E∗(z∗) of (12) is of full row rank, we may view the first
equation of (12) as an ODE control system with extra free variables. More precisely, assume that the first r∗ columns of
E∗(z∗) are linearly independent (if not, we can always permute the components of z∗), then we can rewrite E∗(z∗)ż∗ as[
E∗

1(z
∗) E∗

2(z
∗)
] [ż∗1

ż∗2

]
, where z∗ = (z∗1 , z

∗
2) and E∗

1 ∶ M∗ → Rr∗×r∗ is invertible. Thus we can rewrite the first equation of

(12) as {
ż∗1 = (E∗

1)
−1F∗(z∗) + (E∗

1)
−1G∗(z∗)u∗ − (E∗

1)
−1E∗

2(z
∗)w

ż∗2 = w.
(17)

It follows that Ξ̂û is internally regularizable if and only if the free variables z∗2 can be fixed via the constraints ū = 0, which
is equivalent to the fact that the number of constrained inputs ū (there are m = m − m∗ of them) is not less than the
number of components of z∗2 (which is n∗ − r∗) and thus equivalent to (13).

(iii) If m = m − m∗ ≥ n∗ − r∗, then there are enough components of constrained inputs ū = 0 that can be used to
fix the free variables z∗2. Namely, denote û = (u∗, ū′, ū′′) ∈ Rm∗ × Rm′

× Rm′′
, where m′ = n∗ − r∗ and m′′ = m − (n∗ − r∗),

then we impose z∗2 = 0 by setting ū′ = z∗2 = 0 and the remaining components ū′′ = 0 to construct a controlled invariant
submanifold. We can choose u∗ = 𝛾∗(z∗) arbitrarily and then M∗

𝛼 =
{

z∗ ∈ M∗ | z∗2 = 0
}

is an invariant submanifold of the
closed-loop system Ξ̂𝛾̂ , obtained from Ξ̂û via û = 𝛾̂(z∗), where

û = (u∗, ū′, ū′′) = (𝛾∗(z∗), z∗2 , 0) = 𝛾̂(z∗) (18)

is thus the feedback law (14). Now using the diffeomorphism x = Ψ−1(z∗, z) and invertible feedback u = 𝛼(x) + 𝛽(x)û
that transform solutions of Ξu into those of Ξ̂û (see item (i)), we conclude that the feedback law u = 𝛼(x) = 𝛼(x) +
𝛽(x)𝛾̂(𝜓(x)), where 𝛾̂ is given by (18) and𝜓(x) = Ψ−1(z∗, 0), internally regularizes the original system Ξu, which completes
the proof.

▪

Remark 5.

(i) Note that we perform k∗ + 1 steps of Algorithm 1. Actually, we get M∗ already at the step k∗, however, we need
to perform one step more to know that Algorithm 1 stops (because nk∗+1 = nk∗) but also in order to normalize the
system Ξu

k∗ and obtain Ξu∗ = Ξu
k∗+1 = (E∗,F∗,G∗).

(ii) The first equation of (12), that is, E∗(z∗)ż∗ = F∗(z∗) + G∗(z∗)u∗, which we denote by Ξu|M∗ , has isomorphic solutions
with Ξu and can be seen as the “internal” dynamics of Ξu. Since E∗(z∗) is of full row rank, we may view Ξu|M∗ as
an ODE control system (given by the first equation of (17), see also item (iv) of Remark 3) with two kinds of inputs,
namely u∗ and w.

(iii) The procedure of internal regularization, leading to Theorem 2(iii), that we propose is not unique at two stages.
First, by setting ū′ = 𝛾(z∗) for any 𝛾 such that 𝜕𝛾(z∗)

𝜕z∗2
is invertible, we can find z∗2 = 𝛾(z∗1) satisfying 𝛾(z∗1 , 𝛾(z

∗
1)) = 0 and

thus we constrain the z∗2-variables via û′ = 𝛾(z∗) = 0. Second, we can choose u∗ = 𝛾∗(z∗) arbitrarily and that choice
does not affect internal regularity of Ξu (nor the invariant submanifold M∗

𝛼) since the feedback law u∗ = 𝛾∗(z∗) does
not influence the constraints ū′ = 𝛾(z∗) = 0.

(iv) A linear DACS Ξ = (E,H,L), given by (2), is internally regularizable/autonomizable (see theorem 3.5 of Reference
19) if and only if

dim(E𝒱∗ + Im L) ≥ dim𝒱∗,

where 𝒱∗ is the limit of the augmented Wong sequence 𝒱k of (7), which is, clearly, a linear counterpart of M∗

(denoted ℳ∗, compare Remark 1(v)). Thus item (ii) of Theorem 2 is a nonlinear generalization of the above result
for linear DACSs.

(v) Combining the results of Theorem 1 and Theorem 2, it is seen that if a DACS Ξu is ex-fb-equivalent to the (NF) or
the (SNF), then Ξu is internally regularizable if and only if r1 +m1 +m2 ≥n1.
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joint 1

joint 2

joint 3:( )

F I G U R E 1 A 3-link manipulator with a free joint

5 EXAMPLES

In this section, we give two examples to illustrate the results of Theorems 1 and 2. In particular, Example 1 shows how
to use Algorithm 1 to find a feedback to internally regularize a given DACS, while Example 2 puts emphasis on finding a
normal form and demonstrates that an internal regularization feedback can be constructed based on the obtained normal
form.

Example 1. Consider the model of a 3-link manipulator taken from Reference 34 as shown in Figure 1, where joint 1
and joint 2 are active, and joint 3 is passive and called a free joint.

The dynamic equations of the system are given by:

⎧⎪⎨⎪⎩
mẍ − ml sin 𝜃𝜃̈ − ml𝜃̇2 cos 𝜃 = Fx

mÿ + ml cos 𝜃𝜃̈ − ml𝜃̇2 sin 𝜃 = Fy

−ml sin 𝜃ẍ + ml cos 𝜃ÿ + ml2𝜃̈ = 𝜏𝜃 + Ff ,

(19)

where m and l are constants representing the mass and the half length of the free-link, respectively, x and y are the position
variables of the free joint, and 𝜃 is the angle between the base frame (attached to joint 1) and the link frame, Fx and Fy
are the translational force at the free joint, 𝜏𝜃 is the torque applied to joint 3 (and we take 𝜏𝜃 = 0 implying that joint 3 is
free), Ff is the friction force caused by the rotation of the free link. We regard Fx and Fy as the active control inputs to
the system. Note that the friction Ff is a generalized state variable rather than a control input since it cannot be changed
actively. We require the trajectories of system (19) to respect the following constraint:

x − y = 0. (20)

Denote x1 = x, x2 = ẋ, y1 = y, y2 = ẏ, 𝜃1 = 𝜃, 𝜃2 = 𝜃̇ and choose the generalized state z0 = (x1, x2, y1, y2, 𝜃1, 𝜃2,Ff ). Rewrite
(19) and (20) together as a DACS Ξu

7,7,2 = (E1,F1,G1), given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 m 0 0 0 −ml sin 𝜃1 0
0 0 1 0 0 0 0
0 0 0 m 0 ml cos 𝜃1 0
0 0 0 0 1 0 0
0 −sin𝜃1 0 cos 𝜃1 0 l 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẏ1

ẏ2

𝜃̇1

𝜃̇2

Ḟf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2

ml𝜃2
2 cos 𝜃1

y2

ml𝜃2
2 sin 𝜃1

𝜃2

Ff∕ml
x1 − y1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 1
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Fx

Fy

]
.

Consider Ξu around a point z0p = (x1p, x2p, y1p, y2p, 𝜃1p, 𝜃2p,Ffp), where

x1p = x2p = y1p = y2p = 𝜃1p = 𝜃2p = Ffp = 0.

We assume that 𝜃1 ≠ ± 𝜋

2
, so we do not work on X = S1 × R6 but on U0 = (− 𝜋

2
,
𝜋

2
) × R6. We now apply Algorithm 1 to Ξu.

Step 0: Set M0 =X , Mc
0 = U0.

Step 1: We have rank E1(z0)= 5 and rank
[
E1(z0) G1(z0)

]
= 6 in the neighborhood U1 = (− 𝜋

4
,
𝜋

2
) × R6 of z0p. Set

Q1(z0) =

[ I5 0 0
q(𝜃1) m 0

0 0 1

]
, where q(𝜃1) =

[
0 sin 𝜃1 0 −cos𝜃1 0

]
. We get
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M1 =
{

z0 ∈ Mc
0 | Q1F1(z0) ∈ Im Q1E1(z0) + Im Q1G1(z0)

}
=
{

z0 ∈ Mc
0 | x1 − y1 = 0

}
.

Clearly, z0p ∈M1. Then choose a new coordinate z1 = x1 − y1 and keep the remaining coordinates z1 = (x2, y1, y2, 𝜃1, 𝜃2,Ff )
unchanged, and set [

u1

ū1

]
= a(z2) + b(z2)

[
Fx

Fy

]
=

[
0

Ff∕l

]
+

[
1 0

sin 𝜃1 −cos𝜃1

][
Fx

Fy

]
. (21)

It is seen that the DACS Ξu is ex-fb-equivalent to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 1

m 0 0 0 −ml sin 𝜃1 0 0

0 1 0 0 0 0 0

0 0 m 0 ml cos 𝜃1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ2

ẏ1

ẏ2

𝜃̇1

𝜃̇2

Ḟf

ż1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2

ml𝜃2
2 cos 𝜃1

y2

ml𝜃2
2 sin 𝜃1 + sec 𝜃1Ff∕l

𝜃2

0

z1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1 0

0 0

tan 𝜃1 −sec𝜃1

0 0

0 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
u1

ū1

]
.

Thus Ξu restricted to Mc
1 =
{

z0 ∈ U1 | z1 = 0
}

is Ξu|Mc
1
= Ξu1

2 = (E2,F2,G2), given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

m 0 0 0 −ml sin 𝜃1 0

0 1 0 0 0 0

0 0 m 0 ml cos 𝜃1 0

0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ2

ẏ1

ẏ2

𝜃̇1

𝜃̇2

Ḟf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x2

ml𝜃2
2 cos 𝜃1

y2

ml𝜃2
2 sin 𝜃1 + sec 𝜃1Ff∕l

𝜃2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0

tan 𝜃1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u1.

Step 2: We have that rank E2(z1) = rank
[
E2(z1) G2(z1)

]
= 4 on W2 = U2 ∩ Mc

1 with U2 =U1. Set Q2 =⎡⎢⎢⎢⎢⎣
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
1 0 −1 0 0

⎤⎥⎥⎥⎥⎦
, we get (recall that z1 = (x2, y1, y2, 𝜃1, 𝜃2,Ff ))

M2 =
{

z1 ∈ Mc
1 | Q2F2(z1) ∈ Im Q2E2(z1) + Im Q2G2(z1)

}
=
{

z1 ∈ Mc
1 | x2 − y2 = 0

}
.

Clearly, z0p ∈M2. Set z2 = x2 − y2 and keep the remaining coordinates unchanged, and the system Ξu
2 is ex-fb-equivalent

to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 m 0 ml cos 𝜃1 0 0

0 0 1 0 0 0

0 m 0 −ml sin 𝜃1 0 m

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẏ1

ẏ2

𝜃̇1

𝜃̇2

Ḟf

ż2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2

ml𝜃2
2 sin 𝜃1 + sec 𝜃1Ff∕l

𝜃2

ml𝜃2
2 cos 𝜃1

z2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

tan 𝜃1

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
u1.
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So Ξu represented in new coordinates and restricted to Mc
2 =
{

z1 ∈ Mc
1 | z2 = 0

}
is Ξ̂u|Mc

2
= Ξu1

3 = (E3,F3,G3), given by

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 m 0 ml cos 𝜃1 0
0 0 1 0 0
0 m 0 −ml sin 𝜃1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẏ1

ẏ2

𝜃̇1

𝜃̇2

Ḟf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

y2

ml𝜃2
2 sin 𝜃1 + sec 𝜃1Ff∕l

𝜃2

ml𝜃2
2 cos 𝜃1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

0
tan 𝜃1

0
1

⎤⎥⎥⎥⎥⎥⎦
u1.

Step 3: we have that rank E3(z2) = rank
[
E3(z2) G3(z2)

]
= 4 on W3 = U3 ∩ Mc

2 with U3 =U2 =U1. It follows that k∗ = 2
and M∗ = Mc

3 = M3 ∩ U3 is a controlled invariant submanifold since

M3 =
{

z2 ∈ Mc
2 | F3(z2) ∈ Im E3(z2) + Im G3(z2)

}
= Mc

2.

Thus z0p ∈M∗ is an admissible point. Hence we get z∗ = z2 = (y1, y2, 𝜃1, 𝜃2,Ff ) and Ξu|M∗ = Ξu1
3 = (E∗,F∗,G∗), where

E∗(z∗) =

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 m 0 ml cos 𝜃1 0
0 0 1 0 0
0 m 0 −ml sin 𝜃1 0

⎤⎥⎥⎥⎥⎥⎦
, F∗(z∗) =

⎡⎢⎢⎢⎢⎢⎣

y2

ml𝜃2
2 sin 𝜃1 + sec 𝜃1Ff∕l

𝜃2

ml𝜃2
2 cos 𝜃1

⎤⎥⎥⎥⎥⎥⎦
, G∗(z∗) =

⎡⎢⎢⎢⎢⎢⎣

0
tan 𝜃1

0
1

⎤⎥⎥⎥⎥⎥⎦
.

So r∗ = 4 and m∗ = 1, by item (ii) of Theorem 2, r∗ + (m−m∗)= 4+ 1=n∗ = 5 implies that our system Ξu is internally
regularizable. A feedback that internally regularizes Ξu can be deduced, by item (iii) of Theorem 2, from

ū1 = Ff ⇒ Ff∕l + sin 𝜃1Fx − cos𝜃1Fy = Ff .

The above equation has a infinite number of solutions. The control u1 = u∗ = 𝛾∗(z∗) can be chosen arbitrarily (see the
proof of Theorem 2(iii)). So we can chose 𝛾(z∗), for instance, to stabilize Ξu|M∗ , that is, Ξu∗ = (E∗,F∗,G∗) on M∗ (which
can be viewed as an ODE since E∗ is of full row rank). Set 𝛼 = −b−1a and 𝛽 = b−1, where a, b are given in (21), and define

𝛾̂(z0) ∶=
[
𝛾∗(z∗)

Ff

]
. Then the feedback which internally regularizes and stabilizes Ξu can be uniquely solved. The solution

is u = 𝛾(z0) = 𝛼(z0) + 𝛽(z0)𝛾̂(z0), that is,

u =

[
Fx

Fy

]
= −

[
1 0

sin 𝜃1 −cos𝜃1

]−1 [
0

Ff∕l

]
+

[
1 0

sin 𝜃1 −cos𝜃1

]−1 [
𝛾∗(z∗)

Ff

]
=

[
1 0

sin 𝜃1 −cos𝜃1

]−1 [
𝛾∗(z∗)

(1 − 1∕l)Ff

]
.

Note that our system Ξu satisfies assumptions (A1) and (A3) of Theorem 1 since rank E(z0)= 6 and rank
[
E(z0) G(z0)

]
= 6, and the distribution

(z0) = span
{

𝜕

𝜕x1
+ 𝜕

𝜕y1
,
𝜕

𝜕x2
+ 𝜕

𝜕y2
,
𝜕

𝜕𝜃1
,
𝜕

𝜕𝜃2

}
satisfies (z0) = Tz0 M∗ locally for all z0 ∈M∗, and dim E(z0)(z0) = 4, dim(E(z0)(z0) + Im G(z0)) = 5. In fact, Ξu is
locally ex-fb-equivalent to

(SNF) ∶

⎡⎢⎢⎢⎢⎢⎣

I4 0 0 E4
1(𝜁)

0 0 1 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝜁̇1

𝜁̇2

𝜁̇3

𝜁̇4

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

F1(𝜁)
F2(𝜁)

0
F4(𝜁)

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

G1(𝜁) 0
0 0
0 1
0 0

⎤⎥⎥⎥⎥⎥⎦
[

u1

u2

]
,
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F I G U R E 2 A rolling disk on an inclined plane

where 𝜁 = (𝜁1, 𝜁2, 𝜁3, 𝜁4) (we use 𝜁 for (SNF) since z are already used as coordinates of the system obtained via Algorithm
1), 𝜁1 = (y1, y2, 𝜃1, 𝜃2), 𝜁2 = Ff , 𝜁3 = z1 = x1 − y1, 𝜁4 = z2 = x2 − y2,

E4
1(𝜁) =

⎡⎢⎢⎢⎢⎢⎣

0
0
0

− 1
l(cos 𝜃1+sin 𝜃1)

⎤⎥⎥⎥⎥⎥⎦
,F1(𝜁) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y2
Ff tan 𝜃1

ml(cos 𝜃1+sin 𝜃1)
+ l𝜃2

2
cos 𝜃1+sin 𝜃1

𝜃2
Ff

ml2(cos 𝜃1+sin 𝜃1)
− 𝜃2

2 (cos 𝜃1−sin𝜃1)
cos 𝜃1+sin 𝜃1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, G1(𝜁) =

⎡⎢⎢⎢⎢⎢⎣

0
l
0

sin 𝜃1 − cos𝜃1

⎤⎥⎥⎥⎥⎥⎦
, F2(𝜁) = z2, F4(𝜁) = z1.

Note that for the system (SNF) represented in the z-coordinates, we have M∗ = {𝜁 | 𝜁3 = 𝜁4 = 0}. The variables 𝜁1 =
(y1, y2, 𝜃1, 𝜃2) and 𝜁3 perform as the states of differential equations (there are differential equations for 𝜁̇1 and 𝜁̇3), but
𝜁3 are constrained and equal to 0. Moreover, 𝜁2 = Ff is a truly free variable, 𝜁4 is a constrained free variable, and u1 is a
constrained control input.

Example 2. Consider a rolling disk on an inclined plane as shown in Figure 2. We denote the position of the disk by
(x, y), the angles 𝜃 and 𝜑 describe the orientation of the disk with respect to the inclined plane, 𝛽 is the angle between the
horizontal plane and the inclined plane. If there are no external forces acting on the system, the Lagrangian of the system
is given by

 = −mgx sin 𝛽 + 1
2

m(ẋ2 + ẏ2) + 1
2

J𝜑̇2,

where m is the mass, J is the moment of inertia and throughout we assume m= 1 and J = 1, for simplicity. The following
nonholonomic constraints represent the kinematic equations of the system{

0 = −ẋ sin𝜑 + ẏ cos𝜑
0 = ẋ cos𝜑 + ẏ sin𝜑 − 𝜃̇

(22)

and we can derive the dynamic equations of the system as

⎧⎪⎪⎨⎪⎪⎩

ẍ = −g sin 𝛽 − 𝜆1 sin𝜑 + 𝜆2 cos𝜑
ÿ = 𝜆1 cos𝜑 + 𝜆2 sin𝜑
𝜃̈ = −𝜆2

𝜑̈ = 0,

(23)

where 𝜆1 and 𝜆2 are constraint forces (Lagrange multipliers). We have X = R8 × T2, where T2 = S1 × S1, and choose
control inputs as (𝜏1, 𝜏2, 𝜏2), where 𝜏1 = sin 𝛽 (so we control the slope of the plane), and 𝜏2 and 𝜏3 are external torques in
the directions of 𝜃̇ and 𝜑̇, respectively. We study the problem whether we can find an input force such that the trajectories
of the system, besides fulling constraints (22), respect also the following constraint:

𝜑 + 𝛽 = 𝜋

2
. (24)
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To this end, we will transform the system into the normal form (SNF). The constraint (24) is equivalent to 0 = sin 𝛽
− cos𝜑 or to 𝜏1 = cos𝜑. Now considering (22), (23), and (24) together with the controls (𝜏1, 𝜏2, 𝜏3), we get a DACS Ξu

11,10,3
= (E,F,G), given by

Ξu ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

−sin𝜑1 0 cos𝜑1 0 0 0 0 0 0 0

cos𝜑1 0 sin𝜑1 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẏ1

ẏ2

𝜃̇1

𝜃̇2

𝜑̇1

𝜑̇2

𝜆̇1

𝜆̇2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2

−𝜆1 sin𝜑1 + 𝜆2 cos𝜑1

y2

𝜆1 cos𝜑1 + 𝜆2 sin𝜑1

𝜃2

−𝜆2

𝜑2

0
0
0

−cos𝜑1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
g 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
𝜏1

𝜏2

𝜏3

⎤⎥⎥⎥⎦ ,

where x1 = x, x2 = ẋ, y1 = y, y2 = ẏ, 𝜃1 = 𝜃, 𝜃2 = 𝜃̇, 𝜑1 =𝜑, 𝜑2 = 𝜑̇. The generalized state is 𝜉 = (x, ẋ, y, ẏ, 𝜑, 𝜑̇, 𝜃, 𝜃̇, 𝜆1, 𝜆2).
We consider Ξu around a point 𝜉p = (x1p, x2p, y1p, y2p, 𝜃1p, 𝜃2p, 𝜑1p, 𝜑2p, 𝜆1p, 𝜆2p) = 0. Consider 𝜑 ∈ (−𝜋∕2, 𝜋∕2) (thus 𝛽 ∈
(0, 𝜋)) and 𝜃 ∈ (−𝜋∕2, 𝜋∕2). Applying Algorithm 1 to Ξu, we get

Mc
0 = R8 × (−𝜋∕2, 𝜋∕2) × (−𝜋∕2, 𝜋∕2), Mc

1 =
{
𝜉 ∈ Mc

0 | x2 sin𝜑1 − y2 cos𝜑1 = −x2 cos𝜑1 − y2 sin𝜑1 + 𝜃2 = 0
}
,

Mc
2 =
{
𝜉 ∈ Mc

1 | 𝜑2𝜃2 − 𝜆1 − g
2

sin 2𝜑1 = 0
}
, M∗ = Mc

3 = Mc
2.

It follows that 𝜉p ∈ M∗ and that locally around 𝜉p

rank E(𝜉) = r = 8, rank
[
E(𝜉) G(𝜉)

]
= r + m2 = 9.

The distribution (𝜉) = span {g1, g2, g3, g4} + span
{

𝜕

𝜕x1
,

𝜕

𝜕y1
,

𝜕

𝜕𝜃1
,

𝜕

𝜕𝜆2

}
, where

g1 = cos𝜑1
𝜕

𝜕x2
+ sin𝜑1

𝜕

𝜕y2
+ 𝜕

𝜕𝜃2
, g2 = −y2𝜑2

𝜕

𝜕x2
+ x2𝜑2

𝜕

𝜕y2
+ g cos 2𝜑1

𝜕

𝜕𝜃1
,

g3 = −𝜃1
𝜕

𝜕𝜃1
+ 𝜑2

𝜕

𝜕𝜑2
, g4 = 𝜑2

𝜕

𝜕𝜆1
+ 𝜕

𝜕𝜃1
,

satisfies (𝜉) = T𝜉M∗, locally for all 𝜉 ∈ M∗, and

dim E(𝜉)(𝜉) = r1 = 6, dim(E(𝜉)(𝜉) + Im G(𝜉)) = r1 + m1 + m2 = 8.

Thus assumptions (A1) and (A3) of Theorem 1 are satisfied. Now set

z1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

y1

𝜃1

𝜑1

𝜑2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, z2 = 𝜆2, z3 =

[
ỹ2

𝜃2

]
=

[
x2 sin𝜑1 − y2 cos𝜑1

−x2 cos𝜑1 − y2 sin𝜑1 + 𝜃2

]
, z4 = 𝜆̃1 = 𝜃2𝜑2 − 𝜆1 −

g
2

sin 2𝜑,
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Q(𝜉) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 −g 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1

sin𝜑1 0 −cos𝜑1 0 0 0 0 0 1 0 0
−cos𝜑1 0 −sin𝜑1 0 1 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝛼(𝜉) =
⎡⎢⎢⎢⎣

cos𝜑1

𝜑2ỹ2 − 2𝜆2

0

⎤⎥⎥⎥⎦ , 𝛽(𝜉) =
⎡⎢⎢⎢⎣
0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎦ .

Then, via Q(𝜉),

[
𝜏1
𝜏2
𝜏3

]
= 𝛼(𝜉) + 𝛽(𝜉)

⎡⎢⎢⎢⎣
u1

1

u2
1

u2

⎤⎥⎥⎥⎦ and z= (z1, z2, z3, z4), Ξu is, locally around 𝜉p, ex-fb-equivalent to

(SNF) ∶

⎡⎢⎢⎢⎢⎢⎣

I6 0 0 0
0 0 I2 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

ż1

ż2

ż3

ż4

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

F1 (z)
F2 (z)

0
F4 (z)

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

G1
1(z) 0 0
0 G2

2(z) 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
u1

1

u2
1

u2

⎤⎥⎥⎥⎦ ,

where

F1(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2

(𝜆̃1 + g
2

sin 2𝜑1 − 𝜃2𝜑2) sin𝜑1 + (𝜆2 − g) cos𝜑1

x2 tan𝜑1 −
ỹ2

cos𝜑1

𝜃2 − ỹ2 tan𝜑1 +
x2

cos𝜑1

𝜑2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F2(z) =

[
𝜆̃1

0

]
, F4(z) =

[
ỹ2

𝜃2

]
, G1

1(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, G2

2(z) =

[
0
1

]
.

Therefore, by item (v) of Remark 3, the free variables are z2 = 𝜆2 and z4 = 𝜆̃1. The variables z2 and u1
1 = 𝜏3 are truly free

variables and they are not constrained by any constraints. The generalized states z3 = (ỹ2, 𝜃2), z4 = 𝜆̃1 and the controls
(u2

1,u2) are constrained and required to be 0 by the algebraic constraints. In fact, u2 = 0 assures the constraint 𝜏1 = cos𝜑1,
while 𝜆̃1 = 0 and u2

1 = 2𝜆2 + 𝜑2ỹ2 = 0 assure nonholonomic constraints (22). Moreover, by item (iv) of Remark 3, we have

Ξu|M∗ ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẏ1

𝜃̇1

𝜑̇1

𝜑̇2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2

( g
2

sin 2𝜑1 − 𝜃2𝜑2) sin𝜑1 + (𝜆2 − g) cos𝜑1

x2 tan𝜑1
x2

cos𝜑1

𝜑2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u1

1,

which is an ODE control system with one free variable 𝜆2 and one control u1
1 = 𝜏3. We can see from item (i) of Theorem 2

that Ξu|M∗ has isomorphic trajectories with those of Ξu. Moreover, since dim(E(𝜉)T𝜉M∗ + Im G(𝜉)) = 8 > dim M∗ = 7, by
item (ii) of Theorem 2, the system Ξu is internally regularizable, for example, a feedback which internally regularizes
the system is given by u2 = 𝜆2 = 0 (implying that 𝜏1 = cos𝜑1 + u2 = cos𝜑1 + 𝜆2 assures the constraint (24) on {𝜆2 = 0}),
u2

1 = 0 (implying 𝜆2 = 0 on
{

ỹ2 = 0
}

) and 𝜏3 = u1
1 = 𝛾∗(z1), where z1 = (x1, x2, y1, 𝜃1, 𝜑1, 𝜑2), for some smooth function 𝛾∗.

Notice that the choice of 𝛾∗(z1) is made in order to reach designed control properties of the systemΞu|M∗ , like stabilizability
(note that by substituting 𝜆2 = u2 = 0, the system Ξu|M∗ becomes a single-input ODE control system).
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6 CONCLUSIONS

In this article, we proposed two normal forms for nonlinear DACSs under external feedback equivalence to simplify the
structure of systems and to clarify different roles of variables, which is our first main result. One normal form requires
only the existence of a maximal controlled invariant submanifold and some constant rank assumptions of system matrices
while another requires additionally involutivity of a certain distribution. Moreover, we give a necessary and sufficient geo-
metric condition for a nonlinear DACS to be internally regularizable (second main result), we also formulate an algorithm
to calculate the maximal invariant submanifold and a feedback which internally regularizes the system. Two examples
of mechanical systems are given to illustrate the proposed normal forms and the internal regularization algorithm.
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APPENDIX

In the appendix, we illustrate the internal regularization algorithm for nonlinear DACSs and give some remarks on the
algorithm.
Remark 6.

(i) Our Algorithm 1 is related to the geometric reduction method used in section 3.4 of Reference 6. In both, one
constructs a sequence of submanifolds recursively and then reduces/restricts the DACS to the constructed sub-
manifolds. The main difference is that Algorithm 1 deals with DAEs with an extra control u, that is, DACSs, while
in Reference 6 only DAEs are discussed and no feedback transformations are involved. Moreover, we relate our
Algorithm 1 with the recursive procedure given before Proposition 2. Actually, Step k of Algorithm 1 provides an
explicit construction of the manifolds Mc

k of the procedure.
(ii) The dimensions rk, nk, mk satisfy{

r0 ≥ · · · ≥ rk ≥ · · · ≥ 0, n0 ≥ · · · ≥ nk ≥ · · · ≥ 0, m0 ≥ · · · ≥ mk ≥ · · · ≥ 0,
nk−1 ≥ rk, rk−1 − rk − (mk−1 − mk) ≥ nk−1 − nk.

The integers rk, nk, mk indicate the values of dim E(x)TxMk, dim Mk, and that the vector uk is mk-dimensional,
respectively, and illustrate well the evolution of the reduction procedure.

(iii) Assumption 1 that rank Ẽk(zk−1) = const. and rank [Ẽk(zk−1), G̃(zk−1)] = const. is made to produce the full row rank
matrices Ẽ1

k and G̃2
k and the zero-level set Mk =

{
zk−1 ∈ Wk | F̃3

k(zk−1) = 0
}

. Assumption 2 that rank DF̃3
k(zk−1) =

const. makes it possible to use the components of F̃3
k with linearly independent differentials as a part of new local

coordinates. Those two assumptions are somewhat related to but different from the two assumptions in Reference 6,
for example, in order to produce a smooth embedded submanifold, the author of Reference 6 assumes that Hk(x, ẋ) =
Ẽk(x)ẋ − F̃k(x) is a submersion.

https://arxiv.org/abs/2103.16711
https://arxiv.org/abs/2103.16711
https://arxiv.org/abs/2103.12146
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Algorithm 1. Internal regularization algorithm for nonlinear DACSs

Initialization: Consider Ξu
l,n.m = (E,F,G), fix xp ∈ X and let U0 ⊆ X be an open connected subset containing xp. Below

all sets Uk are open in X and Wk are open in Mc
k−1.

Step 0: Set z0 = x, u0 = u, E0(z0) = E(x), F0(z0) = F(x), G0(z0) = G(x), M0 = X , Mc
0 = U0, r0 = l, n0 = n, m0 = m.

Step k:
1: Suppose that we have defined at Step k − 1: an open neighborhood Uk−1 ⊆ X of xp, a smooth embedded connected

submanifold Mc
k−1 of Uk−1 and a DACS Ξu

k−1 = (Ek−1,Fk−1,Gk−1) given by smooth matrix-valued maps

Ek−1 ∶ Mc
k−1→R

rk−1×nk−1 , Fk−1 ∶ Mc
k−1 → R

rk−1 , Gk−1 ∶ Mc
k−1 → R

rk−1×mk−1 ,

whose arguments are denoted zk−1 ∈ Mc
k−1.

2: Rename the maps as Ẽk = Ek−1, F̃k = Fk−1, G̃k = Gk−1 and define Ξ̃ũ
k ∶= (Ẽk, F̃k, G̃k).

Assumption 1: There exists an open neighborhood Uk⊆ Uk−1 ⊆X of xp such that rank Ẽk(zk−1) = const. = rk ≤ nk−1 and
rank [Ẽk(zk−1), G̃k(zk−1)] = const. = rk + mk−1 − mk, ∀zk−1 ∈ Wk = Uk ∩ Mc

k−1.
3: Find a smooth map Qk ∶ Wk → GL(rk−1,R), such that Ẽ1

k and G̃2
k of

QkẼk =
⎡⎢⎢⎣
Ẽ1

k
0
0

⎤⎥⎥⎦ , QkF̃k =
⎡⎢⎢⎢⎣
F̃1

k

F̃2
k

F̃3
k

⎤⎥⎥⎥⎦ , QkG̃k =
⎡⎢⎢⎢⎣
G̃1

k

G̃2
k

0

⎤⎥⎥⎥⎦
are of full row rank, where Ẽ1

k ∶ Wk →Rrk×nk−1 , G̃2
k ∶ Wk →R(mk−1−mk)×mk−1 , F̃3

k ∶ Wk →Rrk−1−rk−mk−1+mk (so all the matri-
ces depend on zk−1).

4: Following (5), define Mk =
{

zk−1 ∈ Wk | F̃3
k(zk−1) = 0

}
.

Assumption 2: xp ∈ Mk and rank DF̃3
k(zk−1) = const. = nk−1 − nk for zk−1 ∈ Mk ∩ Uk, by taking a smaller Uk (if neces-

sary).
5: By Assumption 2, Mk ∩ Uk is a smooth embedded submanifold and by taking again a smaller Uk, we may assume

that Mc
k = Mk ∩ Uk is connected and choose new coordinates (z̄k, zk) = 𝜓k(zk−1) on Wk, where z̄k = (𝜑̄1

k(zk−1),… ,

𝜑̄
nk−1−nk
k (zk−1)), with d𝜑̄1

k(zk−1),… , d𝜑̄nk−1−nk
k (zk−1) being all independent rows of DF̃3

k(zk−1), and zk = (𝜑1
k(zk−1),

… , 𝜑
nk
k (zk−1)) are any complementary coordinates such that 𝜓k is a local diffeomorphism.

6: Choose new control inputs
[

uk
ūk

]
= ak(zk−1) + bk(zk−1)uk−1, whereak =

[
0

F̃2
k

]
, bk =

[
b̃k
G̃2

k

]
, and where b̃k ∶ Wk →

Rmk−1×mk is chosen such that bk(zk−1) is invertible ∀zk−1 ∈ Wk (by taking again a smaller Uk, if necessary).

7: Set Êk = QkẼk

(
𝜕𝜓k
𝜕zk−1

)−1
, F̂k = Qk(F̃k + Gk𝛼k), Ĝk = QkG̃k𝛽k, 𝛼k = −b−1

k ak and 𝛽k = b−1
k .

8: By Definition 3, Ξ̃ũ
k

ex−fb∼ Ξ̂û
k = (Êk, F̂k, Ĝk) via Qk, 𝜓k, and (𝛼k, 𝛽k), where

Ξ̂û
k ∶

[Ê1
k(zk, z̄k) Ē1

k(zk, z̄k)
0 0
0 0

][
żk
̇̄zk

]
=
⎡⎢⎢⎣
F̂1

k(zk, z̄k)
0

F̂3
k(zk, z̄k)

⎤⎥⎥⎦ +
⎡⎢⎢⎣
Ĝ1

k(zk, z̄k) Ḡ1
k(zk, z̄k)

0 Imk−1−mk
0 0

⎤⎥⎥⎦
[

uk
ūk

]
, (A1)

with Ê1
k ∶ Wk → Rrk×nk , F̂1

k ∶ Wk → Rrk , Ĝ1
k ∶ Wk → Rrk×mk , and

[
Ê1

k◦𝜓k Ē1
k ◦𝜓k

]
= Ẽ1

k

(
𝜕𝜓k
𝜕zk−1

)−1
, F̂1

k◦𝜓k = F̃1
k𝛼k,

F̂3
k◦𝜓k = F̃3

k and
[
Ĝ1

k◦𝜓k Ḡ1
k◦𝜓k

]
= G̃1

k𝛽k.
9: Set z̄k = 0 and ūk = 0 to define the restricted DACS on Mc

k = {zk−1 ∈ Wk | z̄k = 0} as

Ξ̂û
k|Mc

k
∶ Ê1

k(zk, 0)żk = F̂1
k(zk, 0) + Ĝ1

k(zk, 0)uk. (A2)

10: On Mc
k, define a system

Ξu
k ∶ Ek(zk)żk = Fk(zk) + Gk(zk)uk,

where Ek(zk) = Ê1
k(zk, 0), Fk(zk) = F̂1

k(zk, 0), Gk(zk) = Ĝ1
k(zk, 0) are matrix-valued maps and Ek ∶ Mc

k →Rrk×nk , Fk ∶
Mc

k → Rrk , Gk ∶ Mc
k → Rrk×mk .

Repeat: Step k for k = 1, 2, 3,… , until nk+1 = nk, set k∗ = k.
Result: Set n∗ = nk∗ = nk∗+1, r∗ = rk∗+1, m∗ = mk∗+1, M∗ = Mc

k∗+1, U∗ = Uk∗+1, z∗ = zk∗+1 = zk∗ , u∗ = uk∗+1 and Ξu∗ =
(E∗,F∗,G∗) with E∗ = Ek∗+1, F∗ = Fk∗+1, G∗ = Gk∗+1.


