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The u-serrated immunodeposition pattern in direct immunofluorescence (DIF) microscopy is a recog-
nizable feature and confirmative for the diagnosis of epidermolysis bullosa acquisita (EBA). Due to
unfamiliarity with serrated patterns, serration pattern recognition is still of limited use in routine DIF
microscopy. The objective of this study was to investigate the feasibility of using convolutional neural
networks (CNNs) for the recognition of u-serrated patterns that can assist in the diagnosis of EBA. The
nine most commonly used CNNs were trained and validated by using 220,800 manually delineated DIF
image patches from 106 images of 46 different patients. The data set was split into 10 subsets: nine
training subsets from 42 patients to train CNNs and the last subset from the remaining four patients for
a validation data set of diagnostic accuracy. This process was repeated 10 times with a different subset
used for validation. The best-performing CNN achieved a specificity of 89.3% and a corresponding
sensitivity of 89.3% in the classification of u-serrated DIF image patches, an expert level of diagnostic
accuracy. Experiments and results show the effectiveness of CNN approaches for u-serrated pattern
recognition with a high accuracy. The proposed approach can assist clinicians and pathologists in
recognition of u-serrated patterns in DIF images and facilitate the diagnosis of EBA. (Am J Pathol
2021, 191: 1520e1525; https://doi.org/10.1016/j.ajpath.2021.05.024)
C.S. and J.M.M. contributed equally to this work.
Disclosures: None declared.
The u-serrated immunodeposition pattern in direct immuno-
fluorescence (DIF)microscopy on a skin biopsy specimen is a
recognizable feature and a reference standard for the diag-
nosis of the autoimmune bullous disease epidermolysis bul-
losa acquisita (EBA).1 EBA is a subtype of pemphigoid
disease and characterized by autoantibodies against type VII
collagen, located in the sublamina densa zone of the
epidermal basement membrane zone (EBMZ). Diagnosis of
EBA can be challenging; the disease is likely underdiagnosed
because sophisticated laboratory techniques are needed, and
circulating disease-specific autoantibodies are only detected
in 50% of patients with EBA. Clinical features and histopa-
thology of a skin biopsy specimen are not sufficient to
distinguish EBA fromother subtypes of pemphigoid diseases.
stigative Pathology. Published by Elsevier Inc

Y license (http://creativecommons.org/licenses
The disease course of EBA is often chronic and with
severe morbidity; the prognosis of EBA differs from other
subtypes of pemphigoid diseases, with EBA often being
refractory to treatment and with potential scarring of skin
and mucosa, strictures, and stenosis. The early identification
of EBA is therefore essential for disease management and to
prevent disease progression. Current diagnostic techniques
for confirmation of EBA encompass direct immune-electron
microscopy and fluorescent overlay antigen mapping on a
skin biopsy specimen, techniques that are only available in a
.
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Use of CNN to Facilitate EBA Diagnosis
very limited number of referral laboratories and less suitable
for routine diagnostics.

Due to differences in the subtypes of pemphigoid disease
based on autoantigens and the localization of the targeted
structural proteins, different patterns of immunodepositions
are formed along the EBMZ. Serration pattern analysis is a
detailed examination of the linear pattern of immunodepo-
sitions (IgG and/or IgA, complement C3) along the EBMZ
by DIF microscopy on a skin biopsy sample. Such analysis
involves two different types of patterns: the n-serrated
pattern with rounded n-like shapes, and the u-serrated
pattern with u- or finger-like ridges. The u-serrated pattern
in DIF microscopy corresponds with the localization of type
VII collagen, whereas the n-serrated pattern can be observed
in other pemphigoid diseases with other autoantigens.2 DIF
microscopy on a skin biopsy specimen is considered the
reference standard for diagnosis of autoimmune bullous
diseases and is widely performed in medical laboratories.2e4

The family of convolutional neural networks (CNN) is
the current state-of-the-art for medical image analysis and
has seen various applications in dermatology, ophthal-
mology, radiographic images, and histopathologic slide
analysis. CNNs can learn patterns from images by resolving
the image content into notable features, followed by selec-
tion and aggregation of the most meaningful ones. In
dermatology, the use of CNNs has been shown in the
diagnosis of skin cancer to distinguish between malignant
melanoma, carcinoma, and nevus5 or between benign le-
sions and keratinocyte skin cancer lesions.6 In a previous
study of serration pattern analysis, recognition of the
serrated pattern in DIF images by observers was achieved
with an accuracy of 78.6% in dermatologists, pathologists,
and residents in dermatology.3 Although serration pattern
analysis is implemented in diagnostic criteria of EBA and is
useable in routine diagnostics, its widespread implementa-
tion is still limited because of unfamiliarity with the serrated
patterns.4 A CNN-based approach was therefore investi-
gated to develop an automatic tool for the classification of
u-serrated patterns in DIF microscopy images that may
facilitate the diagnosis of EBA.

Materials and Methods

DIF Images and Data Set

UserratedPatch2021 data set, consisting of 220,800 DIF
image patches (of size 50 � 50 pixels) extracted from 106
images of 46 patients (4800 patches per each patient), was
compiled. One-half of the dataset consisted of u-serrated
patterns from DIF biopsy specimens of 23 patients with
confirmed diagnoses of EBA, and the other half consisted of
noneu-serrated patterns from DIF biopsy specimens of the
other 23 patients with other pemphigoid diseases. DIF
samples with u-serrated patterns were collected from pa-
tients with a confirmed diagnosis of EBA. Diagnosis was
compliant with the latest consensus on diagnosis of the
The American Journal of Pathology - ajp.amjpathol.org
disease, including the observation of the linear immunode-
position of IgG along the EBMZ with a u-serrated pattern
and with serologic analysis performed by using indirect
immunofluorescence on salt-split human skin, immuno-
blotting, and enzyme-linked immunosorbent assay (type VII
collagen, or also NC16A BP180 and BP230).3 The noneu-
serrated patterns were extracted from DIF samples of pa-
tients with other pemphigoid diseases (DIF samples with a
positive linear immunodeposition along the EBMZ). Sam-
ples were randomly selected from routine diagnostics and
consisted of patients with bullous pemphigoid, nonbullous
pemphigoid, mucous membrane pemphigoid, antielaminin-
332 mucous membrane pemphigoid, and one case of
porphyria. Patients with linear IgA disease were not
included, as only IgG staining was addressed. The original
data set of DIF images of serrated patterns was used in a
previous study, with the outcome of serrated patterns
independently classified by an expert dermatopathologist,
two expert dermatologists, and a resident in dermatology.4

Different staining intensities and slide thicknesses (4 mm,
6 mm, and 8 mm) were included to generate the data set,
representing routine diagnostics. All DIF slides were cut and
stained at the Immunodermatology Laboratory of the Center
for Blistering Diseases, University Medical Center Gronin-
gen (Groningen, the Netherlands). DIF images were taken
under standardized settings with the same microscope
(Leica DMRA, Leica, Wetzlar, Germany) and 40� magni-
fication dry objective (Leica HCX PL Fluotar 40�/0.75,
Leica) and 10� magnification ocular. Figure 1 shows
enlarged examples from the DIF images from the data set
representing a u-serrated pattern from a patient with EBA
and three examples of noneu-serrated patterns from a pa-
tient with another pemphigoid disease.

The UserratedPatch2021 data set is publicly available at
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/
ZJTLBB, and a training website with DIF images is
available at https://rug.eu.qualtrics.com/jfe/form/SV_
3adioqW098URBkh?Q_JFE=qdg (both last accessed June
3, 2021).

The data set was generated by first manually delineating
2300 u-serrated and 2300 noneu-serrated patches, and it
was extended by creating rotated versions in 24 orientation
intervals of 15 degrees with and without flip in the left-right
direction. DIF image patches were of size 50 � 50 pixels
each, and the pixel values were extracted from the green
channel. The data set was split into 10 subsets: nine subsets
that contain one-half u-serrated patterns and one-half
noneu-serrated patterns from 42 patients functioned as
training sets to train commonly used CNNs. The remaining
subset from the other four different patients functioned as a
testing data set for evaluation of diagnostic accuracy. For
each CNN, this process was repeated 10 times, with a
different subset used for validation and the other nine sub-
sets for training (a process called 10-fold cross-validation).
All image patches were assigned to the training and
testing sets equally and randomly and not with fixed
1521
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Figure 1 Enlarged examples of a u-serrated pattern (of size 50 � 50 pixels) along the epidermal basement membrane zone in a whole-slide direct
immunofluorescence (DIF) image (of size 21,504 � 12,144 pixels) from a patient with epidermolysis bullosa acquisita (A) and three examples of a noneu-
serrated linear pattern along the epidermal basement membrane zone or background fluorescence in a whole-slide DIF image (of size 23,192 � 13,024 pixels)
from a patient with another pemphigoid disease (B). One of the main characteristics of u-serrated patterns is the representation of grass or spike shapes in the
DIF images, which are marked by white dashed lines in A.

Shi et al
categories (training or testing). Performance of the CNNs
was evaluated based on sensitivity, specificity, receiver-
operating characteristic curve, and the corresponding area
under the curve (AUC). The performance of CNN using
AUC (range, 0 to 1) indicates perfect prediction classifica-
tion, with an AUC receiver-operating characteristic score of
1 and 0.5 indicating a random classifier.
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Figure 2 Receiver-operating characteristic curves and area under the
curves of nine convolutional neural networks. Each dot marker lies on the
black dashed line, which indicates the performance for which the sensi-
tivity and specificity are equal. All results are averaged across 10-fold cross-
validation.
CNNs and Implementation Details

A set of nine different state-of-the-art CNNs was used:
VGG,7 ResNet,8 GoogLeNet,9 DenseNet,10 MobileNet,11

DPN,12 SENet,13 PreActResNet,14 and ResNeXt.15 They
were all modified for the binary classification task at hand
and are explained in the following text.

VGG-19 contains 16 convolutional layers followed by
three fully connected layers. ResNet-18 is an 18-layer, deep
plain residual network. GoogLeNet contains 22 layers of
inception modules. DenseNet-121 has 121 layers, with each
layer containing four dense blocks. MobileNet is based on a
streamlined architecture with 28 layers. DPN-92 contains 92
layers that are built by stacking 30 modularized micro-
blocks. SENet-18 has 18 layers that have an embedded
block termed the “squeeze and-excitation” block.
PreActResNet-18 is an 18-layer preactivation ResNet.
ResNeXt-29 is an improved version of the 29-layer ResNet.

Images from 42 patients were included in the training set
to train the CNN models and the images from the remaining
four patients as the validation set to monitor the training
process. A maximum number of 100 epochs was used for
the training. To avoid overfitting, an early stopping strategy
is used if there is no improvement of loss in the validation
set after five epochs. Each training image was used to create
another seven images by rotation at seven random angles.
Thus, the factor of data augmentation was eight. The orig-
inal architectures of the CNNs used in this study have output
layers with many units, one unit per class. The last (clas-
sification) layer of each CNN is replaced by one single unit
with a graded output between 0 and 1 that gives the like-
lihood of a pattern being a u-serrated pattern. A pattern is
1522
classified as u-serrated if the output is greater than a certain
preset threshold value (decision criterion). Using different
values of the decision criterion leads to different specificity/
sensitivity results. The binary cross-entropy with logits loss
was used as the training criterion instead of the cross-
entropy loss, which is more suitable for binary classifica-
tion. The momentum was set to 0.9, weight decay to 0.0005,
and the learning rate started as 0.01 and then decreased by a
factor of 10 when the accuracy on the validation set stopped
improving.
Results

Experiments were performed with the aforementioned
CNNs on the UserratedPatch2021 data set to detect
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Results (Se, Sp, and AUC with 95% CI) of the Nine CNNs
When Se Equals Sp

CNN Sp Z SeZF1-score (%) AUC, % (95% CI)

GoogLeNet 89.3 95.7 (95.4e96.0)
SENet-18 86.8 93.8 (93.4e94.1)
VGG-19 85.0 92.2 (91.8e92.6)
DenseNet 84.9 93.0 (92.7e93.4)
ResNeXt-29 84.8 92.5 (92.1e92.9)
PreActResNet-18 84.5 92.5 (92.1e92.8)
ResNet-18 84.0 91.2 (90.8e91.6)
MobileNet 83.2 91.1 (90.7e91.5)
DPN-92 78.2 87.3 (86.8e87.7)

All results are averaged across 10-fold cross-validation.
AUC, area under the curve; CNN, convolutional neural networks; Se,

sensitivity; Sp, specificity.

Use of CNN to Facilitate EBA Diagnosis
u-serrated patterns in DIF images and to compare computer-
aided diagnosis versus manual diagnosis based on serration
pattern analysis. A total of 220,800 DIF image patches in
the data set included 110,400 patches from u-serrated pat-
terns from DIF biopsy specimens of patients with EBA (n
Z 23) and 110,400 patches from noneu-serrated patterns
from DIF biopsy patterns of patients with other pemphigoid
diseases. The composition of DIF images in the noneu-
serrated group consisted of 98.8% linear n-serrated patterns
and 2.2% undetermined linear immunodepositions. Based
on the validation data set, for the detection of u-serrated
patterns, the respective AUCs of the 9 CNNs ranged from
87.3% to 95.7%. Figure 2 displays the receiver-operating
characteristic curves of the nine CNNs used, the results of
the AUC of the receiver-operating characteristic curves, and
performances of the CNNs when sensitivity equals
specificity. The performance of the nine CNNs when
sensitivity equals specificity ranged from 78.2% to 89.3%.
All results (sensitivity, specificity, and AUC) in Table 1 are
averaged across 10-fold cross-validation. The best perfor-
mance of detection of u-serrated patterns in the DIF images
Figure 3 An example of the application of the modified GoogLeNet model to tw
from a skin biopsy specimen of a patient with epidermolysis bullosa acquisita (
between the red dashed lines indicate the area of the epidermal basement mem
classified according to the convolutional neural networks as u-serrated pattern
detected patterns are false-positive findings, and their number is in line with th

The American Journal of Pathology - ajp.amjpathol.org
was achieved by the modified GoogLeNet, with an average
sensitivity of 89.3%, specificity of 89.3%, and AUC of
95.7% across the 10 experiments in the classification of
individual patches along the EBMZ. As a follow-up to
this work, one may evaluate the GoogLeNet model on a new
set of patients with EBA and with other pemphigoid
diseases.

Example

Figure 3 presents an example of the application of the
trained GoogLeNet model applied to two studies of DIF
images (of size 2088 � 1560 pixels): i) from a skin biopsy
specimen from a patient with EBA; and ii) from a skin bi-
opsy specimen from a patient with another pemphigoid
disease (non-EBA). The EBMZ region is automatically
partitioned into patches by using a sliding window of size
50 � 50 pixels with a stride of 25 pixels. The patches are
then automatically classified by the GoogLeNet CNN, using
the decision criterion that corresponds to sensitivity and
specificity of 89%. The squares in Figure 3 indicate patches
that were classified as containing u-patterns. In the DIF
image from the patient with EBA, 68 of 165 patches were
classified as u-serrated. In the DIF image from the non-EBA
patient, only six of 162 patches were mistakenly classified
as u-serrated. The shown example could be the output of an
online tool for routine immunofluorescence diagnostics of
DIF samples with positive linear immunodepositions, sug-
gestive for diagnosis of pemphigoid diseases.

Discussion

In this study, an automated model was developed by using
CNNs for the recognition of u-serrated immunodeposition
patterns in DIF images to facilitate the diagnosis of EBA.
The performance surpassed the manual serration pattern
analysis of a previous study and was of expert level.
o direct immunofluorescence image crops (of size 2088 � 1560 pixels), one
A) and one from a patient with another pemphigoid disease (B). Regions
brane zone. Squares (of size 50 � 50 pixels) indicate patches that were
s. In the case of a noneepidermolysis bullosa acquisita patient (B), the
e 89% precision of the method.

1523
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Machine learning models have been applied to dermatologic
diagnoses based on both clinical and dermoscopic images.16

With the introduction of whole-slide scanning systems in
pathology, CNNs have been shown to improve diagnostic
accuracy and aid the pathologist in the examination and
quantification of digital histopathologic slide analysis.17 In a
previous study of serration pattern analysis, a mean accu-
racy of 78.6% of correct manual recognition of serrated
patterns was observed in dermatologists, pathologists, and
residents in dermatology with various levels of expertise.3

More recently, a comparative study of DIF serration
pattern analysis in two different laboratories showed a very
high recognition rate of 97.5% in DIF slides independently
classified by four experts: a pathologist, two dermatologists,
and a resident in dermatology.4 With the current introduc-
tion of whole-slide immunofluorescence scanning systems,
CNNs may have a broader implementation for routine di-
agnostics and analytical methods. For future implementation
of automated slide analysis, an algorithm would require a
high specificity for a certain diagnosis and minimal false-
positive outcomes.2

EBA is a difficult disease to diagnose and has a serious
impact on the prognosis of the patient, but the required
diagnostic techniques are only available in a few specialized
laboratories. The automated pattern recognition shown here
may assist in identifying patients with EBA in one simple
step, for a confirmed diagnosis based on DIF microscopy.
The current study shows that the performance of detection
of u-serrated patterns by CNNs is at an expert level, and the
automated model may act as a reliable reference standard for
u-serrated patterns and a computer-aided diagnosis of EBA.
Another utility of the automated model would be of a
supportive role for training of classification of u-serrated
patterns.

Bullous systemic lupus erythematosus may exhibit a u-
serrated pattern similar to EBA. However, such a deposition
would be observed in patients with confirmed systemic
lupus erythematosus based on other immunoserologic test
results and clinical criteria, distinguishing those patients
from those with EBA. This study did not include patients
with bullous systemic lupus erythematosus due to the rarity
of the disease.

That an automatic tool may perform better than a human
rater is an interesting development indeed. A human rater
performs serration pattern analysis using a microscope
based on the first impression and searches for the confir-
mation of the pattern. The automatic tool analyzes all
available data of image patches of the pattern and makes the
prediction. The duration of pattern recognition and classi-
fication has not been assessed before, but it can be argued
that the automatic tool will always be faster.

The DIF images in the data set are labeled only as u-
serrated or noneu-serrated patterns. Methods using CNNs
for recognition of multiple patterns, such as granular pat-
terns, n-serrated patterns, and negative images, can be
developed for future application.
1524
Conclusions

This study shows that CNNs are able to recognize the u-
serrated immunodeposition patterns in DIF images of pa-
tients with EBA with a high accuracy. The proposed
approach can assist clinicians and pathologists in recog-
nizing u-serrated patterns in DIF images and facilitate
diagnosis of EBA.
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